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Abstract: Competition among different universities depends largely on the competition for talent. 
Talent evaluation and selection is one of the main activities in human resource management (HRM) 
which is critical for university development. Firstly, linguistic neutrosophic sets (LNSs) are 
introduced to better express multiple uncertain information during the evaluation procedure. We 
further merge the power averaging operator with LNSs for information aggregation and propose a 
LN-power weighted averaging (LNPWA) operator and a LN-power weighted geometric (LNPWG) 
operator. Then, an extended technique for order preference by similarity to ideal solution (TOPSIS) 
method is developed to solve a case of university HRM evaluation problem. The main contribution 
and novelty of the proposed method rely on that it allows the information provided by different 
decision makers (DMs) to support and reinforce each other which is more consistent with the actual 
situation of university HRM evaluation. In addition, its effectiveness and advantages over existing 
methods are verified through sensitivity and comparative analysis. The results show that the 
proposal is capable in the domain of university HRM evaluation and may contribute to the talent 
introduction in universities. 

Keywords: linguistic neutrosophic sets; multi-criteria group decision-making; power aggregation 
operator; extended TOPSIS method 

 

1. Introduction 

Human resource management (HRM) refers to a process of hiring and developing employees to 
enhance the core competitiveness of an organization [1]. Acting as the root of national 
competitiveness, a success in HRM may bring benefit to both the organization and employee well-
being; thus, effective HRM has received a higher demand and recognition during the 21st century. 
Over the past three decades, theory and research on HRM has made considerable progress in various 
fields, such as tourism industries, health services and universities [2–5]. For example, Zhang et al. [5] 
investigated a case of HRM for teaching quality assessment using a multi-criteria group decision-
making (MAGDM) framework. This framework aimed to improve the teaching quality of college 
teachers and further enhance the competitiveness of colleges and universities. Apart from the 
classroom teaching quality evaluation problems in universities, talent introduction also plays a 
significant role in universities’ HRM. Particularly, selecting or evaluating these applicants by 
inappropriate methods may lead to a failure in HRM and even influence the overall efficiency of the 
university. Since various applicants and influential criteria are usually involved in the evaluation 
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procedures of HRM by several decision makers (DMs), the evaluation should be recognized as a 
multi-criteria group decision-making (MCGDM) problem. 

The theory of fuzzy set (FS) can handle uncertainty and fuzziness. The neutrosophic set (NS) [6] 
was initially proposed to express membership, nonmembership and indeterminacy, which is a 
generalization of FS [7]. Later, many extensions emerged to tackle real engineering and scientific 
problems [8], among which the popularly used forms are the simplified neutrosophic set (SNS) [9] 
and the single-valued trapezoidal neutrosophic set (SVTNS) [10–12]. These extensions have been 
successfully applied in various domains, including green product development [13], outsourcing 
provider selection [14], clustering analysis [15,16]. 

However, on some real occasions, people may tend to provide their evaluation information 
using natural languages rather than the above extensions which are too complex to obtain. For 
example, people can give some linguistic terms like “excellent”, “medium” or “poor” to evaluate the 
performance of a company staff based on various criteria. Moreover, it may be also difficult for a 
single person to evaluate all alternatives under each influential aspect due to the high complexity of 
decision environments. Therefore, the linguistic MCGDM under fuzzy environments has received 
extensive research attention and gained many excellent results [17]. Up to now, various extensions 
have been studied in depth to describe linguistic information, such as hesitant fuzzy linguistic term 
set and some of its extended forms [18–22], linguistic intuitionistic fuzzy set (LIFS) [23,24], Z-number 
[25], and probabilistic linguistic term set [26,27] etc. However, the drawback of these extensions for 
linguistic MCGDM is that they cannot cover the inconsistent linguistic decision information which 
will appear with increasing complexity of the internal and external decision-making environments. 
Another example is that when one DM was asked to give some evaluations on a teacher from overseas 
under the aspect teaching skill, the DM may describe his or her bad judgments on the teaching 
attitude but the good or neutral aspects of the teacher’s teaching capacity and teaching method as 
well. An example of that can be seen from the evaluation: “The teacher is rather average in writing 
and oral language, and he is able to tailor his teaching method to different students. But my only 
complaint is that the teacher is a little strict in teaching attitude”. It can be noted that the above 
evaluation includes positive, neutral and negative information all at once. Therefore, this poses a 
great challenge for linguistic MCGDM methods on how to capture such inconsistent information. 

To tackle the above problem, Fang and Ye [28] proposed the linguistic neutrosophic set (LNS), 
which was generalized from the concept of LIFS [23,24]. By contrast, one LNS is represented by three 
independent functions of truth-membership, indeterminacy-membership, and falsity-membership in 
the form of linguistic terms. Thus, the LNS has its prominent advantages in depicting inconsistent 
and indeterminate linguistic information, and several scholars have extended the LNS in several 
aspects, such as aggregation operators and similarity (or distance) measures. Li et al. [29] introduced 
a linguistic neutrosophic geometric Heronian mean (LNGHM) operator and a linguistic neutrosophic 
prioritized geometric Horonian mean (LNGHM) operator. Fan et al. [30] merged the LNSs with 
Bonferroni mean operator and proposed a linguistic neutrosophic number normalized weighted 
Bonferroni mean (LNNNWBM) operator and a linguistic neutrosophic number normalized weighted 
geometric Bonferroni mean (LNNNWGBM) operator. Shi and Ye [31] introduced two cosine 
similarity measures of LNSs to tackle MCGDM problems. Liang et al. [32] defined several distance 
measures of LNS and presented an extended TOPSIS method under the LNS environment. 

To facilitate the mathematical operation, several quantification tools of natural language have 
been introduced, such as 2-type [33], triangular (or trapezoidal) fuzzy number [34,35], cloud model 
[36] and symbol model [37,38]. These models have greatly contributed to the ease of computation for 
linguistic information; however, they cannot cover all types of problems and have some limitations 
to be addressed. To tackle the limitations of prior research, Wang et al. [39] introduced a series of 
linguistic scale functions (LSFs) for converting linguistic information into real numbers. Through this 
model, flexibility of modeling information has been greatly enhanced by considering different 
semantic situations and loss and distortion of information has been mitigated to a great extent. Thus, 
we apply the LSFs to tackle linguistic neutrosophic information in this paper. 
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The power averaging (PA) operator, proposed by Yager [40], has been used as one effective 
information aggregation tool in solving MCDM [41–43] problems since its appearance. Unlike other 
common aggregation tools, such as weighted averaging [44] and ordered weighted averaging [45,46], 
which implicate the independent hypothesis among inputs. The PA operator allows the information 
between inputs to support and reinforce each other. In the HRM evaluation problems, it is very 
suitable for PA operator to integrate evaluation information of different teams of DMs, as these DMs 
are not completely independent and the PA operator can measure their support degree among one 
another. 

TOPSIS method was first presented by Huang and Yoon [47]. It considered that the better 
scheme would be closer to ideal solution [48]. Due to the inevitable vagueness inherent in decision 
information, fuzzy TOPSIS and its extensions have been deployed [49–51] in real world applications. 
Considering the advantages of this method, an extended TOPSIS technique is introduced to evaluate 
alternatives. 

As discussed above, our study developed an integrated method by combining PA operator with 
LNSs and constructing an extended TOPSIS technique to tackle the university HRM evaluation 
problem. The novelties and contributions of the proposal are listed as following. (1) New algorithms 
for LNNs based on LSFs is defined, which can reflect differences between various semantics. (2) 
Based on LSFs and the new operations, a generalized distance measure for LNNs is introduced, 
which can be reduced to Hamming distance and Euclidean distance of LNNs. The proposed distance 
measure is more flexible than prior studies because of the application of LSFs and novel operations. 
(3) Considering the fact that DMs in case of university HRM evaluation may support each other, this 
paper merges the PA operator with LNSs to tackle information fusion. The proposed method can 
improve the adaptability of LNNs in real decision. 

The context in the rest of this paper is as follows: Section 2 defines some operations and distance 
measurements of LNSs. Section 3 proposes two aggregation operators for LNSs and investigates their 
properties. Next, the detailed procedures for a linguistic MCGDM problem are given in Section 4. 
Then, a case of university HRM evaluation problem verifies the feasibility and validity of our method 
in Section 5. Finally, Section 6 presents the conclusion and future work. 

