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Fault detection, with the characteristics of strong uncertainty and randomness, has always been one of 
the research hotspots in the field of aerospace. Considering that devices will inevitably encounter various 
unknown interference in the process of use, which greatly limits the performance of many traditional 
fault detection methods. Therefore, the main aim of this paper is to address this problem from the 
perspective of uncertainty and randomness of measurement signal. In information engineering, interval-
valued neutrosophic sets (IVNSs), belief rule base (BRB), and Dempster-Shafer (D-S) evidence reasoning 
are always characterized by the strong ability in revealing uncertainty, but each has its drawbacks. As a 
result, the three theories are firstly combined in this paper to form a powerful fault detection algorithm. 
Besides, a series of innovations are proposed to improve the method, including a new score function 
based on p-norm for IVNSs and a new approach of calculating the similarity between IVNSs, which 
are both proved by authoritative prerequisites. To illustrate the effectiveness of the proposed method, 
flush air data sensing (FADS), a technologically advanced airborne sensor, is adopted in this paper. The 
aerodynamic model of FADS is analyzed in detail using knowledge of aerodynamics under subsonic and 
supersonic conditions, meanwhile, the high-precision model is established based on the aerodynamic 
database obtained from CFD software. For further confirming the validity and feasibility, a comparison 
with the methods based on parity equation, χ2 distribution, and information fusion method ordered 
weighted averaging (OWA) with three sets of weight vectors are conducted.

© 2021 Elsevier Masson SAS. All rights reserved.

1. Introduction

1.1. Background

In the field of engineering application, fault detection of equipment has always been an unavoidable hot issue. Once the system fails 
and is not diagnosed timely, it will cause huge economic losses and even death. Take the aviation sector as an example. For Partnair Flight 
394, the four bolts used to fix the vertical tail of the aircraft failed, causing the aircraft to disintegrate, all passengers and crew were 
killed. In 1995, Bergen Airlines Flight 301 crashed. An investigation later revealed that the cause of the huge crash was the failure of pitot 
tube. Also, it was precisely because of a malfunction in the navigation system that Adam Airlines Flight 574 crashed, causing 102 deaths. 
Therefore, it is of great significance to ensure that the faults on the equipment are detected in time, which can save many people’s lives.

1.2. Related work

In past research, many scholars have carried out research in fault detection [1]. The existing methods can be summarized into the 
following categories:

1) The methods based on analytical model:
Generally speaking, these methods mainly include filter method [2–5], least squares method [6,7], and equivalent space method [8]. 

The key thinking of these methods is to calculate the residuals between the actual performance and the expected performance derived 

* Corresponding author.
E-mail address: jiaql@mail.nwpu.edu.cn (Q. Jia).
https://doi.org/10.1016/j.ast.2021.106758
1270-9638/© 2021 Elsevier Masson SAS. All rights reserved.

https://doi.org/10.1016/j.ast.2021.106758
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aescte
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ast.2021.106758&domain=pdf
mailto:jiaql@mail.nwpu.edu.cn
https://doi.org/10.1016/j.ast.2021.106758


Q. Jia, J. Hu and W. Zhang Aerospace Science and Technology 114 (2021) 106758
from the analytical model, and then analyze the residuals to determine the fault type. Actually, this kind of method can indeed achieve 
the fault detection to some extent, but it is greatly affected by the accuracy of model. Once the accuracy of model can not be guaranteed, 
the final result will absolutely be affected.

2) The methods based on signal processing:
Wavelet analysis: These methods are mainly to carry out wavelet transform on the input and output signals, and make use of the 

transform to find singularities. Then, remove the extreme points caused by input mutation and the remaining extreme points correspond 
to the fault state. In [9], wavelet analysis, Fourier transform, and multi-Layer perceptron neural network were combined to design a new 
fault detection algorithm. In [10], discrete wavelet transform (DWT) was employed to extract the noise from process signal, and then made 
use of continuous wavelet transform to detect the abrupt fault of process noise signal. In [11], DWT was adopted to detect the dynamics 
of various failures, and then predict the remaining useful life (RUL) of faulty bearings with adaptive Bayesian.

Empirical mode decomposition (EMD): To obtain intrinsic mode function (IMF), EMD was proposed by Norden E. Huang, the principle 
of which is to decompose the original signal into several intrinsic modal functions and smooth the non-stationary signal. In [12], an 
EMD-based approach was used along with artificial neural network (ANN) for the analysis of real-time arc signals. Considering that when 
multiple faults alongside noisy environment are present together, the performance of the conventional signal processing methods like 
fast Fourier transform (FFT) are limited. Therefore, ensemble empirical mode decomposition (EEMD) and cyclostationary analysis were 
connected and applied to the fault detection of wind turbine gearboxes in [13]. To overcome the poor performance in fault detection 
caused by data inconsistency, convolutional neural networks (CNNs) and variational mode decomposition (VMD) were integrated to form 
variational mode decomposition with deep convolutional neural networks (VMD-DCNNs) [14]. In VMD-DCNNs, original vibration signals 
were processed end-to-end without manual experience and manual intervention to achieve the fault detection of rolling bearings.

Spectrum analysis: For this method, the complex signal is decomposed into the sum of finite or infinite spectrum components, and then 
the power spectrum of each component is calculated to determine the fault type and fault source. In [15], the armature current signal 
of generator was collected by synchronous sampling method, and the signal was transformed from time domain to frequency domain 
with FFT. By extracting the characteristic quantity of current signal in frequency domain during normal and fault operation of motor, the 
frequency component and amplitude of signal were determined for fault detection. To achieve the fault detection of squirrel cage motors, 
Hilbert spectrum was employed in [16]. Simulation results showed that this method had relatively high accuracy when the levels of 
damage in the broken bars were of 3 mm, 5 mm and 7 mm. Besides, spectrum analysis was also employed in Tennessee Eastman Process 
(TEP) [17], gear system [18–20].

Unlike the model-based methods, the methods on the basis of signal processing do not require high-precision models, but the research 
also gives rise to some difficulties. For example, Fourier analysis is mainly aimed at the smooth signals. However, most fault signals are 
contained in the transient signals, and the performance of non-stationary dynamic signal will degrade.

3) Knowledge-based methods:
Knowledge-based fault detection methods are a set of intelligent computer programs designed according to people’s long-term practical 

experience and a large number of fault information, the characteristic of which is that the precise mathematical model of the object is 
not required. The specific methods can be divided into the following categories.

Expert system: In [21], rule base and case base for the fault detection of expert system was established based on the domain expert 
knowledge and relevant fault cases of turbine generator sets. In [22], rule-based expert system was applied to the fan fault detection. 
To overcome the shortcomings of time-consuming and difficult convergence of back propagation neural network expert system (BPES), a 
novel multi-BP expert system (MBPES) method for power system fault detection was proposed in [23]. Moreover, expert system was also 
combined with many other methods for troubleshooting, including fault tree [24–26], genetic algorithm (GA) [27], and fuzzy reasoning 
[28,29]. However, although expert system has the ability to deal with the problem regardless of the accuracy of model, there is much 
room for improvement in reducing computation.

Fuzzy logic: The main purpose of this method is to overcome the difficulties caused by the uncertainty, imprecision and noise. There-
fore, it shows the advantages in dealing with large time delay, time-varying, and nonlinear problem. In [30], a fuzzy neural network model 
suitable for fault detection was established based on the combination of fuzzy theory and neural network. In the method, a fuzzy infer-
ence algorithm was achieved and the fuzzy neural network learning weights were converted into case-based reasoning-based diagnostic 
guidance operators. In [31], Thumati developed a multiple model prognosis method based on the fuzzy logic for a two-tank system.

D-S evidence reasoning: In [32], a joint fault detection method based on D-S evidence reasoning was proposed. The output of each 
sub filter was taken as evidence, and the joint fault detection function was established by using the state estimation value and error 
covariance of each sub filter. The fault detection of each navigation system was realized by fusing multiple evidences. In [33], D-S evidence 
reasoning and radial basis function (RBF) were combined to address the computational combinatorial explosion problem. The improved 
algorithm was successfully applied to the fault detection of underground sensors. Considering the advantages of rough set in extracting key 
information and D-S evidence reasoning in conflict information processing, a new fault detection algorithm was proposed in [34]. Besides, 
long short-term memory networks (LSTM), convolutional neural network (CNN) and random forests (RF) were adopted to conclude the 
fault features, and then D-S evidence reasoning was employed to fuse the information and identify the fault type [35]. Due to the ability 
of D-S evidence reasoning in expressing uncertain information, it has also been applied in many other fields [36–38].

Support vector machine (SVM): SVM is a learner suitable for high-dimensional and small sample data classification based on statistical 
learning theory, which occupies an important part in fault detection. In [39], chaos particle swarm optimization algorithm and SVM were 
combined to propose a new algorithm for the fault detection problem of wireless sensor. To further improve SVM, particle swarm opti-
mization (PSO) algorithm was employed to train SVM [40,41]. In [42], with strong global search capability of bacterial foraging algorithm 
(BFA), the optimization method—support vector machine parameters optimization based on bacterial foraging algorithm was proposed. 
Although the solution of SVM is a convex quadratic programming problem and there is a unique solution when the model structure and 
model parameters are determined. However, due to the limitation of computational memory, when the number of fault feature samples 
is large, SVM can not be trained or the training speed is very slow. Therefore, how to train SVM with large sample set is a bottleneck 
problem in practical application. Besides, how to select the model structure and parameters to obtain the optimal fault diagnosis results 
is also a thorny problem.

