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Abstract. 
In this paper we introduce a new procedure called α -Discounting Method for Multi-

Criteria Decision Making (α-D MCDM), which is as an alternative and extension of 
Saaty’s Analytical Hierarchy Process (AHP). It works for any number of preferences that 
can be transformed into a system of homogeneous linear equations. A degree of 
consistency (and implicitly a degree of inconsistency) of a decision-making problem are 
defined.  α-D MCDM is generalized to a set of preferences that can be transformed into a 
system of linear and/or non-linear homogeneous and/or non-homogeneous equations 
and/or inequalities. 
Many consistent, weak inconsistent, and strong inconsistent examples are given. 
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1. Introduction. 
α -Discounting Method for Multi-Criteria Decision Making (α-D MCDM) is an alternative and 
extension of Saaty’s Analytical Hierarchy Process (AHP) - see [1-11] for more information on 
AHP since it is not the main subject of this paper.  It works not only for preferences that are 
pairwise comparisons of criteria as AHP does, but for preferences of any n-wise (with n≥2) 
comparisons of criteria that can be expressed as linear homogeneous equations.  
The general idea of α-D MCDM is to assign non-null positive parameters α1, α2, …, αp to the 
coefficients in the right-hand side of each preference that diminish or increase them in order to 
transform the above linear homogeneous system of equations which has only the null-solution, 
into a system having a particular non-null solution. 
After finding the general solution of this system, the principles used to assign particular values to 
all parameters α’s is the second important part of α-D, yet to be deeper investigated in the future. 
In the current paper we herein propose the Fairness Principle, i.e. each coefficient should be 
discounted with the same percentage (we think this is fair: not making any favouritism or 
unfairness to any coefficient), but the reader can propose other principles. 
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For consistent decision-making problems with pairwise comparisons, α-Discounting Method 
together with the Fairness Principle give the same result as AHP.  
But for weak inconsistent decision-making problem, α -Discounting together with the Fairness 
Principle give a different result from AHP.  
α-Discounting/Fairness-Principle together give a justifiable result for strong inconsistent 
decision-making problems with two preferences and two criteria; but for more than two 
preferences with more than two criteria and the Fairness Principle has to be replaced by another 
principle of assigning numerical values to all parameters α’s. 
 
Since Saaty’s AHP is not the topic of this paper, we only recall the main steps of applying this 
method, so the results of α-D MCDM and of AHP could be compared. 
AHP works only for pairwise comparisons of criteria, from which a square Preference Matrix, A 
(of size n× n), is built. Then one computes the maximum eigenvalue λ max of A and its 
corresponding eigenvector.   
If λ max is equal to the size of the square matrix, then the decision-making problem is consistent, 
and its corresponding normalized eigenvector (Perron-Frobenius vector) is the priority vector. 
If λ max is strictly greater than the size of the square matrix, then the decision-making problem is 
inconsistent. One raise to the second power matrix A, and again the resulted matrix is raised to 
the second power, etc. obtaining the sequence of matrices A2, A4, A8, …, etc. In each case, one 
computes the maximum eigenvalue and its associated normalized eigenvector, until the 
difference between two successive normalized eigenvectors is smaller than a given threshold. 
The last such normalized eigenvector will be the priority vector. 
Saaty defined the Consistency Index as: 

CI(A) = 
max( )

1

A n

n

λ −
−

, 

where n is the size of the square matrix A. 
 

2. α-Discounting Method for Multi-Criteria Decision Making (α-D MCDM). 
 

2.1.  Description of α-D MCDM. 

The general idea of this paper is to discount the coefficients of an inconsistent problem to some 
percentages in order to transform it into a consistent problem. 

Let the Set of Criteria be C = {C1, C2, …, Cn}, with n ≥ 2,  
and the Set of Preferences be P = {P1, P2, …, Pm}, with m ≥ 1. 
Each preference Pi is a linear homogeneous equation of the above criteria C1, C2, …, Cn: 
 

Pi = f(C1, C2, …, Cn). 
 
We need to construct a basic belief assignment (bba):  
 

m: C  [0, 1] 
 

such that m(Ci) = xi , with 0 ≤ xi ≤ 1, and   
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1 1

( ) 1
n n

i i

i i

m C x
= =

= =  . 

 
We need to find all variables xi in accordance with the set of preferences P. 
Thus, we get an m˟n linear homogeneous system of equations whose associated matrix is  

A = (aij), 1 ≤ i ≤ m and 1 ≤ j ≤ n. 
In order for this system to have non-null solutions, the rank of the matrix A should be strictly 
less than n. 
 

2.2.  Classification of Linear Decision-Making Problems. 
a) We say that a linear decision-making problem is consistent if, by any substitution of a 

variable xi from an equation into another equation, we get a result in agreement with all 
equations. 

b) We say that a linear decision-making problem is weakly inconsistent if by at least one 
substitution of a variable xi from an equation into another equation we get a result in 
disagreement with at least another equation in the following ways:  
 

(WD1)  
1

2 2 2 1

, 1;

, 1,

i j

i j

x k x k

x k x k k k

⋅

⋅

= > 
 = > ≠ 

 

 
or 
 

(WD2)  
1

2 2 2 1

,0 1;

,0 1,

i j

i j

x k x k

x k x k k k

⋅

⋅

= < < 
 = < < ≠ 

 

 
or 
 
(WD3)  { }, 1i ix k x k⋅= ≠  

 
(WD1)-(WD3) are weak disagreements, in the sense that for example a variable x > y 
always, but with different ratios (for example: x=3y and x=5y). 
All disagreements in this case should be like (WD1)-(WD3). 
 

c) We say that a linear decision-making problem is strongly inconsistent if, by at least 
one substitution of a variable xi from an equation into another equation, we get a result in 
disagreement with at least another equation in the following way:  
 

(SD4)  
1

2

;

,

i j

i j

x k x

x k x

⋅

⋅

= 
 = 

with 0 < k1 < 1 < k2 or 0 < k2 < 1 < k1 (i.e. from one equation one 

gets xi < xj while from the other equation one gets the opposite inequality: xj  < xi). 
  

