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Abstract— For many operational information fusion systems, both 
reliability and credibility are evaluation criteria for collected 
information. The Uncertainty Representation and Reasoning 
Evaluation Framework (URREF) is a comprehensive ontology that 
represents measures of uncertainty. URREF supports standards such 
as the NATO Standardization Agreement (STANAG) 2511, which 
incorporates categories of reliability and credibility. Reliability has 
traditionally been assessed for physical machines to support failure 
analysis. Source reliability of a human can also be assessed. 
Credibility is associated with a machine process or human 
assessment of collected evidence for information content. Other 
related constructs for URREF are data relevance and completeness. 
In this paper, we seek to develop a mathematical relation of weight of 
evidence using credibility and reliability as criteria for 
characterizing uncertainty in information fusion systems. 
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I.  INTRODUCTION 

Information fusion is based on uncertainty reduction; wherein 
the International Society of Information Fusion (ISIF) 
Evaluation of Techniques of Uncertainty Reasoning Working 
Group (ETURWG) has had numerous discussions on 
definitions of uncertainty. One example is the difference 
between reliability and credibility, which is called out in 
NATO STANAG 2511 [1]. To summarize these ETURWG 
discussions, we detail an analysis of credibility and reliability. 

Information fusion consumers comprise users and machines of 
which the man-machine interface requires understanding of 
how data is collected, correlated, associated, fused, and 
reported. Simply stating an uncertainty representation of 
“confidence” is not complete.  From URREF discussions [2]:  

reliability relates to the source, and  
credibility refers to the content reported. 

There are scenarios in which reliability and credibility need to 
be differentiated. Examples of information fusion application 
areas include medical, legal, and military domains. A common 
theme is involvement of humans in aggregating information. 
In many situations, there is cause for concern about the 
reliability of the source that may or may not be providing an 
accurate and complete representation of credible information. 
In cases where there is a dispute (e.g., legal), the actors each 
seek their own interests and thus are asked a series of 

questions by their own and opposing representations to judge 
the veracity of their statements.   

Weight of Evidence (WOE) is addressed in various fields (risk 
analysis, medical domain, police, legal, and information 
fusion). In addition to credibility and reliability, Relevance 
assesses how a given uncertainty representation is able to 
capture whether a given input is related to the problem that 
was the source of the data request. A final metric to consider is 
completeness, which reflects whether the totality of evidence 
is sufficient to address the question of interest. These criteria 
relate to high-level information fusion (HLIF) [3] systems that 
work at levels three and above of the Data Fusion Information 
Group (DFIG) model. For the URREF, we then seek a 
mathematical representation the weight of evidence: 

  WOE = f (Reliability, Credibility, Relevance, Completeness)   (1)  

where f is an function to be defined with operations on how to 
combine such as a utility analysis. 

Sect. II. provides related research and Sect. III overviews 
information fusion. Sect. IV discusses the weight of evidence 
including relevance and completeness. Sect. V describes the 
modeling of reliability and credibility with Sect. VI providing 
a simulation over evidence processing. Sect. VII provides 
discussion and conclusions.   

II. BACKGROUND

There are many examples of reliability analysis for system 
components [4]. Typically, a reliability assessment is 
conducted on system parts to determine the operational life of 
each component over the entire collection of parts [5]. A 
reliability analysis can consist of many attributes such as 
survivability [6], timeliness, confidence, and throughput [7, 8]; 
however the most notable is time to failure [9]. Reliability is 
typically modeled as a continuous analysis of a part; however, 
a discrete analysis can conducted for the number of failures in 
a given period of time [10]. Real-time analysis requires 
information fusion between continuous and discrete analysis 
over new evidence [11], covariance analysis [12, 13], and 
resource analysis [14] to control sensors.  

To assess the performance of sensors (and operators)  requires 
analysis of the physical reliability of components. Data fusion 
can aid in fault detection [15], predictive diagnostics [16], 
situation awareness [17], and system performance. A model of 
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reliability includes time-dependent measures for operational 
lifetime analysis and controllability which are aspects of a data 
fusion performance analysis [18]. Use of multiple systems can 
aid in reducing failures through redundancy or system 
reconfiguration in response to failed sensors [19] for such 
applications as robotics  [20, 21], risk analysis for situation 
awareness [22, 23], and cyber threats [24, 25, 26]. 