4) The methods based on artificial intelligence:
2
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Genetic algorithm (GA): The algorithm mainly reorganizes individuals with a certain structural form in the group through genetic oper-
ations to continuously approach the optimal solution. Aiming at the characteristics of transformer fault types, a fault detection algorithm 
was proposed based on GA to optimize weights and thresholds between input layer and hidden layer [43]. Considering that GA possesses 
a high performance in global search, it was combined with the tabu search algorithm characterized by good local search ability to form 
genetic algorithm-Tabu search (GATS) in [44], and the newly proposed algorithm was used to address the fault detection of power systems. 
Furthermore, GA was also adopted to deal with the fault detection of analog filter circuit [45], floating disc system [46], reciprocating com-
pressor [47], and wind turbine gearbox [48]. However, the algorithm is difficult to deal with the problems with high dimension. Besides, 
the limited ability to explore new spaces and poor stability are also the shortcomings of GA.

Ant colony optimization (ACO): ACO is a probabilistic algorithm used to find the optimal path in a graph. It is characterized by positive 
feedback and distributed collaboration. In [49], the state recognition problem of mechanical fault detection was transformed into a cluster-
ing problem of different states, and then a distance-based detection method was proposed using ant colony algorithm, which distinguished 
the mechanical state by comparing distances. In [50], ACO and SVM were combined to obtain a new algorithm ACO-SVM, the feasibility of 
which was illustrated by the fault detection of locomotive roller bearings. To eliminate the interference of high-dimensional and improve 
the fault detection ability of SVM, a new quantum ant colony optimization (QACO) algorithm was proposed in [51]. In the field of fault 
detection, ACO is a widely used algorithm with strong robustness and excellent integration with other methods. Nevertheless, the slow 
convergence speed and easy to fall into local optimum are two inevitable shortcomings of the algorithm.

Particle swarm optimization (PSO): To propose a new approach for fault detection and isolation (FDI) on industrial systems, PSO and ACO 
were adopted comprehensively in [52]. In [53], the influence of particle number, accelerate constant, inertia weight, and maximum limited 
velocity on PSO was studied emphatically, and then PSO with dynamic parameters was applied on the neural network training for gearbox 
fault detection. Besides, a new algorithm of regrouping particle swarm optimization-based neural network (RegPSONN) was formed on the 
basis of PSO and neural network for rolling bearing fault detection [54]. Similarly, PSO and neural network were integrated to solve the 
fault detection of analog circuit in [55]. However, due to the lack of dynamic speed adjustment, the method is prone to falling into the 
local optimum, resulting in low convergence accuracy. In addition, how to select the appropriate parameters to achieve the optimal effect 
is also a problem to be studied.

1.3. Innovations

After sorting out a large number of relevant literatures, it can be found that there are still some research gaps on the fault detection. 
The key contributions of this study can be summarized as follows:

1) Taking into account that due to the presence of various interferences, measurement result of equipment will fluctuate up and down, 
showing strong uncertainty and randomness. To address the problem, interval-valued neutrosophic sets (IVNSs), a powerful platform 
in expressing uncertain information, is firstly integrated with belief rule base (BRB) and D-S evidence reasoning to propose a novel 
fault detection algorithm in this paper.

2) Two critical steps for the proposed algorithm are to calculate the similarity between IVNSs and design a convincing score function. 
After analyzing the previous relevant studies, a new approach for calculating the similarity based on implication operator is derived, 
and the rationality is proved by the theorem. In addition, to quantify the information contained in different IVNSs, a score function 
on the basis of p-norm in mathematics is proposed in this paper.

3) Until now, there has been no systematic research on the fault detection of flush air data sensing (FADS) system except two methods: 
1) Parity equation: This method [56] takes the system model as the starting point and deduces the standard fault vector table 
through the mathematical formula to achieve the purpose of fault detection. However, the study of the method gives rise to a main 
difficulty: Limited by the variance of measurement noise. Once the variance of noise increases, the vibration amplitude of data will 
increase and the accuracy of this method will be greatly affected. 2) χ2 distribution: The working principle of this method [57] is 
that the difference between the pressures obtained from the measurement taps and the pressures derived from the pressure model 
is statistically different under normal and faulty situations. However, similar to the above, this method also has the disadvantage of 
being greatly affected by the variance of measurement noise. To fill the gap, the proposed algorithm is firstly applied to the fault 
detection of FADS.

4) For many laboratories and research institutions, it is costly and difficult to obtain the aerodynamic data through a large number 
of wind tunnel flight experiments. In this paper, CFX, a highly credible CFD software, is employed to acquire the data representing 
the numerical relationship between pressure values and the states such as α and β on the foundation of aerodynamics theory. 
Besides, FADS is an advanced sensor mounted on the hypersonic aircraft with an eye toward future aviation requirements, the working 
principle is analyzed in detail in this paper, which provides a reference for the follow-up research.

5) In order to demonstrate the effectiveness of the newly proposed method, a representative case is simulated digitally. Moreover, a fur-
ther comparison with the two traditional methods and ordered weighted averaging (OWA) with different weight values is conducted 
under different noise conditions to prove the robustness and feasibility of the new method.

6) Overall, FADS system is a relatively new sensor used in hypersonic aircraft, and there are still some detailed knowledge that needs 
to be supplemented. The research in this paper enriches the theoretical knowledge of fault detection and provides a new solution for 
the problem of FADS, meanwhile, overcomes the drawbacks of previous methods.

The paper’s structure is as follows: In Section 2, some related concepts are briefly reviewed. Moreover, a formula for calculating the 
similarity, as well as a score function, are proposed. In Section 3, an algorithm based on IVNSs, BRB and D-S evidence reasoning is derived. 
In Section 4, the aerodynamic model of FADS and an illustrative example concerning the fault detection are provided. In Section 5, the 
results obtained by the newly proposed method and other three methods are presented and compared. Finally, the conclusion of this 
paper is given in Section 6.
3
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2. Related research on IVNSs, BRB, and D-S evidence reasoning

This paper provides a method for fault detection problem based on IVNSs, BRB, and D-S evidence reasoning. Here, we introduce some 
relevant concepts.

2.1. Preliminaries

Definition 1. A single-valued neutrosophic set, denoted as A = {〈x, T A(x), I A(x), F A(x)〉|x ∈ X}, where X = {x1, x2, · · · , xn} represents a 
finite universe of discourse. T A(x), I A(x), and F A(x) denote the membership degree, uncertainty degree, and non-membership degree of 
an element x to A.

T A(x) : X → ]0−,1+[
I A(x) : X → ]0−,1+[
F A(x) : X → ]0−,1+[

and

0− ≤ supT A(x) + supI A(x) + supF A(x) ≤ 3+

Definition 2. Given a neutrosophic set A = {〈x, T A(x), I A(x), F A(x)〉|x ∈ X}, where 
(
T A(x), I A(x), F A(x)

) = ([T L
A(x), T U

A (x)], [I L
A(x), IU

A (x)],
[F L

A(x), F U
A (x)]), then, it is called the interval-valued neutrosophic sets (IVNSs).

T L
A(x), T U

A (x) : X → ]0−,1+[
I L

A(x), IU
A (x) : X → ]0−,1+[

F L
A(x), F U

A (x) : X → ]0−,1+[

Definition 3. Given two IVNSs A and B , if following conditions are satisfied, then A is called to be included in or equal to B , recorded as 
A ⊆ B .

inf T A(x) ≥ inf T B(x), supT A(x) ≤ supT B(x)

inf I A(x) ≤ inf I B(x), supI A(x) ≥ supI B(x)

inf F A(x) ≤ inf F B(x), supF A(x) ≥ supF B(x)

Definition 4. Let � = {A1, · · · , An} be the recognition frame. A basic probability assignment (BPA) is a function m : 2� → [0, 1], satisfying 
the following two formulas:

m(∅) = 0 (1)∑
A⊆�

m(A) = 1 (2)

where 2� = {∅, {θ}} represents the power set of �; ∅ stands for the empty set.

Definition 5. Given a recognition frame �, the belief function Bel(A) and plausibility function Pl(A) based on BPA can be defined as:

Bel(A) =
∑
B⊆A

m(B) (3)

Pl(A) =
∑

B∩A �=∅

m(B) (4)

Definition 6. Given two belief structures m1 and m2, the combinational rule m1 ⊕ m2(A) can be denoted as:

m1 ⊕ m2(A) = 1

K

∑
B∩C=A

m1(B)m2(C) (5)

where K =∑B∩C �=∅
m1(B)m2(C) = 1 −∑B∩C=∅

m1(B)m2(C)

Definition 7. Assume that there are n belief structures, the combinational rule is expressed as m1 ⊕ m2 ⊕ · · · ⊕ mn(A):

(m1 ⊕ m2 ⊕ · · · ⊕ mn)(A) = 1

K

∑
A1∩A2∩···∩An=A

m1(A1) · · ·mn(An) (6)

where

K =
∑

m1(A1)m2(A2) · · ·mn(An) = 1 −
∑

m1(A1)m2(A2) · · ·mn(An)
A1∩A2∩···∩An �=∅ A1∩A2∩···∩An=∅

4
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Definition 8. Given a special case that two belief structures m1 and m2 are intervals, the combinational rule m1 ⊕ m2(A) can be denoted 
as:

max/min m1 ⊕ m2(A) =
∑

B∩C=A

m1(B)m2(C) (7)

s.t.
∑
B⊆�

m1(B) = 1;
∑
C⊆�

m2(C) = 1;

inf m1(B) ≤ m1(B) ≤ supm1(B);
inf m2(C) ≤ m2(C) ≤ supm2(C).