2. New Operations and Distance Measure for LNNs 

After introducing the concepts of linguistic term set (LTS) and LNS, this section defines some 
new operations and a distance measure for LNNs based on the Archimedean t-norm and t-conorm. 
For better representation, some preliminaries about LSFs and the Archimedean t-norm and t-conorm 
are provided in appendixes A and B, respectively. 

2.1. Linguistic Neutrosophic Set 

{ }*0,1, ,2 ,H h t t Nτ τ= = ∈  is a discrete term set, which is finite and totally ordered. Herein, 
*N  presents a positive integers’ set, hτ  is the value of a linguistic variable. Thus, the linguistic 

variable hτ  in H  meets the following two properties [34]: (1) The LTS is ordered: h hτ υ<  if and 
only if τ υ< , where ( , )h h Hτ υ ∈ ; and (2) With existing of a negation operator 

(2 )( ) ( , 0,1, ,2 )tneg h h tτ τ τ υ−= =  . 

In order to preserve as much of the given information and avoid information loss, Xu [52] 
extended { }0,1, ,2H h tτ τ= =   into a continuous LTS { }1H h Lτ τ= ≤ ≤ , which satisfies the 

properties of discrete term set H . When h Hτ ∈ , hτ  is called the original linguistic term; otherwise, 
hτ  is called the virtual linguistic term. 

Definition 1 ([28,29]). Let X  be a universe of discourse and [ ]{ }0 2 , 0,2tH h h h h tα α α= ≤ ≤ ∈ , and the 

LNSs can be defined as follows: 
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( ) ( ) ( ){ }, , ,
a a aT I Fa x h x h x h x x X= ∈
  


, (1) 

where 0 6a a aT I F t≤ + + ≤   and the values ( ) ( ) ( ), ,
a a Fa
T Ih x h x h x H∈
    represent the degrees of truth-

membership, indeterminacy-membership, and falsity-membership, respectively. 

Noteworthy, if there contains only one element in X , a  is called a LNN, for notational 
simplicity, it can be denoted by , ,

a a aT I Fa h h h=
  

 . 

2.2. New Operations for LNNs 

According to the LSFs in Appendix A and the Archimedean t-norm and t-conorm presented in 
Appendix B, some novel operations for LNNs are defined as follows. 

Definition 2. Let , ,
a a aT I Fa h h h=
  

  and , ,
b b bT I Fb h h h=
  

  be two arbitrary LNNs, and 0ζ ≥ ; then the 

operations for LNNs are defined as follows: 

(1) 

( ) ( )
( ) ( )

( ) ( )
( )( ) ( )( )

* * * *
* 1 * 1

* * * *
, ,

1 1 1 1
a ab b

a b a b

T T I I

T T I I

f h f h f h f h
a b f f

f h f h f h f h

− −
  + +  ⊕ =   + + − −    

  

 



 

( ) ( )
( )( ) ( )( )

* *
* 1

* *1 1 1
a b

a b

F F

F F

f h f h
f

f h f h

−
 + 
 + − − 
 



 ; 

(2) 

( ) ( )
( )( ) ( )( )

( ) ( )
( ) ( )

* * * *
* 1 * 1

* ** *
, ,

11 1 1
a ab b

a ba b

T T I I

I IT T

a b
f h f h f h f h

f f
f h f hf h f h

− −⊗ =
   + +   
   ++ − −    

  





 
( ) ( )

( ) ( )
* *

* 1
* *1
a b

a b

F F

F F

f h f h
f

f h f h

−
 +
 
 + 





; 

(3) 

( )( ) ( )( )
( )( ) ( )( )

( )( )
( )( ) ( )( )

* * *
* 1 * 1

* * * *

1 1 2
, ,

1 1 2

a a a

a a a a

T T I

T T I I

a
f h f h f h

f f
f h f h f h f h

ζ ζ ζ

ζ ζ ζ ζζ − −=

   + − −   
   
   + + − − +   

  

   



 

( )( )
( )( ) ( )( )

*
* 1

* *

2

2

a

a a

F

F F

f h
f

f h f h

ζ

ζ ζ
−
 
 
 
 − + 



  ; 

(4) 

( )( )
( )( ) ( )( )

( )( ) ( )( )
( )( ) ( )( )

* * *
* 1 * 1

* * * *

2 1 1
, ,

2 1 1

a a a

a a a a

T I I

T T I I

f h f h f h
a f f

f h f h f h f h

ζ

ζ ζ ζ

ζ ζ ζ ζ
− −=

   + − −   
   
   − + + + −   

  

   



( )( ) ( )( )
( )( ) ( )( )

* *
* 1

* *

1 1

1 1

a a

a a

F F

F F

f h f h
f

f h f h

ζ ζ

ζ ζ
−
 + − − 
 
 + + − 

 

  ; and 

(5) ( ) ,1 ,
a a aF I Tneg a h h h−=
  


. 

Example 1. Let { }0 1 2 3 4 5 6, , , , , ,H h h h h h h h= = {  ,  ,   ,  very poor poor slightly poor

,   ,  fair slightly good },   good very good , 3 2 2, ,a h h h= , 2 3 3, ,b h h h= , and 2ζ = , if 1.4a = , 

and 1
x( ) ( 0,1, ,2 )
2x xf h x t
t

θ= = =  . The calculated results are as follows: 

(1) 4.29 3.75 3.75= , ,a b h h h⊕  ; 

(2) 3.75 4.29 4.29= , ,a b h h h⊗  ; 

(3) 4.8 0.46 0.462 = , ,a h h h ; and 

(4) 
2

1.2 3.6 3.6= , ,a h h h . 

Theorem 1. Let a , b , and c  be three LNNs, and 0ζ ≥ ; then the following equations are true: 
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(1) a b b a⊕ = ⊕   ; 

(2) ( ) ( )=a b c a b c⊕ ⊕ ⊕ ⊕    
; 

(3) a b b a⊗ = ⊗   ; 

(4) ( ) ( )=a b c a b c⊗ ⊗ ⊗ ⊗    
; 

(5) ( )a b b aζ ζ ζ⊕ = ⊕  
; and 

(6) ( ) =a b a b
ζ ζ ζ⊗ ⊗  

. 

Theorem 1 holds according to Definition 2, so the proof is omitted here. 

2.3. Distance between Two LNNs 

Definition 1. Let , ,
a a aT I Fa h h h=
  

  and , ,
b b bT I Fb h h h=
  

  be two arbitrary LNNs, *f  is a LSF. Then, the 

generalized distance measure between a  and b  is defined as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1

* * * * * *1,
3 a a ab b bT T I I F Fd a b f h f h f h f h f h f h

λ λ λ λ = − + − + − 
     

 . (2) 

When =1λ , the above distance measure can be reduced to the Hamming distance; when 2λ = , it can 
be reduced to the Euclidean distance. We can see that Equation (2) is a generalized form of distance measure. 

Theorem 2. Let , ,
a a aT I Fa h h h=
  

 , , ,
b b bT I Fb h h h=
  

  and , ,
c c cT I Fc h h h=
  

  be three arbitrary LNNs, 

then, the following properties are required for the generalized distance measure in Definition 1. 

(1) ( , ) 0d a b ≥ ; 

(2) ( , ) 0d a a =  ; 

(3) ( , ) ( , )d a b d b a=   ; and 

(4) ( , ) ( , ) ( , )d a c d a b d b c≤ +     . 

Theorem 2 is proved in the Appendix C for better representation. 

3. Linguistic Neutrosophic Aggregation Operators 

Yager [40] introduced the PA operator to allow input arguments to support each other. Thus, 
the traditional PA operator are first reviewed; then, the LNPWA and LNPWG operators are proposed 
in an environment featuring LNNs. 