Time-dependent measures such as times between failures are 
appropriate for processes that operate over time to produce a 
stream of outputs; and failures can render the output stream 
unreliable. For systems that respond to discrete queries or 
produce alerts, such as human operators in a fusion center or 
pattern recognition systems, reliability is assessed through 
correspondence between outputs and the actual situation. The 
confusion matrix (CM) is a typical measure [27]. Reliability 
also relates to the opinions of observers [28]. 

Credibility To analyze credibility of evidence, we can use 
probabilistic or credibilistic frameworks such as Bayes, 
Dempster-Shafer, or following proportional conflict 
redistribution (PCR) principle, etc. [29, 30, 31]. Credibility of 
a hypothesis can be assessed through its prior probability or 
belief; and also through conflict: information is more credible 
when it does not conflict with other information.  

To summarize,  

• Reliability is an attribute of a sensor or other information source,
and measures the consistency of a measure of some phenome-
non. Reliability can be assessed by variance, probability of 
occurrence, and/or a small spatial variance of precision.  

• Credibility, also known as believability, comprises the content of
evidence captured be a sensor which includes veracity, 
objectivity, observational sensitivity, and self-confidence. 

Reliability from the engineering design domain (e.g., mean 
time between failures) refers to consistent ability to perform a 
function, and reliability of a source means consistently 
measuring the target phenomenon. It may be useful to model 
source failures over time using an exponential or Poisson 
distribution. For information fusion and systems analysis, we 
need both a source element (reliability) as well as a content 
element (credibility) to characterize information quality. Next, 
we describe the information model that consists of data 
sources from human and machines that requires uncertainty 
analysis. 

III. INFORMATION FUSION

A. Information Fusion Evaluation 
Information fusion combines information from multiple 
sources, distributions [32], or information over various 
system-level model processing levels as described in the Data 
Fusion Information Group (DFIG) model [33, 34, 35], 
depicted in Figure 1. The DFIG model outlines various 
processes for information fusion such as object assessment 
[36] (Level 1 – L1), situational assessment (L2), impact 
assessment (L3), and resource management (L4). Data and 
information fusion can be applied to assess the operating 
performance of algorithms [37], sources (reliability), as well 
as message content (credibility). For system-level analysis, it 

is important to look at source context reliability of humans 
(L5) and data sources for sensor (L4) and mission 
management (L6). 

Figure 1 - DFIG Information Fusion model. 

  In the DFIG model, the goal is to separate information fusion 
(L0-L3) from sensor control, platform placement, and user 
selection to meet mission objectives (L4-L6) [38, 39, 40]. 
Information fusion across all the levels includes many metrics 
that need to be evaluated over uncertainty measures [41]. 
Challenges for information fusion, both at the hardware (i.e. 
components and sensors) and the software (i.e. algorithms and 
processes) levels were addressed by the ETURWG 
[http://eturwg.c4i.gmu.edu] [2]. Definitions of uncertainty 
measures such as accuracy [42], precision [43], reliability, and 
credibility are important for measures of effectiveness 
including validity and verification [44]. For example, accuracy 
(i.e., validity) measures distance from the truth, while 
precision (i.e., reliability) measures repeatability of results. 

Examples of information fusion include tracking accuracy 
[45, 46], tracking filter credibility [47], and object detection 
credibility [48, 49] which are important for information 
quality and quality of service metrics [50]. 

B. NATO STANAG 2511 
For STANAG 2511, as an update to STANAG2022, there are 
general listings of categories for reliability and credibility that 
are of interest to the ETRUWG [51, 52, 53]. Table 1 lists the 
STANAG 2511 issues that provided initial discussion for the 
ETURWG and the subsequent discussions in the URREF. 
Reliability and credibility are independent criteria for 
evaluation. The resultant rating will be expressed in the 
appropriate combination of letter and number (STANAG 
2511). Thus information received from a "usually reliable" 
source which is adjusted as "probably true" will be rated as 
"B2". Information from the same source of which the "truth 
cannot be judged" will be rated as "B6". 