At least one inconsistency like (SD4) should exist, no matter if other types of 
inconsistencies like (WD1)-(WD3) may occur or not. 
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Compute the determinant of A. 
a) If det(A)=0, the decision problem is consistent, since the system of equations is 

dependent. 
It is not necessarily to parameterize the system. {In the case we have parameterized, we 
can use the Fairness Principle – i.e. setting all parameters equal α 1 = α 2 = … = α p = α > 
0}.  
Solve this system; find its general solution.  
Replace the parameters and secondary variables, getting a particular solution. 
Normalize this particular solution (dividing each component by the sum of all 
components). 
Wet get the priority vector (whose sum of its components should be 1). 

b) If det(A) ≠ 0, the decision problem is inconsistent, since the homogeneous linear system 
has only the null-solution. 

b1) If the inconsistency is weak, then parameterize the right-hand side 
coefficients, and denote the system matrix A(α). 

         Compute det(A(α)) = 0 in order to get the parametric equation. 
If the Fairness Principle is used, set all parameters equal, and solve for α > 
0. 
Replace α in A(α ) and solve the resulting dependent homogeneous linear 
system. 
Similarly as in a), replace each secondary variable by 1, and normalize the 
particular solution in order to get the priority vector. 

b2) If the inconsistency is strong, the Fairness Principle may not work 
properly.  Another approachable principle might be designed. 

 Or, get more information and revise the strong inconsistencies of the 
decision-making problem. 

 
2.3. Comparison between AHP and α-D MCDM: 
a) α-D MCDM’s general solution includes all particular solutions, that of AHP as well; 
b) α-D MCDM uses all kind of comparisons between criteria, not only paiwise comparisons; 
c) for consistent problems, AHP and α-D MCDM/Fairness-Principle give the same result; 
d) for large inputs, in α-D MCDM we can put the equations under the form of a matrix 
(depending on some parameters alphas), and then compute the determinant of the matrix which 
should be zero; after that, solve the system (all can be done on computer using math software); 
the software such as MATHEMATICA and MAPPLE for example can do these determinants 
and calculate the solutions of this linear system; 
e) α-D MCDM can work for larger classes of preferences, i.e. preferences that can be 
transformed in homogeneous linear equations, or in non-linear equations and/or inequalities – 
see more below. 
 

2.4.  Generalization of α -D MCDM. 
Let each preference be expressed as a linear or non-linear equation or inequality. All preferences 
together will form a system of linear/non-linear equations/inequalities, or a mixed system of 
equations and inequalities. 
Solve this system, looking for a strictly positive solution (i.e. all unknowns xi > 0). Then 
normalize the solution vector. 
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If there are more such numerical solutions, do a discussion: analyze the normalized solution 
vector in each case. 
If there is a general solution, extract the best particular solution by replacing the secondary 
variables by some numbers such that the resulting particular solution is positive, and then 
normalizing. 
If there is no strictly positive solution, parameterize the coefficients of the system, find the 
parametric equation, and look for some principle to apply in order to find the numerical values of 
the parametersα ‘s. A discussion might also be involved. We may get undetermined solutions. 

 
3. Degrees of Consistency and Inconsistency inα -D MCDM/Fairness-Principle. 
For α -D MCDM/Fairness-Principle in consistent and weak consistent decision-making 
problems, we have the followings:  

a) If  0 < α  < 1, then α is the degree of consistency of the decision-making problem, and  
β = 1-α is the degree of inconsistency of the decision-making problem. 

b) If α > 1, then 1/α is the degree of consistency of the decision-making problem, and       
β = 1-1/α is the degree of inconsistency of the decision-making problem. 

  
4. Principles of α-D MCDM (Second Part). 

a) In applications, for the second part of α -D Method, the Fairness Principle can be 
replaced by other principles.   
Expert’s Opinion.  For example, if we have information that a preference’s coefficient 
should be discounted twice more than another coefficient (due to an expert’s opinion), 
and another preference’s coefficient should be discounted a third of another one, then 
appropriately we set for example: α 1= 2α 2 and respectively α 3 = (1/3)α 4, etc. in the 
parametric equation. 

b) For α -D/Fairness-Principle or Expert’s Opinion.  
Another idea herein is to set a threshold of consistency tc (or implicitly a threshold of 
inconsistency ti).  Then, if the degree of consistency is smaller than a required tc, the 
Fairness Principle or Expert’s Opinion (whichever was used) should be discharged, and 
another principle of finding all parameters α ’s should be designed; and similarly if the 
degree of inconsistency is bigger than ti. 

c) One may measure the system’s accuracy (or error) for the case when all m preferences 
can be transformed into equations; for example, preference Pi is transformed into an 
equation fi(x1, x2, …, xn)=0; then we need to find the unknowns x1, x2, …, xn such that: 

e(x1, x2, …, xn) = 
m

i 1 2 n

i=1

|f (x , x , ..., x )|  is minimum, 

 where “e(…)” means error. 
Calculus theory (partial derivatives) can be used to find the minimum (if this does exist) 
of a function of n variables, e(x1, x2, …, xn), with e: R+

n  R+. 
For consistent decision-making problems the system’s accuracy/error is zero, so we get 
the exact result.  
We prove this through the fact that the normalized priority vector [a1 a2 … an], where 
xi=ai > 0 for all i, is a particular solution of the system fi(x1, x2, …, xn)=0 for i=1, 2, …, 
m; therefore:  
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m

i 1 2 n

i=1 1

|f (a , a , ..., a )| | 0 | 0.
m

i=

= =   

But, for inconsistent decision-making problems we find approximations for the variables. 
 
