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Abstract—In this paper, the classic rule of combination in
the Dezer t-Smarandache theory is found to be not convergent
with the number increase of evidential sources since it leaves
out the denominator in the Dempster ’s rule. That is, it is a
process of entropy productions. This means the final result
of combination is more uncer tain, and can not give a good
decision. Several illustrative examples are given to explain
and testify this problem. Finally, a conclusion is given, in
order to point out the necessity of developing some simple
and convergent combinational rules in the Dezer t-Smarandache
theory.
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I. INTRODUCTION

With the development of computer science and technol-
ogy, the belief function theory as one of important intelligent
information processing technologies is more and more pop-
ular. Many experts and scholars made great achievements in
this field[1]-[13]. In the Shafer model, an ultimate refine-
ment of the problem was possible so that singleton focal
elements were supposed to be exclusive and exhaustive in
the closed-world. Therefore, Dempster [6] proposed a well-
known combinational rule on the basis of the Shafer model
in (1) according to the Dempster-Shafer theory (DST). This
rule was widely applied in different fields. However, since it
can not deal with the highly conflictive sources of evidence
and its computational amount exponentially increases with
more and more focal elements, its application strongly
suffers from limitations.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m (φ) = 0

m (A) =

�

X ,Y ∈2Θ ,
X ∩Y = A

m 1 (X )m 2 (Y )

1−
�

X ,Y ∈2Θ ,
X ∩Y = φ

m 1 (X )m 2 (Y ) ∀ (A �= φ) ∈ 2Θ (1)

Murphy [7] proposed a convex combination rule. This
rule consists actually in a simple arithmetic average of belief
functions associated with m1 and m2. That is,

Belm (A) =
1
2

[Bel1 (A) + Bel2 (A)] A ∈ 2Θ (2)

Dubois and Prade [8] in 1986 proposed a disjunctive rule
of combination, that is,

⎧
⎨

⎩

m∪ (φ) = 0
m∪ (A) =

�

X ,Y ∈2Θ

X ∪Y = A

m1 (X ) m2 (Y ) ∀(A �= φ) ∈ 2Θ (3)

In addition, according to the opinion of Dubois and Prade
[9], the two sources were reliable when they were not in
conflicts, but one of them was right when a conflict occurs.
Their combinational rule was given as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

m (φ) = 0
m (A) =

�

X ,Y ∈2Θ

X ∩Y = A
X ∩Y �= φ

m1 (X ) m2 (Y )

+
�

X ,Y ∈2Θ

X ∩Y = A
X ∩Y = φ

m1 (X ) m2 (Y )
∀A ∈ 2Θ , A �= φ

(4)

According to the opinion of Smets [10], the power-
set space was an open-world, and the positive mass may
be on the null/empty set, and the division is eliminated
by 1 −

�

X ,Y ∈2Θ

X ∩Y = φ

m1 (X ) m2 (Y ) like Dempsters rule. His

combinational rule for two independent (equally reliable)
sources of evidence was given as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m (φ) = k12 =
�

X ,Y ∈2Θ

X ∩Y = φ

m1 (X ) m2 (Y )

m (A) =
�

X ,Y ∈2Θ

X ∩Y = A

m1 (X ) m2 (Y) ∀(A �= φ) ∈ 2Θ
(5)

According to the opinion of Yager [11][12], in case of
conflict, the result was not reliable, so that the conflict factor
1 −

�

X ,Y ∈2Θ

X ∩Y = φ

m1 (X ) m2 (Y ) played the role of an absolute

discounting term added to the weight of ignorance. The
commutative (but not associative) Yager rule was given as
follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

m (φ) = 0

m (A) =
�

X ,Y ∈2Θ

X ∩Y = A

m1 (X ) m2 (Y ) ∀
�

A �= φ,
A �= Θ

�

∈ 2Θ

m (Θ) = m1 (Θ) m2 (Θ)
+

�

X ,Y ∈2Θ

X ∩Y = φ

m1 (X ) m2 (Y ) when A = Θ

(6)

Dezert and Smarandche have recently proposed a DSm
combinational rule in more refined framework[13], in order
to focus on the fusion of uncertain, highly conflictive and
imprecise sources of evidence.