The URREF ontology, shown in Figure 2, distinguishes 
between reliability and credibility in evidence handling and 
evidence processing; respectively. In this paper, we utilize the 
STANAG 2511 definitions of reliability (of source) and 
credibility (of information). From the ETURWG discussions, 
credibility and reliability also relate to weight of evidence, 
relevance, and completeness; although others are currently 
being explored.  
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Figure 2 – URREF Ontology: Criteria Class [2]. 

IV. WEIGHT OF EVIDENCE

Weight of evidence (WOE) has different meanings in different 
contexts. A commonality is the need to integrate different 
sources or lines of evidence to form a conclusion or a decision. 

In the field of risk analysis, WOE consists of a set of methods 
developed to assess the level of risks associated to factors or 
causes [54]. In most cases, WOE is a means of synthesizing 
information, while the solution adopted for 
weighing evidence is not explicit, or the 
evidence is presented without any interpretation. 
While some approaches rely on scoring 
techniques (see for instance research on sedi-
ments assessment described in [55]), the overall 
solutions remain qualitative in nature, developed 
for particular applications and poorly adaptable. 
Further discussion on WOE, as tackled within 
the risk analysis area is provided in [56]. 

WOE is addressed in a similar way in the 
medical domain, in relation to the rise of a new 
set of medical practices known as “evidence 
based medicine”, promoting clinical solutions 
supported by practical experience, for which 
scientific support is not (yet) available. 

From a different perspective, WOE is used in 
the law and policy domain to convey a 
subjective assessment of an expert analyzing 
different items of evidence, most often in 
relation to a causal hypothesis [57]. Intuitively, 
the concept is used to signify that the value of 
evidence must be above a critical threshold to 
support decisions or conclusions. In law, stand-
ards of evidence are recognized (for instance a 
three-level standard classifies evidence as 
“preponderance”, “clear and convincing” and 
“beyond a reasonable doubt”), but experts will 

still exercise their judgment on the strength of evidence, as 
there is no methodology to assess this parameter. Without such 
methodologies, the variance in expert’s judgments could be 
important, as subjective factors shape inevitably the outcome 
of the evidence in the evaluation. 

A. Weight of evidence for information fusion  
In the field of information fusion, WOE captures the intuition 

Table 1: STANAG 2511 Reliability and Credibility Relations and Definitions

RELIABILITY CODE EXPLANATION From STANAG 2511 
Completely Reliable A A tried and trusted source which can be depended upon with confidence 
Usually Reliable B A past successful source for which there is still some element of doubt in particular cases 
Fairly Reliable C A past occasionally used source upon which some degree of confidence can be based 
Not Usually Reliable D A source which has been used in the past but has proved more often than not unreliable 
Unreliable E A source which has been used in the past and has proved unworthy of any confidence 
Cannot be judged F It refers to a source which has not been used in the past 

CREDIBILITY CODE EXPLANATION From STANAG 2511 
Confirmed 1 If it can be stated with certainty that the reported information originates from another source 

than the already existing information on the same object 
Probably true 2 If the independence of the source cannot be guaranteed, but if, from the quantity and quality of 

previous reports, its likelihood is nevertheless regarded as sufficiently established 
Possibly true 3 If insufficient confirmation to establish any higher degree of likelihood, a freshly reported 

item of information does not conflict with the previously reported target behavior 
Doubtful 4 An item of information which tends to conflict with the previously reported or establish 

behavior pattern of an intelligence target 
Improbable 5 An item of information which positively contradicts previously reported information of 

conflicts with the established behavior pattern of an intelligence target in a marked degree 
Cannot be judged 6 If its truth cannot be judged 
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that there is more or less evidence in the data, and this can be 
related to different parameters: the value of information itself 
(whether a piece of evidence conveys rich or poor 
information), the credibility of this information, in conjunction 
with the reliability of its source (can or should we believe this 
information), and finally the utility (or completeness) of this 
information with respect to a considered goal or task (is this 
data adding any detail to our existent data set?). WOE is an 
attribute of information and its values should be assessed by 
following a justifiable, repeatable and commonly accepted 
process. Therefore, several solutions have been developed to 
propose assessment mechanisms. 