Definition 9. The belief rule base structure containing K rules can be described as:

I R = 〈(X, A), (Y , C), IC D, �, W
〉

Where X = {Xi |i = 1, 2, · · · , I} is the premise attribute set; A = {A(Xi)|i = 1, 2, · · · , I} stands for the attribute value set of Xi ; 
Y = {Y j| j = 1, 2, · · · , J } is the conclusion attribute set; C = {C(Y j)| j = 1, 2, · · · , J } represents the attribute value set of Yi ; 
IC D = {Icd(�)|Icd(�) ∈ I[0, 1]} is the belief set and Icd(�) evinces the belief degree of case �; � = {w1, · · · , wk, · · · , w K } repre-
sents the weight vector of rules and 0 ≤ wk ≤ 1; W = {w1, · · · , wi, · · · , w I } is the weight vector of premise attributes, 0 ≤ wi ≤ 1 and ∑I

t=1 wt = 1.

Definition 10. The kth rule I Rk in BRB model I R = 〈
(X, A), (Y , C), IC D, �, W

〉
means:

IF 
(

X1 = Ak
1, Icdk(X1 = Ak

1)
)∧ · · ·∧(Xi = Ak

i , Icdk(Xi = Ak
i )
)∧ · · ·∧(Xl = Ak

I , Icdk(Xl = Ak
I )
)

THEN 
(
Y1 = Ck

1, Icdk(Y1 = Ck
1)
)∧ · · ·∧(Y j = Ck

j , Icdk(Y j = Ck
j )
)∧ · · ·∧(Y J = Ck

J , Icdk(Y J = Ck
J )
)
.

With Icdk(Rk), wk , W = {w1, · · · , wi, · · · , w I
}

For short, the rule I Rk can be expressed as:
IF 
(

Ak
1, α

k
1

)∧ · · ·∧(Ak
i , α

k
i

)∧ · · ·∧(Ak
I , α

k
I

)
THEN 

(
Ck

1, β
k
1

)∧ · · ·∧(Ck
j , β

k
j

)∧ · · ·∧(Ck
J , β

k
J

)
.

With Icdk(Rk), wk , W = {w1, · · · , wi, · · · , w I
}

Definition 11. The BRB model is:

I R = 〈(X, A), (Y , C), IC D, �, W
〉

and the input is

Input = {(a1, α1
)
, · · · ,

(
ai, αi

)
, · · · ,

(
aI , αI

)}
For any i ∈ {1, 2, · · · , I

}
, if Ak

i = ai or Ak
i = φ, the input Input matches the rule I Rk and I Rk is activated successfully.

2.2. A new approach for calculating the similarity between different IVNSs

For the proposed method, how to calculate the similarity between IVNSs is a crucial step. First, we offer some previous studies.

Definition 12. Given two IVNSs A = {〈x, ([T L
A(x), T U

A (x)], [I L
A(x), IU

A (x)], [F L
A(x), F U

A (x)])〉|x ∈ X} and B = {〈x, ([T L
B(x), T U

B (x)], [I L
B(x), IU

B (x)],
[F L

B(x), F U
B (x)])〉|x ∈ X}.

a) Similarity measurement based on Hamming distance [58].

dH (A, B) = 1

6

(|T L
A(x) − T L

B(x)| + |T U
A (x) − T U

B (x)| + |I L
A(x) − I L

B(x)| + |IU
A (x) − IU

B (x)| + |F L
A(x) − F L

B(x)| + |F U
A (x) − F U

B (x)|);
S1(A, B) = 1 − dH (A, B).

(8)

b) Similarity measurement based on Euclidean distance [58].

dE(A, B) =
[1

6

((
T L

A(x) − T L
B(x)

)2 + (T U
A (x) − T U

B (x)
)2 + (I L

A(x) − I L
B(x)

)2 + (IU
A (x) − IU

B (x)
)2

+(F L
A(x) − F L

B(x)
)2 + (F U

A (x) − F U
B (x)

)2
)] 1

2 ; (9)
S2(A, B) = 1 − dE(A, B).

5
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c) Cosine similarity measurement [59].

S3(A, B) = 1

2

{[
T L

A(x)T L
B(x) + I L

A(x)I L
B(x) + F L

A(x)F L
B(x) + T U

A (x)T U
B (x) + IU

A (x)IU
B (x) + F U

A (x)F U
B (x)

]
/[

(T L
A(x))2 + (I L

A(x))2 + (F L
A(x))2 + (T U

A (x))2 + (IU
A (x))2 + (F U

A (x))2

+(T L
B(x))2 + (I L

B(x))2 + (F L
B(x))2 + (T U

B (x))2 + (IU
B (x))2 + (F U

B (x))2]}
(10)

Remark. Assume that A1 = [0, 12 ], [0, 12 ], [0, 0], A2 = [0, 0], [0, 12 ], [0, 12 ], and B = [0, 12 ], [0, 12 ], [0, 12 ], in terms of methods a) and b), the 
similarity values calculated by the two methods are equal, i.e., S1(A1, B) = S1(A2, B) and S2(A1, B) = S2(A2, B). However, it is obvious 
that the difference in non-membership between A1 and B is the main cause for S1(A1, B) and S2(A1, B). On the contrary, S1(A2, B) and 
S2(A2, B) are obtained because of the inconsistency in membership. In other words, the two methods can only measure the similarity 
between IVNSs as a whole, but can not reveal the differences between sets in detail. For method c), it is worth noting that the results are 
always equal to 0 when [T L

A(x), T U
A (x)] = [I L

A(x), IU
A (x)] = [F L

A(x), F U
A (x)] = [0, 0] or [T L

B(x), T U
B (x)] = [I L

B(x), IU
B (x)] = [F L

B(x), F U
B (x)] = [0, 0], 

even the formula is meaningless if A = B = [0, 0], [0, 0], [0, 0], which suggests that there are still some limitations for the method.
Considering that it is flawed to make use of a single value to describe the similarity between IVNSs, meanwhile, in order to promote 

relevant research, we propose a new expression in this paper, i.e., interval-valued similarity. First, we will introduce four prerequisites that 
similarity must satisfy.

Theorem 1. Suppose that A, B and C are three fuzzy sets, if S(A, B) meets the following conditions, then it is called the similarity between A and B
[60]:

1) 0 ≤ S(A, B) ≤ 1;
2) If A = B, then S(A, B) = 1;
3) S(A, B) = S(B, A);
4) If A ⊆ B ⊆ C , then S(A, C) ≤ S(A, B) and S(A, C) ≤ S(B, C).

Definition 13. Given two IVNSs A = {〈x, ([T L
A(x), T U

A (x)], [I L
A(x), IU

A (x)], [F L
A(x), F U

A (x)])〉|x ∈ X} and B = {〈x, ([T L
B(x), T U

B (x)], [I L
B(x), IU

B (x)],
[F L

B(x), F U
B (x)])〉|x ∈ X}. The similarity S(A, B) = ([S L

T (A, B), SU
T (A, B)], [S L

I (A, B), SU
I (A, B)], [S L

F (A, B), SU
F (A, B)]) between A and B is 

defined below.

S L
T (A, B) = min

{
min

{
1 − T L

A(x) + T L
B(x), 1 − T L

B(x) + T L
A(x)

}
, min

{
1 − T U

A (x) + T U
B (x),1 − T U

B (x) + T U
A (x)

}};
SU

T (A, B) = max
{

min
{

1 − T L
A(x) + T L

B(x),1 − T L
B(x) + T L

A(x)
}
, min

{
1 − T U

A (x) + T U
B (x),1 − T U

B (x) + T U
A (x)

}};
S L

I (A, B) = min
{

min
{

1 − I L
A(x) + I L

B(x),1 − I L
B(x) + I L

A(x)
}
, min

{
1 − IU

A (x) + IU
B (x),1 − IU

B (x) + IU
A (x)

}};
SU

I (A, B) = max
{

min
{

1 − I L
A(x) + I L

B(x),1 − I L
B(x) + I L

A(x)
}
, min

{
1 − IU

A (x) + IU
B (x),1 − IU

B (x) + IU
A (x)

}};
S L

F (A, B) = min
{

min
{

1 − F L
A(x) + F L

B(x),1 − F L
B(x) + F L

A(x)
}
, min

{
1 − F U

A (x) + F U
B (x),1 − F U

B (x) + F U
A (x)

}};
SU

F (A, B) = max
{

min
{

1 − F L
A(x) + F L

B(x),1 − F L
B(x) + F L

A(x)
}
, min

{
1 − F U

A (x) + F U
B (x),1 − F U

B (x) + F U
A (x)

