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The purpose of this paper is uncertainty evaluation in a target differentiation problem. In
the problem ultrasonic data fusion is applied using Dezert–Smarandache theory (DSmT).
Besides of presenting a scheme to target differentiation using ultrasonic sensors, the paper
evaluates DSmT-based fused results in uncertainty point of view. The study obtains pattern
of data for targets by a set of two ultrasonic sensors and applies a neural network as target
classifier to these data to categorize the data of each sensor. Then the results are fused by
DSmT to make final decision. The Generalized Aggregated Uncertainty measure named
GAU2, as an extension to the Aggregated Uncertainty (AU), is applied to evaluate
DSmT-based fused results. GAU2, rather than AU, is applicable to measure uncertainty in
DSmT frameworks and can deal with continuous problems. Therefore GAU2 is an efficient
measure to help decision maker to evaluate more accurate results and smoother decisions
are made in final decisions by DSmT in comparison to DST.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction There has been much research on sensor fusion meth-
Ultrasonic sensors are widely used in robotics applica-
tions such as localization, target differentiations and map-
ping. A measurement scheme is proposed which uses two
sets of ultrasonic sensors to determine location and type of
target surface (see Ref. [1]). In this study, concentration is
on target differentiation based on pattern of data which
are obtained by a set of two ultrasonic sensors. The target
classification is performed by employing time of flight
(TOF) of the sensors. Classification of different targets by
using neural networks is achieved for outcomes of each
sensor. Afterwards the results are fused together to make
final decision.
ods in recent years. The evidence theory, also known as
Dempster–Shafer theory, is one of the most popular frame-
works to deal with uncertain information. This theory is
often presented as a generalization of probability theory,
where the additivity axiom is excluded. The Dezert–Sma-
randache Theory (DSmT) is a theory of plausible and para-
doxical reasoning proposed by Dezert and Smarandache
(see Refs. [2–5]). It can be considered as an extension of
the classical Dempster–Shafer theory (DST) [6] but with
fundamental differences. DSmT is able to solve complex
static or dynamic fusion problems beyond the limits of
the DST framework, especially when conflicts between
sources become large and when the refinement of the
frame of the problem under consideration becomes
inaccessible because of the vague, relative and imprecise
nature of elements [3]. There are some successful applica-
tions of DSmT in target type tracking [7] and robot map
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building [8–10]. Efficiency of DSmT in comparison to DST is
confirmed in sonar grid map building [9].

On the other hand, uncertain information often exists on
all levels of fusion process which are usually related to phys-
ical constraints, detection algorithms, and the transmitting
channel of the sensors [11]. Therefore, it is important to have
an uncertainty evaluation after sensor fusion for better deci-
sion making. Hartley [12] and Shannon [13] respectively
established the field of information theory. Hartley measure
and Shannon entropy have been used in the possibilities and
probabilities frameworks, respectively. Based on these
approaches, information or preferably uncertainty-based
information can be quantified by different general measures
commonly called measures of uncertainty [14].

Several theories have been developed to deal with
uncertainty such as probability theory, fuzzy sets theory,
possibility theory, evidence theory and rough sets theory.
Instead of opponents, they should rather be seen as
complementary, each of them being designed for dealing
with different types of uncertainty. Three main types of
uncertainty have been identified [15]: fuzziness, conflict,
and non-specificity, the latter two being unified under
the term ambiguity. Different measures of ambiguity, often
called measures of total uncertainty have been proposed.
Among them, a measure of aggregated uncertainty named
AU is proposed [16,17]. This measure is defined in the
framework of evidential theory that aggregates the
non-specificity and conflict. It has been proved that this
measure satisfies the five Klir and Wierman’s requirements
[14,18]. It have been formalized, within a broad range of
theories of imprecise probabilities, the notion of a total
aggregated measure of uncertainty and various disaggre-
gations into measures of non-specificity and conflict [19].
As another uncertainty measure, a new measure of aggre-
gated uncertainty is introduced, named AM for Ambiguity
Measure that aims at eliminating the shortcomings of AU
such as computing complexity [20]. By AM, an alternative
to measure ambiguity in Dempster–Shafer theory is
offered. But actually, their proposed measure is not, in a
general sense, sub-additive. It is showed this by a specific
counterexample which clearly demonstrates that their
assumption in the last step of the proof is incorrect and
that AM indeed violates sub-additivity [21].