Among them, [58] proposes a probabilistic approach for 
information fusion where data items are weighted with respect 
to the accuracy or reliability of their source. This solution 
considers only independent information items and its 
adaptation to correlated information was developed [59]. 
In the field of evidential reasoning, the discounting operation 
introduced by Shafer [60], allows us to consider knowledge 
about the reliability of information sources. Smets and 
colleagues propose a method for learning a sensor’s reliability, 
at various detail levels defined by users [61]. This method is 
generalized in Mercier, et. al. [62] by introducing the 
contextual discounting. 

From a different perspective, [63] extends this frame in order 
to combine sources having different reliabilities and 
importance levels, while making a clear distinction between 
those notions. 

It should be noticed that all references above consider only 
attributes of sources, while the weight of evidence should also 
be a function of information credibility. Underlying the same 
intuition of assigning different importance levels to items 
when fusing information, we can also cite research on 
prioritized and weighted aggregation operators, described in 
[64] and [65]. 

B. Relevance in Information Fusion  
Relevance has these components: property relation and piece 
of evidence (POE). Relevance is often considered as a relation 
between one property (or feature) and a conditional. That 
means that a property is relevant (or related) to another one “if 
it leads us to change our mind concerning whether the second 
property holds” [66]. 

For instance, in classification, relevance criteria determine 
how well a feature (a property) discriminates between the 
classes (another property). In this case, the feature selection 
step aims at identifying the features that are most relevant to 
the classification problem. We distinguish between the filter 
mode and the wrapping mode. In the filter mode, measures of 
relevance are used to characterize the features. In the wrapping 
mode, a classifier is used and the optimal subset of relevant 
features is the one which maximizes the given performance 
measures, such as the recognition rate, the area under curve, 
etc., subject to a penalty on the number of features. Classical 
relevance measures are based on: mutual information, 
distances between probabilities, cardinality distances, etc. 

A piece of evidence (POE) is relevant if it impacts previous 
beliefs. In this case, the relevance of a piece of information 

can only be evaluated in conjunction with the combination 
(updating, revision) operator used, as the null element and the 
properties in general may differ from one operator to another. 
For example, in Information Retrieval, the process is used to 
assess the relevance of retrieved items (documents) based on a 
given query. 

Measures of relevance are based on traditional recall and 
precision measures: Precision is the fraction of retrieved items 
that are relevant, and Recall is the fraction of relevant items 
that have been retrieved [67]. 

Relevance is defined with respect to a goal (or a context) and 
assesses quantitative and qualitative information change. 

• Quantitative approaches: In quantitative approaches, the notion
of relevance is often intimately linked to the notion of 
independence. For instance, in classical probability theory, 
according to Gärdenfors [68], a proposition p is relevant to 
another proposition r on evidence e if p and r are conditionally 
dependent given e. 

• Qualitative approaches: In qualitative approaches, the notion of
relevance is linked to the material implication (see for instance 
the work of Goodman [69]): If a then b, a → b, then a should be 
relevant to b. 

C. How to evaluate a Relevance Criterion? 
First, we should clarify what is the object under evaluation, or 
what do we mean by uncertainty representation (UR). We 
follow here the distinction put forward in [70] about the 
difference between uncertainty calculi and decision 
procedures. 

If UR means uncertainty calculus (UC) (mathematical 
framework, theory), then we are asking if, for instance, 
possibility theory or probability theory is able “to capture how 
a given input is relevant [...]”, and to what degree. Although 
this is a very general question with certainly no binary answer, 
some evaluation could be done. 