The differences between the Dempster-Shafer theory
(DST) [6] and the Dezert-Smarandache theory (DSmT) [13]
are:

In the Shafer model, one considers a finite frame of pos-
sible exhaustive solutions Θ = {θ1, . . . , θn } , and assumes
the exclusivity of θi and defines belief masses on the classic
power set 2Θ � (Θ,∪). In DSmT, the belief masses can
be directly defined on the Dedekind’s lattice/hyper-power
set DΘ � (Θ,∪,∩) and even on the super-power set
SΘ � (Θ,∪,∩, c(.)). In the sequel, the generic notation GΘ

is used for denoting either 2Θ , DΘ or SΘ . A quantitative
basic belief assignment (bba) is a mapping m(.) : GΘ →
[0, 1] associated to a given body of evidence B, it satisfies
m(∅) = 0 and

�
A∈GΘ m(A) = 1.

In the free or static DSmT model M f (Θ), for two reliable
evidence sources, i.e. S1 and S2 over the same frame Θ,
their belief functions B el1(.) and B el2(.) are associated
with gbba m1(.) and m2(.). The classic DSmT rule of
combination (DSmC) in (7) is given in [13]. This rule
submits to the conjunctive consensus of sources.

∀C ∈ DΘ , mM f (Θ ) (C) =
�

A ,B ∈D Θ

A∩B = C

m1 (A) m2 (B ) (7)

Seen from (7), the classic DSmT rule of combination
(DSmC) eliminates 1 −

�

X ,Y ∈2Θ

X ∩Y = φ

m1 (X ) m2 (Y ) from the

denominator in the DST rule of combination [6]. It over-
comes one of fatal deficiencies of the DST.

However, although the DSmC can deal with highly con-
flictive sources of evidence, etc., it has a fatal deficiency, i.e.
entropy production. In the section II, we will explain it in
detail.

II. THE ENTROPY PRODUCTION OF THE DSMC

The classic DSm rule of combination is difficultly con-
vergent, the combination is a process of entropy production.

Example 1. Suppose that there are n evidential sources,
they have the same discernment framework Θ = { θ1, θ2} .
Their gbbas are given in (8), and we sequentially combine

these evidential sources according to the classic DSm rule
of combination in (7).

S m (θ1) m (θ2)
s1 a 1− a
s2 a 1− a
...

...
...

sn a 1− a

(8)

therefore, we get m (θ1) = an , m (θ2) = (1− a)n ,

m (θ1 ∩θ2) = a (1− a)
�

1− an − 1

1− a + 1− (1− a)n − 1

a

�
. When

n → ∞ , m (θ1) → 0, m (θ2) → 0, m (θ1 ∩θ2) → 1.
With the increase of m (θ1 ∩θ2), the conflict value becomes
greater and greater, and the result becomes more and more
uncertain.

Example 2. Suppose that there are n evidential sources,
they have the same discernment framework Θ = { θ1,θ2} .
Their gbbas are given in (9), and we sequentially combine
these evidential sources according to the classic DSm rule
of combination in (7).

S m (θ1) m (θ2)
s1 1− a a
s2 a 1− a
...

...
...

sn a 1− a

(9)

when a ≥ 1
2 , we get m (θ1) = an− 1(1 − a),

m (θ2) = a (1− a)n− 1, m (θ1 ∩θ2) = an + (1− a)n +

a (1− a)
�

1− an − 2

1− a + 1− (1− a) n − 2

a

�
, m (θ1) ≥ m (θ2). When

n → ∞ , m (θ1) → 0, m (θ2) → 0 and m (θ1 ∩θ2) → 1.
Example 3. Suppose that there are n evidential sources,

they have the same discernment framework Θ = { θ1,θ2} .
Their gbbas are given in (10), and we sequentially combine
these evidential sources according to the classic DSm rule
of combination in (7).

S m (θ1) m (θ2)
s1 a 1− a
s2 1− a a
...

...
...

si + 1 1− a a
...

...
...

sn a 1− a

(10)

we get m (θ1) = an− i (1 − a)i , m (θ2) = ai (1− a)n− i ,
m (θ1 ∩θ2) = an− i 1− ai

1− a + (1− a)n− i 1− (1− a) i

a +

a (1− a)
�

1− an − i − 2

1− a + 1− (1− a)n − i − 2

a

�
. When n → ∞ ,

m (θ1) → 0, m (θ2) → 0 and m (θ1 ∩θ2) → 1.
Example 4. Suppose that there are n evidential

sources, they have the same discernment framework Θ =
{ θ1,θ2,θ3} . Their gbbas are given in (11), and we sequen-
tially combine these evidential sources according to the
classic DSm rule of combination in (7).
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S m (θ1) m (θ2) m (θ3)
s1 a b 1− a − b
s2 c 1− c 0
...