In spite of efficiency of AU measure, this uncertainty
measure and its associated algorithm for computing [18],
has devoted for DST framework and cannot be applied to
DSmT directly. As mentioned before, DSmT is a generaliza-
tion of DST. Two generalized AU measures, which are
named GAU1 and GAU2, have been introduced by the
authors (see Ref. [22]). It is proved that the new measures
have enough efficiency to evaluate the DSmT based results.
In this paper these new measures are used. An experimen-
tal setup which is based on ultrasonic sensors is config-
ured. Neural networks are used in the first level of the
fusion process. Neural networks are trained by acquired
data of the set of ultrasonic sensors and then outputs are
used to perform the differentiation task. Finally, the
obtained results of the DSmT-based decision maker are
evaluated by the proposed uncertainty measures.

This paper is organized as following: A short review on
DSmT that are considered in uncertainty analysis is
mentioned in Section 2. Section 3 is devoted to represent
GAU2 as the new measure and a short discussion on the
AU and GAU1 measures. In Section 4, experimental studies
are carried out on uncertainty measurement for a target
classification problem. Finally, some concluding remarks
are presented in Section 5.
2. Dezert–Smarandache Theory

Dezert–Smarandache Theory is a theory of plausible
and paradoxical reasoning [3–5]. The development of
DSmT arises from the necessity to overcome the inherent
limitations of Dempster–Shafer Theory (DST) [6] which
are closely related with the acceptance of Shafer’s model
for the fusion problem under consideration. This means
the frame of discernment H = {h1, h2, . . ., hn} is implicitly
defined as a finite set of exhaustive and exclusive hypoth-
eses. The Dedekind’s lattice, also called in the DSmT frame-
work hyper-power set DH is defined as the set of all
composite propositions built from elements of H with [
and \ operators such that:

(1) ;, h1, h2, . . ., hn 2 DH.
(2) if A;B 2 DH then A [ B 2 DH; A \ B 2 DH.
(3) No other elements belong to DH, except those

obtained by using rule (1) or rule (2).

DSmT starts with the notion of free DSm model,
denoted M f(H), and considers H only as a frame of exhaus-
tive elements {h1, h2, . . ., hn} which can potentially overlap.
When the free DSm model holds, the classic commutative
and associative DSm rule of combination is performed.
From a general frame H, a map is defined as m(.):
DH ? [0, 1] associated to a given body of evidence as:

mð;Þ ¼ 0;
X

A2DH

mðAÞ ¼ 1; 0 6 mðAÞ 6 1 ð2:1Þ

The quantity m(A) is called the generalized basic belief
assignment/mass (gbba) of A. The generalized belief and
plausibility functions are defined in almost the same
manner as within the DST, i.e.

BelðAÞ ¼
X

B2DH ; B # A

mðBÞ ð2:2Þ

PlðAÞ ¼
X

B2DH ; B\A–;

mðBÞ ð2:3Þ

When the free DSm model M f(H) holds for the fusion
problem under consideration, the classic DSm rule of
combination mM f ðHÞ ¼ mð�Þ ¼ ½m1 �m2�ð:Þ of two indepen-
dent sources of evidences over the same frame with belief
functions Bel1(.), Bel2(.) associated with gbba m1(.), m2(.)
corresponds to the conjunctive consensus of the sources.
It is given by:

8C 2 DH; mMf ðHÞðCÞ ¼ mðCÞ ¼
X

A;B2DH

A\B¼C

m1ðAÞm2ðBÞ ð2:4Þ

Since DH is closed under [ and \ set operators, this new
rule of combination guarantees that m(.) is a proper gener-
alized belief assignment, i.e. m(.): DH ? [0, 1].



