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Preface

This book has been designed for students and researchers who are working in the
field of time series analysis and estimation in finite population. There are papers by
Rajesh Singh, Florentin Smarandache, Shweta Maurya, Ashish K. Singh, Manoj K.
Chaudhary, V. K. Singh, Mukesh Kumar and Sachin Malik. First chapter deals with the
problem of time series analysis and the rest of four chapters deal with the problems of

estimation in finite population.

The book is divided in five chapters as follows:

Chapter 1. Water pollution is a major global problem. In this chapter, time series analysis
is carried out to study the effect of certain pollutants on water of Ramgarh Lake of

Rajasthan, India.

Chapter 2. In this chapter family of factor-type estimators for estimating population mean
of stratified population in the presence of non-response has been discussed. Choice of
appropriate estimator in the family in order to get a desired level of accuracy in presence

of no-response is worked out.

Chapter 3. In this chapter our aim is to discuss the existing allocation schemes in
presence of non-response and to suggest some new allocation schemes utilizing the

knowledge of response and non-response rates of different strata.

Chapter 4. In this chapter, we have suggested an improved estimator for estimating the

population mean in stratified sampling in presence of auxiliary information.

Chapter 5. In this chapter we have proposed some estimators for the population variance
of the variable under study, which make use of information regarding the population

proportion possessing certain attribute.

The Editors



Time Series Analysis of Water Quality
of Ramgarh Lake of Rajasthan

Rajesh Singh, Shweta Maurya
Department of Statistics, Banaras Hindu University
Varanasi-221005, INDIA

Ashish K. Singh
Raj Kumar Goel Institute of Technology, Ghaziabad, India.

Florentin Smarandache
Department of Mathematics, University of New Mexico, Gallup, USA

Abstract

In this chapter an attempt has been made to study the effect of certain pollutants
on water of Ramgarh Lake of Rajasthan. Time series analysis of the observed data has
been done using trend, single exponential smoothing and double exponential smoothing

methods.

Keywords:. Pollutants, trend, single, double exponential smoothing, time series.

1. Introduction

Seventy percent of the earth’s surface is covered by water. Water is undoubtedly
the most precious natural resource that exists on our planet. Water is an important
component of the eco-system and any imbalance created either in terms of amount which
it is represent or impurities added to it, Can harm the whole eco-system. Water pollution
occurs when a body of water is adversely affected due to the addition of large amount of
pollutant materials to the water. When it is unfit for its intended use, water is considered
polluted. There are various sources of water pollution (for detail refer to Jain (2011))
Some of the important water quality factors are:

1) Dissolved oxygen (D.O.)
2) Biological oxygen demand (B.O.D.)
3) Nitrate



4) Coliform
5) P.H.

Chemical analysis of any sample of water gives us a complete picture of its
physical and chemical constituents. This will give us only certain numerical value but
for estimating exact quality of water a time series system has been developed known
as water quality trend, which gives us the idea of whole system for a long time (see
Jain(2011)).

In this chapter we are calculating the trend values for five water parameters of
Ramgarh lake in Rajasthan for the year 1995-2006 and for three parameters of Mahi river
for the year 1997-2008.these methods viz. trend analysis, single smoothing are used to

analyze the data.

2.  Methodology

After ensuring the presence of trend in the data, smoothing of the data is the next
requirement for time series analysis. For smoothing the common techniques discussed by
Gardner(1985) are trend, simple exponential smoothing (SES), double exponential
smoothing (DES), triple exponential smoothing (TES) and adaptive response rate simple
exponential smoothing (ARRSES). Jain (2011) used trend method to analyze the data.
We have extended the work of Jain (2011) and analyzed the data using SES and DES and
compared these with the help of the available information. The methods are described

below:

1. Fitting Of Straight line

The equation of the straight line is-

U=a+b;

where,

u=observed value of the data, a=intercept value, b=slope of the straight line and
t=time (in years)

Calculation for a and b:



The normal equations for calculating a and b are
>U=n atb)t

Tt U=at+bY t+#2

2. Single Exponential Smoothing
The basic equation of exponential smoothing is
Si=ayet+ (1-0) S¢.1” 0<a<l
and parameter a is called the smoothing constant.
Here, S; stands for smoothed observation or EWNA and y stands for the original
observation. The subscripts refer to the time periods 1,2,3.....,n.

The smoothed series starts with the smoothed version of the second observation.

3. Double Exponential Smoothing

Single smoothing does not excel in following the data when there is a trend. This
situation can be improved by the introduction of a second equation with a second
constant y, which must be chosen in conjunction with a.

S=a yit+ (1-a) (Se.1tber), 0<0<l

b=7v (S¢-St.1) + (1-y) by, 0<y<I.

For forecasting using single and double exponential smoothing following method is used-
Forecasting with single exponential smoothing

S=ayeH(1-0)Se.; 0<a <1
The new forecast is the old one plus an adjustment for the error that occurred in the last

forecast.



Boot strapping of forecasts

St+1=0 Yorigin T(1-a) S

This formula works when last data points and no actual observation are available.

Forecasting with double exponential smoothing
The one period-ahead forecast is given by:

Fi1=S¢tby
The m-periods-ahead forecast is given by:

Fum=S¢+mby
( for detail of these methods refer to Gardner (1985)).

4. Resultsand Discussion

Table 1 shows the data on Dissolved Oxygen (D.O.) for Ramgardh Lake for the
years 1995-2006 and fitted values using trend, single and double exponential smoothing.

Table 1: Data on Dissolved Oxygen (D.O.) for Ramgardh Lake for the years 1995-2006
and fitted values using trend, single and double exponential smoothing

Double exponential
Observed Trend Single exponential | smoothing(alpha=0.9
Data values | smoothing(alpha=0.1) | and gamma=0.1)

1995 5.12 5.3372 5.12

1996 5.75 5.3036 5.12 5.707

1997 5.26 5.27 5.183 5.32857

1998 5.72 5.2364 5.1907 5.698556
1999 4.64 5.2028 5.24363 4.765484
2000 5.14 5.1692 5.183267 5.110884
2003 4.23 5.1356 5.17894 4.329044
2004 6.026 5.102 5.084046 5.858346
2005 4.46 5.0684 5.178242 4.616965
2006 5.52 5.0348 5.106417 5.4327

Total 51.866 51.86 46.46824 51.96755




For trend, the fitted line is
U;=5.1866-0.0169 * t
with mean squared error (MSE) 0.3077. For single exponential smoothing various values
of a are tried and minimum MSE = 0.3915 was obtained for o = 0.1. For smoothing of
the data, Holt’s double exponential smoothing was found to be most appropriate. Various
combinations of a and y both ranging between 0.1 and 0.9 with increments of 0.1 were
tried and MSE = 0.0094 was least for a = 0.9 and y = 0.1.
Figure 1- Graph of observed data and fitted values using trend, single and double
exponential smoothing of Dissolved Oxygen (D.O.) for Ramgardh Lake for
the years 1995-2006
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Adequate dissolved oxygen is necessary for good water quality. Oxygen is a
necessary element to all forms of life. Natural stream purification processes require
adequate oxygen levels in order to provide for aerobic life forms. As dissolved oxygen
levels in water drop below 5.0 mg/l, aquatic life is put under stress ( for details see
www.state.ky.us).

Form Table 1 and Figure 1, we observe that level of D.O. in Ramgarh Lake was

above the required standard 5.0 mg/1, except for the two years 1999 and 2005.



Table2: Comparison of forecasts

Observed

Period Data Forecast(single) | Forecast(double)
1 5.12 5.32
2 5.75 5.7437 6.23084
3 5.26 5.25923 5.77869651
4 5.72 5.714707 6.510832048
5 4.64 4.6460363 5.013406419
6 5.14 5.14043267 5.815207177
7 4.23 4.239489403 4.32655631
8 6.026 6.016580463 7.511558059
9 4.46 4467182416 4.621632535
10 5.52 5.515864175 6.686376834
11 5.147775731 5.6266
12 5.184998158 5.7442
13 5.218498342 5.8618
14 5.248648508 5.9794
15 5.275783657 6.097
16 5.300205291 6.2146
17 5.322184762 6.3322
18 5.341966286 6.4498
19 5.359769657 6.5674
20 5.375792692 6.685

Figure2: Graph of forecasts

Time series values

Comparison of forecasts

AR AP

T T T T T T T T T T T T T T T T T T T

9 10 11 12 13 14 15 16 17 18 19 20

Period

=®—0bserved Data  =—ll=Forecast(single) Forecast(double)

10




Table 3 shows the data on Nitrate for Ramgardh Lake for the years 1995-2006
and fitted values using trend, single and double exponential smoothing.