}};
Proof 1. Given any three IVNSs A = {〈x, T A(x), I A(x), F A(x)〉|x ∈ X}, B = {〈x, T B(x), I B(x), F B(x)〉|x ∈ X}, and C = {〈x, TC (x), IC (x), FC (x)〉|x ∈
X}, where (T A(x), I A(x), F A(x)) = ([T L

A(x), T U
A (x)], [I L

A(x), IU
A (x)], [F L

A(x), F U
A (x)]), (T B(x), I B(x), F B(x)) = ([T L

B(x), T U
B (x)], [I L

B(x), IU
B (x)],

[F L
B(x), F U

B (x)]), and (TC (x), IC (x), FC (x)) = ([T L
C (x), T U

C (x)], [I L
C (x), IU

C (x)], [F L
C (x), F U

C (x)]), the proof process is as follows:
1) 0 ≤ S(A, B) ≤ 1.
Because

0 ≤ T L
A(x) ≤ 1, 0 ≤ T U

A (x) ≤ 1;0 ≤ I L
A(x) ≤ 1, 0 ≤ IU

A (x) ≤ 1;0 ≤ F L
A(x) ≤ 1, 0 ≤ F U

A (x) ≤ 1;
and

0 ≤ T L
B(x) ≤ 1, 0 ≤ T U

B (x) ≤ 1;0 ≤ I L
B(x) ≤ 1, 0 ≤ IU

B (x) ≤ 1;0 ≤ F L
B(x) ≤ 1, 0 ≤ F U

B (x) ≤ 1;
then

0 ≤ min
{

1 + T L
A(x) − T L

B(x),1 − T L
A(x) + T L

B(x)
}≤ 1, 0 ≤ min

{
1 + T U

A (x) − T U
B (x),1 − T U

A (x) + T U
B (x)

}≤ 1;
therefore

0 ≤ S L
T (A, B) ≤ 1, 0 ≤ SU

T (A, B) ≤ 1.

The other two cases are similar. So, we can obtain S(A, B) ∈ [0, 1].
2) If A = B , then S(A, B) = 1.
6
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If

T L
A(x) = T L

B(x), T U
A (x) = T U

B (x), I L
A(x) = I L

B(x), IU
A (x) = IU

B (x), F L
A(x) = F L

B(x), F U
A (x) = F U

B (x).

Then

min
{

min
{

1 − T L
A(x) + T L

B(x),1 − T L
B(x) + T L

A(x)
}
,min

{
1 − T U

A (x) + T U
B (x),1 − T U

B (x) + T U
A (x)

}}= 1;
max

{
min

{
1 − T L

A(x) + T L
B(x),1 − T L

B(x) + T L
A(x)

}
,min

{
1 − T U

A (x) + T U
B (x),1 − T U

B (x) + T U
A (x)

}}= 1;
min

{
min

{
1 − I L

A(x) + I L
B(x),1 − I L

B(x) + I L
A(x)

}
,min

{
1 − IU

A (x) + IU
B (x),1 − IU

B (x) + IU
A (x)

}}= 1;
max

{
min

{
1 − I L

A(x) + I L
B(x),1 − I L

B(x) + I L
A(x)

}
,min

{
1 − IU

A (x) + IU
B (x),1 − IU

B (x) + IU
A (x)

}}= 1;
min

{
min

{
1 − F L

A(x) + F L
B(x),1 − F L

B(x) + F L
A(x)

}
,min

{
1 − F U

A (x) + F U
B (x),1 − F U

B (x) + F U
A (x)

}}= 1;
max

{
min

{
1 − F L

A(x) + F L
B(x),1 − F L

B(x) + F L
A(x)

}
,min

{
1 − F U

A (x) + F U
B (x),1 − F U

B (x) + F U
A (x)

}}= 1.

3) S(A, B) = S(B, A).

S(A, B) = ([S L
T (A, B), SU

T (A, B)], [S L
I (A, B), SU

I (A, B)], [S L
F (A, B), SU

F (A, B)])
=
([

min
{

min
{

1 − T L
A(x) + T L

B(x), 1 − T L
B(x) + T L

A(x)
}
,min

{
1 − T U

A (x) + T U
B (x), 1 − T U

B (x) + T U
A (x)

}}
,

max
{

min
{

1 − T L
A(x) + T L

B(x),1 − T L
B(x) + T L

A(x)
}
,min

{
1 − T U

A (x) + T U
B (x),1 − T U

B (x) + T U
A (x)

}}]
,[

min
{

min
{

1 − I L
A(x) + I L

B(x),1 − I L
B(x) + I L

A(x)
}
,min

{
1 − IU

A (x) + IU
B (x),1 − IU

B (x) + IU
A (x)

}}
,

max
{

min
{

1 − I L
A(x) + I L

B(x),1 − I L
B(x) + I L

A(x)
}
,min

{
1 − IU

A (x) + IU
B (x),1 − IU

B (x) + IU
A (x)

}}])
[

min
{

min
{

1 − F L
A(x) + F L

B(x),1 − F L
B(x) + F L

A(x)
}
,min

{
1 − F U

A (x) + F U
B (x),1 − F U

B (x) + F U
A (x)

}}
,

max
{

min
{

1 − F L
A(x) + F L

B(x),1 − F L
B(x) + F L

A(x)
}
,min

{
1 − F U

A (x) + F U
B (x),1 − F U

B (x) + F U
A (x)

}}])
= S(B, A).

4) If A ⊆ B ⊆ C , then S(A, C) ≤ S(A, B) and S(A, C) ≤ S(B, C).
If A ⊆ B ⊆ C , we can get following formulas according to Definition 8:

1 − T L
A(x) + T L

C (x) ≤ 1 − T L
C (x) + T L

A(x); 1 − T L
A(x) + T L

B(x) ≤ 1 − T L
B(x) + T L

A(x).

Thus

min
{

1 − T L
A(x) + T L

C (x),1 − T L
C (x) + T L

A(x)
}= 1 − T L

A(x) + T L
C (x);

and

min
{

1 − T L
A(x) + T L

B(x),1 − T L
B(x) + T L

A(x)
}= 1 − T L

A(x) + T L
B(x).

Given that

T L
C (x) ≤ T L

B(x)

therefore

1 − T L
A(x) + T L

C (x) ≤ 1 − T L
A(x) + T L

B(x);
so

min
{

1 − T L
A(x) + T L

C (x),1 − T L
C (x) + T L

A(x)
}≤ min

{
1 − T L

A(x) + T L
B(x),1 − T L

B(x) + T L
A(x)

}
.

Similar to the above, we can obtain:

S(A, C) ≤ S(A, B),

and

S(A, C) ≤ S(B, C).

Example 1. Given A = ([0.6, 0.7], [0.1, 0.2
]
, 
[
0.2, 0.25

])
and B = ([0.4, 0.6], [0.2, 0.3

]
, 
[
0.5, 0.6

])
, then

a) S1(A, B) = 0.808;
b) S2(A, B) = 0.783;
c) S3(A, B) = 0.219;
d) S(A, B) = ([0.8, 0.9

]
, 
[
0.9, 0.9

]
, 
[
0.65, 0.7

])
.

7
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2.3. A new score function for quantifying the information contained in IVNSs

In addition to the above concepts, the score function of IVNSs that can compare the information contained in different sets also plays 
a vital role in the proposed method. However, limited by the universality of IVNSs, there have been few studies highlighting it. Here, we 
list some previous research results and propose our method on the basis of predecessors.

Definition 14. Given A = {〈x, ([T L
A(x), T U

A (x)], [I L
A(x), IU

A (x)], [F L
A(x), F U

A (x)])〉|x ∈ X}:
a) Wang’s score function SW [61]:

SW (A) = T L
A(x) + T U

A (x)

2
+ 1 − I L

A(x) + IU
A (x)

2
+ 1 − F L

A(x) + F U
A (x)

2
. (11)

Remark 1. It is easily seen, the final results are always equal to 2 as long as T L
A(x) + T U

A (x) = I L
A(x) + IU

A (x) + F L
A(x) + F U

A (x), which is 
absolutely unreasonable. For instance, given two IVNSs A = [0, 1], [0, 0], [0, 1] and B = [0, 1], [0, 1], [0, 0], the equation SW (A) = SW (B)

can be obtained by (18). Nevertheless, difference between the two sets is quite obvious. In other words, the method still has room for 
improvement in distinguishing information contained in different IVNSs.

b) Tang’s score function ST [62]:

ST (A) = 1

6

(
4 + T L

A(x) + T U
A (x) − I L

A(x) − IU
A (x) − F L

A(x) − F U
A (x)

)
. (12)

Remark 2. Similar to a), the same shortcoming also exists in ST when T L
A(x) + T U

A (x) = I L
A(x) + IU

A (x) + F L
A(x) + F U

A (x).
c) Sahin’s score function S S [63]:

S S(A) = 1

4

(
2 + T L

A(x) + T U
A (x) − 2I L

A(x) − 2IU
A (x) − F L

A(x) − F U
A (x)

)
. (13)

Remark 3. There is a problem with the score function, i.e., information omission. The main reason is the insufficient use of the upper and 
lower bounds of the membership, uncertainty, and non-membership.