...
...

...
sn c 1− c 0

(11)

we get m (θ1) = lim
n→∞

acn− 1 = 0,

m (θ2) = lim
n→∞

b(1− c)n− 1 = 0,

m (θ1 ∩θ2)

= lim
n→∞

⎧
⎨

⎩

a (1− c) + bc + ac(1− c) + bc(1− c)
+ ac2 (1− c) + bc(1− c)2 + ·· ·+
acn− 2 (1− c) + bc(1− c)n− 2

⎫
⎬

⎭

= lim
n→∞

�
bc1− (1− c)n − 1

c + a (1− c) 1− cn − 1

1− c

�

= a + b

,

m (θ1 ∩θ3) = lim
n→∞

cn− 1 (1− a − b) = 0,

m (θ2 ∩θ3) = lim
n→∞

(1− c)n− 1 (1− a − b) = 0,

m (θ1 ∩θ2 ∩θ3)

= lim
n→∞

⎧
⎪⎪⎨

⎪⎪⎩

c(1− a − b) (1− c) + c(1− a − b) (1− c) +
c2 (1− a − b) (1− c) + c(1− a − b) (1− c)2

+ · · · + cn− 2 (1− a − b) (1− c) +
c(1− a − b) (1− c)n− 2

⎫
⎪⎪⎬

⎪⎪⎭

= lim
n→∞

⎧
⎪⎪⎨

⎪⎪⎩

(1− a − b) (1− c)

�
c(1− cn − 2 )

1− c

�

+

c(1− a − b)

�
(1− c)(1− (1− c)n − 2 )

c

�

⎫
⎪⎪⎬

⎪⎪⎭

= 1− a − b
Example 5. Suppose that there are n evidential sources,

they have the same discernment framework Θ = { θ1, θ2} .
Their gbbas are given in (12), and we sequentially combine
these evidential sources according to the classic DSm rule
of combination in (7).

S m (θ1) m (θ2) m (θ1 ∩θ2)
s1 a b 1− a − b
s2 a b 1− a − b
...

...
... 1− a − b

sn a b 1− a − b

(12)

when n → ∞ , we get m (θ2) = lim
n→∞

bn = 0, m (θ2) =

lim
n→∞

bn = 0, m (θ1 ∩θ2) = lim
n→∞

1− an − bn = 1.

Example 6. Suppose that there are n evidential sources,
they have the same discernment framework Θ = { θ1, θ2} .
Their gbbas are given in (13), and we sequentially combine
these evidential sources according to the classic DSm rule

of combination in (7).

S m (θ1) m (θ2) m (θ1 ∪ θ2)
s1 a b 1− a − b
s2 a b 1− a − b
...

...
... 1− a − b

sn a b 1− a − b

(13)

when n → ∞ , we get
m (θ1)

= lim
n→∞

⎛

⎝
a (1− b)n− 1 + a (1− a − b) (1− b)n− 2 +
a (1− a − b)2 (1− b)n− 3 + · · ·
+ a (1− a − b)n− 2 (1− b) + a(1− a − b)n− 1

⎞

⎠

= lim
n→∞

a

⎛

⎝
(1− b)n− 1 + (1− a − b) (1− b)n− 2 +
(1− a − b)2 (1− b)n− 3 + · · ·
+ (1− a − b)n− 2 (1− b) + (1− a − b)n− 1

⎞

⎠

= lim
n→∞

a (1− b)n− 1

⎛

⎜⎝
1 + 1− a− b

1− b +
�

1− a− b
1− b

�2
+

·· · +
�

1− a− b
1− b

�n− 1

⎞

⎟⎠

= lim
n→∞

a (1− b)n− 1
�

1− ( 1− a − b
1− b )n

1− 1− a − b
1− b

�

= 0
m (θ2)

= lim
n→∞

⎧
⎨

⎩

b(1− a)n− 1 + b(1− a − b) (1− a)n− 2 +
b(1− a − b)2 (1− a)n− 3 + · · ·+
b(1− a − b)n− 2 (1− a) + b(1− a − b)n− 1