Definition 2 ([40]). Let ( 1,2, , )ja j n=   be a collection of positive values and Ω  be the set of all given 

values; then the PA operator is the mapping : nPA Ω → Ω , which can be defined as follows: 

( )
1 2

1

1

1 ( )
( , , , )

1 ( )

n
j

n jn
j

j
j

G a
PA a a a a

G a=

=

+
=

+



 , 
(3) 

where 

1,
( ) ( , )n

j j ii i j
G a Sup a a

= ≠
= , (4) 

( , )j iSup a a  represents the support for ja  from ia , and meets the following properties: 
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(1) 
( , ) [0,1]i jSup a a ∈

; 

(2) 
( , ) ( , )i j j iSup a a Sup a a=

; and 

(3) 
( , ) ( , )i j l rSup a a Sup a a≥

, when 
( , ) ( , )i j l rd a a d a a<

, and 
( , )i jd a a

 is the distance between ia  and 

ja . 

3.1. Linguistic Neutrosophic Power Weighted Averaging Operator 

This subsection extends the traditional PA operator to LNN. Then, a LNPWA operator is 
proposed and discussed. 

Definition 3. Let , ,
a a aj T j I j F ja h h h=
  

  ( )1,2,...,j n=  be a set of LNNs. Then, the LNPWA operator can 

be defined as 

( )
( )

1 2 1

1

1 ( )
( , , , )

1 ( )

n j j j

n nj

j j
j

w G a a
LNPWA a a a

w G a
=

=

+
= ⊕

+

 
  


, 

(5) 

where ( )1 2, ,..., T

nw w w w=  is the weight vector of ja , [ ]0,1iw ∈ , and 
1

1
n

i
i

w
=

= , 

1,
( ) ( , )n

j i j ii i j
G a w Sup a a

= ≠
=   , ( , )j iSup a a   is the support for ja  from ia , which also satisfies the 

similar properties in Definition 4. 

Theorem 3. Let , ,
a a aj T j I j F ja h h h=
  

  ( )1,2,...,j n=  be a set of LNNs, and ( )1 2, ,..., T

nw w w w=  is the 

weight vector of ja , [ ]0,1iw ∈ , and 
1

1
n

i
i

w
=

= . Then, the aggregated result using Equation (5) is also a 

LNN. For notational simplicity, we assume that ( ) ( )
1

1 ( ) 1 ( )
n

j j j jj
j

w G a w G aζ
=

= + +  . 

( )( ) ( )( )
( )( ) ( )( )

( )( )
( )( ) ( )( )

* * *

1 1 1* 1 * 1

* * * *

1 1 1

1

1

2

1 1 2
, ,

1 1 2

( , , , )

a a a

a a

j j j

j j j j

a a

n n n

T T I
j j j

n n n n

T T I I
j j j j

n

f h f h f h

f f
f h f h f h

LNPWA a a a

f h

ζ ζ ζ

ζ ζ ζ ζ

= = =− −

= = = =

=

   + − −   
   
   + + − − +   
   

∏ ∏ ∏

∏ ∏ ∏ ∏

  

   

  

 

( )( )
( )( ) ( )( )

*

1* 1

* *

1 1

2

2

a

j

j j

a a

n

F
j

n n

F F
j j

f h

f
f h f h

ζ

ζ ζ

=−

= =

 
 
 
 − + 
 

∏

∏ ∏



 

. 

(6) 

“Appendix D” details the proof of Theorem 3. 

The traditional PA operator has the properties of idempotency, monotonicity, and boundedness. 
It can be proved that the LNPWA operator also satisfies these properties. 

Theorem 4. Let , ,
a a aj T j I j F ja h h h=
  

  ( )1,2,...,j n=  be a set of LNNs, and ( )1 2, ,..., T

nw w w w=  is the 

weight vector of ja , [ ]0,1iw ∈ , and 
1

1
n

i
i

w
=

= . If ( , ) 0j iSup a a =   or [ ]( )( , ) 0,1j iSup a a k k= ∈   for all 
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ia  and ja . Hence, the LNPWA operator reduces to the linguistic neutrosophic weighted averaging (LNWA) 

operator. 

( )( ) ( )( )
( )( ) ( )( )

( )( )
( )( ) ( )( )

( )( )
( )( )

* *

1 1* 1

* *

1 1

* *

1 1*

1 2 1

1 * 1

* * *

1 1

1 1
,

1 1

2 2
,

2 2

( , , , )

a a

a a

a a

a a a

j j

j j

j j

j j j

n

n j j
j

w w

w w

n n

T T
j j

n n

T T
j j

n n

I F
j j

n

w w

w wn

F
j

w

I I
j j

f h f h

f
f h f h

f h f h

f f
f h f h f

LNWA a a a a

h

w

= =−

= =

= =− −

= = =

=

 + − − 
 
 + + − 


= ⊕

= 
 
 
 
 − + − 
 

∏ ∏

∏ ∏

∏ ∏

∏ ∏

 

 

 

  

   

( )( )*

1 1
a

j
n n

F
j

w

f h
=

 
 
 
 + 
 
∏ ∏ 

. 
(7) 

The proof for Theorem 4 is similar to the proof for Theorem 3; thus, it is omitted here. 

3.2. Linguistic Neutrosophic Power Weighted Geometric Operator 

Definition 4. Let , ,
a a aj T j I j F ja h h h=
  

  ( )1,2,...,j n=  be a set of LNNs. Then, the LNPWG operator can 

be defined as 

( )
( )

( )
1

1 ( )

1 ( )1 2 1
( , , , )

j j

n

j j
j

w G a
n

w G an j
j

LNPWG a a a a
=

+

+
=

= ⊗ 



    , (8) 

where ( )1 2, ,..., T

nw w w w=  is the weight vector of ja , [ ]0,1iw ∈ , and 
1

1
n

i
i

w
=

= , 

1,
( ) ( , )n

j i j ii i j
G a w Sup a a

= ≠
=   , ( , )j iSup a a   is the support for ja  from ia  and also satisfies the 

properties in Definition 4. 

Theorem 5. Let , ,
a a aj T j I j F ja h h h=
  

  ( )1,2,...,j n=  be a set of LNNs, and ( )1 2, ,..., T

nw w w w=  is the 

weight vector of ja , [ ]0,1iw ∈ , and 
1

1
n

i
i

w
=

= . Then, the aggregated result using Equation (8) is still a 

LNN, For notational simplicity, we assume that ( ) ( )
1

1 ( ) 1 ( )
n

j j j jj
j

w G a w G aζ
=

= + +  . 

( )( )
( )( ) ( )( )

( )( ) ( )( )
( )( ) ( )( )

* * *

1 1 1* 1 * 1

* * * *

1 1

1 2

1 1

2 1 1
,

( ,

,
2 1 1

, , )

j j j

a a a

j j j j

a a a a

n n n

T I I
j j j

n n n n

T T I I
j j j j

n

f h f h f h

f f
f h f h f

LNPWG a a a

h f h

ζ ζ ζ

ζ ζ ζ ζ

= = =− −

= = = =

=

   + − −   
   
   − + + + −   
   

∏ ∏ ∏

∏ ∏ ∏ ∏

  

   

  

 

( )( ) ( )( )
( )( ) ( )( )

* *

1 1* 1

* *

1 1

1 1

1 1

j j

a a

j j

a a

n n

F F
j j

n n

F F
j j

f h f h

f
f h f h

ζ ζ

ζ ζ

= =−

= =

 + − − 
 
 + + − 
 

∏ ∏

∏ ∏

 

 

. 

(9) 

The proof of Theorem 5 is also omitted duo to the same way as Theorem 3. 

4. MCGDM Method Based on the LNPWA and LNPWG Operators 
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In this part, a MCGDM method based on the LNPWA and LNPWG operators is developed to 
solve university HRM evaluation problems. 

For a MCGDM problem with a finite set of m alternatives, let { }1 2,D ,...,DsD D=  be the set of 

DMs, { }1 2, ,..., mA A A A=  be the set of alternatives, and { }1 2, ,..., nC C C C=  be the set of criteria. 

Assume that the weight vector of the criteria is ( )1 2, ,...,
T

nϖ ϖ ϖ ϖ= , such that [ ]0,1jϖ ∈  and 

1

1
n

j
j

ϖ
=

= . Analogously, the weight vector of the DMs is specified as ( )1 2, ,..., T

sw w w w= , where 

0,kw ≥  and 
1

1
s

k
k

w
=

= . The evaluation values provided by the DMs are transformed into LNNs, and 

, ,
a a a

k k k k
ij T ij I ij F ija h h h=

  
 , ( )1,2,..., ; 1,2,..., ; 1,2,...,mk s j n i= = =  represents the evaluation value of DM 

( )1,2,...,kD k s=  for alternative ( )1,2,...,ia i m=  on criteria ( )1,2,...,jC j n= . 