To avoid the shortcomings of above methods, a novel score function based on p-norm is proposed. Considering that SVNS is a special 
case of IVNSs; therefore, we will discuss the former for the sake of analysis.

Definition 15. Given a SVNS A = {〈x, T A(x), I A(x), F A(x)〉|x ∈ X} and the reference SVNS R = {〈x, 0, 0, 0〉|x ∈ X}, the p-norm distance of 
A from R taking into account the inherent fuzziness is 

(
(T A(x) − 0)p + (I A(x) − 0)p + (F A(x) − 0)p + (1 −πA(x))p

)1/p
and p-norm variation 

between membership and non-membership degree 
∣∣(T A(x))p − (F A(x))p

∣∣1/p
, where πA(x) expresses the hesitancy degree of the set and 

can be calculated by πA(x) = 1 − T A(x) − I A(x) − F A(x). The generalized knowledge measure of A is defined as:

K (A) = 1

21/p + 1

[(
(T A(x))p + (I A(x))p + (F A(x))p + (1 − πA(x))p)1/p + ∣∣(T A(x))p − (F A(x))p

∣∣1/p
]
, (14)

where (p = 1, 2, · · · ).
The p-norm knowledge-based score function of A is:

J (A) =
(

eT A(x)−F A(x) − 1

eT A(x)−F A(x) + 1

)
K (A) (15)

Extend the score function from SVNSs to IVNSs.

Definition 16. Given an IVNS A = {〈x, ([T L
A(x), T U

A (x)], [I L
A(x), IU

A (x)], [F L
A(x), F U

A (x)])〉|x ∈ X}, the score function J (A) can be presented 
as follows:

K (A) = 1

21/p + 1

[(
1

2

((
T L

A(x)
)p + (T U

A (x)
)p + (I L

A(x)
)p + (IU

A (x)
)p + (F L

A(x)
)p + (F U

A (x)
)p
)

+ 1

2

((
T U

A (x) + IU
A (x)

+F U
A (x)

)p + (T L
A(x) + I L

A(x) + F L
A(x)

)p
))1/p

+
∣∣∣∣12
((

T U
A (x)

)p − (F U
A (x)

)p + (T L
A(x)

)p − (F L
A(x)

)p
)∣∣∣∣

1/p]
;

(16)

J (A) =
(

e
T U

A (x)−F U
A (x)+T L

A (x)−F L
A (x)

2 − 1

e
T U

A (x)−F U
A (x)+T L

A (x)−F L
A (x)

2 + 1

)
K (A) (17)

Example 2. Given A = ([0.6, 0.7], [0.1, 0.2
]
, 
[
0.2, 0.25

])
,

a) SW (A) = 2.275;
b) ST (A) = 0.758;
c) S S (A) = 0.563;
d) when p = 2, J (A) = 0.162.
8
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3. Algorithm progress

In this section, the inference process is given and the above concepts are applied to promote the proposed method.
Assume that the BRB model containing K rules is:

I R = 〈(X, A), (Y , C), IC D, �, W
〉

and the input is

Input = {(a1, α1
)
, · · · ,

(
ai, αi

)
, · · · ,

(
aI , αI

)}
where X = {αk

i |i = 1, 2, · · · , I, k = 1, 2, · · · , K } is the premise attribute set; A = {A(αk
i )|i = 1, 2, · · · , I} stands for the attribute value 

set of Xi ; Y = {Y j| j = 1, 2, · · · , J } is the conclusion attribute set; C = {C(Y j)| j = 1, 2, · · · , J } represents the attribute value set of Yi ; 
IC D = Icdk(Rk) = γ k ∈ I([0, 1],[0, 1],[0, 1]) evinces the certitude degree of Rk; � = {w1, · · · , wk, · · · , w K } represents the weight vector of 
rules; W = {wk

1, · · · , wk
i , · · · , wk

I } is the weight vector of premise attributes in rule Rk . The main procedures of the developed method 
can be summarized as follows.

Step 1: Construct the BRB model.
Set a series of domains and calculate the proportions belonging to and not belonging to the domains respectively according to the 

distribution characteristics of measurement data.

Step 2: Determine if the input matches the rule I Rk .
If Ak

i = ai or Ak
i = φ, the input Input matches the rule I Rk , and I Rk is activated successfully.

Step 3: Calculate the similarity between IVNSs.
Use Definition 13 to obtain the interval-valued similarity between the IVNSs of input and the IVNSs of premise attributes.

Step 4: Obtain the certitude degree α̃k of attributes.
Because there is a case where premise attributes are empty sets, the weights belonging to attributes must be reset before calculation, 

and then obtain the activation weights w̃k
i .

w̃k
i = wk

i∑I
t=1 wk

t

. (18)

Then

wk
i = w̃k

i

max
l=1,··· ,l

{w̃k
l }

. (19)

Given the premise attributes are connected by logic “
∧

”, the certitude degree of attributes can be synthesized according to T-norm 
operator [64]:

α̃k =
([

(α̃k)LT , (α̃k)U T
]
,
[
(α̃k)LI , (α̃k)U I

]
,
[
(α̃k)L F , (α̃k)U F

])
,

where

(α̃k)LT =
I∏

i=1

I

√[
(α̃k

i )
LT
]wk

i ; (α̃k)U T =
I∏

i=1

I

√[
(α̃k

i )
U T
]wk

i ;

(α̃k)LI =
I∏

i=1

I

√[
(α̃k

i )
LI
]wk

i ; (α̃k)U I =
I∏

i=1

I

√[
(α̃k

i )
U I
]wk

i ;

(α̃k)L F =
I∏

i=1

I

√[
(α̃k

i )
L F
]wk

i ; (α̃k)U F =
I∏

i=1

I

√[
(α̃k

i )
U F
]wk

i .

Step 5: Calculate the activation weights wk
A of each evidence and the activation weights wk

I R of rules.
In BRB model, certitude degree of the rule I Rk that is expressed by γ k and certitude degree of 

∧
Ak expressed by α̃k make up the 

evidences of conclusions. The activation weights wk
A of 

∧
Ak and the activation weights wk

I R of I Rk are calculated as shown:

wk
A =

([
(wk

A)LT , (wk
A)U T

]
,
[
(wk

A)LI , (wk
A)U I

]
,
[
(wk

A)L F , (wk
A)U F

])

=
([ (α̃k)LT

(α̃k)LT + (γ k)U T
,

(α̃k)U T

(α̃k)U T + (γ k)LT

]
,

[ (α̃k)LI

(α̃k)LI + (γ k)U I
,

(α̃k)U I

(α̃k)U I + (γ k)LI

]
,

[ (αk)L F

k L F k U F
,

(αk)U F

k U F k L F

])
,

(α̃ ) + (γ ) (α̃ ) + (γ )

9



Q. Jia, J. Hu and W. Zhang Aerospace Science and Technology 114 (2021) 106758
and

wk
I R =

([
(wk

I R)LT , (wk
I R)U T

]
,
[
(wk

I R)LI , (wk
I R)U I

]
,
[
(wk

I R)L F , (wk
I R)U F

])

=
([ (γ k)LT

(α̃k)U T + (γ k)LT
,

(γ k)U T

(α̃k)LT + (γ k)U T

]
,

[ (γ k)LI

(α̃k)U I + (γ k)LI
,

(γ k)U I

(α̃k)LI + (γ k)U I

]
,

[ (γ k)L F

(α̃k)U F + (γ k)L F
,

(γ k)U F

(α̃k)L F + (γ k)U F

])
.

Step 6: Obtain the certitude degree β̃k of conclusions ∧Ck .
Basic assignment functions are:

m�k

(
(∧Ak, α̃k)

)= wk
Aα̃k;

m
2�k

(
(∧Ak, α̃k)

)= 1 − wk
Aα̃k;

m
2�k

(
(∧Ak, α̃k)

)= 1 − wk
A,

where m�k

(
(∧Ak, α̃k)

)
stands for the certainty degree that is assigned to conclusions ∧Ck caused by ∧Ak; m

2�k

(
(∧Ak, α̃k)

)
represents 

the certainty degree that is not assigned to conclusions ∧Ck caused by ∧Ak; m
2�k

(
(∧Ak, α̃k)

)
is the certainty degree that is not assigned 

to conclusions ∧Ck caused by the activation weights of ∧Ak .

m�k

(
(I Rk, γ k)

)= wk
I Rγ k;

m
2�k

(
(I Rk, γ k)

)= 1 − wk
I Rγ k;

m
2�k

(
(I Rk, γ k)

)= 1 − wk
I R ,

where m�k

(
(I Rk, γ k)

)
stands for the certainty degree that is assigned to conclusions ∧Ck caused by I Rk; m

2�k

(
(I Rk, γ k)

)
represents the 

certainty degree that is not assigned to conclusions ∧Ck caused by I Rk; m
2�k

(
(I Rk, γ k)

)
is the certainty degree that is not assigned to 

conclusions ∧Ck caused by the activation weights of I Rk .
Then, synthesize the uncertainty of evidences and acquire the synthetic basic probability assignment m�k and m

2�k .

m�k = m�k

(
(I Rk, γ k)

)
m�k

(
(∧Ak, α̃k)

)+ m�k

(
(I Rk, γ k)

)
m

2�k

(
(∧Ak, α̃k)

)+ mU T

2�k

(
(I Rk, γ k)

)
m�k

(
(∧Ak, α̃k)

);
and

m
2�k = m

2�k

(
(I Rk, γ k)

)
m

2�k

(
(∧Ak, α̃k)

)
.