⎫
⎬

⎭

= lim
n→∞

b(1− a)n− 1

⎧
⎪⎨

⎪⎩

1 + 1− a− b
1− a +

�
1− a− b

1− a

�2

+ ·· · +
�

1− a− b
1− a

�n− 1

⎫
⎪⎬

⎪⎭

= lim
n→∞

b(1− a)n− 1
�

1− ( 1− a − b
1− a )n

1− 1− a − b
1− a

�

= 0

m (θ1 ∩θ2)

= lim
n→∞

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2ab+ b
�

(1− b)2 − (1− a − b)2
�

+

a
�

(1− a)2 − (1− a − b)2
�

+

b
�

(1− b)3 − (1− a − b)3
�

+ a
�

(1− a)3 − (1− a − b)3
�

+ ·· ·+

b
�

(1− b)n− 1 − (1− a − b)n− 1
�

+

a
�

(1− a)n− 1 − (1− a − b)n− 1
�

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= lim
n→∞

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1− b)2
�

1− (1− b)n− 2
�
−

(1− a − b)2
�

1− (1− a − b)n− 2
�

+ 2ab+

(1− a)2
�

1− (1− a)n− 2
�

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= (1− b)2 − (1− a − b)2 + 2ab+ (1− a)2

= 1

m (θ1 ∪ θ2) = lim
n→∞

(1− a − b)n = 0
Example 7. Suppose that there are n evidential

sources, they have the same discernment framework Θ =
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{ θ1, θ2, θ3} . Their gbbas are given in (14), and we sequen-
tially combine these evidential sources according to the
classic DSm rule of combination in (7).

S m (θ1) m (θ2) m (θ1 ∩θ3)
s1 a b 1− a − b
s2 a b 1− a − b
...

...
... 1− a − b

sn a b 1− a − b

(14)

when n → ∞ , we get m (θ1) = lim
n→∞

an = 0, m (θ2) =
lim

n→∞
bn = 0,

m (θ1 ∩θ3) = lim
n→∞

(1− a − b)

⎡

⎢⎢⎣

(1− b)n− 1 +
a (1− b)n− 2

+ a2 (1− b)n− 3

+ · · · + an− 1

⎤

⎥⎥⎦

= lim
n→∞

(1− a − b) (1− b)n− 1

⎡

⎢⎣
1 + a

1− b +
�

a
1− b

�2

+ ·· ·
�

a
1− b

�n− 1

⎤

⎥⎦

= lim
n→∞

(1− a − b) (1− b)n− 1 1− ( a
1− b )n

1− a
1− b

= 0

m (θ1 ∩θ2)

= lim
n→∞

ab

⎡

⎣
3(a + b)n− 2 +

�
a2 + b2

 
(a + b)n− 4

+
�
a3 + b3

 
(a + b)n− 5 + · · ·

+
�
an− 3 + bn− 3

 
(a + b) +

�
an− 2 + bn− 2

 

⎤

⎦

= lim
n→∞

ab

⎡

⎢⎢⎢⎢⎣

(a + b)n− 2 + a (a + b)n− 3 + a2 (a + b)n− 4

+ a3 (a + b)n− 5 + · · · + an− 3 (a + b) +
an− 2 + (a + b)n− 2 + b(a + b)n− 3 +
b2 (a + b)n− 4 + b3 (a + b)n− 5 + · · ·
+ bn− 3 (a + b) + bn− 2

⎤

⎥⎥⎥⎥⎦

= lim
n→∞

ab

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(a + b)n− 2

⎛

⎜⎜⎜⎜⎝

1 + a
a+ b + a2

(a+ b)2 + a3

(a+ b) 3

+ ·· · + an − 2

(a+ b)n − 2 + 1

+ b
a+ b + b2

(a+ b) 2 + b3

(a+ b)3

+ ·· · + bn − 2

(a+ b)n − 2

⎞

⎟⎟⎟⎟⎠

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

= lim
n→∞

ab[(a + b)n− 2
�

1− ( a
a + b )n − 1

b
a + b

+
1− ( b

a + b )n − 1

a
a + b

�

= 0

m (θ1 ∩θ2 ∩θ3)

= lim
n→∞

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2b(1− a − b) + b2 (1− a − b) +

b(1− b) (1− a − b)
1− ( a

1− b )2

1− a
1− b

+

2ab(1− a − b) + b3 (1− a − b) +

b(1− b)2 (1− a − b)
1− ( a

1− b )3

1− a
1− b

+
�

(a + b)3 − a3 − b3
�

(1− a − b)