Table 3: Data on Nitrate for Ramgardh Lake for the years 1995-2006 and fitted values
using trend, single and double exponential smoothing

Double exponential
Observed | Trend | Single exponential smoothing(alpha=0.9
Year(x) | Data values | smoothing(alpha=0.1) | and gamma=0.1)

1995 0.32 0.588 0.32

1996 1.28 0.546 0.32 1.176

1997 0.38 0.504 0.416 0.46096
1998 0.08 0.462 0.4124 0.104883
1999 0.04 0.42 0.37916 0.028797
2000 0.92 0.378 0.345244 0.815205
2003 0.24 0.336 0.40272 0.300708
2004 0.25 0.294 0.386448 0.247331
2005 0.186 0.252 0.372803 0.184874
2006 0.3 0.21 0.354123 0.281431
Total 3.996 3.99 3.388897 3.920189

For trend, the fitted line is
U;=0.3996 - 0.0216 * t

with MSE= 0.3078. For single exponential smoothing various values of a are tried and
minimum MSE = 0.3412 was obtained for o = 0.1. For smoothing of the data, Holt’s
double exponential smoothing was found to be most appropriate. Various combinations
of a and y both ranging between 0.1 and 0.9 with increments of 0.1 were tried and MSE =
0.0033 was least for a=0.9andy=0.1.

Nitrites can produce a serious condition in fish called "brown blood disease."
Nitrites also react directly with hemoglobin in human blood and other warm-blooded
animals to produce methemoglobin. Methemoglobin destroys the ability of red blood
cells to transport oxygen. This condition is especially serious in babies under three
months of age. It causes a condition known as methemoglobinemia or "blue baby"

disease. Water with nitrite levels exceeding 1.0 mg/l should not be used for feeding
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babies. Nitrite/nitrogen levels below 90 mg/l and nitrate levels below 0.5 mg/l seem to
have no effect on warm water fish (for details see www.state.ky.us).
Form Table 3 and Figure 3, we observe that level of Nitrate in Ramgarh Lake

was below the standard 1.0 mg/l, except for the year 1996.

Figure 3: Graph of observed data and fitted values using trend, single and double
exponential smoothing of Nitrate for Ramgardh lake for the years 1995-2006
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Nitrites can produce a serious condition in fish called "brown blood disease."
Nitrites also react directly with hemoglobin in human blood and other warm-blooded
animals to produce methemoglobin. Methemoglobin destroys the ability of red blood
cells to transport oxygen. This condition is especially serious in babies under three
months of age. It causes a condition known as methemoglobinemia or "blue baby"
disease. Water with nitrite levels exceeding 1.0 mg/l should not be used for feeding
babies. Nitrite/nitrogen levels below 90 mg/l and nitrate levels below 0.5 mg/l seem to
have no effect on warm water fish ( for details see www.state.ky.us).

Form Table 3 and Figure 3, we observe that level of Nitrate in Ramgarh Lake

was below the standard 1.0 mg/l, except for the year 1996.
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Table 4: Comparison of forecasts

Observed
Period Data Forecast(single) | Forecast(double)

1 0.32 0.416 0.24

2 1.28 0.4124 1.1896
3 0.38 0.37916 0.328832
4 0.08 0.345244 -0.07203
5 0.04 0.40272 -0.12795
6 0.92 0.386448 0.847085
7 0.24 0.372803 0.223314
8 0.25 0.354123 0.17474
9 0.186 0.34871 0.114309
10 0.3 0.348711 0.244291
11 0.34384 0.24426
12 0.339456 0.20712
13 0.33551 0.16998
14 0.331959 0.13284
15 0.328763 0.0957
16 0.325887 0.05856
17 0.323298 0.02142
18 0.320968 -0.01572
19 0.318872 -0.05286
20 0.316984 -0.09

Figure4: Graph of forecasts
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Table 5 shows the data on B.O.D. for Ramgardh Lake for the years 1995-2006

and fitted values using trend, single and double exponential smoothing.

Table5: Data on Biological oxygen demand (B.O.D.) for Ramgardh Lake for the years
1995-2006 and fitted values using trend, single and double exponential

smoothing
Double exponential
Observed | Trend single exponential smoothing(alpha=0.9
Y ear (X) Data values | smoothing(alpha=0.1) & gamma=0.1)

1995 1.96 5.122 1.96

1996 14.09 4.762 1.96 12.87167
1997 1.84 4.402 3.173 3.047483
1998 1.8 4.042 3.0397 1.920392
1999 1.46 3.682 2.91573 1.490847
2000 2.78 3.322 2.770157 2.633116
2003 2.76 2.962 2.771141 2.742563
2004 1.976 2.602 2.770027 2.049477
2005 2.78 2.242 2.690624 2.697155
2006 3.58 1.882 2.699562 3.489379
Total 35.026 35.02 24.78994 34.90208

Biochemical oxygen demand is a measure of the quantity of oxygen used by
microorganisms (e.g., aerobic bacteria) in the oxidation of organic matter. Natural
sources of organic matter include plant decay and leaf fall. However, plant growth and
decay may be unnaturally accelerated when nutrients and sunlight are overly abundant
due to human influence. Urban runoff carries pet wastes from streets and sidewalks;
nutrients from lawn fertilizers; leaves, grass clippings, and chapter from residential areas,
which increase oxygen demand. Oxygen consumed in the decomposition process robs
other aquatic organisms of the oxygen they need to live. Organisms that are more tolerant
of lower dissolved oxygen levels may replace a diversity of natural water systems contain
bacteria, which need oxygen (aerobic) to survive. Most of them feed on dead algae and
other dead organisms and are part of the decomposition cycle. Algae and other producers
in the water take up inorganic nutrients and use them in the process of building up their

organic tissues (for details refer to www.freedrinkingwater.com).
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For trend, the fitted line is

U;=3.5026+0.18094 * t

with MSE= 11.74366. For single exponential smoothing various values of a are tried and
minimum MSE = 17.1093 was obtained for o = 0.1. For smoothing of the data, Holt’s
double exponential smoothing was found to be most appropriate. Various combinations
of a and y both ranging between 0.1 and 0.9 with increments of 0.1 were tried and MSE =
0.3000 was least for oa=0.9andy=0.1.

Figure 5: Graph of observed data and fitted values using trend, single and double
exponential smoothing of B.O.D. for Ramgardh Lake for the years 1995-2006
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Table 6:  Comparison of forecasts

Observed
Period Data Forecast(single) | Forecast(double)
1 1.96 1.906667
2 14.09 3.173 13.91483
3 1.84 3.0397 3.003915
4 1.8 2.91573 1.768471
5 1.46 2.770157 1.311164
6 2.78 2.771141 2.585629
7 2.76 2.770027 2.710768
8 1.976 2.690624 1.951553
9 2.78 2.699562 2.673792
10 3.58 2.787606 3.547575
11 2.7871 3.5474
12 2.86639 3.6055
13 2.937751 3.6636
14 3.001976 3.7217
15 3.059778 3.7798
16 3.1118 3.8379
17 3.15862 3.896
18 3.200758 3.9541
19 3.238683 4.0122
20 3.272814 4.0703

Figure 6 : Graph of forecasts
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Table 7 shows the data on Total Colifirm for Ramgardh Lake for the years

1995-2006 and fitted values using trend, single and double exponential smoothing.

Table 7 : Data on Total Colifirm for Ramgardh lake for the years 1995-2006 and fitted
values using trend, single and double exponential smoothing

Double exponential
Observed | Trend single exponential smoothing(alpha=0.9
Y ear (X) Data values | smoothing(alpha=0.6) & gamma=0.1)

1995 1169 687.894 1169

1996 285 615314 1169 339.2333
1997 840.75 542.734 638.6 751.5507
1998 144 470.154 759.89 173.7353
1999 65.33 397.574 390.356 42.47463
2000 121.5 324.994 195.3404 81.95854
2003 119 252414 151.0362 87.21566
2004 720.6 179.834 131.8145 632.042
2005 86 107.254 485.0858 123.3548
2006 61.66 34.674 245.6343 47.21817
Total 3612.84 |3612.84 4166.757 3447.783

Total coliform bacteria are a collection of relatively harmless microorganisms that
live in large numbers in the intestines of man and warm- and cold-blooded animals. They
aid in the digestion of food. A specific subgroup of this collection is the fecal coliform
bacteria, the most common member being Escherichia coli. These organisms may be
separated from the total coliform group by their ability to grow at elevated temperatures
and are associated only with the fecal material of warm-blooded animals. The presence of
fecal coliform bacteria in aquatic environments indicates that the water has been
contaminated with the fecal material of man or other animals. The presence of fecal
contamination is an indicator that a potential health risk exists for individuals exposed to

this water (for details see www.state.ky.us).
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For trend, the fitted line is

U;=361.284 - 36.2989* t

with MSE= 99896.33. For single exponential smoothing various values of a are tried and
minimum MSE = 205949.6 was obtained for a = 0.6. For smoothing of the data, Holt’s
double exponential smoothing was found to be most appropriate. Various combinations

of a and y both ranging between 0.1 and 0.9 with increments of 0.1 were tried and

MSE = 2432.458 was least for a = 0.9 and y = 0.1.

Figure 7: Graph of observed data and fitted values using trend, single and double
exponential smoothing of Total Coliform for Ramgardh Lake for the years

1995-2006.
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Table8: Comparison of forecasts

Observed
Period Data Forecast(single) | Forecast(double)
1 1169 827.3333
2 285 638.6 -51.2433
3 840.75 759.89 441.3534
4 144 390.356 -163.224
5 65.33 195.3404 -273.915
6 121.5 151.0362 -198.843
7 119 131.8145 -164.98
8 720.6 485.0858 459.5482
9 86 245.6343 -82.7583
10 61.66 135.2497 -145.897
11 135.248 -145.897
12 91.0952 -339.012
13 73.43408 -532.127
14 66.36963 -725.242
15 63.54385 -918.357
16 62.41354 -1111.47
17 61.96142 -1304.59
18 61.78057 -1497.7
19 61.70823 -1690.82
20 61.67929 -1883.93

Figure 8: Comparison of forecasts
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Table 9 shows the data on pH for Ramgardh Lake for the years 1995-2006 and fitted
values using trend, single and double exponential smoothing.