The certitude degree β̃k of conclusions ∧Ck can be obtained:

β̃k =
([

(β̃k)LT , (β̃k)U T
]
,
[
(β̃k)LI , (β̃k)U I

]
,
[
(β̃k)L F , (β̃k)U F

])

=
(

min
{ mT

�k

1 − mT
2�k

,1
}
,min

{ mI
�k

1 − mI
2�k

,1
}
,min

{ mF
�k

1 − mF
2�k

,1
})

Step 7: Obtain the certitude degree of conclusion attributes under the input condition β̃k
j .

Utilize the similarity method and certitude degree of each conclusion in the rule, obtain the certitude degree of conclusions under the 
input fact condition.

β̃k
j =

([
(β̃k

j )
LT , (β̃k

j )
U T
]
,
[
(β̃k

j )
LI , (β̃k

j )
U I
]
,
[
(β̃k

j )
L F , (β̃k

j )
U F
]);

where

(β̃k
j )

LT = min
{
(
˜̃
βk

j )
LT (βk

j )
LT , 1

}
; (β̃k

j )
U T = min

{
(
˜̃
βk

j )
U T (βk

j )
U T , 1

}
;

(β̃k
j )

LI = min
{
(
˜̃
βk

j )
LI (βk

j )
LI , 1

}
; (β̃k

j )
U I = min

{
(
˜̃
βk

j )
U I (βk

j )
U I , 1

}
;

(β̃k
j )

L F = min
{
(
˜̃
βk

j )
L F (βk

j )
L F , 1

}
; (β̃k

j )
U F = min

{
(
˜̃
βk

j )
U F (βk

j )
U F , 1

}
and
10



Q. Jia, J. Hu and W. Zhang Aerospace Science and Technology 114 (2021) 106758
Fig. 1. Position of each measurement tap in FADS system.

(
˜̃
βk

j )
LT = min

{
1 − (βk

j )
LT + (β̃k)LT ,1 − (βk

j )
U T + (β̃k)U T

}
; ( ˜̃

βk
j )

U T = max
{

1 − (βk
j )

LT + (β̃k)LT ,1 − (βk
j )

U T + (β̃k)U T
}
;

(
˜̃
βk

j )
LI = min

{
1 − (βk

j )
LI + (β̃k)LI ,1 − (βk

j )
U I + (β̃k)U I

}
; ( ˜̃

βk
j )

U I = max
{

1 − (βk
j )

LI + (β̃k)LI ,1 − (βk
j )

U I + (β̃k)U I
}
.

(
˜̃
βk

j )
L F = min

{
1 − (βk

j )
L F + (β̃k)L F ,1 − (βk

j )
U F + (β̃k)U F

}
; ( ˜̃

βk
j )

U F = max
{

1 − (βk
j )

L F + (β̃k)L F ,1 − (βk
j )

U F + (β̃k)U F
}
;

Step 8: Rank all of the alternatives.
Utilize the score function proposed in Definition 15 to rank all alternatives, and then, regard the conclusion with the highest score as 

the final result.

4. Application in flush air data sensing

During flight process, the measurement results of airborne sensors play an important role in mastering the flight state. So, whether the 
measurement data of sensors is correct or not will directly affect the safety of the whole flight. Among the numerous sensors, atmospheric 
data sensor is undoubtedly a significant part that cannot be ignored. Traditionally, probe air data sensor is on the basis of pitot tube, the 
sensor measuring angle of attack α, and the sensor measuring angle of sideslip β . Given that the flight envelope of modern aircraft 
is getting larger, the complicated flight environment is prone to causing the damage of probe air data sensor, meanwhile, the exposed 
probe is not suitable for the modern aircraft pursuing the stealth effect. Therefore, flush air data sensing (FADS), an advanced and potential 
airborne sensor, is a good substitute. Different from the traditional air data sensor, FADS is dedicated to making use of the pressure sensors 
embedded in the body to derive α and β , which can effectively overcome the shortcomings of the traditional probe sensor [65,66]. By 
the way, it is because of the failure of the traditional sensor measuring α, two tragic air crash incidents of PT Lion Mentari Airlines and 
Ethiopian Airlines occurred in 2018 and 2019, resulting in 346 deaths. Therefore, the fault detection of FADS is of great significance to 
ensure the whole flight safety.

4.1. Aerodynamic model of FADS

The aerodynamic model of the FADS system combines the potential flow model (under subsonic conditions) and the modified Newto-
nian model (under supersonic conditions) with a correction coefficient ε to meet the requirements applicable in a large Mach range. In 
the subsonic case, the function can be calculated as the isentropic flow; On the contrary, the function can be obtained from the adiabatic 
positive shock relation in the supersonic case. The pressure for any surface tap p(θ) can be expressed as:

p(θ) = qc[cos2(θ) + ε sin2(θ)] + P∞ (20)

where qc and P∞ represent the dynamic pressure and static pressure; the shaped pressure coefficient ε is affected simultaneously by 
α, β , and the flight Mach M∞ , recorded as ε = f (α, β, M∞). The airflow incidence angle θ is defined as the angle between the surface 
normal direction and flow velocity vector direction for any surface tap, given as:

cos(θ) = cos(α) cos(β) cos(λ) + sin(β) sin(φ) sin(λ) + sin(α) cos(β) cos(φ) sin(λ) (21)

where φ and λ indicate the circumferential angle and cone angle of each measurement tap, respectively. The position of each measurement 
tap refers to the system in X-33 aircraft, as shown in Fig. 1, Table 1 expresses the values of φ and λ.

For (20), according to the isentropic flow method and Rayleigh Pitot tube formula, the relation between M∞ , qc , and P∞ is approxi-
mately determined by
11
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Table 1
The circumferential angle and cone angle of each measurement tap.

The number of measurement tap The circumferential angle φ The cone angle λ

1 180◦ 20◦

2 270◦ 20◦

3 0 0

4 90◦ 20◦

5 0 20◦

6 0 45◦

qc

P∞
=

⎧⎪⎨
⎪⎩

(1.0 + 0.2M2∞)3.5 − 1, (M∞ ≤ 1)

166.92M2∞(
M2∞

7M2∞−1
)2.5 − 1, (M∞ > 1)

(22)

For the system, the method of measuring α is called three-point method, i.e., utilize three of the four taps numbered 1, 3, 5 and 6 in 
the longitudinal distribution to obtain α. The reason for not adopting tap 2 and tap 4 is that when α changes, the pressure values of the 
two horizontally distributed taps will not change much. In other words, it does not reflect the change of α very well, which will inevitably 
affect the measurement accuracy.

By combining (20) ∼ (22), the formula for calculating α is expressed as:

α =
⎧⎨
⎩

1
2 tan−1( A

B ), |α| ≤ 45◦

1
2 (π − tan−1( A

B )), |α| > 45◦
(23)

where

A = �ik sin2 λ j + � ji sin2 λk + �kj sin2 λi

B = �ik cosφ j sinλ j cosλ j + � ji cosφk sinλk cosλk + �kj cosφi sinλi cosλi

(24)

and

�ik = pi − pk, � ji = p j − pi, �kj = pk − p j. (25)

Obviously, there are C3
4 = 4 combinations to obtain α, namely α1 obtained from the combination of taps (1,3,5), α2 obtained from the 

combination of taps (1,3,6), α3 obtained from the combination of taps (1,5,6), and α4 obtained from the combination of taps (3,5,6). The 
final output is defined as:

α = α1 + α2 + α3 + α4

4
(26)

For driving the model with interpolation table, high precision aerodynamic data representing the numerical relationship between the 
pressure values of taps and α, M∞ , altitude H is acquired by the software CFX, as shown in Fig. 2 and Fig. 3. Here, some typical state 
points are listed as an example.

4.2. Fault scenarios

Compared with the traditional probe air data sensor, FADS possesses great advantages in measurement accuracy and reliability. Nev-
ertheless, considering that it is mainly used in hypersonic aircraft such as X-33, complex flight environment and high body surface 
temperature may cause the system failure. Usually, the fault scenarios of FADS can be divided into two types: external factors and internal 
factors. The former mainly indicates that the special air flow environment leads to the damage of measurement taps, while the latter 
mainly includes tube leakage, electromagnetic interference, and circuit damage. In terms of FADS, the external factors occupy the main 
part due to the specific application scenarios. Therefore, suppose that when FADS fails, some measurement taps are damaged.