5. Extension of α-D MCDM (Non-Linear α-D MCDM). 
It is not difficult to generalize the α-D MCDM for the case when the preferences are non-linear 
homogeneous (or even non-homogeneous) equations. 
This non-linear system of preferences has to be dependent (meaning that its general solution – its 
main variables - should depend upon at least one secondary variable).   
If the system is not dependent, we can parameterize it in the same way.  Then, again, in the 
second part of this Non-Linear α-D MCDM we assign some values to each of the secondary 
variables (depending on extra-information we might receive), and we also need to design a 
principle which will help us to find the numerical values for all parameters. We get a particular 
solution (such extracted from the general solution), which normalized will produce our priority 
vector. 
Yet, the Non-Linear α-D MCDM is more complicated, and depends on each non-linear decision-
making problem. 
 
 
Let us see some examples. 
6. Consistent Example 1. 

6.1. We use the α-D MCDM. Let the Set of Preferences be:{ }1, 2, 3C C C , 
and The Set of Criteria be: 

1. 1C  is 4 times as important as 2C . 
2. 2C  is 3 times as important as 3.C  
3. 3C  is one twelfth as important as 1C . 

Let ( 1)m C x= , ( 2)m C y= , ( 3)m C z= . 

The linear homogeneous system associated to this decision-making problem is: 

4

3

12

x y

y z

x
z


 =
 =

 =


 whose associated matrix A1 is: 

 

1 4 0

0 1 3

1/12 0 1

− 
 − 
 − 

, whence det(A1) = 0, so the DM problem is consistent. 
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Solving this homogeneous linear system we get its general solution that we set as a solution 
vector [12z  3z   z], where z can be any real number (z is considered a secondary variable, while 
x=12z and y=3z are main variables). 

Replacing z=1 into the solution vector, the solution vector becomes [12  3  1], and then 
normalizing (dividing by 12+3+1=16 each vector component) we get the priority vector: [12/16   
3/16   1/16], so the preference will be on C1. 

6.2. Using AHP, we get the same result. 
The preference matrix is: 

1 4 12

1/ 4 1 3

1/12 1/ 3 1

 
 
 
 
 

 

whose maximum eigenvalue is λ max = 3 and its corresponding normalized eigenvector (Perron-
Frobenius vector) is [12/16   3/16   1/16]. 
 

6.3. Using Mathematica 7.0 Software: 
 
Using MATHEMATICA 7.0 software, we graph the function: 

h(x,y) = |x-4y|+|3x+4y-3|+|13x+12y-12|, with x,y∈[0,1], 

which represents the consistent decision-making problem’s associated system: 

x/y=4, y/z=3, x/z=12, and x+y+z=1, x>0, y>0, z>0. 

 

In[1]:= 
Plot3D[Abs[x-4y]+Abs[3x+4y-3]+Abs[13x+12y-12],{x,0,1},{y,0,1}] 
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The minimum of this function is zero, and occurs for x=12/16, y=3/16. 

If we consider the original function of three variables associated with h(x,y) we have:  

H(x,y, z) = |x-4y|+|y-3z|+|x-12z|, x+y+z=1, with x,y,z∈[0,1], 

we also get the minimum of H(x,y,z) being zero, which occurs for x=12/16, y=3/16, z=1/16. 

 
 
7. Weak Inconsistent Examples where AHP does not Work.  

 
 The Set of Preferences is{ }1, 2, 3C C C . 

7.1. Weak Inconsistent Example 2. 
7.1.1 α-D MCDM method. 

The Set of Criteria is: 
1. 1C  is as important as 2 times 2C  plus 3 times 3C . 
2. 2C  is half as important as 1C . 
3. 3C  is one third as important as 1C . 

 
Let ( 1)m C x= , ( 2)m C y= , ( 3)m C z= ; 
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2 3

2

3

x y z

x
y

x
z


 = +

 =

 =

 

 
AHP cannot be applied on this example because of the form of the first preference, which 
is not a pairwise comparison. 
 
If we solve this homogeneous linear system of equations as it is, we get x=y=z=0,  
since its associated matrix is: 

1 2 3

1/ 2 1 0 1 0

1/ 3 0 1

− − 
 − = − ≠ 
 − 

 

 
but the null solution is not acceptable since the sum x+y+z has to be 1. 
Let us parameterise each right-hand side coefficient and get the general solution of the 
above system: 

1 2

3

4

2 3                                                         (1)

                                                                   (2)
2

                                              
3

x y z

y x

z x

α α
α

α

= +

=

=                      (3)










 

where 1 2 3 4, , , 0α α α α > . 

Replacing (2) and (3) in (1) we get  

   3 4
1 22 3

2 3
x x x

α αα α   = +   
  

 

   ( )1 3 2 41 x xα α α α⋅ = + ⋅  

whence  

1 3 2 4 1α α α α+ =  (parametric equation)  (4) 

 The general solution of the system is: 

   

3

4

 
2

3

y x

z x

α

α

 =

 =


 

whence the priority vector: 3 34 4          1          
2 3 2 3

x x x
α αα α   →      

. 

 Fairness Principle: discount all coefficients with the same percentage: so, replace  
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1 2 3 4 0α α α α α= = = = >  in (4) we get 2 2 1α α+ = , whence 
2

2
α = . 

 Priority vector becomes:
2 2

1          
4 6

 
 
 

 

and normalizing it: 

   

[ ]0.62923    0.22246    0.14831

     1           2            3

                                   

C C C

x y z

 

Preference will be on C1, the largest vector component.  
Let us verify it: 

  0.35354
y

x
≅  instead of 0.50, i.e. 

2
70.71%

2
=  of the original. 