Table9: Data on pH for Ramgardh Lake for the years 1995-2006 and fitted values using
trend, single and double exponential smoothing

Double exponential
Observed | Trend single exponential | smoothing(alpha=0.9
Y ear (X) Data values | smoothing(alpha=0.2) & gamma=0.1)

1995 7.64 6.29 7.64

1996 7.48 6.65 7.64 7.509667
1997 7.87 7.01 7.608 7.844963
1998 8.05 7.37 7.6604 8.042746
1999 8.44 7.73 7.73832 8.414177
2000 8.3 8.09 7.878656 8.327645
2003 7.25 8.45 7.962925 7.371503
2004 8.28 8.81 7.82034 8.191954
2005 7.87 9.17 7.912272 7.912923
2006 8.006 9.53 7.903817 8.003557
Total 79.186 79.1 70.12473 79.25914

pH is a measure of the acidic or basic (alkaline) nature of a solution. The
concentration of the hydrogen ion [H+] activity in a solution determines the pH. A pH

range of 6.0 to 9.0 appears to provide protection for the life of freshwater fish and bottom

20



dwelling invertebrates. The most significant environmental impact of pH involves
synergistic effects. Synergy involves the combination of two or more substances which
produce effects greater than their sum. This process is important in surface waters.
Runoff from agricultural, domestic, and industrial areas may contain iron, aluminum,
ammonia, mercury or other elements. The pH of the water will determine the toxic
effects, if any, of these substances. For example, 4 mg/I of iron would not present a toxic
effect at a pH of 4.8. However, as little as 0.9 mg/1 of iron at a pH of 5.5 can cause fish to

die (for details see www.state.ky.us).

For trend, the fitted line is
Ui=7.9186 +0.1845 * t

with MSE = 0.9995. For single exponential smoothing various values of a are tried and
minimum MSE = 0.1831 was obtained for o = 0.2. For smoothing of the data, Holt’s
double exponential smoothing was found to be most appropriate. Various combinations
of a and y both ranging between 0.1 and 0.9 with increments of 0.1 were tried and MSE =

0.002735was least for a=0.9andy=0.1.

Figure 9: Graph of observed data and fitted values using trend, single and double
exponential smoothing of pH for Ramgardh Lake for the years 1995-2006.

PH

=¢==0bserved Data

12

10
% » Fq ; =fll=Trend values

single exponential
smoothing(alpha=0

Time series values

2)

=>&=Double exponential
smoothing(alpha=0
.9 & gamma=0.1)

o N B OO

1995 1996 1997 1998 1999 2000 2003 2004 2005 2006

Year

21



Table 10: Comparison of forecasts

Observed
Period Data Forecast(single) | Forecast(double)

1 7.64 7.776667
2 7.48 6.732 7.619633
3 7.87 7.083 7.977463
4 8.05 7.245 8.181774
5 8.44 7.596 8.576446
6 8.3 7.47 8.465033
7 7.25 6.525 7.399539
8 8.28 7.452 8.299231
9 7.87 7.083 7.981569
10 8.006 7.2054 8.074402
11 7.8368 8.074395
12 7.85372 8.14524
13 7.868948 8.216085
14 7.882653 8.28693
15 7.894988 8.357775
16 7.906089 8.42862
17 7.91608 8.499465
18 7.925072 8.57031
19 7.933165 8.641155
20 7.940448 8.712

Figure 10: Graph of forecasts
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We observe from the calculations for the different parameters of pollutants that
double smoothing follows the data much closer than single smoothing. Furthermore, for
forecasting single smoothing cannot do better than projecting a straight horizontal line,
which is not very likely to occur in reality. So for forecasting purposes for our data

double exponential smoothing is more preferable.

Conclusion

From the above discussions, we observe that the various pollutants considered in
the article may have very hazardous effect on quality of water. Increase of pollutants in
water beyond a certain limit may be dangerous for aquatic animals. Also, according to
recent reports, most of the tap and well water in the India are not safe for drinking due to
presence of various pollutants in inappropriate percentage. Now, we have reached the
point where all sources of our drinking water, including municipal water systems, wells,
lakes, rivers, and even glaciers, contain some level of contamination. So, we need to

keep a routine check of the quality of water so that we can lead a healthy life.
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Abstract

The present chapter deals with the study of general family of factor-type
estimators for estimating population mean of stratified population in the presence of non-
response whenever information on an auxiliary variable are available. The proposed
family includes separate ratio, product, dual to ratio and usual sample mean estimators as
its particular cases and exhibits some nice properties as regards to locate the optimum
estimator belonging to the family. Choice of appropriate estimator in the family in order
to get a desired level of accuracy even if non-response is high, is also discussed. The

empirical study has been carried out in support of the results.

Keywords: Factor-type estimators, Stratified population, Non-response, Optimum
estimator, Empirical study.

1. Introduction

In sampling theory the use of suitable auxiliary information results in
considerable reduction in variance of the estimator. For this reason, many authors used
the auxiliary information at the estimation stage. Cochran (1940) was the first who used
the auxiliary information at the estimation stage in estimating the population parameters.
He proposed the ratio estimator to estimate the population mean or total of a character
under study. Hansen et. al. (1953) suggested the difference estimator which was
subsequently modified to give the linear regression estimator for the population mean or
its total. Murthy (1964) have studied the product estimator to estimate the population

mean or total when the character under study and the auxiliary character are negatively
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correlated. These estimators can be used more efficiently than the mean per unit
estimator.

There are several authors who have suggested estimators using some known
population parameters of an auxiliary variable. Upadhyaya and Singh (1999) have
suggested the class of estimators in simple random sampling. Kadilar and Cingi (2003)
and Shabbir and Gupta (2005) extended these estimators for the stratified random
sampling. Singh et. al. (2008) suggested class of estimators using power transformation
based on the estimators developed by Kadilar and Cingi (2003). Kadilar and Cingi (2005)
and Shabbir and Gupta (2006) have suggested new ratio estimators in stratified sampling
to improve the efficiency of the estimators. Koyuncu and Kadilar (2008) have proposed
families of estimators for estimating population mean in stratified random sampling by
considering the estimators proposed in Searls (1964) and Khoshnevisan et. al. (2007).
Singh and Vishwakarma (2008) have suggested a family of estimators using
transformation in the stratified random sampling. Recently, Koyuncu and Kadilar (2009)
have proposed a general family of estimators, which uses the information of two auxiliary
variables in the stratified random sampling to estimate the population mean of the

variable under study.

The works which have been mentioned above are based on the assumption that
both the study and auxiliary variables are free from any kind of non-sampling error. But,
in practice, however the problem of non-response often arises in sample surveys. In such
situations while single survey variable is under investigation, the problem of estimating

population mean using sub-sampling scheme was first considered by Hansen and Hurwitz

(1946). If we have incomplete information on study variable X, and complete

information on auxiliary variable X|, in other words if the study variable is affected by

non-response error but the auxiliary variable is free from non-response. Then utilizing the
Hansen-Hurwitz (1946) technique of sub-sampling of the non-respondents, the
conventional ratio and product estimators in the presence of non-response are

respectively given by
Tox = (YQHH/xl))Z (1.1)
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and T = (1) X (1.2)

The purpose of the present chapter is to suggest separate-type estimators in
stratified population for estimating population mean using the concept of sub-sampling of
non-respondents in the presence of non-response in study variable in the population. In
this context, the information on an auxiliary characteristic closely related to the study

variable, has been utilized assuming that it is free from non-response.

In order to suggest separate-type estimators, we have made use of Factor-Type
Estimators (FTE) proposed by Singh and Shukla (1987). FTE define a class of estimators
involving usual sample mean estimator, usual ratio and product estimators and some
other estimators existing in literature. This class of estimators exhibits some nice

properties which have been discussed in subsequent sections.
2. Sampling Strategy and Estimation Procedure

Let us consider a population consisting of N units divided into kstrata. Let the

size of i” stratum is N,, (i =1,2,...,k ) and we decide to select a sample of size 7 from the

entire population in such a way that n, units are selected from the i” stratum. Thus, we

k
haveZni =n. Let the non-response occurs in each stratum. Then using Hansen and
i=1

Hurwitz (1946) procedure we select a sample of size m, units out of n,,non-respondent

units in the i” stratum with the help of simple random sampling without replacement

(SRSWOR) scheme such that n, =L.m,, L 21 and the information are observed on all

the m, units by interview method.

The Hansen-Hurwitz estimator of population mean Xoiof study variable X|, for

the i" stratum will be

" n.Xoi1 +A., Xomi

_ il i2 .

T, = , (i
n.

1

=12,...,k) 2.1)

26



where xo1 and xo. are the sample means based on n, respondent units and m; non-

respondent units respectively in the i” stratum for the study variable.