4.3. Illustrative example

The method introduced in Section 3 should be put into practice. Suppose that the BRB model contains five rules, denoted by I R1 (tap 
1 faults), I R2 (tap 5 faults), I R3 (taps 1 and 6 fault), I R4 (taps 3 and 5 fault), and I R5 (all normal). Measurement results of α1, α2, α3, and 
α4 consist of the premise attributes; we set the weight vector of the attributes W = {w1, w2, w3, w4

}= {0.3, 0.2, 0.2, 0.3
}

to express the 
difference. Similar to it, conclusions are also given in the form of IVNSs. Given that the importance of each rule is different, the weight 
vector � = {w1, w2, w3, w4, w5

}
is adopted, γ k represents the certitude degree of kth rule. Assume that the actual α is −3◦ . It is worth 

mentioning that in order to simulate the working environment of this sensor, we have added many noise interferences to the model, not 
just the measurement taps. Due to the failure of tap 1, the four sets of measurements α1, α2, α3, and α4 under various interference noises 
are abnormal, as shown in Fig. 4. In order to derive IVNSs, we set the domains a−2 = [−6, −4], a−1 = [−4, −2], a0 = [−2, 0], a1 = [0, 2], 
a2 = [2, 4], a3 = [4, 6].

The procedures for detecting the fault are summarized in the following steps.

Step 1: Construct the BRB model.
12
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Fig. 2. Aerodynamic data when H = 10000 m.

Fig. 3. Aerodynamic data when H = 12000 m.

According to Fig. 4, the membership, non-membership, and uncertainty degree in the IVNS of input can be obtained with 
the proportions belonging to and not belonging to the domain. The points which are exactly equal to the upper and lower 
bounds of domain are regarded as the uncertain points and the proportion is the uncertainty degree of IVNS. To emphasize 
the uncertainty and randomness, the three proportions will be reasonably expanded into the interval form. In this way, Input =
{(a0, [0.5, 0.62], [0.2, 0.25], [0.1, 0.15]), (a−1, [0.6, 0.7], [0.04, 0.1], [0.2, 0.35]), (a2, [0.8, 0.82], [0.1, 0.13] , [0.05, 0.08]), (a−1, [0.6, 0.65],
[0.3, 0.32], [0.1, 0.13])}. The premise attributes in the form of IVNSs can also be acquired in the same way. Results are shown in Table 2. 
The values of ∧Ck , wk , and γ k are offered by experts and engineering experience.

Step 2: Determine if the input matches the rule I Rk .
Obviously, the input matches I R1, I R3, and I R4 because of the consistency on premise attributes.

Step 3: Calculate the similarity between IVNSs.
The similarity between input and attributes are gained with the proposed approach in Definition 13, as shown in Table 3.

Step 4: Obtain the certitude degree α̃k of attributes.
13
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Fig. 4. Measurement results when tap 1 faults.

Table 2
BRB model in the form of IVNSs.

Rule I Rk Premise ∧Ak Weights wk

I R1 (a0, [0.6,0.63], [0.2,0.35], [0.1,0.2]) ∧ (a−1, [0.5,0.56], [0.13,0.2], [0.2,0.3]) 0.7

∧(a2, [0.4,0.5], [0.24,0.3], [0.2,0.38]) ∧ (a−1, [0.6,0.63], [0.23,0.4], [0.12,0.13])
I R2 (a−2, [0.89,0.92], [0.03,0.05], [0.1,0.15]) ∧ (a0, [0.8,0.9], [0.07,0.08], [0.1,0.15]) 0.9

∧(a−1, [0.8,0.87], [0.02,0.1], [0.11,0.15]) ∧ (a0, [0.7,0.9], [0.1,0.2], [0.09,0.12])
I R3 (a0, [0.89,0.93], [0,0.07], [0.12,0.13]) ∧ (a−1, [0.61,0.71], [0.25,0.35], [0.3,0.35]) 0.8

∧(a2, [0.61,0.66], [0.34,0.45], [0.08,0.14]) ∧ (a−1, [0.83,0.92], [0.1,0.14], [0.3,0.45])
I R4 (a0, [0.62,0.72], [0.12,0.23], [0.1,0.15]) ∧ (a−1, [0.78,0.84], [0.13,0.18], [0.2,0.3]) 0.8

∧(a2, [0.64,0.7], [0.12,0.23], [0.12,0.2]) ∧ (a−1, [0.78,0.95], [0.05,0.09], [0.08,0.1])
I R5 (a−1, [0.7,0.74], [0.1,0.15], [0.1,0.14]) ∧ (a−1, [0.6,0.65], [0.3,0.32], [0.1,0.13]) 0.8

∧(a−1, [0.74,0.78], [0.04,0.06], [0.13,0.15]) ∧ (a−1, [0.84,0.89], [0.01,0.02], [0.09,0.1])
Rule I Rk Conclusion ∧Ck Belief degree γ k

I R1 (c1, [0.78,0.9], [0.05,0.12], [0.03,0.1]) ([0.78,0.79], [0.11,0.2], [0.08,0.12])
I R2 (c2, [0.8,0.91], [0.06,0.13], [0.2,0.3]) ([0.78,0.9], [0.1,0.2], [0.2,0.35])
I R3 (c3, [0.82,0.9], [0.15,0.2], [0.13,0.15]) ([0.72,0.8], [0.01,0.1], [0.2,0.3])
I R4 (c4, [0.8,0.87], [0.05,0.09], [0.07,0.11]) ([0.85,0.9], [0.25,0.31], [0.03,0.1])
I R5 (c5, [0.91,0.94], [0.02,0.04], [0.03,0.06]) ([0.74,0.81], [0.1,0.12], [0.09,0.1])

Table 3
Similarity between Input and Premise Attributes.

Rule I Rk a0 a−1 a2 a−1

I R1 [0.9,0.99],[0.8,0.9],[0.9,0.95] [0.86,0.9],[0.85,0.93],[0.8,0.84] [0.6,0.68],[0.78,0.81],[0.75,0.9] [0.98,1],[0.73,0.87],[0.81,0.82]

I R3 [0.61,0.69],[0.9,0.92],[0.88,0.92] [0.99,0.99],[0.95,1],[0.74,0.75] [0.81,0.84],[0.63,0.71],[0.98,0.99] [0.73,0.77],[0.99,1],[0.87,1]

I R4 [0.88,0.9],[0.92,0.98],[0.9,0.9] [0.82,0.86],[0.83,0.93],[0.8,0.84] [0.84,0.88],[0.85,0.93],[0.93,0.98] [0.7,0.82],[0.95,0.96],[0.78,0.78]

I R1:

α̃1 = [0.868,0.919], [0.816,0.897], [0.849,0.897];
I R3:

α̃3 = [0.787,0.828], [0.892,0.925], [0.887,0.932];
I R4:

α̃4 = [0.833,0.885], [0.912,0.961], [0.871,0.886].

Step 5: Calculate the activation weights wk of each evidence and the activation weights wk of rules.
A I R

14
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Table 4
Rankings with different p.

Rule I Rk I R1 I R3 I R4 Ranking

p = 1 0.399 0.375 0.386 c1 > c4 > c3

p = 2 0.381 0.345 0.369 c1 > c4 > c3

p = 5 0.393 0.357 0.376 c1 > c4 > c3

p = 8 0.405 0.368 0.384 c1 > c4 > c3

p = 10 0.411 0.374 0.389 c1 > c4 > c3

I R1:

w1
A = [0.524,0.541], [0.803,0.891], [0.876,0.918];

w1
I R = [0.459,0.477], [0.109,0.197], [0.082,0.124].

I R3:

w3
A = [0.496,0.535], [0.899,0.989], [0.747,0.823];

w3
I R = [0.465,0.504], [0.011,0.101], [0.177,0.253].

I R4:

w4
A = [0.481,0.510], [0.746,0.794], [0.897,0.967];

w4
I R = [0.490,0.520], [0.206,0.254], [0.033,0.103].

Step 6: Obtain the certitude degree β̃k of conclusions ∧Ck .
I R1:

β̃1 = [0.882,0.974], [0.787,1], [0.882,1];
I R3:

β̃3 = [0.822,0.990], [0.868,1], [0.816,1];
I R4:

β̃4 = [0.883,1], [0.847,1], [0.897,1].

Step 7: Obtain the certitude degree of conclusion attributes under the input condition β̃k
j .

I R1:

β̃1
j = [0.838,0.992], [0.087,0.226], [0.056,0.190];

I R3:

β̃3
j = [0.822,0.981], [0.258,0.360], [0.219,0.278];

I R4:

β̃4
j = [0.866,0.983], [0.090,0.172], [0.128,0.208].

Step 8: Rank all of the alternatives.
The final results calculated by the new score function are shown in Table 4. No matter what the values of p are, the final ranking is 

always c1 > c4 > c3. Thus, the conclusion is that tap 1 faults.

5. Comparative analysis and discussion

In order to illustrate the rationality of the proposed method, a comparison is going to be performed with other three methods, including 
the methods with parity equation [56], χ2 distribution [57], and ordered weighted averaging (OWA) [67]. The comparison analysis is based 
on the same illustrative example.
15
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Fig. 5. The results based on parity equation. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

5.1. Comparison of ranking results

1) The method based on parity equation: In [56], the core idea is to establish the parity equation f (θi, θ j, θk, pi, p j, pk) according to the 
aerodynamic model of FADS system.

f (θi, θ j, θk, pi, p j, pk) =
⎡
⎢⎣

cos2 θk − cos2 θ j

cos2 θi − cos2 θk

cos2 θ j − cos2 θi

⎤
⎥⎦

T ⎡
⎢⎣

pi

p j

pk

⎤
⎥⎦= 0.