For instance, using a literature survey for document retrieval, 
what is needed is a notional scale. An example of a scale to be 
defined over methods, measures, or models : 

A. exist and are well developed with the theory and results are 
significant; 

B. exist but some further developments are required or results are 
not significant;  

C. are missing, or 
D. the concept is not addressed. 

We could conclude for instance probability theory is very 
good at dealing with relevance since a plethora of methods and 
measures are defined (A), compared to possibility theory for 
which only few methods exist (B). This would be an empirical 
evaluation, mainly based on a literature survey. Although we 
could conclude that a theory is very good at dealing with the 
relevance concept (numerous methods, measures, papers etc), 
an absence of evidence in this sense for another theory would 
not mean that the latter is not good. Rather it would identify a 
research gap. 

Each of the following elements can be evaluated separately: 

(UC-1) The mathematical model for uncertainty representation 
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(UC-2) The uncertainty measures 
(UC-3) The inference rules and combination operator 
(UC-4) Transformation functions 

If UR is a decision procedure (DP), we are asking if a 
particular algorithm, relying on possibly several theories, is 
able “to capture how a given input is relevant [...]”, and to 
what degree. A DP distinguishes between the method and its 
implementation (e.g., fusion algorithm). Also, note that the 
same DP could be represented by several algorithms. 

Two steps underlying may be distinguished: 
1. Identification and assessment of pieces of information (or

properties) according to their relevance; and 
2. Filtering of irrelevant pieces of information.

Example of an experiment to be elaborated could be: 

i. Consider a dataset with both relevant and irrelevant pieces of
information; 

ii. Each piece of information should have been previously labeled as
relevant or irrelevant, possibly with some degrees; 

iii. Run the decision procedure (fusion algorithm) with only relevant
pieces of information and add progressively irrelevant (or less
relevant) ones; and

iv. Evaluate the decision procedure based on other independent
criteria such as the execution time, true positive rate,
conclusiveness, interpretation, etc.

 

We could observe for instance that a given Decision 
Procedure, say DP-A, is better than another one, say DP-B, 
because its execution time is lower with an equivalent true 
positive rate. Even if DP-A is based on evidence theory and 
DP-B is based on probability theory, concluding that evidence 
theory is better for dealing with relevance than probability 
theory is obviously not trivial and would require special care. 

A thinner-grained assessment of relevance criterion can be 
performed by assessing separately each of the following 
elements of an Atomic Decision Procedure (ADP): 

(ADP-1) Universe of discourse 
(ADP-2) Instantiated uncertainty representation 
(ADP-3) Reasoning step 
(ADP-4) Decision step 

For instance, one could assess if one particular universe of 
discourse better allows expressing relevance concepts than 
another. Relevance contributes to WOE. Evaluating whether a 
representation is able to deal with relevance should rely on 
other criteria of the ontology (if UR is a decision procedure) 
and or on other empirical criteria to be defined (if UR is an 
uncertainty calculus).  In addition to relevance affecting re-
liability and credibility, completeness needs to be considered. 

D. Evidence Completeness 
Reliability versus credibility is highly related to completeness 
of evidence. For example, we cannot postulate that: (P1) 
reliability of a source => credibility of information 
(that is more a source is reliable, more the credibility of the 
information it provides is high) WITHOUT assuming the 
completeness of pieces of evidences available for the source. 

For example: (Ming vase): Let's consider an apparent Ming 
vase (a counterfeit or a genuine one) to be analyzed. Suppose 
that an expert provides his report based on only two attributes 

(say the shape and color of the vase) and concludes (based on 
these two attributes/pieces of evidences only) that the vase is a 
genuine Ming vase. Because it is based on this knowledge 
only, and because both attributes fit perfectly with those of a 
genuine Ming vase, the Expert is 100% reliable (he didn't 
make a mistake) in assessing the two attributes; however, we 
are still unsure of his reliability in assessing whether the vase 
is genuine. Additional POE if available may be 100% reliable 
and support the opposite conclusion. For example, let's 
suppose that when looking at the vase we see the printed 
inscription "Made in Taiwan". So we are now sure that we are 
facing a counterfeit Ming vase. 

So we see that the reliability and credibility notions are highly 
dependent on the underlying completeness of pieces of 
evidence and the relationship of the evidence to the conclusion 
of interest. In the Ming vase example, if we treat the two 
attributes (color and shape) as complete evidence sufficient to 
establish the absolute truth, then if Expert is fully reliable, the 
information he/she provides becomes highly credible due to 
reliability of the source and completeness of the evidence. 