  0.23570
z

x
≅  instead of 0.33333, i.e. 70.71% of the original. 

1.41421 2.12132x y z≅ +  instead of 2 3y z+ , i.e. 70.71% of 2 respectively 
70.71% of 3. 

 So, it was a fair discount for each coefficient.  
 

7.1.2. Using Mathematica 7.0 Software: 
 

Using MATHEMTICA 7.0 software, we graph the function: 
g(x,y) = |4x-y-3|+|x-2y|+|4x+3y-3|, with x,y∈[0,1], 

which represents the weak inconsistent decision-making problem’s associated system: 
x-2y-3z=0, x-2y=0, x-3z=0, and x+y+z=1, x>0, y>0, z>0. 

by solving z=1-x-y and replacing it in  
G(x,y,z)= |x-2y-3z|+|x-2y|+|x-3z| with x>0, y>0, z>0, 

 

In[2]:= 
Plot3D[Abs[4x-y-3]+Abs[x-2y]+Abs[4x+3y-3],{x,0,1},{y,0,1}] 
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Then find the minimum of g(x,y) if any: 

In[3]:= 
FindMinValue[{Abs[4x-y-3]+Abs[x-2y]+Abs[4x+3y-3],x+y≤1,x>0,y>0},{x,y}] 
 
The following result is returned: 

Out[3]:= 0.841235. 
FindMinValue::eit: The algorithm does not converge to the tolerance of 
4.806217383937354`*^-6 in 500 iterations. The best estimated solution, with feasibility 
residual, KKT residual, or complementary residual of {0.0799888,0.137702,0.0270028}, is 
returned.  
 

 

7.1.3. Matrix Method of using α -Discounting. 
 
 The determinant of the homogeneous linear system (1), (2), (3) is: 

  ( ) ( )
1 2

3 2 4 1 3

4

  1      2      3

1
    1              0 1 0 0 0

2
1

    0              1
3

α α

α α α α α

α

− −

− = + + − + =

−
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or 
 1 3 2 4 1α α α α+ =  (parametric equation). 

The determinant has to be zero in order for the system to have non-null solutions. 
 The rank of the matrix is 2. 
 So, we find two variables, for example it is easier to solve for y  and z  from the last two 
equations, in terms of x : 

   
3

4

1

2
1

3

y x

z x

α

α

 =

 =


 

and the procedure follows the same steps as in the previous one. 
 Let us change Example 1 in order to study various situations. 
 

7.2. Weak Inconsistent Example 3, which is more weakly inconsistent than Example 2. 
1. Same as in Example 2. 
2. 2C  is 4 times as important as 1C  
3. Same as in Example 2. 

1 2

3

4

2 3  

4  

 
3

x y z

y x

z x

α α
α

α


 = +


=

 =


 

   ( ) 4
1 3 22 4 3

3
x x x

αα α α  = +  
 

 

   ( )1 3 2 41 8x xα α α α⋅ = + ⋅  

   1 3 2 48 1α α α α+ =  (parametric equation) 

   1 2 3 4 0.α α α α α= = = = >  

   2 1
9 1

3
α α=  =  

   4 4
3 3     4      1     4      

3 3
x x x

α αα α   →      
 

   
4 1 9 12 1

1                    
3 9 9 9 9

   =       ;
 

                    normalized: 
9 12 1

          
22 22 22
 
   .

 

   1.333
y

x
=  instead of 4; 

   0.111
z

x
= instead of 0.3333; 

   0.667 1x y z= + ⋅  instead of 2 3y z+ . 
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Each coefficient was reduced at ( )1
33.33%

3
= . 

 The bigger is the inconsistency ( )1β → , the bigger is the discounting ( )0α → . 

 
7.3. Weak Inconsistent Example 4, which is even more inconsistent than Example 3. 

1. Same as in Example 2. 
2. Same as in Example 3. 
3. 3C  is 5 times as important as 1C . 

 

1 2

3

4

2 3  

4  

5  

x y z

y x

z x

α α
α
α

= +
 =
 =

 

( ) ( )1 3 2 42 4 3 5x x xα α α α= +  

( )1 3 2 41 8 15x xα α α α⋅ = +  

whence 1 3 2 48 15 1α α α α+ =  (parametric equation). 

   1 2 3 4 0,α α α α α= = = = >  223 1α = , 
23

23
α =  

   [ ]3 4

4 23 5 23
1     4      5 1         

23 23
α α

 
→  

 
 

Normalized: [ ]0.34763   0.28994   0.36243  

  0.83405
y

x
≅  instead of 4, i.e. reduced at 

23
20.85%

23
=  

  1.04257
z

x
≅  instead of 5  

  0.41703 0.62554x y z≅ + ⋅  instead of 2 3x y+ . 

 Each coefficient was reduced at 
23

20.85%
23

α = ≅ . 

 
7.4. Consistent Example 5. 

 When we get 1α = , we have a consistent problem. 
Suppose the preferences: 

1. Same as in Example 2. 
2. 2C  is one fourth as important as 1C . 

3. 3C  is one sixth as important as 1C . 
The system is: 



14 
 

  

2 3

4

6

x y z

x
y

x
z


 = +

 =

 =  

 
7.4.1. First Method of Solving this System. 
Replacing the second and third equations of this system into the first, we get: 

  2 3
4 6 2 2

x x x x
x x

   = + = + =   
   

, 

which is an identity (so, no contradiction). 
General solution: 

            
4 6

x x
x
 
  

 

Priority vector: 

  
1 1

1          
4 6

 
  

 

Normalized is:  

  
12 3 2

          
17 17 17
 
  

 

 
7.4.2.Second Method of Solving this System. 