Obviously T, is an unbiased estimator of Xo; . Combining the estimators over all

the strata we get the estimator of population mean Xo of study variable X, given by

k
Tow =2, T, (2.2)

which is an unbiased estimator of X o. Now, we define the estimator of population mean

X of auxiliary variable X , as
koo
T, =) pixu 2.3)
i=1

where x1; is the sample mean based on 7, units in the i” stratum for the auxiliary variable.
It can easily be seen that 7, , is an unbiased estimator of X1 because xi; gives unbiased

estimates of the population mean Xyof auxiliary variable for the i” stratum.

3. Suggested Family of Estimators

Let us now consider the situation in which the study variable is subjected to non-

response and the auxiliary variable is free from non-response. Motivated by Singh and

Shukla (1987), we define the separate-type family of estimators of population mean Xo

using factor-type estimators as

TFS(“):ZPI‘T;;‘(O‘) (3.1
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where T, (0)=T, 4+ C)X_” * /B (3.2)
(A +fB)X1[ + Cxui

and f=—, A=(a-1)a-2), B=(a-1)a-4), C=(a-2)a-3)a-4); a>0.

n
N
3.1 Particular Casesof 7, ()

Case-l: If a=1then A=B=0,C=-6

so that T,(1)=T,, X
X1i
k X

and hence T,(1)=)_ p,T,; X (3.3)
i=1

Xy
Thus, T,(1)is the usual separate ratio estimator under non-response.

Case-2:If =2 then A=0=C , B=-2

sothat 7, (2)=T, 2L

1i

k .
and hence 7 (2) = ZpiTOi % (3.4)
i=1 1i

which is the usual separate product estimator under non-response.

Case3: If =3 then A=2 ,B=-2,C=0

so that T (3)=T,, %{;h
- 1i

k
and hence T,5(3)=Y_ p,T;,(3) (3.5)

i=1
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which is the separate dual to ratio-type estimator under non-response. The dual to ratio

type estimator was proposed by Srivenkataramana (1980).
Case4: If a=4 then A=6 ,B=0,C=0

so that T}, (4)=T,,
k

and hence T, (4)= Zp T, =T,, (3.6)
i=1

which is usual mean estimator defined in stratified population under non-response.

3.2 Propertiesof T(c)

Using large sample approximation, the bias of the estimator 7}, (cx), up to the first

order of approximation was obtained following Singh and Shukla (1987) as

B[TFS(Q)]:EITFS(Q>_}OJ

= ¢( )zp Xoi (i _L]{L Clzi - poncol‘cn} (3.7

P n, N,) A+ fB+C
- S A\

where ¢(a)=i, Cy==2, C,==, S, and S are the population
A+ fB+C Xoi~ X

th

mean squares of study and auxiliary variables respectively in the " stratum . p,,; is the

population correlation coefficient between X,and X, in the i stratum. The Mean

Square Error (MSE) up to the first order of approximation was derived as

M[TFS (0{)]= E[TFS (“)_}0]2

- Z p2MSE[T! (o))
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- ﬁpffi{@w(m QUML)}

i=1 Xoi X }01'}11'
: " 1 1 L -1 ~ 1 1
Since v(r,)= (”_, —Vijsé +n—iW,-zS§,~z ; V(x“): (”_I_V,]SIZI
P 1 1 .
and COV(TOZ-,XI[): N L0105 [ due to Singh (1998)].
ni i

th

where S;,, is the population mean square of the non-response group in the i” stratum

and W,, is the non-response rate of the i” stratum in the population.

Therefore, we have

(1 1
M[TFS (a)]z Z(n__ﬁjplz [S(i‘ + (0(0[)2 ROZIiSIZi _2¢(a)R01ip01iS0iS1i]

i=1 i i

koL —1

2= WP Si (3:8)
i=1 i
where R, = & .
X

3.3 Optimum Choice of «

In order to obtain minimum MSE of7,(«), we differentiate the MSE with

respect to & and equate the derivative to zero

Z[HL _%inz [2¢' (0{)¢(0()R§15512; -2 (a)Ronpml‘Sol‘Sn]: 0, (3.9)

i=1

where ¢'(e) stands for first derivative of ¢(x).From the above expression, we have
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S S T
Z — = —— P Ry PoiiSoiSy;
i=1 \ ; Ni
pla)=— — =V (say). (3.10)
(1) s

It is easy to observe that ¢(a) is a cubic equation in the parameter & . Therefore,
the equation (3.10) will have at the most three real roots at which the MSE of the

estimator T} (cr) attains its minimum.

Let the equation (3.10) yields solutions as¢,,, &, and «, such that M lT s (a)J is
same. A criterion of making a choice between¢,,, ¢, and «, is that “compute the bias of

the estimator at & = ¢, ¢, and @, and select ¢, at which bias is the least”. This is a

t

novel property of the FTE.

3.4 Reducing M SE through Appropriate Choice of o

By using FTE for defining the separate-type estimators in this chapter, we have an
advantage in terms of the reduction of the value of MSE of the estimator to a desired
extent by an appropriate choice of the parameter & even if the non-response rate is high

in the population. The procedure is described below:

Since MSE’s of the proposed strategies are functions of the unknown parameter
o as well as functions of non-response rates W,,, it is obvious that if ¢ is taken to be
constant, MSE’s increase with increasing non-response rate, if other characteristics of the
population remain unchanged, along with the ratio to be sub sampled in the non-response
class, that is, L.. It is also true that more the non-response rate, greater would be the size
of the non-response group in the sample and, therefore, in order to lowering down the
MSE of the estimator, the size of sub sampled units should be increased so as to keep the
value of L, in the vicinity of 1; but this would, in term, cost more because more effort

and money would be required to obtain information on sub sampled units through

personal interview method. Thus, increasing the size of the sub sampled units in order to
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reduce the MSE is not a feasible solution if non-response rate is supposed to be large
enough.
The classical estimators such as T,,,,, T, T,p, discussed earlier in literature in

presence of non-response are not helpful in the reduction of MSE to a desired level. In all

these estimators, the only controlling factor for lowering down the MSE isL,, if one
desires so.
By utilizing FTE in order to propose separate- type estimators in the present work,

we are able to control the precision of the estimator to a desired level only by making an

appropriate choice of « .

Let the non-response rate and mean-square of the non-response group in the i

_ N, . .
stratum at a time be W, = 7’2 and S, respectively. Then, for a choice of & = ¢, the

MSE of the estimator would be

1
M[TFS /sz] Z(n__ﬁjpl [Sozz +¢(ao) R011S121 2¢(050) OlpohSOzSh]
i=1

L L -1
+ Y W p2SEs (3.11)

Let us now suppose that the non-response rate increased over time and it is
. N, : : : ,
W, = YA such that N, > N,,. Obviously, with change in non-response rate, only the

parameter S, will change. Let it becomes S, . Then we have

L.
n

== |

jpz [S + ¢ 6{1 ) ROlelzz 2¢(al )ROIipOIiSOiSli

+iLf—_1 L piS? (3.12)
n. 12 i~0i2 .
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Clearly, if @, = @, and S, > S2, then M|T (@)W, |> M(T,s(@),,]. Therefore,
we have to select a suitable valuee,, such that even if W,, >W,, and S, >S;,,

expression (3.12) becomes equal to equation (3.11) that is, the MSE of T (0() is reduced

to a desired level given by (3.11). Equating (3.11) to (3.12) and solving for ¢)(0¢1 ), we get

k 1 1 k
¢(a1 )ZZ(__VjpizRgnslzi z(n___]pl Ry Po1iS0iSi

i=1 i

{ZP‘ : jp, (e, 7 R2,52 ~20(, )Ry 9005, )

L —1 Co
+ l—piz (VViZSOZiZ _VV1'2S032 )} =0, (3.13)

i=1 i

which is quadratic equation in ¢(0¢1 ) On solving the above equation, the roots are

obtained as

2

k 1 1 k 1 1 2
; n— V 12 ROlpoIISOiSIi Z ni_ﬁ Pi Ry PSS
¢(al) k 1 i k

Z[n jprozliSlzi Z( JP,?RozuSlzi

i=l

+

(11 2 L=l o oo 2
Z(n N] {(050) RyiSyi = 2¢(a0)ROlip01iS0iS1i}_Z Pi (VViZSOiZ_VVQSOQ)

i=1
k
s
N

i=1 n,’

(3.14)

The above equation provides the value of & on which one can obtain the precision
to a desired level. Sometimes the roots given by the above equation may be imaginary.

So, in order that the roots are real, the conditions on the value of ¢, are given by
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¢(a0)> i=1 ki 1 1 + i=l kl 1 1
L |p2R2 2 ———pR;.S;
5, N,J s E(n,. N] i
k(1 1 & L -1
Z[H—NJPZRoupouSolSn Z ln p; (W12S0212 Wizsgiz)
and ¢(a0)< = ki . : " -|= kl 1 1
;(M—MJ[)?R&US% ;(H_Nl] 2R§11S121

h
;—a

N | —

4. Empirical Study

(3.15)

(3.16)

In this section, therefore, we have illustrated the results, derived above, on the

basis of some empirical data. For this purpose, a data set has been taken into

consideration. Here the population is MU284 population available in Sarndal et. al.

(1992, page 652, Appendix B). We have considered the population in the year 1985 as

study variable and that in the year 1975 as auxiliary variable. There are 284

municipalities which have been divided randomly in to four strata having sizes 73, 70, 97

and 44.