+ b4 (1− a − b) + b(1− b)3 (1− a − b)
1− ( a

1− b )4

1− a
1− b

+
�

(a + b)4 − a4 − b4
�

(1− a − b) + ···+

bn− 1 (1− a − b) +

b(1− b)n− 2 (1− a − b)
1− ( a

1− b )n − 1

1− a
1− b

+ ((a + b)n − an − bn ) (1− a − b)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= lim
n→∞

(1− a − b)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b+ b2 + b3 + ·· · + bn− 1+

b

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 + (1− b)
1− ( a

1− b )2

1− a
1− b

+ (1− b)2 1− ( a
1− b )3

1− a
1− b

+

(1− b)3 1− ( a
1− b )4

1− a
1− b

+

· · · + (1− b)n− 2 1− ( a
1− b )n − 1

1− a
1− b

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

+ (a + b)2 + (a + b)3 + ·· · + (a + b)n

− a2 − a3 − · · ·an − b2 − b3 − · · ·bn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= lim
n→∞

(1− a − b)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b+ b2 + b3 + ·· · + bn− 1+

b

⎛

⎜⎜⎜⎜⎜⎜⎝

1 + (1− b)2 1− ( a
1− b )2

1− a− b +

(1− b)3 1− ( a
1− b )3

1− a− b +

(1− b)4 1− ( a
1− b )4

1− a− b +

· · · + (1− b)n− 1 1− ( a
1− b )n − 1

1− a− b

⎞

⎟⎟⎟⎟⎟⎟⎠

+ (a + b)2 + (a + b)3 + ·· · + (a + b)n

− a2 − a3 − · · ·an − b2 − b3 − · · ·bn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= lim
n→∞

(1− a − b)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b+ b2 + b3 + ·· · + bn− 1 + b
1− a− b⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1− a − b+

(1− b)2

!
1−
�

a
1− b

�2

"

+ (1− b)3

!
1−
�

a
1− b

�3

"

+ (1− b)4

!
1−
�

a
1− b

�4

"

+ ·· · + (1− b)n− 1
�

1−
�

a
1− b

�n− 1
�

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ (a + b)2 + (a + b)3 + ·· ·+
(a + b)n − a2 − a3 − · · ·an − b2

− b3 − · · ·bn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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= lim
n→∞

(1− a − b)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b+ b2 + b3 + ·· · + bn− 1+

b
1− a− b

⎛

⎜⎜⎜⎜⎝

1− b+ (1− b)2

+ (1− b)3 + (1− b)4

+ ·· · + (1− b)n− 1

− a − a2 − a3

− · · ·− an− 1

⎞

⎟⎟⎟⎟⎠

+ (a + b)2 + (a + b)3 +
·· · + (a + b)n − a2 − a3

− · · ·an − b2 − b3 − · · ·bn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (1− a − b)
�

b− b2

1− b + 1− a2

1− a + (a+ b)2

1− a− b

�

= 1

Example 8. Suppose that there are n evidential
sources, they have the same discernment framework Θ =
{ θ1, θ2, θ3} . Their gbbas are given in (15), and we sequen-
tially combine these evidential sources according to the
classic DSm rule of combination in (7).

S m (θ1) m (θ2) m (θ1 ∪ θ3)
s1 a b 1− a − b
s2 a b 1− a − b
...

...
... 1− a − b

sn a b 1− a − b

(15)

m (θ1 ∩θ2)

= lim
n→∞

⎛

⎝

�
2ab+ b

�
(1− b)2 − (1− a − b)2

�
+ ab2

�

+ b
�

(1− b)3 − (1− a − b)3
�

+ ab3

⎞

⎠

+ ·· · + b
�

(1− b)n− 1 − (1− a − b)n− 1
�

+ abn− 1

= lim
n→∞

⎛

⎜⎜⎝

b(1− b) + b(1− b)2 + · · · + b(1− b)n− 1

+ ab+ ab2 + ab3 + ·· · + abn− 1

− b(1− a − b) − b(1− a − b)2

− · · ·b(1− a − b)n− 1

⎞

⎟⎟⎠

= lim
n→∞

!
b(1− b)

(1− (1− b) n − 1 )
b + ab1− (b) n − 1

1− b

− b(1− a − b) 1− (1− a− b)n − 1

a+ b

"