Let us parameterize: 

  

1 2

3

4

2 3

4

 
6

x y z

y x

z x

α α
α

α


 = +

 =

 =

 

Replacing the last two equations into the first we get: 

3 1 34 2 4
1 22 3

4 6 2 2
x x x x x

α α αα α αα α   = + = +  
  

 

   1 3 2 41
2

x x
α α α α+⋅ = ⋅ , 

whence 1 3 2 41
2

α α α α+=  or 1 3 2 4 2α α α α+ = . 

 Consider the fairness principle: 1 2 3 4 0α α α α α= = = = > , then 22 2α = , 1α = ± , but we 

take only the positive value 1α =  (as expected for a consistent problem). 
 Let us check: 
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3
117

12 4
17

y

x
= = , exactly as in the original system; 

2
117

12 6
17

z

x
= = , exactly as in the original system; 

2 3x y z= +  since 2 3
4 6

x x
x

   = +   
   

; 

hence all coefficients were left at 1α = (=100%) of the original ones. 
 No discount was needed. 
  
 

7.5.General Example 6. 
 Let us consider the general case: 

   
1 2

3

4

x a y a z

y a x

z a x

= +
 =
 =

 

where 1 2 3 4, , , 0a a a a >  

 Let us parameterize: 

   
1 1 2 2

3 3

4 4  

x a y a z

y a x

z a x

α α
α
α

= +
 =
 =

 

with 1 2 3 4, , , 0α α α α > . 

Replacing the second and third equations into the first, we get: 
( ) ( )1 1 3 3 2 2 4 4x a a x a a xα α α α= +  

  1 3 1 3 2 4 2 4x a a x a a xα α α α= +  

whence 
   1 3 1 3 2 4 2 4 1a a a aα α α α+ =  (parametric equation) 

The general solution of the system is: ( )3 4
3 4,  a ,  ax x xα α  

The priority vector is [ ]3 43 41  a  aα α . 

 Consider the fairness principle: 1 2 3 4 0α α α α α= = = = >  

we get: 

   2

1 3 2 4

1

a a a a
α =

+
,  

so, 

   
1 3 2 4

1

a a a a
α =

+
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i) If [ ]0,1α ∈ , then α is the degree of consistency of the problem, while 1β α= −  is the 

degree of the inconsistency of the problem. 

ii) If 1α > , then 
1

α
 is the degree of consistency, while 

1
1β

α
= −  is the degree of 

inconsistency. 
When the degree of consistency 0→ , the degree of inconsistency 1→ , and reciprocally. 
  
Discussion of the General Example 6. 
 Suppose the coefficients 1 2 3 4, , ,a a a a become big such that 1 3 2 4a a a a+ → ∞ , then 0α → , 

and 1β → . 
Particular Example 7. 
Let us see a particular case when 1 2 3 4, , ,a a a a  make 1 3 2 4a a a a+  big: 

   1 2 3 450,   20,   100,   250a a a a= = = = , 

then 
1 1 1

0.01
10050 100 20 250 10000

α = = = =
⋅ + ⋅

 = degree of consistency, 

whence 0.99β =  degree of inconsistency. 

The priority vector for Particular Example 7 is [ ] [ ]1  100(0.01)  250(0.01) 1  1  2.5=  which 

normalized is: 
2 2 5

    
9 9 9
 
  

. 

Particular Example 8. 
 Another case when 1 2 3 4, , ,a a a a  make the expression 1 3 2 4a a a a+  a tiny positive number: 

1 2 3 40.02,   0.05,   0.03,   0.02a a a a= = = = , then 

( ) ( )
1 1

25 1
0.040.02 0.03 0.05 0.02

α = = = >
⋅ + ⋅

. 

Then 
1 1

0.04
25α

= =  is the degree of consistency of the problem, and 0.96 the degree of 

inconsistency. 
The priority vector for Particular Example 8 is 

[ ] [ ] [ ]3 41    1  0.03(25)  0.02(25) 1  0.75  0.50a aα α = = which normalized is 
4 3 3

    
9 9 9
 
  

. 

 Let us verify: 

   
3 4

0.75
9 9

y

x
= ÷ =  instead of 0.03, i.e. 25α =  times larger (or 2500%); 

   
2 4

0.50
9 9

z

x
= ÷ =  instead of 0.02, i.e. 25 times larger; 

   0.50 1.25x y z= +  instead of 0.02 0.05x y z= +  (0.50 is 25 times larger 

than 0.02, and 1.25 is 25 times larger than 0.05) because
4 3 2

0.50 1.25
9 9 9

   = +   
   

. 
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8.1.  Jean Dezert’s Weak Inconsistent Example 9. 
 Let 1 2 3, , 0α α α >  be the parameters. Then: 

   
( ) ( )

1

1 2 1 2

2

3

(5)    3    
3 4 12

  (6)    4  

(7)    5  

y
y x yx

x x z z

z
y

z

α
α α α α

α

α

 =  ⋅ = ⋅  =  = 


=

 

 In order for 1 212
y

z
α α=  to be consistent with 35  

y

z
α=  we need to have 1 2 312 5α α α=  or 

   1 2 32.4α α α=  (Parametric Equation)     (8) 

Solving this system: 

1 1

2 2

3 1 2

3 3

4 4

5 12

y
y x

x
x

x z
z
y

y z
z

α α

α α

α α α

 =  = ⋅

 =  = ⋅

 =  =

 

we get the general solution: 

  ( )2 1 24    5 2.4    z z zα α α    

  [ ]2 1 24    12    z z zα α α  

General normalized priority vector is: 

2 1 2

2 1 2 2 1 2 2 1 2

4 12 1
      

4 12 1 4 12 1 4 12 1

α α α
α α α α α α α α α

 
 + + + + + + 

 

where 1 2, 0α α > ; ( 3 1 22.4α α α= ). 

 Which 1α  and 2α  give the best result?  How to measure it?  This is the greatest 

challenge! 
 α -Discounting Method includes all solutions (all possible priority vectors which make 
the matrix consistent). 
 