The detailed procedures of the MCGDM method involve the following steps: 

Step 1: Normalize the decision matrices. 

In general, criteria can be divided into two categories: benefit type and cost type. Using operation 
(5) in Definition 2, the cost criteria can be transformed into benefit ones as follows: 

, , ,

,1 , ,
a a a

a a a

k k k
T ij I ij F ij jk

ij k k k
F ij I ij T ij

h h h for benifit criterion c
r

h h h otherwise

= 
−

  

  

, (10) 

Step 2: Obtain the weighted decision matrices. 

Using operations in Definition 2, the weighted decision matrices can be constructed by 
multiplying the given criteria weight vector into the decision matrices. 

Step 3: Calculate the supports. 

Utilizing the distance measure defined in Definition 1, the support degrees can be obtained by 
Equation (11): 

1 2 1 2
1 2( , ) 1 ( , ) ( 1,2, , ; 1,2, , ; , 1,2, , )k k k k

ij ij ij ijSup r r d r r i m j n k k s= − = = =   . (11) 

Step 4: Calculate the weights associated with 1
1( 1,2, , )k

ijr k s=  . 

( ) ( )1

1 1 1 11 1
1 ( ) 1 ( )qk

ij k k k kk
w G r w G rη

=
= + +  , (12) 

where 
1 2 1 22 2 11,

( ) ( , )s

k k k kk k k
G r w Sup r r

= ≠
= , and 

2k
w  is interpreted as the weight of DM 

2k
D . 

Step 5: Obtain the comprehensive evaluation information. 

Using Equation (5) or Equation (9), the normalized evaluation information provided by DMs 
can be aggregated, and the integrated decision matrix ij m n

R r
×

 =    can be obtained. 

Step 6: Determine the ideal decision vectors of all alternative decisions. 

After aggregating the DMs’ evaluation information into the decision matrix ij m n
R r

×
 =   , which 

is as follow: 
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1 2

1 11 12 1

2 21 22 2

1 2

                              C     C   

= 

n

n

n
ij m n

m m m mn

C

A r r r

A r r r
R r

A r r r

×

 
 
  =    
 
 










  
, (13) 

we can determine the ideal alternative vector *A  among all the alternatives below: 

( )2 0 0 2 0 0 2 0 0

1 2

*

...

, , , , , ,..., , ,
t t t

n

T I F T I F T I F

C C C

h h h h h h h h hA =
. (14) 

Similarly, the negative ideal alternative vector *
cA  can be obtained by the negation of *A , 

which has the maximum separation from *A , as follows: 

( )0 2 2 0 2 2 0 2 2

1 2

*

...

, , , , , ,..., , ,
t t t t t tc

n

T I F T I F T I F

C

h h h h h h h h

C

h

C

A =
. (15) 

In addition, we can obtain the left maximum separation from *A  denoted as *A − : 

( )* * * * * * * * *1 1 1 2 2 2

1 2

*

...

, , , , , ,..., , ,
A A A A A A i A n A n A n

n

T I F T I F T I F

C C

h h h h

C

h h h h hA
− − − − − − − − −

− =
, (16) 

where 
{ }* *

min
A j A j
T T

i
h h

− −
=

, 
{ }* *

max
A j A j
I I

i
h h

− −
=

, and 
{ }* *

max
A j A j
F F

i
h h

− −
=

. 
In the same way, we can also obtain the right maximum separation from *A  denoted as *A + : 

( )* * * * * * * * *1 1 1 2 2 2

1 2

*

...

, , , , , ,..., , ,
A A A A A A A n A n A n

n

T I F T I F T I F

C

h h h

C C

h h hA h h h
+ + + + + + + + +

+ =
, (17) 

where 
{ }* *

max
A j A j
T T

i
h h

+ +
=

, 
{ }* *

min
A j A j
I I

i
h h

+ +
=

, and 
{ }* *

min
A j A j
F F

i
h h

+ +
=

. 

Step 7: Calculate the separations of each alternative decision vector from the ideal decision vector. 

Utilizing the distance measure in Definition 1, we can calculate the separations between each 
alternative vector and the ideal decision vectors of all alternative decisions, they are respectively 
represented as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 0 0

1

* * * * * * *

1

1,
3 j j jt

n

i T I F
j

T I Fd A A f h f f h hf f hhh f
α α α

λ λ λ λ

=

 = − + − + − 
 

 , (18) 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 2 2

1

* * * * * * *

1

1,
3 j jt tj

n

i c T I F F
j

T Ih hd A A f h f f f hh f f h
α α α

λ λ λ λ

=

 = − + − + − 
 

 , (19) 

( ) ( ) ( ) ( ) ( ) ( ) ( )* * *

1

* * * * * * *

1

1,
3 j j jA j A j A j

n

i
j

T FI FIT h hd A A f h f f h f f hh f
α α α

λ λ λ λ

− − −

−

=

 
= − + − + − 

 
 , (20) 
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( ) ( ) ( ) ( ) ( ) ( ) ( )* * *

1

* * * * * * *

1

1,
3 j j jA j A j A j

n

i
j

T FI FIT h hd A A f h f f h f f hh f
α α α

λ λ λ λ

− − −

+

=

 
= − + − + − 

 


. 

(21) 

Step 8: Calculate the relative closeness of each alternative decision. 

The relative closeness of each alternative decision can be obtained using the following formula: 

( ) ( ) ( )
( ) ( ) ( ) ( )

* * *

* * * *

, , ,

, , , ,
i c i i

i

i i c i i

d A A d A A d A A
I

d A A d A A d A A d A A

− +

− +

+ +
=

+ + +
 (22) 

Step 9: Rank all the alternatives. 

According to the relative closeness of each alternative decision iI , we can rank all the 
alternatives. The larger the value of iI , the better the alternative iA  is. 

5. A Case of Human Resource Management Problem 

5.1. Problem Definition 

The present study focuses on a case of HRM problem in a Chinese university to test the proposed 
MCGDM method. Specifically, the school of management in the university plans to introduce talents 
from home and abroad to strengthen discipline construction and try to realize the goal of building a 
high-level innovative university. Three teams of DMs are assembled as a committee and will take the 
whole responsibility for this recruitment process, these teams are university presidents 1D , deans of 
management school 2D , and human resource officers 3D , respectively. After strict first interview, 
six candidates ( 1,2,...,6)iA i =  remain for the second review. Before the evaluation procedures, an 
appropriate evaluation index system should be constructed through literature review and expert 
consultation. In the literature research, Abdullah et al. [1] and Chou et al. [53] identified three 
dimensions and eight criteria for the HRM evaluation problem; the three dimensions used in their 
work were infrastructures, input and output. Zhang et al. [5] constructed an evaluation index system 
of classroom teaching quality; dimensions included in their work were usage of teaching attitude, 
teaching capacity, teaching content, teaching method and teaching effect. We can see that different 
evaluation index systems serve for different purposes of HRM evaluation in various industries. This 
study mainly tackles the HRM evaluation for talent introduction in universities which exists in real-
life decision environments. According to Ref. [54], experts agree on the four criteria included in the 
evaluation index system for the evaluation of HRM, they are teaching skill ( 1C ), morality ( 2C ), 
education background ( 3C ) and research capability ( 4C ), respectively. A brief description of each 
criterion is shown as follows. 

Teaching skill is an overall reflect of one teacher’s classroom teaching quality which includes 
several sub-attributes, such as teaching attitude, teaching capacity, teaching content, teaching method 
and teaching effect. 

Morality refers to the teachers’ morality in this study. It is a kind of professional morality of 
teachers which takes up the first place of education and can greatly affects the education’s level and 
quality as a whole. More specifically, the teachers’ morality includes the moral consciousness, moral 
relations and moral activity of the teachers in universities. 