Table 1 shows the values of the parameters of the population under consideration

for the four strata which are needed in computational procedure.

Table 1: Parameters of the Population

Stratum
Stratum Mean | Mean
S 2 2 2
() e (}0) (}1) (So,') (Sn) Soi \Y Poii (SOiZ)
1 i i
(v,)
1 73 40.85 | 39.56 | 6369.0999 | 6624.4398 | 79.8066 | 81.3907 | 0.999 | 618.8844
2 70 27.83 | 27.57 | 1051.0725 | 1147.0111 | 32.4202 | 33.8676 | 0.998 | 240.9050
3 97 25.79 | 25.44 | 2014.9651 | 2205.4021 | 44.8884 | 46.9617 | 0.999 | 265.5220
4 44 20.64 | 20.36 | 538.4749 | 485.2655 | 23.2051 | 22.0287 | 0.997 83.6944
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The value of R, = Xo/ X\ comes out to be 1.0192.

We fix the sample size to be 60. Then the allocation of samples to different strata

under proportional and Neyman allocations are shown in the following table

Table 2: Allocation of Sample

Stratum Size of Samples under
(i) Proportional Allocation Neyman Allocation
1 15 26
2 15 10
3 21 19
4 9 5

On the basis of the equation (3.10), we obtained the optimum values of & :
Under Proportional Allocation

#la)=0.9491, a,,=(31.9975,2.6128, 1.12) and

Under Neyman Allocation

#la)=0.9527, «a,,=(34.1435,2.6114, 1.1123).

The following table depicts the values of the MSE’s of the estimators T, () for
a,, > ¢ =1 and 4 under proportional and Neyman allocations. A comparison of MSE of

T, (o) with a,, and o =Ilwith that at o =4reveals the fact that the utilization of

auxiliary information at the estimation stage certainly improves the efficiency of the

estimator as compared to the usual mean estimator 7, .
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Table 3: MSE Comparison (L, =2, W, =10% for all i)

M SE Allocation
Proportional Neyman
M5 ()] o 0.6264 0.6015
MIT,(1)] 0.7270 0.6705
M1 ()-rr, ] 35,6069 28.6080

We shall now illustrate how by an appropriate choice of &, the MSE of the
estimators T, () can be reduced to a desired level even if the non-response rate is

increased.
Letus take L, =2, W,, =0.1, W, =03 and S, ,’ :é(SOZ[Z) for all i

Under Proportional Allocation

From the condition (3.15) and (3.16), we have conditions for real roots of ¢(0¢1)

as

#a,) > 1.1527 and ¢(r,) < 0.7454.
Therefore, if we take @(c, ) = 1.20, then for this choice of @(e, ), we get
M7, (@)7,] =3.0712 and M|T,( (), | = 4.6818.

Thus, there is about 52 percent increase in the MSE of the estimator if non-
response rate is tripled. Now using (3.14), we get @(cr,)=1.0957 and 0.8025. At this value
ofgle,), M lT FS(a)J reduces to 3.0712 even if non-response rate is 30 percent. Thus a

possible choice of & may be made in order to reduce the MSE to a desired level.
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Under Neyman Allocation

Conditions for real roots of ¢(c, )
#e,) > 1.1746 and ¢(x,) < 0.7309.
If #(er,) = 1.20 then we have
M7, (@), ] = 2.4885 and M|T,.s ()7, | = 4.0072.
Further, we get from (3.14), ¢(c, )=1.0620 and 0.8435, so that
MIT,s (@), |=2.4885 for ¢(a,)=1.0620.

5. Conclusion

We have suggested a general family of factor-type estimators for estimating the
population mean in stratified random sampling under non-response using an auxiliary
variable. The optimum property of the family has been discussed. It has also been
discussed about the choice of appropriate estimator of the family in order to get a desired
level of accuracy even if non-response is high. The Table 3 reveals that the optimum
estimator of the suggested family has greater precision than separate ratio and sample

mean estimators. Besides it, the reduction of MSE of the estimators T, (&) to a desired

extent by an appropriate choice of the parameter & even if the non-response rate is high

in the population, has also been illustrated.
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Abstract

This chapter presents the detailed discussion on the effect of non-response on the
estimator of population mean in a frequently used design, namely, stratified random
sampling. In this chapter, our aim is to discuss the existing allocation schemes in
presence of non-response and to suggest some new allocation schemes utilizing the
knowledge of response and non-response rates of different strata. The effects of proposed
schemes on the sampling variance of the estimator have been discussed and compared
with the usual allocation schemes, namely, proportional allocation and Neyman
allocation in presence of non-response. The empirical study has also been carried out in

support of the results.

Keywords:. Stratified random sampling, Allocation schemes, Non-response, Mean

squares, Empirical Study.

1. Introduction

Sukhatme (1935) has shown that by effectively using the optimum allocation in
stratified sampling, estimates of the strata variances obtained in a previous survey or in a
specially planned pilot survey based even on samples of moderate sample size would be
adequate for increasing the precision of the estimator. Evans (1951) has also considered
the problem of allocation based on estimates of strata variances obtained in earlier
survey. According to literature of sampling theory, various efforts have been made to

reduce the error which arises because of taking a part of the population, i.e., sampling
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error. Besides the sampling error there are also several non-sampling errors which take
place from time to time due to a number of factors such as faulty method of selection and
estimation, incomplete coverage, difference in interviewers, lack of proper supervision,
etc. Incompleteness or non-response in the form of absence, censoring or grouping is a
troubling issue of many data sets.

In choosing the sample sizes from the different strata in stratified random
sampling one can select it in such a way that it is either exclusively proportional to the
strata sizes or proportional to strata sizes along with the variation in the strata under
proportional allocation or Neyman allocation respectively. If non-response is inherent in
the entire population and so are in all the strata, obviously it would be quite impossible to
adopt Neyman allocation because then the knowledge of stratum variability will not be
available, rather the knowledge of response rate of different strata might be easily
available or might be easily estimated from the sample selected from each stratum. Thus,
it is quite reasonable to utilize the response rate (or non-response rate) while allocating

samples to stratum instead of Neyman allocation in presence of non-response error.

In the present chapter, we have proposed some new allocation schemes in
selecting the samples from different strata based on response (non-response) rates of the
strata in presence of non-response. We have compared them with Neyman and

proportional allocations. The results have been shown with a numerical example.

2. Sampling Strategy and Estimation Procedure

In the study of non-response, according to one deterministic response model, it is
generally assumed that the population is dichotomized in two strata; a response stratum
considering of all units for which measurements would be obtained if the units happened
to fall in the sample and a non-response stratum of units for which no measurement
would be obtained. However, this division into two strata is, of course, an
oversimplification of the problem. The theory involved in HH technique, is as given

below:

Let us consider a sample of size n is drawn from a finite population of size N .

Let n, units in the sample responded and 7, units did not respond, so thatn, +n, =n.
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The n, units may be regarded as a sample from the response class and n, units as a
sample from the non-response class belonging to the population. Let us assume that N,
and N, be the number of units in the response stratum and non-response stratum
respectively in the population. Obviously, N, and N, are not known but their unbiased

estimates can be obtained from the sample as

Ly

N, =nN/n; ]\A/2 =n,N/n.

Let m be the size of the sub-sample from n, non-respondents to be interviewed.

Hansen and Hurwitz (1946) proposed an estimator to estimate the population mean Xo

of the study variable X as

nyXo1 + 1, Xom
Toun = " ’ (2.1

which is unbiased for X o, whereas xo1 and xo» are sample means based on samples of

sizes n, and m respectively for the study variable X .

The variance of 7, is given by

1 1 L-1
V(L) = {_ __}Soz + W2S022 ) (2.2)
n N n
n, N, 2 2 .
where L=—, W, = Tk S,and S, are the mean squares of entire group and non-
m

response group respectively in the population.

Let us consider a population consisting of N units divided into £ strata. Let the

size of i” stratum is N,, (i =1,2,...,k ) and we decide to select a sample of size 7 from the

entire population in such a way that », units are selected from the i” stratum. Thus, we

k
haveZni =n.

i=1
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Let the non-response occurs in each stratum. Then using Hansen and Hurwitz
procedure we select a sample of size m, units out of 1, non-respondent units in the i”
stratum with the help of simple random sampling without replacement (SRSWOR) such
that n, =L,m,, L, 21 and the information are observed on all the m, units by interview

method.

The Hansen-Hurwitz estimator of population mean Xoi for the i stratum will be

+ _ Ny Xoit + My Xomi (l

T, i =1,2,....k) (2.3)

i b

n.

1

where xo1 and  xo. are the sample means based on 7, respondent units and m, non-

th

respondent units respectively in the i stratum.

Obviously 7;, is an unbiased estimator of Xoi. Combining the estimators over all

strata we get the estimator of population mean Xo, given by

k
Thy :ZpiTOi (2.4)

Obviously, we have
E[T;, [=X. 2.5)

The variance of T, is given by

x 01 1 (L -1
V’;TOStJ: Z[__ N in250;2+ Z( : )VVizpiZS(i'z (26)
i i=1

i=1 \ N i n;
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N, 2 ,
where W, = 7’2 , S, and S;, are the mean squares of entire group and non-response

i

th

group respectively in the i” stratum.