However, this system inevitably exists measurement noise, that is, this equation cannot always hold. Thus, the threshold op based 
on engineering experience is adopted. As long as f (θi, θ j, θk, pi, p j, pk) < op , the above equation is still considered to be approximately 
true and the flag bit is set to 0. Considering that there are four measurement taps researched in the paper, this means that there will 
be a total of C3

4 = 4 flags, which are f1 = f (θ1, θ3, θ5, p1, p3, p5), f2 = f (θ1, θ3, θ6, p1, p3, p6), f3 = f (θ1, θ5, θ6, p1, p5, p6), and f4 =
f (θ3, θ5, θ6, p3, p5, p6). After all the flag bits are obtained, the fault type is finally determined by comparing with the standard fault vector 
table in [56]. Therefore, whether a suitable op can be selected or not will directly affect the final fault detection results. For the purposes 
of this example, the values of the parity equation and op are shown in the top half of Fig. 5. As we can see, op = 50 is an advisable 
choice. However, once the noise variance of the system increases, The amplitude of f (θi, θ j, θk, pi, p j, pk) will absolutely increase with it. 
The result is shown in the lower half of Fig. 5 when the variance is 400. Obviously, all the data is mixed together and it is impossible to 
find a suitable op . Thus, the method is invalid.

2) The method based on χ2 distribution: As for the method in [57], the calculation procedures can be summarized into two steps: 1) 
Determine the situation of system according to whether the sum of χ2 is greater than 7.78. This particular number is chosen because of 
the characteristics of χ2. Once χ2(4) = 7.78, the probability of failure is more than 90% and the system is basically deemed to fault; 2) 
Judge the specific fault type by excluding the taps one by one.

As shown in the left half of Fig. 6, the sum of χ2 is more than 7.78 and the system is abnormal. In order to determine the specific 
fault taps, all the four measurement taps are excluded one by one, the left half of Fig. 6 plots the four typical situations. For example, the 
green curve shows the values of χ2 after removing tap 1. The bar chart reveals that the tap 1 is the faulty one visually.

Nevertheless, similar to the parity equation, the accuracy of this method is also largely constrained by the variance of noise. This is 
because the stability of a series of data and the variance is negatively correlated. In other words, as the variance increases, the sum of 
squares after the normalization of the residuals will not particularly fit the distribution of χ2(4), which will certainly affect the final 
measurement accuracy. As we can see from the right half of Fig. 6, although this method can detect the failure of system, it can not offer 
the specific fault taps.

3) The method based on OWA: The above two methods are by far the most widely used methods in the fault detection of FADS. To further 
illustrate the superiority of the proposed method, we try to consider the problem from the perspective of information fusion and make 
a detailed comparison. Among all the fusion methods, OWA is a classical and convincing method because of the simple calculation and 
high accuracy. It is an aggregation operator that provides a parameterized family of aggregation operators between the minimum and the 
maximum [67]. Assume that f : Rn → R , f (a1, a2, · · · , an) =∑n

j=1 w jb j , where W = (w1, w2, · · · , wn)T represents the weight vector, 
w j ∈ [0, 1] and 

∑n
j=1 w j = 1. b j is the jth largest in (a1, a2, · · · , an).

For the example in Section 5, a0, a−1, a2, and a−1 are viewed as the four attributes. The core idea is to fuse the similarity between 
Input and the four attributes of I R1, I R2, I R3, I R4, and I R5. The reason for this is that similarity can well reflect the degree of matching. 
For instance, if the similarity between Input and the four attributes of I R1 is the greatest, then Input and I R1 can be considered the 
closest and the fault detection result is “Tap 1 faults”. The main calculation process can be divided into three steps: 1) Calculate the score 
16
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Fig. 6. The results based on χ2 distribution.

Table 5
The score value of each IVNS.

Attributes

Type
Tap 1 faults Taps 1 and 6 fault Taps 3 and 5 fault

a0 0.0138 -0.1788 -0.0068

a−1 0.0411 0.1912 0.0129

a2 -0.1201 -0.1128 -0.0696

a−1 0.1293 -0.1400 -0.0126

of each similarity in the form of IVNS in Table 3; 2) Integrate the score values of four attributes belonging to the same rule; 3) Regard the 
rule with the highest score as the final fault detection result.

The score of each IVNS can be derived by Definition 16, as shown in Table 5.
In the process of fusion, a crucial step is the determination of the weight vector. For OWA, a classic solution is fuzzy semantic quanti-

zation operator method proposed by Professor Zadeh in [68]:

wi = Q
[ i

n

]− Q
[ i − 1

n

]
, i = 1, 2, · · · ,n (27)

In this example, n = 4. Q represents the fuzzy semantic quantization operator and it can be calculated:

Q (r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, r < ϒ

r−ϒ
�−ϒ

, ϒ ≤ r ≤ �

1, r > �

(28)

where ϒ and � are two parameters, and can be determined according to the different principles. ϒ, � ∈ [0, 1]. In [68,69], Herrera and 
Zadeh defined three fuzzy semantic quantization operators: “Most”, “At least half ”, and “As many as possible”. In these three cases, the 
parameters are set to (ϒ, � ) = (0.3, 0.8), (ϒ, � ) = (0, 0.5), and (ϒ, � ) = (0.5, 1), respectively. The corresponding weight vectors are 
W1 = (w1, w2, w3, w4) = (0, 0.4, 0.5, 0.1), W2 = (w1, w2, w3, w4) = (0.5, 0.5, 0, 0), and W3 = (w1, w2, w3, w4) = (0, 0, 0.5, 0.5). 
To verify the effectiveness of OWA comprehensively, the three weight vectors are analyzed separately. The results are shown in Table 6. It 
can be seen that the fault detection results in the first two cases are correct. However, when W3 = (w1, w2, w3, w4) = (0, 0, 0.5, 0.5), 
the result is “Taps 3 and 5 fault”, the method is invalid.

To fully analyze the differences of the six methods and prove the superiority of the proposed method, many repetitive digital simula-
tions are carried out when variances are 1002 Pa2, 1502 Pa2, 2002 Pa2, 2502 Pa2, 3002 Pa2, 3502 Pa2, and 4002 Pa2. Results are shown 
in Fig. 7 and Table 7. With the increase of variance, the accuracy of all methods will decrease accordingly. But it can be seen that the 
accuracy of the proposed method can always maintain a high accuracy. The causes of these differences will be carefully analyzed in the 
following part.
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Table 6
Fault detection results under different weight vectors.

Tap 1 faults Taps 1 and 6 fault Taps 3 and 5 fault

W = (0, 0.4, 0.5, 0.1)

0.0113 -0.1330 -0.0160 Tap 1 faults

W = (0.5, 0.5, 0, 0)

0.0852 0.0392 0.0031 Tap 1 faults

W = (0, 0, 0.5, 0.5)

-0.0532 -0.1594 -0.0411 Taps 3 and 5 fault

Fig. 7. Accuracy of the six methods under different variances.

Table 7
Accuracy of the six methods.

Variances [Pa2]

Methods
Proposed method Parity equation χ2 distribution OWA with W1 OWA with W2 OWA with W3

100 100% 100% 100% 100% 100% 37.6%

150 100% 85.8% 96.1% 97.6% 98.2% 26.6%

200 95.9% 67.5% 78.9% 90.5% 88.7% 15.4%

250 90.1% 31.7% 54.8% 81.1% 83.0% 11.7%

300 83.8% 12.2% 20.0% 77.1% 73.5% 6.1%

350 81.7% 6.5% 10.1% 69.6% 70.3% 5.3%

400 78.6% 1.7% 8.9% 63.8% 66.9% 2.9%

5.2. Discussion

For the proposed method, it is dedicated to solving the fault detection of FADS system from a new perspective. Compared with the 
model itself, we pay more attention to the uncertainty and randomness of results and incline to utilize IVNSs, BRB, and D-S evidence 
theory to describe the up-and-down results and consider the uncertainty and randomness of the system, rather than focusing on a single 
point. However, the system will encounter all kinds of unknown disturbances, that is, the model is uncertain. Therefore, the fault detection 
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methods based on the model are invalid while the proposed method shows strong robustness even if the fluctuation range of measurement 
results increase caused by the measurement noise. Although the method proposed in this paper does provide a new idea for solving the 
fault detection problem of FADS system, there are still some limitations: 1) some data is given on the basis of engineering experience 
when establish the BRB model; 2) The established model is not very accurate because of multiple disturbances and uncertainties. We will 
conduct relevant research based on extensive data in future.

6. Conclusion

In this paper, the fault detection problem has been investigated by combining IVNSs, BRB, and D-S evidence reasoning. Generally 
speaking, this paper makes five contributions with respect to the existing studies. First, IVNSs, BRB, and D-S evidence reasoning that 
all possess great power for addressing problems with random and uncertain information are firstly integrated. Next, a new approach of 
calculating the similarity between IVNSs is proposed. Furthermore, a new score function is put forward, which can get over the previous 
deficiencies. Finally, a high precision FADS model is established with the aerodynamic data obtained from the CFD software and the 
proposed algorithm is successfully applied to the fault detection of FADS. Results of numerical example show that the proposed method 
can address the fault detection problem efficiently. Compared with the existing methods, even on the condition of high variance, the 
proposed method will also have an excellent performance.
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