Education background is an overview of a person’s learning environment and learning ability. 
It includes the person’s educational level, graduate school, major courses, academic achievements, 
and some other highlights. 
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Research capability denotes the scientific research ability that is required for scientific research 
or the research competence someone shows during the process of scientific research. The former is 
closer to the potential, including someone’s abilities in logical thinking, writing and oral language, 
etc., whereas the latter emphasizes someone’s practical scientific research capacity. 

With the reform of education and fierce competition among universities, the current form of 
university education needs more and more modern teachers with the above four abilities. Therefore, 
this study applies the above four criteria for the case of HRM evaluation, and the six candidates 

( 1,2,...,6)iA i =  are evaluated by the three teams of DMs under each criterion. The weight vector of 

criteria was assigned by DMs as ( )0.3,0.12,0.31,0.27 Tϖ = , and the weight vector of DMs was 

1 1 1, ,
3 3 3

T

w
 =  
 

. In addition, the LTS was denoted as { }0 1 6, , ,H h h h= 

{ , , ,extremely poor very poor poor= ,medium }, ,good very good extremely good . By interviewing 
the DMs one by one anonymously, all of their linguistic assessments for each alternative under each 
criterion are collected together. During this process, DMs in each group are isolated and don’t 
negotiate with each other at all. Consequently, the decision information is provided independently 
in the form of linguistic terms. Take the evaluation value 1

11 5 3 2, ,a h h h=  as an example, which 

represents the evaluation value of DM 1D  for alternative 1A  under criterion 1C . Since the criterion 

1C  (teaching skill) includes various aspects, such as teaching attitude, teaching capacity, teaching 
content, teaching method and teaching effect, the group of DMs 1D  may hold inconsistent linguistic 
judgments for alternative 1A  with respect to 1C . After collecting all the linguistic assessments for 

alternative 1A , the linguistic neutrosophic information 1
11 5 3 2, ,a h h h=  is obtained by calculating 

the weighted mean values of all the labels of linguistic terms with respect to active, neutral and 
passive information, respectively. Similarly, the overall evaluation information provided by the 
teams of DMs can be represented in the form of LNNs in Tables 1–3. 

Table 1. Evaluation information of 1D . 

1D  1C  2C  3C  4C  

1A  5 3 2, ,h h h  5 3 0, ,h h h  5 3 0, ,h h h  5 3 2, ,h h h  

2A  5 3 1, ,h h h  5 3 0, ,h h h  5 3 0, ,h h h  0 3 0, ,h h h  

3A  5 3 2, ,h h h  5 3 0, ,h h h  5 3 0, ,h h h  5 3 0, ,h h h  

4A  5 3 2, ,h h h  5 3 0, ,h h h  5 3 2, ,h h h  5 3 0, ,h h h  

5A  5 3 2, ,h h h  5 3 2, ,h h h  5 3 2, ,h h h  0 3 2, ,h h h  

6A  6 3 2, ,h h h  5 3 0, ,h h h  5 3 0, ,h h h  0 3 2, ,h h h  

Table 2. Evaluation information of 2D . 

2D  1C  2C  3C  4C  

1A  6 3 0, ,h h h  5 3 2, ,h h h  5 3 2, ,h h h  5 3 0, ,h h h  

2A  5 3 0, ,h h h  5 3 0, ,h h h  5 3 0, ,h h h  5 3 0, ,h h h  

3A  5 3 0, ,h h h  5 3 0, ,h h h  5 3 2, ,h h h  5 0 0, ,h h h  

4A  6 3 2, ,h h h  6 3 2, ,h h h  5 3 2, ,h h h  5 3 2, ,h h h  

5A  5 5 0, ,h h h  5 3 0, ,h h h  6 3 0, ,h h h  0 3 2, ,h h h  

6A  5 3 2, ,h h h  5 3 0, ,h h h  6 3 2, ,h h h  5 3 1, ,h h h  
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Table 3. Evaluation information of 3D . 

3D  1C  2C  3C  4C  

1A  6 3 0, ,h h h  5 3 0, ,h h h  6 3 2, ,h h h  5 3 0, ,h h h  

2A  5 3 2, ,h h h  5 3 0, ,h h h  5 3 2, ,h h h  5 3 2, ,h h h  

3A  5 3 2, ,h h h  5 3 0, ,h h h  6 3 0, ,h h h  5 3 0, ,h h h  

4A  5 3 2, ,h h h  5 3 0, ,h h h  6 3 2, ,h h h  0 3 2, ,h h h  

5A  5 3 2, ,h h h  5 3 0, ,h h h  6 3 2, ,h h h  5 3 2, ,h h h  

6A  5 3 2, ,h h h  0 3 2, ,h h h  5 3 0, ,h h h  5 3 0, ,h h h  

5.2. Evaluation Steps of the Proposed Method 

The following steps describe the procedures of evaluation for all candidates, and the ranking 
order of the six alternatives can be obtained. For simplicity of calculation, we chose the LSF *

1f . 

Step 1: Normalize the decision matrices. 

It is obvious that all the four criteria are of the benefit type; then, there is no need for 
normalization. 

Step 2: Obtain the weighted decision matrices. 

Using operation in Definition 2, the weighted decision matrices can be constructed in Tables 4–
6: 

Table 4. Weighted evaluation information of 1D . 

1D  1C  2C  3C  4C  

1A  2.0696 5.0201 4.579, ,h h h  0.8573 5.6051 0, ,h h h  2.1327 4.9881 0, ,h h h  1.8772 5.1166 4.7165, ,h h h  

2A  2.0696 5.0201 3.9304, ,h h h  0.8573 5.6051 0, ,h h h  2.1327 4.9881 0, ,h h h  0 5.1166 0, ,h h h  

3A  2.0696 5.0201 4.579, ,h h h  0.8573 5.6051 0, ,h h h  2.1327 4.9881 0, ,h h h  0 5.1166 0, ,h h h  

4A  2.0696 5.0201 4.579, ,h h h  0.8573 5.6051 0, ,h h h  2.1327 4.9881 4.5335, ,h h h  0 5.1166 0, ,h h h  

5A  2.0696 5.0201 4.579, ,h h h  0.8573 5.6051 5.4224, ,h h h  2.1327 4.9881 4.5335, ,h h h  0 5.1166 4.7165, ,h h h  

6A  6 5.0201 4.579, ,h h h  0.8573 5.6051 0, ,h h h  2.1327 4.9881 0, ,h h h  0 5.1166 4.7165, ,h h h  

Table 5. Weighted evaluation information of 2D . 

2D  1C  2C  3C  4C  

1A  6 5.0201 0, ,h h h  0.8573 5.6051 5.4224, ,h h h  2.1327 4.9881 4.5335, ,h h h  1.8772 5.1166 0, ,h h h  

2A  2.0696 5.0201 0, ,h h h  0.8573 5.6051 0, ,h h h  2.1327 4.9881 0, ,h h h  1.8772 5.1166 0, ,h h h  

3A  2.0696 5.0201 0, ,h h h  0.8573 5.6051 0, ,h h h  2.1327 4.9881 4.5335, ,h h h  1.8772 0 0, ,h h h  

4A  6 5.0201 4.579, ,h h h  6 5.6051 5.4224, ,h h h  2.1327 4.9881 4.5335, ,h h h  1.8772 5.1166 4.7165, ,h h h  

5A  2.0696 5.6974 0, ,h h h  0.8573 5.6051 0, ,h h h  6 4.9881 0, ,h h h  0 5.1166 4.7165, ,h h h  

6A  2.0696 5.0201 4.579, ,h h h  0.8573 5.6051 0, ,h h h  6 4.9881 4.5335, ,h h h  1.8772 5.1166 4.1228, ,h h h  

Table 6. Weighted evaluation information of 3D . 