When there is incompleteness of POE, nothing conclusive can 
be inferred about credibility unless some additional 
assumptions are introduced about the evidence necessary to 
establish the truth.  

The fundamental question behind this, is to know if a source 
based only on local/limited knowledge (evidences) can (or 
not) conclude with an absolute certainty about an hypothesis, 
or its contrary so that any other/additional pieces of evidences 
cannot revise his/her conclusion. Depending on the standpoint 
we choose, we accept or reject (P1) which makes a big 
difference in reasoning. In summary, the ETURWG analysis 
highlights uncertainty elements of a WOE. 

E. URREF Weight of evidence  
With respect to criteria defined by URREF we can define 
weight of evidence as: 

WOE = f (Reliability, Credibility, Relevance, Completeness)  

where f is an function to be defined and relevance is related to 
the problem (or mission). 

This is a translation of the following reasoning: 
If (the source is reliable) then 
If (the information provided is credible) then 
If (this information is relevant to my problem) then 
If (this information can enrich my existent information set) then 
this information has some weight of evidence. 

The four terms above are URREF criteria, while the last 
corresponds to a task-specific parameter that affects utility. 
For instance, utility can be evaluated by taking into 
consideration a distance between the set of information 
already available and a new item to determine utility 
completeness. Next, we demonstrate a modeling technique 
that brings together reliability and credibility to instantiate 
WOE calculations. 
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V. RELIABILITY AND CREDIBILITY ANALYSIS 
A reliability assessment affects modern equipment systems 
performance capability, maintainability, usability, and the 
operational support cost. Knowing the system’s reliability is 
important for efficient and effective performance. Due to the 
high complexity of system’s engineering integration, it is 
difficult to evaluate system-level reliability. Some ways to 
estimate system-level reliability include: (1) predicting 
operational reliability based on design data, (2) statistically 
analyze operational data, or (3) develop performance models 
based on real-world operational constraints. 

Reliability prediction depends on models, such as life-cycle 
analysis. Typical models include Poisson, Exponential, 
Weibull, or Bernoulli distributions. Standard components, 
operating for a long time, may have data to support a priori 
analysis and modeling; however, the likelihood of reliability 
effectiveness is subject to real-world conditions that have not 
been modeled. For exponentially distributed failure times, the 
density function and the cumulative distribution function for 
time to failure of the system components are: 

f(t) = λ e −λ t     ; F(t) = 1 − e −λ t (2) 

The physical meaning of F(t) is the probability that a failure 
(doubt) occurs before the time t and f(t) is the failure density: 
the probability that the component will fail in a small interval 
t±Δt is given by 2f(t)Δt. As t increases, the value of F(t) 
approaches 1 at t = ∞. 

For a fusion or reliability metric of a source, we need to map 
the semantics into quantifiable metrics based on the source 
context. Here we assume that we take discrete measurement 
and a consistent source has almost no failures. On the other 
hand, a non consistent source fails quickly. As a quick look we 
show a notional example, but realize that for human sources 
this model does not hold. For example, to ascertain a “not 
usual source” is difficult to quantify and caution and 
improvements would be forthcoming from the ETURWG.   

Classification systems process evidence features by an 
algorithm to classify evidence into classes. Results are tested 
against truth and reported using a confusion matrix (CM) [27]. 
A CM can thus be used to measure reliability of a 
classification system. A CM is an estimate of likelihoods of 
the accumulated evidence of classifier. The elements of a 
confusion matrix are c i j = Pr{Classifier decides o j when o i is 
true}, where i is the true object class, j is the assigned object 
class, and i = 1, …., N for N true classes. The CM elements 
can be represented as probabilities as c i j = Pr{ z = j | o i} = p{ 
z j | o i}. To determine an object declaration, we need to use 
Bayes’ rule to obtain p{o i | z j} which requires the class priors, 
p{oi}. We denote the priors and likelihoods as column vectors 

p(o−)  =  
⎣
⎢
⎡

⎦
⎥
⎤p(o1)

p(o2)
 :

p(oN)