Fig. 1. Disjointing of framework of free DSm model with two jointed
events to three excluded sets.
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3. Uncertainty measurement

Measuring uncertainty or information means assigning
a number or a value from some ordinal scale to a given
model of an epistemic state. Two types of classical eviden-
tial based uncertainties, non-specificity and conflict are
often measured as part of the fusion techniques such as
DST fusion (18). All of the uncertainty measures attempt
to measure uncertainty in bits. One bit of uncertainty is
the amount of total uncertainty regarding the truth or
falsity of one proposition. One of the most appropriate
uncertainty measures which are developed in DST frame-
works is the Aggregate Uncertainty (AU) measure. While
the goal of information fusion is to reduce the global
uncertainties, (18) explored the concept of comprehensive
uncertainty measurement in the DST framework.

Definition 3.1. The measure of the Aggregated Uncer-
tainty contained in Bel, denoted as AU(Bel), is defined by:

AUðBelÞ ¼ max �
X
h2H

ph log2 ph

( )
ð3:1Þ

where the maximum is taken over all fphgh2H such that for
h 2H,

P
heHph = 1 and for all A # H, Bel(A) 6

P
xeApx.

It is proved that the measure satisfies all the proper-
ties for a reasonable uncertainty measurement, specifi-
cally the sub-additivity and additivity which are defined
[14]. Algorithm of computing AU was originated [18].
The algorithm is applied for DST framework while it
cannot be used for DSmT directly. The reason is hidden
in the algorithm of computing AU and especially in the
main difference of DST and DSmT. In the DST, the frame
of discernment of the fusion problem under consideration
assumed to have exhaustive and exclusive elementary
or in a simple form : HP ¼ fhigi¼1;2;...;n; fhi \ hjgi; j ¼ 1;2; . . . ;n
i–j

; fhi \ hj \ hkgi; j; k ¼ 1;2; . . . ;n; . . .

i–j–k

8><
>:

9>=
>;
hypotheses but in DSmT these conditions are violated.
The algorithm of computing AU measure states that at
least one part of information which is determined by
A \ B will be missed if anyone wants to apply this algo-
rithm to DSmT. Accordingly, uncertainty measurement
would not be accurate. Two Generalized Aggregate
Uncertainty measures, which are named GAU1 and
GAU2, have been developed [22]. The idea of generalizing
Aggregated Uncertainty measure in GAU1 to evaluate
DSmT, is disjointing the free DSm model to separated sets
(Fig. 1). In this manner, the main problem of fusion still
have two events whereas there are three separated events
such as a Shafer’s model with 3 events. Therefore, the
same algorithm of computing for AU measure can be used
as the algorithm of computing the measure GAU1 after
the mentioned extension in order to evaluate the
DSmT-based fusion results.
Although GAU1 is applicable to evaluate uncertainty in
DSmT framework, the extension that is used in GAU1 is true
for the problems where the refinement is possible. There
are some cases that the refinement is not possible, for
example when the frontiers of the sets in the frame of dis-
cernment are not clear. So this refinement may not work for
any frame of discernment. The new uncertainty measure
which has been called, Generalized Uncertainty measure
2 or GAU2 has been introduced to overcome this limitation
[22]. In GAU2, despite of GAU1, clarity of the frontiers of the
sets in the frame of discernment is not necessary. Therefore
GAU2 is a suitable uncertainty measure for continuous
frameworks. Consider the set of non-exclusive events
H = {h1, h2, . . ., hn} or H = {h|h = hi, i = 1, 2, . . ., n}. GAU2 is
defined based on a class of probability distribution of
events of a set such as HP whereas the entropy of Shannon
is maximized. HP is equal to:

HP ¼ hPjhP ¼ hPj
; j ¼ 1;2; . . . ;nHP

n o

¼ hP jhP ¼ hPj
¼

\
i2I

;–I # f1;2;...;ng

hi

8><
>:

9>=
>;
And cardinality of HP is : jHP j ¼ nHP ¼
Xn

i¼1

n

i

� �
:

Definition 3.2. The measure of the Generalized Aggre-
gated Uncertainty 2 contained in Bel, GAU2(Bel), which is
defined by:

GAU2ðBelÞ ¼ max �
X

hP2HP

phP
log2 phP

( )
ð3:2Þ

phP
is the associated probability distribution assignment of

each event of HP and the maximum is taken over all
fphP
g

hP2HP
such that for all hP 2HP, 0 6 phP

6 1,P
hP2HP

ð�1ÞaðhP Þþ1phP
¼ 1; aðhP ¼

T
i2IhiÞ ¼ jIj where ð;–I #

f1;2; . . . ;ngÞ, BelðAÞ 6
P

hP2AphP
forall ;–A #HP .



Fig. 3. Normalized data of ultrasonic sensors in 20 positions (4 ranges
and 5 angles) for the targets ‘‘Plane’’, ‘‘Cylinder’’ and ‘‘Corner’’.

Fig. 2. Experiment setup and 20 different positions of targets.
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The generalized algorithm for computing the GAU2
measure is:

Input: a frame of discernment H (with n non-exclusive
events), a generalized belief function Bel on H

Output: GAU2ðBelÞ; fphP
g

hP2HP
such that:

GAU2ðBelÞ ¼ �
X

hP2HP

phP
log2 phP

HP ¼ fhPjhP ¼ hPj
; j ¼ 1;2; . . . ;nHPg ¼ hP1 ; hP2 ; . . . ; hPnHP

n o

phP
¼phPj

jhP¼hPj
;j¼1;2;...;nHP

;
X

hP2HP

ð�1ÞaðhP Þþ1
: phP
¼1; 06phP

61

a hP ¼
\
i2I

hi

 !
¼ jIj where ð;–I # f1;2; . . . ;ngÞ

BelðAÞ 6
X
hP2A

phP
forall ;–A # HP

Line (1) begin
Line (2) make

HP ¼ hPjhP ¼ hPj
; j ¼ 1;2; . . . ;nHP

n o

¼ hP jhP ¼ hPj
¼

\
i2I

;–I # f1;2;...;ng

hi

8><
>:

9>=
>;

Line (3) Y = HP, Bel0 = Bel
Line (4) while Y – £ and Bel0(Y) > 0 do
Line (5) find a non-empty set A # HP such that Bel(A)/

|A| is maximal if there are more such sets A than one, take
the one with maximal cardinality end if

Line (6) for each hP 2 A do phP
¼ Bel0ðAÞ=jAj end for

Line (7) for each B # ðY � AÞ [ ðY \ AÞ do
Bel0ðBÞ ¼ Bel0ðB [ AÞ � Bel0ðAÞ þ Bel0ðB \ AÞ end for

Line (8) Y ¼ ðY � AÞ [ ðY \ AÞ
Line (9) end while
Line (10) if Bel0ðYÞ ¼ 0 and Y–; then
Line (11) for all hP 2 Y dophP

¼ 0 end for
Line (12) end if
Line (13) GAU2ðBelÞ ¼ �

P
hP2HP

phP
log2 phP

Line (14) end
Clearly, one may see the differences between the above
algorithm and the algorithm of AU measure. The differ-
ences are:

� Replacing the set of non-exclusive events H by the new
set HP.
� The condition imposed to hP in the Definition 3.2.



Table 2
The 1st step of the algorithm of computing GAU2 measure for the DSmT
results; target type: ‘‘Plane’’.