  
 
 
Because we have to be consistent with all proportions (i.e. using the Fairness Principle of finding 
the parameters’ numerical values), there should be the same discounting of all three proportions 
(5), (6), and (7), whence  
   1 2 3 0α α α= = >               (9) 

The parametric equation (8) becomes 2
1 12.4α α=  or 2

1 12.4 0α α− = , ( )1 12.4 1 0α α − = , 

whence 1 0α =  or 1

1 5

2.4 12
α = = .  
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1 0α =  is not good, contradicting (9). 

Our system becomes now: 
5 15

3                                                                               (10)
12 12
5 20

4                                                                               (11)
12 12
5 2

5
12

y

x
x

z
y

z

= ⋅ =

= ⋅ =

= ⋅ = 5
                                                                              (12)

12










 

We see that (10) and (11) together give  

  
15 20

 
12 12

y x

x z
⋅ = ⋅  or 

25

12

y

z
= , 

so, they are now consistent with (12). 

 From (11) we get 
20

12
x z=  and from (12) we get

25

12
y z= .  

The priority vector is: 

  
20 25

      1
12 12

z z z
 
  

  

which is normalized to: 

 

20 20
2012 12  

20 25 20 25 12 571
12 12 12 12 12

= =
+ + + +

,    

25
2512

57 57
12

= ,    
1 12

57 57
12

= , i.e. 

 

   

1 2 3            

20 25 12
      

57 57 57

C C C

T 
  

      (13) 

 

   [ ]
1 2 3

the highest priority

                                 

0.3509   0.4386   0.2105

                     

             

C C C

T≅

↑
 

 Let us study the result: 
 

   

1 2 3            

20 25 12
      

57 57 57

                

C C C

T

x y z

 
  
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  Ratios:    Percentage of Discounting: 
 

25
2557 1.25

20 20
57

y

x
= = =  instead of 3;   1

25
520 41.6%

3 12
α= = =  

20
20 557 1.6

12 12 3
57

x

z
= = = =  instead of 4;  1

20
512 41.6%

4 12
α= = =  

25
2557 2.083

12 12
57

y

z
= = =  instead of 5;  1

25
512 41.6%

5 12
α= = =

 

 
Hence all original proportions, which were respectively equal to 3, 4, and 5 in the 

problem, were reduced by multiplication with the same factor 1

5

12
α = , i.e. by getting 41.6% of 

each of them. 

So, it was fair to reduce each factor to the same percentage 41.6% of itself. 
But this is not the case in Saaty’s method: its normalized priority vector is  

[ ]
1 2 3                        

0.2797   0.6267   0.0936

                               

C C C

T

x y z

, 

where: 
   Ratios:    Percentage of Discounting: 
 

 
0.6267

2.2406
02797

y

x
= ≅  instead of 3;   

2.2406
74.6867%

3
≅  

 
0.2797

2.9882
0.0936

x

z
= ≅ instead of 4;  

2.9882
74.7050%

4
≅  

 
06267

6.6955
0.0936

y

z
= ≅  instead of 5;  

6.6955
133.9100%

5
≅  

 
Why, for example, the first proportion, which was equal to 3, was discounted to 

74.6867%  of it, while the second proportion, which was equal to 4, was discounted to another 
percentage (although close) 74.7050%  of it? 
 Even more doubt we have for the third proportion’s coefficient, which was equal to 5, but 
was increased to 133.9100%  of it, while the previous two proportions were decreased; what is 
the justification for these?  
 That is why we think our α-D/Fairness-Principle is better justified. 
 We can solve this same problem using matrices. (5), (6), (7) can be written in another 
way to form a linear parameterized homogeneous system:  
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1

2

3

3                     = 0

                     - 4 0

                    5 0

x y

x z

y z

α
α
α

−
 =
 − =

     (14) 

Whose associated matrix is: 

1

1 2

3

3      1          0

   1         0      - 4

   0         1      5

P

α
α
α

− 
 =  
 − 

     (15) 

a) If 1det( ) 0P ≠  then the system (10) has only the null solution 0x y z= = = . 

b) Therefore, we need to have 1det( ) 0P = , or ( )( )1 2 33 4 5 0α α α− = , or 1 2 32.4 0α α α− = , so 

we get the same parametric equation as (8). 
In this case the homogeneous parameterized linear system (14) has a triple infinity of 

solutions. 
This method is an extension of Saaty’s method, since we have the possibility to manipulate 

the parameters 1 2,α α , and 3α . For example, if a second source tells us that 
x

z
has to be 

discounted 2 times as much as 
y

x
, and 

y

z
 should be discounted 3 times less than 

y

x
, then we set 

2 12α α= , and respectively 1
3 3

αα = , and the original (5), (6), (7) system becomes: 

( )

1

2 1 1

1
3 1

3

4 =4 2 =8  

5
5 =5 =  

3 3

y

x
x

z
y

z

α

α α α

αα α


=


 =

  =  

 

      (16) 

and we solve it in the same way. 
 
 8.2. Weak Inconsistent Example 10. 
 Let us complicate Jean Dezert’s Weak Inconsistent Example 9. with one more 
preference: 2C  is 1.5 times as much as 1C  and 3C  together. The new system is: 

3

4

5

1.5( )

, , [0,1]

1

y

x
x

z
y

z
y x z

x y z

x y z

 =

 =

 =

 = +
 ∈
 + + =

       (17) 
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We parameterized it: 

1

2

3

4

1 2 3 4

3

4

5

1.5 ( )

, , [0,1]

1

, , , 0

y

x
x

z
y

z
y x z

x y z

x y z

α

α

α

α

α α α α

 =

 =

 =

 = +
 ∈
 + + =

>

       (18) 

Its associated matrix is: 

1

2
2

3

4 4

3     1      0

  1        0    -4

  0        1    - 5

1.5   -1    1.5

P

α
α
α

α α

− 
 
 =
 
 
 

      (19) 

The rank of matrix 2P should be strictly less than 3 in order for the system (18) to have 

non-null solution. 
If we take the first three rows in (19) we get the matrix 1P , whose determinant should be 

zero, therefore one also gets the previous parametric equation 1 2 32.4α α α= . 