It is easy to see that under ‘proportional allocation’ (PA), that is, when n;, = np,
for i=12,..,k, V[To*stJ is obtained as

. L0101 1<
V[Tost]PA 22(__iji50i2 +ZZ(L1' _I)VVﬂpiS(i’Z’ (2~7)
i=1

=1 \ 1

) ) S o
whereas under the ‘Neyman allocation’ (NA), withn, =Z¢A—°’ (i :1,2,...,k), it is

ZpiSOi
i=1

equal to

k

. (& ' , 1< S2, <
VlTOstJNA:; ZpiSOi _sziSOi +; Z(Li_l)Wizpi g zpiSOi .
i=1 i=1 0 i=1

i=1 i

(2.8)

It is important to mention here that the last terms in the expressions (2.7) and (2.8)
arise due to non-response in the population. Further, in presence of non-response in the
population, Neyman allocation may or may not be efficient than the proportional
allocation, a situation which is quite contrary to the usual case when population is free

from non-response. This can be understood from the following:

We have
. . 1< -V 1 Sy
V[T(m ]PA - V[TOSt ]NA = ;Zpi (SO[ _SW) +;Z(Li _l)p;WnS(i‘z (I_S_J (2.9)
i=1 i=1 0i
_ k
SW = szSOt
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Whole the first term in the above expression is necessarily positive, the second

term may be negative and greater than the first term in magnitude depending upon the

sign and magnitude of the term (1—&J for all i. Thus, in presence of non-response in
0i

the stratified population, Neyman allocation does not always guarantee a better result as it

is case when the population is free from non-response error.
3. Some New Allocation Schemes

It is a well known fact that in case the stratified population does not have non-

2 . . .
response error and strata mean squares, S, (z:1,2,...,k), are known, it is always

advisable to prefer Neyman allocation scheme as compared to proportional allocation
scheme in order to increase the precision of the estimator. But, if the population is
affected by non-response, Neyman allocation is not always a better proposition. This has

been highlighted under the section 2 above. Moreover, in case non-response is present in

strata, knowledge on strata mean squares, S(i. , are impossible to collect, rather direct

estimates of S, and S,,, may be had from the sample. Under these circumstances, it is,

therefore, practically difficult to adopt Neyman allocation if non-response is inherent in
the population. However, proportional allocation does not demand the knowledge of
strata mean squares and rests only upon the strata sizes, hence it is well applicable even

in the presence of non-response.

As discussed in the section 2, unbiased estimates of response and non-response
rates in the population are readily available and hence it seems quite reasonable to think
for developing allocation schemes which involve the knowledge of population response
(non-response) rates in each stratum. If such allocation schemes yield précised estimates
as compared to proportional allocation, these would be advisable to adopt instead of

Neyman allocation due to the reasons mentioned above.

In this section, we have, therefore, proposed some new allocation schemes which

utilize the knowledge of response (non-response) rates in subpopulations. While some of

the proposed schemes do not utilize the knowledge of S;,, some others are proposed
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based on the knowledge of S;, just in order to make a comparison of them with Neyman

allocation under the presence of non-response. In addition to the assumptions of
proportional and Neyman allocations, we have further assume it logical to allocate larger
sample from a stratum having larger number of respondents and vice-versa when

proposing the new schemes of allocations.
Scheme-1[OA (1)]:

Let us assume that larger size sample is selected from a larger size stratum and

with larger response rate, that is,

L2,..k.

~
I

n; o< p,Ww, for
Then we have
n, =Kp,W, where K is a constant.

The value of K will be

Thus we have

np W,

n. = I
ZinVil
i=1

1

(3.1)

Putting this value of #, in expression (2.6), we get

k

. 1 Se (L, -1 1 &
V[TOSt]l :;|:ZinVil:||:Z{ijV1m +( Il/V-l )m2piS5i2}:|_N;piS(i‘ (32)

i=1
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Scheme-2[OA (2)]:
Let us assume that
n, o< p.W,S,; .
Then, we have

n, :m (3.3)

i k

zinViISOi

i=1

and hence the expression (2.6) becomes

. 1< L p.S,, (L, —=DW.,p. S 1 &
V[Ts ] :_|:ZinVi S i:| { e 22 __ZpiSzi . (34
ost b 190 =\ W, S, N & 0

Scheme-3[OA (3)]:

Let us select larger size sample from a larger size stratum but smaller size sample

if the non-response rate is high. That is,

D
n, o< ——.
W,
Then
n, = #"p (3.5)
W i

and the expression of V[TO* J reduces to

st

* 11 & p & 2 2 2 1 2
V[TOXt ]3 =— Z Wl [Z{inKzSo; +(Li _I)inzpiSOiZ}:|_ﬁzpiS0i . (3.6)
' i1
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Scheme-4[OA (4)]:

Let

np,S,,

= FiPu (3.7)
k
DPiSo;
VVi LU

i

The corresponding expression of VlT OitJ 1s

k SZ.
} Z{inVizSOi +(Li _1)VVi§pi 5?12} -

i=1 0i

k
] -1 s

i=1 i2

sziSOi . (3.8)

i=1

Scheme-5[OA (5)]:

Let

then

(3.9)

The expression (2.6) gives

. 1 &pW, | & | pW,SE (L —1)W2p S J
V[Tost]szz{;pp}/ ”}{Z{p’ Wzl o, (L )W.llzpl MH_NZES

i2 i=l i=1

[\S]

(3.10)

=1

i
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Scheme-6[OA (6)]:

w,S
If n, o< u’
W,
then, we have
W.S,.
n, = — plIWOlS . (3.11)
VVI- i i1~ 00

In this case, VlT J becomes

PWiSe I <o | PiWirSy (Li _l)w/z;piSOZiZ 13 2
= - S,
Ost] n|:z VVIZ :||:Z{ VV”SOZ- N;pl 0i

i=1 i=1 11

(3.12)

Remark 1. Itis to be mentioned here that if response rate assumes same value in all the
strata, that is W, =W (say), then schemes 1, 3 and 5 reduces to ‘proportional allocation’,
while the schemes 2, 4 and 6 reduces to ‘Neyman allocation’. The corresponding

expressions,VlTothr, (r=13.,5) are then similar to VTOstJPA and VlTO Jr, (r=2,4,6)

reduce to VlT ou JNA

Remark 2: Although the theoretical comparison of expressions of V[ OS,J (r=13,5)

JN ., respectively is required in order to

and |1}, ], (r=2.4.6) with V|1, ],, and V[T,
understand the suitability of the proposed schemes, but such comparisons do not yield
explicit solutions in general. The suitability of a scheme does depend upon the parametric
values of the population. We have, therefore, illustrated the results with the help of some

empirical data.
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4. Empirical Study

In order to investigate the efficiency of the estimator 7,., under proposed
allocation schemes, based on response (non-response) rates, we have considered here an

empirical data set.

We have taken the data available in Sarndal et. al. (1992) given in Appendix B.
The data refer to 284 municipalities in Sweden, varying considerably in size and other
characteristics. The population consisting of the 284 municipalities is referred to as the

MU284 population.

For the purpose of illustration, we have randomly divided the 284 municipalities

into four strata consisting of 73, 70, 97 and 44 municipalities. The 1985 population (in

thousands) has been considered as the study variable, X, .

On the basis of the data, the following values of parameters were obtained:

Tablel: Particularsof the Data

(N =284)
Mean Squar e of
Stratum Mean
Stratum Size Stratum Mean the Non-
u Square response Group
0 () (%) ) 4
; (S(i‘z)zgs(i‘
1 73 40.85 6369.10 5095.28
2 70 27.83 1051.07 840.86
3 97 25.78 2014.97 1611.97
4 44 20.64 538.47 430.78

We have taken sample size, n= 60.
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Tables 2 depicts the values of sample sizes, n, (i=1,2,3,4) and values of V[T O*S,]

under PA, NA and proposed schemes OA(1) to OA(6) for different selections of the
values of L, and W, (i=1,23,4).
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(L,=2.0,25,15,35for i=1, 2, 3, 4respectively)

Table2
Sample Sizesand Variance of 7, under Different Allocation Schemes

Stratum Non- Sample Size (n,) and V[TO*WJ under
response ‘
Rate
) PA NA OA(1) 0A(2) 0AQ) OA(4) OA(5) OA(6)
i2
e I B [ R R R R o N R R R R o
1 20 15 | 4308 | 26 | 3604 | 17 | 41.02 | 28 | 11659 | 20 | 3843 | 31 | 3843 | 22| 3785 | 33| 4025
2 25 15 10 15 10 15 10 15 10
3 30 21 i? 20 18 18 16 17 14
4 35 9 8 4 7 3 6 3
1 35 15 | 4597 | 26 | 3727 | 14| 4917 | 24| 11737 | 12| 5541 | 21| 3007 | 10| 6076 | 19 | 4072
2 30 15 10 14 10 13 10 13 10
21 21 2 0 03 24
3 25 21 19 2 5 2 ;
4 20 9 5 7 14
1 25 15 | 4391 | 26 | 3630 | 16 | 4340 | 27 | 11654 | 16 | 4415 | 27 | 3776 | 16 | 4469 | 27 | 3894
15 16 19 21 14
2 20 21 18 20 1 18 13 17 16
3 30 9 8 18 7 17 6 3
4 35 5 4 3
1 20 15 | 4317 | 26| 3599 | 17 | 4132 | 28 | 11540 | 20 | 3945 | 32 | 3882 | 22| 3973 | 34 | 4130
) o5 15 0 15 10 16 10 16 10
3 2 21 19 19 17 if 14 ﬁf ff
9 9 5 4
4 30 5
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5. Concluding Remarks

In the present chapter, our aim was to accommodate the non-response error
inherent in the stratified population during the estimation procedure and hence to suggest
some new allocation schemes which utilize the knowledge of response (non-response)
rates of strata. As discussed in different sub-sections, Neyman allocation may sometimes
produce less précised estimates of population mean in comparison to proportional
allocation if non-response is present in the population. Moreover, Neyman allocation is

sometimes impractical in such situation, since then neither the knowledge ofS§,,

(i =1,2,3,4), the mean squares of the strata, will be available, nor these could be estimated

easily from the sample. In contrast to this, what might be easily known or could be
estimated from the sample are response (non-response) rates of different strata. It was,
therefore, thought to propose some new allocation schemes depending upon response

(non-response) rates.