    ;   p(z j | o−)  =  
⎣
⎢
⎡

⎦
⎥
⎤p(z j | o1)

p(z j | o2)
 :

p(z j | oN)

 . (3) 

For M decisions, a confusion matrix would be of the form 

 C  =  

⎣
⎢
⎡

⎦
⎥
⎤p(z 1 | o1) p(z 2 | o1)  .. p(z M | o1)

 p(z 1 | o2) p(z 2 | o2)  .. p(z M | o2)
… … ⋱ …

 p(z 1 | oN) p(z 2 | oN)  .. p(z M | oN)

 . (4) 

VI.  RESULTS

For the simulation, we do both reliability and credibility 
assessment formulation to model the STANAG2511 criteria 
for uncertainty representation. Note that we assume 
completeness and relevance in these simulations. 

A. Reliability 
For source reliability, the parameter of choice is λ, which 
captures the rate of time between failures. Figure 3 
demonstrates the intuition that reliable and unreliable sources 
remain unreliable and reliable. However, the interesting cases 
are those which are termed “usually reliable” (code B) which 
affects the uncertainty analysis.  
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Figure 3 – Reliability Analysis 

For Figure 3, a representative analysis of the reliability 
parameters are:   

Code A Completely Reliable :  λ = 0 
Code B Usually Reliable :  λ = 0.001 
Code C Fairly Reliable :  λ = 0.01 
Code D Not Usually Reliable : λ = 0.1 
Code E Unreliable :  λ = 1 
Code F Cannot be judged λ  undefined 

C. Credibility 
For credibility, since STANAG 2511 definitions deal with 
conflicts, we utilize comparisons between Dempster-Shafer 
Theory and the PCR5 rule. Setting up the modeling using CM 
of classifiers from the information content, we can develop 
representative CMs for the different definitions: 

%%% Confusion Matrices for Classifiers (two sources) 
CM1=[0.999 0.001; 0.001 0.999] 
CM2=[0.95 0.05; 0.05 0.95]       
CM3=[0.70 0.30; 0.30 0.70]  

Now, we define credibility levels as follows, based on the 
confusion matrices of the two classifiers and whether or not 
their outputs agree: 
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Confirmed:    CM1, outputs agree 
Probably (independently confirmed): CM2, outputs agree 
Possibly (does not conflict):  CM3, outputs agree 
Doubtful (tends to conflict):    CM3, outputs disagree 
Improbable (conflicts): CM1 or CM2, outputs disagree 

Figure 4 shows a comparison of the CM results of a “possibly 
true” (code 3) to validate that the PCR5 rule better supports 
evidence analysis than the Dempster-Shafer method. 
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Figure 4 – DS versus PCR5 for “Possibly True” (Code 3) 

Figure 5 and 6 highlight the credibility relations associated 
with a DS and PCR5 formulation, where PCR5 better 
represents an expected analysis for calculating the STANAG 
2511 credibility codes. 
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Figure 5 –DS Credibility of STANAG 2511 (Codes 1-5) 
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Figure 6 – PCR5 Credibility of STANAG 2511 (Codes 1-5) 

VII. CONCLUSIONS

In this paper, we overviewed uncertainty representation 
discussions from the ETURWG as related to the STANG 2511 
reliability and credibility. In our URREF model for weight of 
evidence, included are relevance and completeness. We 
demonstrated modeling for reliability and credibility and 
provided simulations as related to evidence reasoning methods 
of the PCR5 rule. These results provide a more tractable (and 
mathematical) ability to calculate the STANAG 2511 codes.  

Reliability and credibility affect higher levels of information 
fusion (i.e. beyond Level 2 fusion) grand challenges [71] of 
uncertainty representation [72], ontologies [73, 74] and 
uncertainty evaluation [75, 76]. Future research will further 
explore the uncertainty ontology within the URREF, use cases 
of real systems for a combined credibility/reliability 
assessment, and mathematical inclusion of other metrics such 
as relevance  and completeness. 
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