= 1− b+ ab
1− b −

b(1− a− b)
a+ b

m (θ2 ∩ (θ1 ∪ θ3))
= lim

n→∞
(1− a − b)

�
b+ b2 + · ··bn− 1

 
+

b
�

1− a − b+ (1− a − b)2 + ·· · (1− a − b)n− 1
�

= lim
n→∞

�
b(1− a − b) 1− bn − 1

1− b + b(1− a − b) 1− (1− a− b) n − 1

a+ b

�

= b(1− a− b)
1− b − b(1− a− b)

a+ b

m (θ1)

= lim
n→∞

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜⎝

⎛

⎜⎜⎝

�
a2+
2a (1− a − b)

�

(1− b) +
a (1− a − b)2

⎞

⎟⎟⎠ (1− b) +

a (1− a − b)3

⎞

⎟⎟⎟⎟⎠
(1− b)

+ ·· ·a (1− a − b)n− 1

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

= lim
n→∞

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a2 (1− b)n− 2 + a (1− a − b) (1− b)n− 2

+ a (1− a − b) (1− b)n− 2 +
a (1− a − b)2 (1− b)n− 3 +
a (1− a − b)3 (1− b)n− 4 +
·· · + a (1− a − b)n− 1

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

= lim
n→∞

a

⎧
⎪⎪⎨

⎪⎪⎩

(1− b)n− 1 + (1− a − b) (1− b)n− 2 +
(1− a − b)2 (1− b)n− 3 +
(1− a − b)3 (1− b)n− 4 +
·· · + (1− a − b)n− 1

⎫
⎪⎪⎬

⎪⎪⎭

= lim
n→∞

a (1− b)n− 1

⎛

⎜⎝
1 + 1− a− b

1− b +
�

1− a− b
1− b

�2

+
�

1− a− b
1− b

�3
+ ·· ·

�
1− a− b

1− b

�n− 1

⎞

⎟⎠

= lim
n→∞

a (1− b)n− 1
�

1− ( 1− a − b
1− b )n

1− 1− a − b
1− b

�

= lim
n→∞

(1− b)n
�

1−
�

1− a− b
1− b

�n �

= 0

m (θ2) = lim
n→∞

bn = 0

m (θ1 ∪ θ3) = lim
n→∞

(1− a − b)n = 0

III. THE PROBLEM AND SOLUTION

Through the aforementioned several illustrative examples,
we find the DSmC has a fatal deficiency, that is, if ev-
idential sources are combined by using the DSmC, their
final combinational result is of entropy production, which
means the final result of combination becomes more and
more uncertain and is very difficult to give a right decision.

How to solve this problem? In fact, Dezert and Smaran-
dache gave 5 proportional redistribution rules (From PCR1
to PCR5) in the past[14]. For example, the PCR5 rule for two
sources is defined by: mP C R 5(∅) = 0 and ∀X ∈GΘ \ {∅}

mP C R5(X ) = m12(X )+
�

Y ∈GΘ \ { X }
X ∩Y = ∅

[
m1(X )2m2(Y )

m1(X ) + m2(Y )
+

m2(X )2m1(Y )
m2(X ) + m1(Y )

] (16)

where each element X , and Y , is in the disjunctive normal
form. m12(X ) =

�
X 1 ,X 2∈GΘ

X 1∩X 2 = X

m1(X 1)m2(X 2) corresponds

to the conjunctive consensus on X between the two sources.
All denominators are different from zero. If a denominator is
zero, that fraction is discarded. No matter how big or small
the conflicting mass is, PCR5 mathematically does a better
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redistribution of the conflicting mass than the Dempster’s
rule and other rules. This is because PCR5 goes backwards
on the tracks of the conjunctive rule and redistributes the
partial conflicting masses only to the sets involved in the
conflict by considering the conjunctive normal form of
the partial conflict. In addition, Arnaud Martin proposed
PCR6[14], it is said that PCR6 is more precise than PCR5.

Whatever for PCR5 or PCR6, both of them seems very
complex with the number increase of focal elements, the
computation amount will obviously increase. Therefore, for
the Dezert-Smarandache theory, to develop some simple and
convergent rules will become an urgent need.

IV. CONCLUSION

In this paper, we give several illustrative examples to
explain the problem of entropy production of DSmC, in
order to show the necessity of developing some simple and
convergent rules and point out our research direction in this
field in the future.
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