A look of Table 2 reveals that in most of the situations (under different
combinations of ,, and L,), allocation schemes OA (1), OA (3) and OA (5), depending
solely upon the knowledge of p, and W, (orW,), produce more précised estimates as
compared to PA. Further, as for as a comparative study of schemes OA (1), OA (3) and
OA (5) is concerned, no doubt, all these schemes are more or less similar in terms of their
efficiency. Thus, in addition to the knowledge of strata sizes, p,, the knowledge of
response (non-response) rates, W, (or W,), while allocating sample to different strata;
certainly adds to the precision of the estimate.

It is also evident from the table that the additional information on the mean
squares of strata certainly adds to the precision of the estimate, but this contribution is not

very much significant in comparison to NA. Scheme OA (2) is throughout worse than

any other scheme.
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Abstract

In this chapter, we have suggested an improved estimator for estimating the
population mean in stratified sampling in presence of auxiliary information. The mean
square error (MSE) of the proposed estimator have been derived under large sample
approximation. Besides, considering the minimum case of the MSE equation, the
efficient conditions between the proposed and existing estimators are obtained. These
theoretical findings are supported by a numerical example.
Keywords : Auxiliary variable, mean square errors; exponential ratio type Estimates;

stratified random sampling.

1. Introduction

In planning surveys, stratified sampling has often proved useful in improving the
precision of other unstratified sampling strategies to estimate the finite population mean

Y = (Shot 2 vni)/N

Consider a finite population of size N. Let y and x respectively, be the study and
auxiliary variates on each unit U; (j=1,2,3...N) of the population U. Let the population be

divided in to L strata with the h™stratum containing Nj, units, h=1,2,3...,L so that
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YE_ Ny = N. Suppose that a simple random sample of size ny is drawn without
replacement (SRSWOR) from the h'™ stratum such that ¥f:_, n,, = n.

When the population mean X of the auxiliary variable x is known, Hansen et. al.

(1946) suggested a “combined ratio estimator *

_ _ X
Yer = ¥st(32) (1.1)
st
- _+vyL - - _vL -
where, Vs = Xh=1 Wh¥h, Xst = Lh=1 WhXn
7 = —Y" v, and %, = —Y" x
Yh = o, &i=1Yni an Xh = 4 &i=1%hi

N J— J—
wp = #‘ and X = YL_, w Xy

The “combined product estimator “ for Y is defined by

S = Xst

Yep = ¥se(3) (1.2)
To the first degree of approximation, the mean square error (MSE) of ycgr and ycp are

respectively given by —

MSE(Ycr) = Xizs Wh0n[ST, + R?SZ, — 2RSyun] (1.3)
MSE(Fcp) = Xict WiOn[S7n + R?SY, + 2RSyn] (1.4)
1 1 Y. . . 2 . . .
where 0;, = (n— — N—), R = I8 the population ratio, Sy}, is the population variance of
h h

variate of interest in stratum h, S2 is the population variance of auxiliary variate in
stratum h and Sy, is the population covariance between auxiliary variate and variate of
interest in stratum h.

Following Bahl and Tuteja (1991), Singh et. al. (2009) proposed following
estimator in stratified random sampling -

Yer = Yst€Xp [g_iSt] (1.5)

X+Xgt
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The MSE of y,,, to the first degree of approximation is given by

N 2 R
MSE(Fer) = Xiy iy [SZ, + - S2, — RSy (1.6)
Using the estimator ycg and ycp, Singh and Vishwakarma (2005) suggested the

combined ratio-product estimator for estimating Y as

Frec = Tst [ao-+ (1 — o) 2] (1.7)
RPC st st X .

For minimum value of o = %(1 + C*) = a, (say), the minimum MSE of the estimator

Vrpc 1S given by

MSE (Frpc) = Xiz; Wibn(1 — p*3) Sgy (1.8)
* cov(¥st.Xst) * __ cov(¥st.Xst) _ z
where C* = = &0 7 P = RWEovED’ R=%

2. Proposed estimator
Following Singh and Vishwakarma (2005), we propose a new family of

estimators -

t= k[ystexp X XSt] (X;) ] +(1=2% [ystexp [XSt X] (X)f(t)ﬁ] 2.1

X+Xst Xst+X
where A is real constant to be determined such that the MSE of t is a minimum and a, 3

are real constants such that p =1- .

Remark 2.1: For A = 1 and a = 1 the estimator t tends to Singh et. al. (2009) estimator.
For A = 1 and a = 0 the estimator t takes the form of Hansen et. al. (1946) estimator ycg.
For A = 0 and a = 1 the estimator t tends to Singh et. al. (2009) estimator. For A = 1 and
o = 0 the estimator t takes the form of the estimator yp.

To obtain the MSE of't to the first degree of approximation, we write

Vst = Lhe1 Wn¥n = Y(1 + €,) and
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ist = Zh=1 Wh)_(h = X(l + el)
Such that,

E(eo) = E(eq) = 0.

Under SRSWOR, we have
E(ed) = = Xy WiOnSyn
Ee}) = %Zizl wi0,SZ,
E(epey) = ——Z ~1 WiOnSyxn

Expressing equation (2.1) in terms of ¢’s we have

t=Y(1+ep) [x {exp( (1 + ) 1)}q {(1+4e,) 1o+

1y 1-0
(1-%) {exp( (1+%2) )} 1+ e1)<1-00] 2.2)
We now assume that | e;|<1 so that we may expand (1 + e;)”! as a series in powers of
e;. Expanding the right hand side of (2.2) to the first order of approximation, we obtain
(=) = [eg+ e (1 + 0ok — 5 - 20)] (2.3)
Squaring both sides of (2.3) and then taking expectations, we get the MSE of the

estimator t, to the first order of approximation, as

MSE(t) = V(¥s) + R2(1 — 20)S% {(1 — 21)A? + 2C*A} (2.4)
o

where A = (1 - E)'

Minimisation of (2.4) with respect to 4 yields its optimum values as

1 c*
hopt =5 (1+5) = ho(say) 2.5)

Putting A = X in (2.4) we get the minimum MSE of the estimator t as —
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min MSE (t) = V() (1 — p*)

= Yz, WiOh (1 — p2)SE,. (2.6)

3. Efficiency comparisons

In this section we have compared proposed estimator with different already
proposed estimators, obtained the conditions under which our proposed estimator
performs better than other estimators.

First we have compared proposed estimator with simple mean in stratified random
sampling.
MSE(t) < MSE(¥y), if

V(s + R2(1 — 20)S5,{(1 — 20)A? + 2C*A} < V(Tsp)

. 1 1 c* 1 1 c*
m1n(———+—)£k£max(———+—)
2 2 4 2 2 4

Next we compare proposed estimator with combined ratio estimator —
MSE(t) < MSE(YcRr), if
V(Tsr) + Die; wip R2(1 — 20)S4,{(1 — 20)A% + 2C*A} <

Yic1 Wibn[Ss, + R2SZ, — 2RS
or, if (1 —2C") — (1 —20)((1 — 20)A% + 2C*A) >0

.~ 1(A+1 1(2C*+A-1
or,1f—{—}£ XS—{ }
2l A 2 A

Next we compare efficiency of proposed estimator with product estimator
MSE(t) < MSE(¥pg), if
V(Ts0) + Bhey WEO R2(1 — 2083, {(1 — 21042 + 2C°A} <

Yo WiOn[Sgn + R?SZ, + 2RSy
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or, if (1+2C*) — (1—20)((1—20)A2 + 2C*A) >0

or if 2{22} <2< 2{E2A

2l A 2 A
Next we compare efficiency of proposed estimator and exponential ratio estimator in
stratified sampling

MSE(t) < MSE(¥gg), if

V(sp) + X, w0, R2(1 — 20)S2,{(1 — 20)A% + 2C*A} <
RZ
Yis1 Wion [szh + S — Rsyxh]

or, if (1—4C*) —4(1—21)((1—2))A2 +2C*A)>0

1-2A

o1 1 (4C*+2A-1
or, if —{—} <AL —{—}
20 24 2

2A

Finally we compare efficiency of proposed estimator with exponential product estimator
in stratified random sampling
MSE(t) < MSE(¥gp), if
or, if V(Vs) + Xk, wiop R2(1 — 20)S3,{(1 — 20)A? + 2C*A} <
i1 Wi Op [Séh + Rjz S + RSyxh]
or, if (1+4C*)—4(1—-20)((1—2)0)A%2+2C*A)>0

.o 1(-1-2A 1 (4C*+2A+1
or, if —{ }S ?»S—{—}
2l 2aA 2 2A

Whenever above conditions are satisfied the proposed estimator performs better than
other mentioned estimators.
4. Numerical illustration

All the theoretical results are supported by using the data given in Singh and
Vishwakarma (2005).
Data statistics:
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Stratum Wi, 0y Sz, Soh Syxh
2 0.5227 0.12454 132.66 259113.71 5709.16
3 0.2428 0.08902 38.44 65885.60 1404.71
R=49.03 and A,pt = 0.9422(a = 0) and 1.384525 (o = 1)
Using the above data percentage relative efficiencies of different

estimators Vcr, Ycp, YEr, YEp and proposed estimator t w.r.t ¥ have been calculated.