3D  1C  2C  3C  4C  

1A  6 5.0201 0, ,h h h  0.8573 5.6051 0, ,h h h  6 4.9881 4.5335, ,h h h  1.8772 5.1166 0, ,h h h  
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2A  2.0696 5.0201 4.579, ,h h h  0.8573 5.6051 0, ,h h h  2.1327 4.9881 4.5335, ,h h h  1.8772 5.1166 4.7165, ,h h h  

3A  2.0696 5.0201 4.579, ,h h h  0.8573 5.6051 0, ,h h h  6 4.9881 0, ,h h h  1.8772 5.1166 0, ,h h h  

4A  2.0696 5.0201 4.579, ,h h h  0.8573 5.6051 0, ,h h h  6 4.9881 4.5335, ,h h h  0 5.1166 4.7165, ,h h h  

5A  2.0696 5.0201 4.579, ,h h h  0.8573 5.6051 0, ,h h h  6 4.9881 4.5335, ,h h h  1.8772 5.1166 4.7165, ,h h h  

6A  2.0696 5.0201 4.579, ,h h h  0 5.6051 5.4224, ,h h h  2.1327 4.9881 0, ,h h h  1.8772 5.1166 0, ,h h h  

Step 3: Calculate the supports. 

Utilizing the distance measure defined in Definition 1 and Equation (11), the supports can be 
obtained. Here, we assume that =2λ  in the distance measure. 

( ) ( )1 2 2 1

0.6647 0.6988 0.7481 0.738
0.7816 1 1 0.8957
0.7456 1 0.7481 0.7157

sup , sup ,
0.7816 0.5848 1 0.738
0.7428 0.6988 0.6689 1
0.7816 1 0.6689 0.8906

ij ij ij ijr r r r

 
 
 
 

= =  
 
 
 
   , 

( ) ( )1 3 3 1

0.6647 1 0.6689 0.738
0.964 1 0.7481 0.718

1 1 0.7852 1
sup , sup ,

1 1 0.7852 0.718
1 0.6988 0.7852 0.8957

0.7816 0.695 1 0.718

ij ij ij ijr r r r

 
 
 
 

= =  
 
 
 
   , and 

( ) ( )2 3 3 2

1 0.6988 0.7852 1
0.7456 1 0.7481 0.738
0.7456 1 0.6689 0.7157

sup , sup ,
0.7816 0.5848 0.7852 0.8957
0.7428 1 0.7481 0.8957

1 0.695 0.6689 0.771

ij ij ij ijr r r r

 
 
 
 

= =  
 
 
 
    

Step 4: Calculate the weights associated with 1
1( 1,2, , )k

ijr k s=  . 

The weights can be calculated by Equation (12) as follows: 

1

0.317 0.3406 0.3295 0.3208
0.3394 0.3333 0.3393 0.3367
0.3394 0.3333 0.3382 0.3402
0.3385 0.3437 0.3384 0.3252
0.3395 0.3188 0.3323 0.3357
0.323 0.3407 0.3414 0.3349

ijη

 
 
 
 

=  
 
 
 
   , 

2

0.3415 0.3188 0.3382 0.3396
0.3238 0.3333 0.3393 0.3381
0.3212 0.3333 0.3295 0.3197
0.323 0.3126 0.3384 0.3381
0.3211 0.3406 0.3295 0.3357
0.3385 0.3407 0.3172 0.3388

ijη

 
 
 
 

=  
 
 
 
   , and 
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3

0.3415 0.3406 0.3323 0.3396
0.3368 0.3333 0.3213 0.3252
0.3394 0.3333 0.3323 0.3402
0.3385 0.3437 0.3232 0.3367
0.3395 0.3406 0.3382 0.3286
0.3385 0.3186 0.3414 0.3263

ijη

 
 
 
 

=  
 
 
 
    

Step 5: Obtain the comprehensive evaluation information. 

Using Equation (5) or Equation (9), the integrated decision matrix ij m n
R r

×
 =    are calculated 

below: 

(i) When using Equation (5), the results are listed in Table 7. 

Table 7. Comprehensive evaluation information by LNPWA operator. 

2D  1C  2C  3C  4C  

1A  6 5.0201 0, ,h h h  0.8573 5.6051 0, ,h h h  6 4.9881 0, ,h h h  1.8772 5.1166 0, ,h h h  

2A  2.0696 5.0201 0, ,h h h  0.8573 5.6051 0, ,h h h  2.1327 4.9881 0, ,h h h  1.2689 5.1166 0, ,h h h  

3A  2.0696 5.0201 0, ,h h h  0.8573 5.6051 0, ,h h h  6 4.9881 0, ,h h h  1.8772 0 0, ,h h h  

4A  6 5.0201 4.579, ,h h h  6 5.6051 0, ,h h h  6 4.9881 4.5335, ,h h h  1.2689 5.1166 0, ,h h h  

5A  2.0696 5.2356 0, ,h h h  0.8573 5.6051 0, ,h h h  6 4.9881 0, ,h h h  0.6358 5.1166 4.7165, ,h h h  

6A  2.0696 5.0201 4.579, ,h h h  0.5864 5.6051 0, ,h h h  6 4.9881 0, ,h h h  1.2721 5.1166 0, ,h h h  

(ii) When using Equation (9), the results are listed in Table 8. 

Table 8. Comprehensive evaluation information by LNPWG operator. 

2D  1C  2C  3C  4C  

1A  4.5387 5.0201 1.8471, ,h h h  0.8573 5.6051 2.6567, ,h h h  3.1737 4.9881 3.4741, ,h h h  1.8772 5.1166 1.9671, ,h h h  

2A  2.0696 5.0201 3.2402, ,h h h  0.8573 5.6051 0, ,h h h  2.1327 4.9881 1.8396, ,h h h  0 5.1166 1.9918, ,h h h  

3A  2.0696 5.0201 3.5544, ,h h h  0.8573 5.6051 0, ,h h h  3.1737 4.9881 1.8834, ,h h h  1.8772 4.182 0, ,h h h  

4A  3.0839 5.0201 4.579, ,h h h  1.7569 5.6051 2.6119, ,h h h  3.1414 4.9881 4.5335, ,h h h  0 5.1166 3.6868, ,h h h  

5A  2.0696 5.3227 3.5549, ,h h h  0.8573 5.6051 2.6553, ,h h h  4.5051 4.9881 3.4741, ,h h h  0 5.1166 4.7165, ,h h h  

6A  3.0839 5.0201 4.579, ,h h h  0 5.6051 2.6553, ,h h h  3.1201 4.9881 1.8174, ,h h h  0 5.1166 3.3929, ,h h h  

Step 6: Determine the ideal decision vectors of all alternative decisions. 

(i) When using Equation (5), we can determine the ideal alternative vectors among all the 
alternatives respectively as follows:  

( )6 0 0 6 0 0 6
*

0 0 6 0 0, , , , , , , , , , ,h h h h h h h h h h hA h= , 

( )0 6 6 0 6
*

6 0 6 6 0 6 6, , , , , , , , , , ,c h h h h h h h h h h hA h=
, 

( )2.0696 5.2356 4.579 0.5864 5.6051 0 2.1327 4.9881 4.5335 0.6358 5.1166 4.7 5
*

16, , , , , , , , , , ,h h h h h h h h h h h hA − =
, and 

( )6 5.0201 0 6 5.6051 0 6 4.9881 0 1.8772 0
*

0
+ , , , , , , , , , , ,h h h h h h h h h h hA h=

. 

(ii) When using Equation (9), the results are: 

( )6 0 0 6 0 0 6
*

0 0 6 0 0, , , , , , , , , , ,h h h h h h h h h h hA h= , 



Symmetry 2018, 10, 364 15 of 25 

 

( )0 6 6 0 6
*

6 0 6 6 0 6 6, , , , , , , , , , ,c h h h h h h h h h h hA h=
, 

( )2.0696 5.3227 4.579 0 5.6051 2.6119 2.1327 4.9881 4.5335 0 5.1166 4.716
*

5, , , , , , , , , , ,h h h h h h h h h hA h h− =
, and 

( )4.5387 5.0201 1.8417 1.7569 5.6051 0 4.4051 4.9881 1.8174
*+

1.8772 4.182 0, , , , , , , , , , ,h h h h h h h h h h hA h=
. 

Step 7: Calculate the separations of each alternative decision vector from the ideal decision vector. 

The separations between each alternative and the ideal decision vector by the LNPWA and 
LNPGA operators are shown in Tables 9 and 10, respectively. 

Table 9. Separations by the LNPWA operator. 