DH mDSmT(A) Bel(A) Bel(A)/|A|

P 0.6444 0.8755 0.8755
Cy 0.0267 0.1334 0.1334
Co 0.0089 0.0667 0.0667
P [ Cy 0.0267 0.9734 0.4867
P [ Co 0.0044 0.9199 0.4600
Cy [ Co 0.0089 0.3156 0.1578
P \ Cy 0.0978 0.0978 0.0978
P \ Co 0.0489 0.0489 0.0489
Cy \ Co 0 0 0
P \ (Cy [ Co) 0.0844 0.1467 0.0734
Cy \ (P [ Co) 0.0089 0.0978 0.0489
Co \ (P [ Cy) 0.0089 0.0489 0.0245
P [ (Cy \ Co) 0.0089 0.9022 0.4511
Cy [ (P \ Co) 0.0178 0.2934 0.1467
Co [ (P \ Cy) 0.0044 0.2622 0.1311
P \ Cy \ Co 0 0 0
(P \ Cy) [ (P \ Co) [ (Cy \ Co) 0 0 0
H 0 1 0.3333

Table 1
Outputs of neural network based classifier as basic belief assignment and
DST based fusion results; target type: ‘‘Plane’’.

2H Sensor1 Sensor2 mDST(A)

P 0.7333 0.5333 0.8698
Cy 0 0.1333 0.0178
Co 0 0.0667 0.0592
P [ Cy 0.1333 0.1333 0.0355
P [ Co 0.0667 0 0.0059
Cy [ Co 0.0667 0.0667 0.0118
H 0 0.0667 0
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� Lines 7 and 8 of the GAU2 measure algorithm to con-
tinue the computations of the next probability
assignments.

4. Experimental study: ultrasonic sensors for target
classification

4.1. Experiment setup

In the experimental setup, two identical acoustic trans-
mitter/receiver pairs with center-to-center separation
d = 35 cm are employed. The common targets that there
exist in real environment of mobile robot applications such
as Plane, Cylinder with diameter 20 cm and Corner with 90�
angle are considered. TOF data are collected at 20 sensor
locations which are located at 5 different angles from
u = �30� to u = +30� in 15� increments, and from
r = 0.5 m to r = 2 m in 0.5 m increments separately
(Fig. 2). To disaffect the distances of targets in target
classification, the data are normalized regarding distance.
Consequently, the targets can be classified regardless to
the mentioned positions. Fig. 3 indicates normalized data
of ultrasonic sensors for these 20 positions for the targets.

TOF signals of each sensor pair are used as input signals
of a neural network. The hidden layer comprises 50
neurons and hyperbolic tangent as nonlinear functions
and linear functions at the output layer with 3 neurons.
For each sensor, One set of data are collected for each
target location for each target primitive, resulting in 60
(=4 ranges � 5 angles � 3 target types) sets of data. The
network is a multi-layer perceptron (MLP) network with
a learning constant equal to 0.9, momentum constant
equal to 0.5, and a sigmoid-type nonlinearity. The neural
network estimates the target type using these data.

4.2. Sensor fusion with uncertainty measurement

In this section, DST and DSmT are applied to the results
that are obtained by neural networks in order to differen-
tiate the target types. After the results of two sensors are
fused, uncertainty measurement has been carried out
according to AU measure for DST and the GAU1 and
GAU2 measures for DSmT.

Table 1 gives the results of correct target type classifica-
tion that are considered as basic belief assignment of each
sensor of the three targets for the case that the target
object is ‘‘Plane’’. Accordingly, each sensor by using a
trained neural network presents a quantity to differentiate
the targets. In this table, ‘‘P’’ is used to represent ‘‘Plane’’,
‘‘Cy’’ is for ‘‘Cylinder’’ and ‘‘Co’’ is for ‘‘Corner’’ and ‘‘H’’ is
devoted to represent total ignorance i.e. H = P [ Cy [ Co.

4.2.1. Results of DSmT-based fusion and uncertainty
evaluation by GAU2 measure

Table 2 illustrates the results of DSmT-based fusion
results. When DSmT is used, the number of events to be
decided is more than number of events in DST because of
using hyper-power set and free DSm model. DSmT fusion
showed its capabilities in continuous problems as well as
problems with non-exclusive events. Basically, DST has
not enough efficiency to deal with problems with such
models. On the other hand, advantages of using DSmT
fusion should be studied in uncertainty point of view as
well. Therefore, DSmT-based fusion results of the target
differentiation are evaluated by GAU2 measure. According
to Definition 3.2, members of the set HP are defined as:
HP = {h1, h2, . . ., h7} where: h1 = P, h2 = Cy, h3 = Co, h4 =
P \ Cy, h5 = P \ Co, h6 = Cy \ Co, h7 = P \ Cy \ Co.