 If we take rows 1, 3, and 4, since they all involve the relations between 2C  and the other 

criteria 1C  and 3C  we get 

1

3 3

4 4

3     1      0

  0        1    - 5

1.5   -1    1.5

P

α
α

α α

− 
 =  
  

      (20) 

whose determinant should also be zero: 

( ) ( ) ( ) ( )3 1 4 3 4 1 3det 3  1.5 5 1.5 0 0 3 5 0P α α α α α α   = + + − + + =     

1 4 3 4 1 34.5 7.5 15 0α α α α α α= + − =       (21) 

 If we take  

  
2

4 3

4 4

1         0    - 4

0        1    - 5

1.5   -1    1.5

P

α
α

α α

 
 =  
  

      (22) 

then  

( ) [ ] [ ]4 4 2 4 3 4 2 4 3det 1.5  0 0 6 5 0 1.5 6 5 0P α α α α α α α α= + + − − + + = + − =   (23) 

 If we take  
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1

5 2

4 4

3     1   0

  1        0    - 4

1.5   -1    1.5

P

α
α

α α

− 
 =  
  

      (24) 

then 

( ) [ ] [ ]5 2 4 1 2 4 2 4 1 2 4det 0 0 6 0 12 1.5 6 12 1.5 0P α α α α α α α α α α= + + − + − = − + =  (25) 

So, these four parametric equations form a parametric system: 

  

1 2 3

1 4 3 4 1 3

4 2 4 3

2 4 1 2 4

2.4 0

4.5 7.5 15 0

1.5 6 5 0

6 12 1.5 0

α α α
α α α α α α
α α α α

α α α α α

− =
 + − =
 + − =
 − + =

     (26) 

which should have a non-null solution. 

 If we consider 1 2 3

5
0

12
α α α= = = >  as we got at the beginning, then substituting all α’s 

into the last three equations of the system (26) we get: 

  4 4 4

5 5 5 5 25
4.5 7.5 15 0 0.52083

12 12 12 12 48
α α α      + − =  = =      

      
 

4 4 4

5 5
1.5 6 5 0 0.52083

12 12
α α α   + − =  =   

   
 

4 4 4

5 5 5
6 12 1.5 0 0.52083

12 12 12
α α α    − + =  =    

    
 

4α  could not be equal to 1 2 3α α α= =  since it is an extra preference, because the number of rows 

was bigger than the number of columns. 
 So the system is consistent, having the same solution as previously, without having added 
the fourth preference ( )1.5y x z= + . 

9.1. Jean Dezert’s Strong Inconsistent Example 11. 
 9.1.1. The preference matrix is: 

   1

1
1   9   

9
1

   1   9
9

1
9      1

9

M

 
 
 
 =  
 
  
 

 

so,  

   

9 ,

1
,

9
9 ,

x y x y

x z x z

y z y z

= >
 = <


= >
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The other three equations: 
1 1

,   9 ,   
9 9

y x z x z y= = =  result directly from the previous three ones, 

so we can eliminate them. 
From x>y and y>z (first and third above inequalities) we get x>z, but the second inequality tells 
us the opposite: x<z; that is why we have a strong contradiction/inconsistency. Or, if we combine 
all three we have x>y>z>x… strong contradiction again. 
 Parameterize: 

   

1

2

3

9                                                                          (27)

1
                                                                        (28)

9
9                           

x y

x z

y z

α

α

α

=

=

=                                                 (29) 







 

where 1 2 3, , 0α α α > . 

From (27) we get: 
1

1
 

9
y x

α
= , from (28) we get 

2

1

9
z x

α
= , which is replaced in (29) and we get: 

3
3

2 2

819
9  =y x x

αα
α α
 

=  
 

. 

So 3

1 2

811
 

9
x x

α
α α

=  or 2 1 3729α α α=  (parametric equation). 

 The general solution of the system is: 

1 2

1 9
,  , 

9
x x x

α α
 
 
 

 

 The general priority vector is: 

   
1 2

1 9
1    

9α α
 
 
 

. 

Consider the fairness principle, then 1 2 3 1α α α α= = = >  are replaced into the parametric 

equation: 2729α α= , whence 0α =  (not good) and 
3

1 1

729 9
α = = . 

The particular priority vector becomes [ ]2 41     9      9 1     81     6561  =   and normalized  

1 81 6561
          

6643 6643 6643
 
  

 

Because the consistency is 
1

0.00137
729

α = =  is extremely low, we can disregard this solution 

(and the inconsistency is very big 1 0.99863).β α= − =  
 
 9.1.2. Remarks: 

a) If in 1M  we replace all six 9’s by a bigger number, the inconsistency of the 

system will increase. Let us use 11. 

Then 
3

1
0.00075

11
α = =  (consistency), while inconsistency 0.99925β = . 
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b) But if in 1M we replace all 9’s by the smaller positive number greater than 1, the 

consistency decreases. Let us use 2. Then 
3

1
0.125

2
α = = and 0.875β = ; 

c) Consistency is 1 when replacing all six 9’s by 1. 
d) Then, replacing all six 9’s by a positive sub unitary number, consistency 

decreases again. For example, replacing by 0.8 we get 
3

1
1.953125 1

0.8
α = = > , 

whence 
1

0.512
α

=  (consistency) and 0.488β =  (inconsistency). 