Distance ( )*,id A A  ( )*,i cd A A  ( )*,id A A −  ( )*,id A A +  
iI  

1A  2.1903 2.1162 1.6257 1.7055 0.7132 

2A  2.3229 2.0653 1.5863 1.7175 0.698 

3A  1.3743 2.8968 2.3562 0 0.7926 

4A  2.3229 2.0653 1.5863 1.7175 0.698 

5A  2.9288 0.561 0 2.3562 0.499 

6A  2.3222 2.0656 1.5864 1.7174 0.6981 

Table 10. Separations by the LNPWG operator. 

Distance ( )*,id A A  ( )*,i cd A A  ( )*,id A A −  ( )*,id A A +  iI  

1A  2.2863 1.5118 1.1097 0.7259 0.5942 

2A  2.711 1.3681 0.9082 0.9641 0.5445 

3A  1.9575 2.1815 1.7206 0 0.6659 

4A  2.9016 0.8254 0.3432 1.4138 0.4709 

5A  3.0628 0.5194 0 1.7205 0.4224 

6A  2.8615 0.9176 0.4412 1.3295 0.4844 

Step 8: Calculate the relative closeness of each alternative decision. 

The results of relative closeness of each alternative decision are shown in the last column of 
Tables 9 and 10. 

Step 9: Rank all the alternatives. 

According to the relative closeness of each alternative decision iI , we can rank all the 
alternatives. When using LNPWA operator, the ranking result is 3 1 6 2 4 5A A A A A A=    , 
whereas when using LNPWG operator, the result turns out 3 1 2 6 4 5A A A A A A     . There is a 
subtle distinction between the results obtained by the LNPWA and LNPWG operators, but the 
alternative 3A  remains the most performant and competitive candidate. 

5.3. Sensitivity Analysis and Discussion 

The aim of sensitivity analysis is to investigate the effects of different semantics and the distance 
parameter λ  on the final ranking results of alternatives. To do so, the calculated results are shown 
in Tables 11 and 12 and Figures 1 and 2, respectively. 
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Figure 1. Ranking results by the LNPWA operator. 

 
Figure 2. Ranking results by the LNPWG operator. 

Table 11. Results of different LSFs *f  ( 2λ = ). 

  
Alternatives 

Ranking Results 
1A  2A  3A  4A  5A  6A  

*
1f  

LNPWA 0.713 0.698 0.793 0.698 0.499 0.698 3 1 6 2 4 5A A A A A A=     

LNPWG 0.594 0.544 0.666 0.471 0.422 0.484 3 1 2 6 4 5A A A A A A      

*
2f  

LNPWA 0.7 0.69 0.773 0.69 0.48 0.69 3 1 6 2 4 5A A A A A A      

LNPWG 0.578 0.549 0.64 0.447 0.401 0.462 3 1 2 6 4 5A A A A A A      

*
3f  

LNPWA 0.721 0.704 0.806 0.704 0.514 0.704 3 1 6 2 4 5A A A A A A=     

LNPWG 0.608 0.54 0.684 0.486 0.439 0.496 3 1 2 6 4 5A A A A A A      

It can be seen from Table 11 and Figures 1 and 2 that the alternative 3A  remained to be the best 
one, and 5A  was consistently identified as the worst choice no matter how the aggregation operator 
or semantics change. When using the LNPWA operator, the ranking result remains 

3 1 6 2 4 5A A A A A A=    . The difference in semantics slightly influenced the values of iI , but did 
not result in different ranking orders. Similarly, when using the LNPWG operator, the ranking result 
always is 3 1 2 6 4 5A A A A A A     . It is clear that the ranking results varied when using different 
aggregation operators. This may be caused by the distinct inherent characteristic of these two 
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operators, since the LNPWA operator is based on the arithmetic averaging, whereas the LNPWG 
operator is based on the geometric averaging. This demonstrates that the ranking results have 
stability by our proposed method in some degree. 

The following Table 12 the influence of the distance parameter λ  on the final ranking results 
of alternatives when the semantics were fixed as * *

1f f= . It can be seen that the ranking results kept 
the same as 3 1 2 6 4 5A A A A A A      when using the LNPWG operator. However, results by the 
LNPWA operator change among 3 1 2 6 4 5A A A A A A     , 3 1 6 2 4 5A A A A A A=     and 

1 6 2 4 3 5A A A A A A=    . Thus, we can conclude that the differences in the aggregation operators 
and the parameter λ  could influence the evaluation results, DMs should choose appropriate 
parameter λ  and aggregation operators according to their own inherent characteristics. 

Table 12. Results of different parameter λ ( * *
1f f= ). 

λ  * *
1f f=  

 Ranking by LNPWA operator Ranking by LNPWG operator 
1 3 1 6 2 4 5A A A A A A=     3 1 2 6 4 5A A A A A A      

2 3 1 2 6 4 5A A A A A A      3 1 2 6 4 5A A A A A A      

3 3 1 2 6 4 5A A A A A A      3 1 2 6 4 5A A A A A A      

4 3 1 6 2 4 5A A A A A A=     3 1 2 6 4 5A A A A A A      

5 3 1 2 6 4 5A A A A A A= =    3 1 2 6 4 5A A A A A A      

6 3 1 6 2 4 5A A A A A A=     3 1 2 6 4 5A A A A A A      

7 1 3 6 2 4 5A A A A A A=     3 1 2 6 4 5A A A A A A      

8 1 6 2 4 3 5A A A A A A=     3 1 2 6 4 5A A A A A A      

9 1 6 2 4 3 5A A A A A A=     3 1 2 6 4 5A A A A A A      

10 1 6 2 4 3 5A A A A A A=     3 1 2 6 4 5A A A A A A      

5.4. Comparison Analysis and Discussion 

This subsection conducts a comparative study to validate the practicality and advantages of the 
proposed method in the LNS contexts, and the results are shown in Table 13. Brief descriptions about 
the comparative methods are as follows. 

(1) Weighted arithmetic and geometric averaging operators of LNNs [28]: the concept of LNNs 
was first proposed by Fang and Ye [28]. In their study, two aggregation operators including the LNN-
weighted arithmetic averaging (LNNWAA) operator and LNN-weighted geometric averaging 
(LNNWGA) operator are utilized to derive collective evaluations. Then, based on their proposed 
score function and accuracy function of LNNs, the ranking order of alternatives is obtained. 

(2) Bonferroni mean operators of LNNs [30]: the LNNNWBM operator and LNNNWGBM 
operator are proposed to aggregate evaluations to obtain the collective LNN for each alternative. 
Subsequently, the results are derived by expected value. 

(3) An extended TOPSIS method [32]: a weighted model based on maximizing deviation is used 
to determine criteria weights. Subsequently, an extended TOPSIS method with LNNs is proposed to 
rank alternatives. 
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Table 13. Comparison results with the existing methods. 

MCGDM Ranking Results 
Proposed method by LNPWA operator 3 1 6 2 4 5A A A A A A=     

Proposed method by LNPWG operator 3 1 2 6 4 5A A A A A A      

LNNWAA operator [28] 3 1 2 6 5 4A A A A A A      

LNNWGA operator [28] 3 1 2 6 4 5A A A A A A      
LNNNWBM operator [30] ( 1p q= = ) 1 3 6 2 5 4A A A A A A      

LNNNWGBM operator [30] ( 1p q= = ) 1 3 6 2 4 5A A A A A A      

An extended TOPSIS method [32] ( 2λ = ) 3 1 6 2 4 5A A A A A A=     

As shown in Table 13, different methods resulted in different ranking results, but the optimal 
candidate remained to be 3A , despite the results obtained by the Bonferroni mean operators of LNNs 
[30]. The main reasons for these differences may be as follows: (1) The operations for LNNs between 
this study and the comparative methods are remarkably different. The operations in the existing 
methods [28,30,32] just considered the linguistic variables’ labels which may cause information loss 
and distortion. (2) Different aggregation operators and ranking rules might also cause different 
ranking results. Specifically, the LNNWAA and LNNWGA operators defined in [28] were 
respectively based on the arithmetic mean and geometric mean operators, whereas the Bonferroni 
mean operators of LNNs [30] implicated the interactive hypothesis among inputs. Unlike the existing 
aggregation tools, the proposed PA operator for LNNs allows the information provided by different 
DMs to support and reinforce each other, and it is a nonlinear weighted average operator. 

From above discussions, the unique features of the proposal and its main advantages over others 
can be simply summarized below. 