The first step of the algorithm of computing is illus-
trated in Table 2. The maximum value of Bel(A)/|A| is
obtained for the event P, therefore pP = 0.8755. According
to the algorithm, by discarding the event P and
consequently its union the results the GAU2 measure
continues. It is concluded that pCy = 0.1957, pCo = 0.1022,
pP\Cy = 0.0978, pP\Co ¼ 0:0489; pCy\Co ¼ 0:0267, pP\Cy\Co = 0.
Therefore uncertainty in the DSmT-based results by GAU2
(Eq. (3.2)) is equal to 1.6453.

To investigate the uncertainty improvement in the
results of DSmT fusion, uncertainties in the results of each
sensor have to be considered. Similarly uncertainty in each
sensor can be computed by the measure GAU2. The value
of uncertainties in Sensor1 and Sensor2 by the GAU2 are
computed by the algorithm and are equal to 1.1034 and
1.4036, respectively. Uncertainty evaluation of DSmT
fusion by GAU2 shows that the DSmT reduces the amount
of uncertainty in final decisions. Uncertainty in DSmT
fusion results are less than the sum of uncertainties in
Sensors 1&2. So it can be concluded that DSmT has
improved the results in uncertainty point of view.



Table 3
Uncertainty measurement for sensor 1&2, DST and DSmT fusion results.

Results Sensor1 Sensor2 Sensor1 + Sensor2 DST DSmT

Uncertainty measurement by AU 1.1035 1.2730 2.3765 0.6680 –
Uncertainty measurement by GAU1 2.7259 2.8078 5.5337 – 2.4866
Uncertainty measurement by GAU2 1.1034 1.4036 2.5070 – 1.6453

144 M. Khodabandeh, A. Mohammad-Shahri / Measurement 59 (2015) 139–144
Table 3 summarizes the results of uncertainty
measurement in the experiment. In the case of conflict
measurements, DSmT must be used instead of DST. Also
these experiments demonstrate that DSmT presents
smoother decisions, especially in continuous models. Since
AU is presented for DST and cannot be applied to the DSmT
results, GAU1 and GAU2 are applicable as uncertainty
measure for DSmT fusion results. Moreover this study
shows the efficiency of DSmT to improve the final results
in uncertainty point of view. Additionally, application of
the GAU2 measure has not the limitation of the GAU1
measure to deal with events with non-distinguishable
borders.
5. Conclusions

In this paper, uncertainty evaluation problem in a deci-
sion making system is considered. An experimental setup
of ultrasonic sensors is established to study target differen-
tiation problem and uncertainty measurement in decision
making. A common neural network is used as classifier
for each sensor path to get the classification results of
the sensors. DSmT overcomes the limitations of DST. On
the other hand, AU cannot be applied to DSmT because of
the involved assumption in the algorithm of computing
AU which states the events of frame of discernment must
be without community. Generalized AU measures, i.e.
GAU1 and GAU2 have been developed to overcome this
limitation DSmT and the associated uncertainty measures
are applied to the results of sensors and the results are dis-
cussed in details. The final decision in the presented con-
figuration has uncertainty less than each sensor’s
measurement. On the other hand, efficiency of Generalized
Uncertainty measures to measure uncertainty and more
accurate results and smoother decisions are made in final
decisions by DSmT in comparison to DST are validated.
The following suggestions might be considered as further
studies;

� Employing other classification methods instead of neu-
ral networks.
� Utilizing ultrasonic echo signal amplitudes as acquired

data in addition to TOF data.
� Looking for an uncertainty measure with less complexity

than AU, GAU1 and GAU2 in computation, which satis-
fies the requirements of uncertainty measures
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