Table4.1: PRE of different estimatorsof Y

Estimator | g Ycr Ycp YER VeP YHPS(opt) | YPRP(opt)

PRE 100 1148.256 | 23.326 | 405.222 | 42.612 | 1403.317 | 1403.317

We have also shown the range of 4 for which proposed estimator performs better

thanyg;.

Table4.2: Range of A for which proposed estimator performs better than'y,

Value of constant o Form of proposed estimator | Range of A
o= 0 }_,HPS (05,13)
o=1 }_,CER (05,22)
5. Conclusion

From the theoretical discussion and empirical study we conclude that the
proposed estimator under optimum conditions performs better than other estimators

considered in the article. The relative efficiency of various estimators are listed in Table
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4.1 and the range of A for which proposed estimator performs better thany, is written in

Table 4.2.
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Abstract
This chapter proposes some estimators for the population variance of the variable

under study, which make use of information regarding the population proportion
possessing certain attribute. Under simple random sampling without replacement
(SRSWOR) scheme, the mean squared error (MSE) up to the first order of approximation
is derived. The results have been illustrated numerically by taking some empirical
population considered in the literature.

Keywords. Auxiliary attribute, exponential ratio-type estimates, simple random
sampling, mean square error, efficiency.

1. Introduction
It is well known that the auxiliary information in the theory of sampling is used to
increase the efficiency of estimator of population parameters. Out of many ratio,
regression and product methods of estimation are good examples in this context. There
exist situations when information is available in the form of attribute which is highly
correlated with y. Taking into consideration the point biserial correlation coefficient

between auxiliary attribute and study variable, several authors including Naik and
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Gupta (1996), Jhajj et. al. (2006), Shabbir and Gupta (2007), Singh et. al. (2007, 2008)
and Abd-Elfattah et. al. (2010) defined ratio estimators of population mean when the
prior information of population proportion of units, possessing the same attribute is

available.

In many situations, the problem of estimating the population variance o2 of study
variable y assumes importance. When the prior information on parameters of auxiliary
variable(s) is available, Das and Tripathi (1978), Isaki (1983), Prasad and Singh (1990),

Kadilar and Cingi (2006, 2007) and Singh et. al. (2007) have suggested various
estimators of S?,.

In this chapter we have proposed family of estimators for the population variance
S2 when one of the variables is in the form of attribute. For main results we confine

y

ourselves to sampling scheme SRSWOR ignoring the finite population correction.

2. Theproposed estimators and their properties

Following Isaki (1983), we propose a ratio estimator

Sz
t =52 2.1)
50

Next we propose regression estimator for the population variance

t =52 +bls2 -s2) (22)

And following Singh et. al. (2009), we propose another estimator
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2_ 2
S —s
t3:s§,exp i) ¢

! (2.3)
S§ —s¢

where sg and sqz, are unbiased estimator of population variances S%, and S(%

respectively and b is a constant, which makes the MSE of the estimator minimum.

To obtain the bias and MSE, we write-

s§,=S§,(l+eO), sdz,=qu)(l+el)

Such that E(eg)=E(e;)=0

and blef)= B0 =0 gl o) gy <P =),

N _
u Z(Yi —Y)p (0; —P)d
pq i1

where Spq = W)9 upq = (N _ 1)
20 Moz
n n
Boy) =3 =084 and Py, ==+ =3,
02 02

Let By = Bay) =1 Bagg) = Bagy — 1 and 8, =8, —1
P is the proportions of units in the population.

Now the estimator t; defined in (2.1) can be written as

(tl —Si)z Si(e0 —e, +e; —eoel) (2.4)
Similarly, the estimator t, can be written as

2 2 2
(tz - Sy): Syeo —bS¢e1 (25)
And the estimator t3 can be written as

2\ 2 e, e, 3e;
(t3—sy)_sy£e0—?l—7+?l] (2.6)

The MSE of't;, t3and variance of t, are given, respectively, as
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MSE(t, )= > B3, + By - 257 2.7)

S4
MSE = —{ ;‘2} (2.8)
The variance of t , is given as

1
Vl12)= 1153 Orap ~1)+ 253 (g4 1) 205353 (2 1) 29)

On differentiating (2.9) with respect to b and equating to zero we obtain

b= M (2.10)
Si (804 - 1)

Substituting the optimum value of b in (2.9), we get the minimum variance of the

estimator t,, as

St “ i
min.V(tz):?sz(y{ BSB :l Var(S )(_p(si,sg)) (2.11)

3. Adapted estimator
We adapt the Shabbir and Gupta (2007) and Grover (2010) estimator, to the case when
one of the variables is in the form of attribute and propose the estimator t4

ty —[klsg,+k2(sq2,—sé)]exp[s¢ ¢J (3.1)
S¢ +s¢

where k| and k, are suitably chosen constants.

Expressing equation (3.1) in terms of e’s and retaining only terms up to second degree of

e’s, we have:

2 2 32
t4 :[klsy(1+eo)—k25¢ell:l—?+861:| (32)
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Up to first order of approximation, the mean square error of t4 is

MSE(t4) = E(t4 - si)2

=52k, — 1 420 (B3 () + B (0) - 25, +M<( 3 )

+S:kAB; (0)+21S2S [k k, (B (x)-8; )—72 )ﬂ (3.3)
where, k:l

n

On partially differentiating (3.3) with respect to k; (i =1,2) we get optimum values ofk

and k, respectively as

B> ¢>(2—l32 J

3.4
' as o)A +1)-282) .

and

) sé[s§(¢)(m+1)—m2—B(z—ﬁs"z‘(wﬂ

ky = 3.5

? 252 B3 (0)(hA +1)- B2 G

where,

A:B;(Y)"'B;( ) 2622 and B= B ( ) 2

On substituting these optimum values of k; and k,in (3.3), we get the minimum value

of MSE of t4 as

4%
mé(g{MSE(tz)g»sle;(w}

MSE(t,)
MSE(t4) = VSE(, - — (3.6)
4 414 ——27
S g4
y
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4. Efficiency Comparison
First we have compared the efficiency of proposed estimator under optimum condition

with the usual estimator as -

:xs‘;s’; _ MSE(t,)

pt B;(x) 14 MSEi‘(t 5)
S,

v($2)-msE($2),

AB, (x)[MSE(t2 )+

a1y MSE(t, )
S4

y

ASB3(0)
16

+

> (0 always. (4.1)

Next we have compared the efficiency of proposed estimator under optimum condition
with the ratio estimator as -

From (2.1) and (3.6) we have

MSE(t, )~ MSE($] )0 =S| \Bagy F Ml\i];g(t) )
1+ s*
kB;(X)(MSE(tz)+kSy1B62(q))]
+ > 0 always. (4.2)

4
y

4(1 , MSE(, ))

Next we have compared the efficiency of proposed estimator under optimum condition
with the exponential ratio estimator as -

From (2.3) and (3.6) we have
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5, MSE(,)

MSE(t,)-MSE(S?) =2s*| /B, - -
o~ Oy P TR MSE(t,)
2yBagy) +——2

1
Sy
xB’Z(x)[MSE(tzhksylﬁ6 2 (q>)]

4[ |, MSE(, )]

+ > () always. (4.3)

4
y

Finally we have compared the efficiency of proposed estimator under optimum condition
with the Regression estimator as -

ABS (x)[MSE(tz)+ 7”84;1[362(@}
MSE(t, )~ MSE(t4) = Ml\i];](;(ztl) — > (0 always.
1+T 4{1+ MSE4(t2)J
y Sy
(4.4)

5. Empirical study
We have used the data given in Sukhatme and Sukhatme (1970), p. 256.

Where, Y=Number of villages in the circle, and
¢ Represent a circle consisting more than five villages.

n N s? S: A4 X4 A2
23 89 4.074 0.110 3.811 6.162 3.996

The following table shows PRE of different estimator’s w. r. t. to usual estimator.

Table 1: PRE of different estimators

Estimators | t, t) ty t3 ty
PRE 100 141.898 262.187 254.274 296.016
Conclusion

Superiority of the proposed estimator is established theoretically by the
universally true conditions derived in Sections 4. Results in Table 1 confirms this

superiority numerically using the previously used data set.
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