(1) The comparative methods [28,30,32] dealt with the LNNs only considering the labels of 
linguistic variables while ignoring the differences in various semantics. It has been contended that 
the same linguistic variable possesses different meanings for different people and has diverse 
meanings for the same person under various situations [55]. Therefore, directly using the labels of 
linguistic variables may lead to information loss during information aggregation. To cover this 
challenge, this study redefines the operations for LNNs based on the LSFs and Archimedean t-norm 
and t-conorm, which increases the flexibility and accuracy of linguistic information transformation. 

(2) The extended TOPSIS method [32] only considered two relatively positive and negative ideal 
solutions to determine the values of correlation coefficient for each alternative. By contrast, this study 
takes both the relatively and absolutely positive and negative ideal solutions into account. Therefore, 
the ranking result by this proposed method may be somewhat more comprehensive than the existing 
method [32]. 

(3) For information fusion, all the existing methods [28,30,32] failed to consider the support 
degree among different DMs during the aggregation processes. Although it is true that different 
aggregation operators cater to different practical decision situations, the proposed PA operators 
within LNN contexts are more feasible in dealing with the university HRM evaluation problem in 
this study. 

6. Conclusions and Future Work 

Talent introduction plays an important role in the long-term development of a university. This 
is closely related to the university’s discipline development and comprehensive strength. Therefore, 
there is a need for proper HRM evaluation that uses group decision-making methods efficiently in 
order to utilize human resources. This study recognized the HRM evaluation procedures as a 
complex MCGDM problems within the LNNs’ circumstances. Through merging the PA operator 
with LNSs, we developed two aggregation operators (LNPWA and LNPWG) for information fusion. 
Then, we made some modifications in the classical TOPSIS method to determine the ranking order 
of alternatives. The strengths of the proposed method have been discussed via comparative analysis. 



Symmetry 2018, 10, 364 19 of 25 

 

Nevertheless, this study also holds several limitations which can suggest several avenues for 
future research. First, the information fusion process adds to the computational complexity of the 
obtained results because the proposed LNPWA and LNPWG operators are both nonlinear weighted 
average operators, where the weights associated with each DM should be calculated by their input 
arguments. Fortunately, the pressure from complex computation can be remarkably eased with the 
assistance of programming software. Second, with the rapid development of information technology, 
it is also possible to extend the current results for other management systems under the network-
based environments [56,57]. 

By analyzing the achieved results, the practical implications of our research may be summarized 
in two aspects. On the one hand, this study proposes a novel linguistic neutrosophic MCGDM 
method which contributes to expanding the theoretical depth of university HRM. It may offer 
comprehensive supports for decision-making of modern universities’ talent introduction. In addition, 
the developed method can also be further expanded to solving group decision-making problems in 
other fields, such as tourism. On the other hand, this study further explores the application of 
linguistic MCGDM methods in HRM. The obtained knowledge can be very helpful to improve the 
performance of the human resource of universities accordingly. 
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Appendix A. Linguistic Scale Function 

By means of literature review, we can gather the following choices acting as LSFs. 

(1) The LSF 1f  is based on the subscript function ( )sub hτ τ= : 

1
x( ) ( 0,1, ,2 )
2x xf h x t
t

θ= = =  , [ ]0,1xθ ∈ . (A1) 

The above function is divided on average. It is commonly used for its simple form and easy 
calculation, but it lacks a reasonable theoretical basis [58]. 

(2) The LSF 2f  is based on the exponential scale: 

2

( 0,1, , )
2 2( )

2 ( 1, 2, ,2 )
2 2

t t y

t

y y t y t

t

y t
f h

y t t t

α α
αθ

α α
α

−

−

 − = −= = 
+ − = + + −




. (A2) 

Here, the absolute deviation between any two adjacent linguistic labels decreases with the 
increase of y  in the interval [0, ]t , and increases with the increase of y  in the interval [ 1,2 ]t t+ . 

(3) The LSF 3f  is based on prospect theory: 
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3

( ) ( 0,1, , )
2( )
( ) ( 1, 2, ,2 )
2

z z

t t z
z t

tf h
t z t

z t t t
t

β β

β

γ γ

γ

θ

 − − == = 
+ − = + +




. (A3) 

Here, [ ], 0,1β γ ∈ , and when 1β γ= = , the LSF 3f  is reduced to 1f . Moreover, the absolute 
deviation between any two adjacent linguistic labels increases with the increase of y  in the interval 
[0, ]t , and decreases with the increase of y  in the interval [ 1,2 ]t t+ . 

Each of the above LSFs 1f , 2f , and 3f  can be expanded to a strictly monotonically increasing 

and continuous function: * +:  ( ={ 0, })f S R R r r r R+→ ≥ ∈ , which satisfies *( )f sτ τθ= . Therefore, 

the inverse function of *f , denoted as * 1f − , exists due to its monotonicity. 

Appendix B. The Archimedean T-norm and T-conorm 

According to Reference [59], a t-norm ( ),T x y  is called Archimedean t-norm if it is continuous 

and ( ),T x x x< , for all ( )0,1x∈ . An Archimedean t-norm is called a strict Archimedean t-norm if 

it is strictly increasing in every variable for ( ), 0,1x y∈ . In addition, a t-conorm ( ),S x y  is called 

Archimedean t-conorm if it is continuous and ( ),S x x x> , for all ( )0,1x∈ . An Archimedean t-
conorm is called a strict Archimedean t-conorm if it is strictly increasing in every variable for 

( ), 0,1x y∈ . 
In this study, we apply one well-known Archimedean t-norm and t-conorm [60], as 

( ) ( ) ( ), 1S x y x y xy= + +  and ( ) ( )( ), 1 1 1T x y xy x y=  + − −   , respectively. 

Appendix C. The Proof of Theorem 2 

Proof. It is clear that properties (1)–(3) in Theorem 2 hold. The proof of property (4) in Theorem 2 is 
shown below. 

First, the distances ( , )d a c  , ( , )d a b  and ( , )d b c   can be easily determined respectively as 
follows: 

( ) ( ) ( ) ( ) ( ) ( )
1

* * * * * *( , ) 1
3 a ac c a cT T I I F Ff h f h f h f h fd c fa h h

λ λ λ λ = − + − + − 
     

 
, 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1

* * * * * *1,
3 a a ab b bT T I I F Fd a b f h f h f h f h f h f h

λ λ λ λ = − + − + − 
     


, and 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1

* * * * * *1,
3 c c cb b bT T I I F Fd b c f h f h f h f h f h f h

λ λ λ λ = − + − + − 
     

 
. 

Since a b a b+ ≤ + , then ( ) ( ) ( ) ( ) ( ) ( )* * * * * *
a ac b cbT T T T T Tf h f h f h f h f h f h− = − + −

  
, and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )* * * * * * * *
ca ab b b cbT T T T T T T Tf h f h f h f h f h f h f h f h− + − ≤ − + −

      . 

Thus, 
( ) ( ) ( ) ( ) ( ) ( )* * * * * *

a ac b cbT T T T T Tf h f h f h f h f h f h− ≤ − + −
   . 

Similarly, we can obtain ( ) ( ) ( ) ( ) ( ) ( )* * * * * *
a ac b cbI I I I I If h f h f h f h f h f h− ≤ − + −

  
, and 

( ) ( )* *
a cF Ff h f h− ≤

 ( ) ( ) ( ) ( )* * * *
ca b bF F F Ff h f h f h f h− + −

  
. 
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. 
Thus, property (4) in Theorem 2 holds. □ 

Appendix D. The Proof of Theorem 3 

For ease of computation, we assume that ( ) ( )
1

1 ( ) 1 ( )
n

j j j jj
j

w G a w G aζ
=

= + +  . In the 

following steps, Equation (5) will be proven using mathematical induction on n . 

(1) Utilizing the operations for LNNs defined in Definition 2, when 2n = , we have 
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That is 

( )( ) ( )( )
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2 2
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Thus, when 2n = , Equation (5)Error! Reference source not found. is true. 

(2) Suppose that when n k= , Equation (5) is true. That is, 
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Then, when 1n k= + , the following result can be obtained: 
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Then, when 1n k= + , Equation (5) is true. Therefore, Equation (5) is true for all n . 
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