 
9.2. Jean Dezert’s Strong Inconsistent Example 12. 
The preference matrix is: 
 

2

1
1   5   

5
1

   1   5
5

1
5      1

5

M

 
 
 
 =  
 
  
 

 

which is similar to 1M where we replace all six 9’s by 5’s. 

3

1
0.008

5
α = =  (consistency) and 0.992β =  (inconsistency). 

 The priority vector is [ ]2 41  5   5 1  25  625  =   and normalized 
1 25 625

    
651 651 651
 
  

. 

2M  is a little more consistent than 1M  because 0.00800 > 0.00137, but still not enough, so this 

result is also discarded. 
 
 9.3. Generalization of Jean Dezert’s Strong Inconsistent Examples. 
General Example 13.  
Let the preference matrix be: 

1
1      

1
   1   t

1
t      1

t

t
t

M
t

t

 
 
 
 =  
 
  
 

, 

with 0t > , and ( )tc M  the consistency of tM , ( )ti M  inconsistency of tM . 

We have for the Fairness Principle: 

1
lim ( ) 1t
t

c M
→

=  and  
1

lim ( ) 0t
t

i M
→

= ; 

lim ( ) 0t
t

c M
→+∞

=  and  lim ( ) 1t
t

i M
→+∞

= ; 
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0
lim ( ) 0t
t

c M
→

=  and  
0

lim ( ) 1t
t

i M
→

= . 

Also 
3

1

t
α = , the priority vector is 2 41      t t    which is normalized as  

  
2 4

2 4 2 4 2 4

1
      

1 1 1

t t

t t t t t t

 
 + + + + + + 

.  

 
In such situations, when we get strong contradiction of the form x>y>z>x or similarly x<z<x, 
etc. and the consistency is tiny, we can consider that x=y=z=1/3 (so no criterion is preferable to 
the other – as in Saaty’s AHP), or just x+y+z=1 (which means that one has the total ignorance 
too: C1 ∪ C2 ∪ C3). 
 

10. Strong Inconsistent Example 14. 
Let C = {C1, C2}, and P = {C1 is important twice as much as C2;  C2 is important 5 
times as much as C1}.  Let m(C1)=x, m(C2)=y.  Then: 
x=2y and y=5x (it is a strong inconsistency since from the first equation we have x>y, 
while from the second y>x). 
Parameterize: x=2α1y, y=5α2x, whence we get 2α1=1/(5α2), or 10α1α2=1. 

If we consider the Fairness Principle, then α1= α2= α>0, and one gets α = 
10

10
≈ 31.62% 

consistency; priority vector is [0.39 0.61], hence y>x. An explanation can be done as in 
paraconsistent logic (or as in  neutrosophic logic): we consider that the preferences were 
honest, but subjective, therefore it is possible to have two contradictory statements true 
simultaneously since a criterion C1 can be more important from a point of view than C2, 
while from another point of view C2 can be more important than C1.  In our decision-
making problem, not having any more information and having rapidly being required to 
take a decision, we can prefer C2, since C2 is 5 times more important that C1, while C1 
is only 2 times more important than C2, and 5>2. 
If it’s no hurry, more prudent would be in such dilemma to search for more information 
on C1 and C2. 
If we change Example 14 under the form: x=2y and y=2x (the two coefficients set equal), 
we get α = ½, so the priority vector is [0.5 0.5] and decision-making problem is 
undecidable.  

 

11. Non-Linear Equation System Example 15. 
Let C = {C1, C2, C3}, m(C1)=x, m(C2)=y, m(C3)=z. 
Let F be: 
1. C1 is twice as much important as the product of C2 and C3. 
2. C2 is five times as much important as C3. 
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We form the non-linear system:  x=2yz (non-linear equation) and y=5z (linear 
equation). 
The general solution vector of this mixed system is: [10z2   5z   z], where z>0. 
A discussion is necessary now. 
a) You see for sure that y>z, since 5z>z for z strictly positive. But we don’t see 

anything what the position of x would be? 

b) Let us simplify the general solution vector by dividing each vector component by 
z>0, thus we get: [10z   5   1]. 

  If  z∈(0, 0.1), then y>z>x. 
  If z=0.1, then y>z=x. 

If z∈(0.1, 0.5), then y>x>z. 
If z=0.5, then y=x>z. 
If z>0.5, then x>y>z. 

 
12. Non-Linear/Linear Equation/Inequality Mixed System Example 16. 

Since in the previous Example 15 has many variants, assume that a new preference 
comes in (in addition to the previous two preferences): 
3. C1 is less important than C3. 

 
The mixed system becomes now: x=2yz (non-linear equation), y=5z (linear equation), 
and x<z (linear inequality). 
The general solution vector of this mixed system is: [10z2   5z   z], where z>0 and 10z2 < 
z. From the last two inequalities we get z∈(0, 0.1). Whence the priorities are: y>z>x. 

 

13. Future Research: 
To investigate the connection between α-D MCDM and other methods, such as: the 
technique for order preference by similarity to ideal solution (TOPSIS) method, the 
simple additive weighting (SAW) method, Borda-Kendall (BK) method for aggregating 
ordinal preferences, and the cross-efficiency evaluation method in data envelopment 
analysis (DEA). 
 

14. Conclusion. 

We have introduced a new method in the multi-criteria decision making, α - Discounting 
MCDM. In the first part of this method, each preference is transformed into a linear or non-linear 
equation or inequality, and all together form a system that is resolved – one finds its general 
solution, from which one extracts the positive solutions.  If the system has only the null solution, 
or it is inconsistent, then one parameterizes the coefficients of the system. 
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In the second part of the method, one chooses a principle for finding the numerical values of the 
parameters {we have proposed herein the Fairness Principle, or Expert’s Opinion on 
Discounting, or setting a Consistency (or Inconsistency) Threshold}. 
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