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a b s t r a c t 

In this paper, a new compromise algorithm for multi-objective transportation problem 

(MO-TP) is developed, which is inspired by Zimmermann’s fuzzy programming and the 

neutrosophic set terminology. The proposed NCPA is characterized by assigning three 

membership functions for each objective namely, truth membership, indeterminacy mem- 

bership and falsity membership. With the membership functions for all objectives, a neu- 

trosophic compromise programming model is constructed with the aim to find best com- 

promise solution (BCS). This model can cover a wide spectrum of BCSs by controlling the 

membership functions interactively. The performance of the NCPA is validated by mea- 

suring the ranking degree using TOPSIS approach. Illustrative examples are reported and 

compared with exists models in the literature. Based on the provided comparisons, NCPA 

is superior to fuzzy and different approaches. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Despite the enormous effort s to build an intelligent transportation model, the complex working environment of the

recent real-life applications, i.e., Smart Cities applications [1] makes building such systems a big challenge. Thus, a Trans-

portation Model is an urgent need to solve the Transportation Problem (TP) that aims to transport the goods from several

supply points to different demand points through considering the minimization of the total transportation costs. TP model

has a wide range of practical applications includes logistic systems, the supply chain management, manpower planning, in-

ventory control, the production planning, etc. However, in reality, TP is characterized by multiple, incommensurable, and

conflicting objective functions, being called the multi-objective transportation problem (MO-TP). Thus, in multi-objective

transportation problem (MO-TP), the concept of optimal solution gives place to the concept of best compromise solution

or the non-dominated solutions. Many studies have been investigated on MO-TPs. Aneja and Nair [2] developed a new ap-

proach to solve bi-criteria TP. Isermann [3] proposed a method to identify the set of non-dominated solutions for a MO-TP.

In [4] , Ringuest and Rinks were presented two interactive approaches to find the solution of the MO-TP. 

In general, multi-objective transportation problems (MO-TPs) are solved with the assumptions that the cost parameters,

sources, and destinations are specified in a precise way, i.e., in a crisp environment. Nevertheless, when handling real-life
� Reviews processed and recommended for publication to the Editor-in-Chief by Guest Editor Dr. S. H. Ahmed. 
∗ Corresponding author. 

E-mail address: mohamed_elhoseny@mans.edu.eg (M. Elhoseny). 
1 Scientific Research Group in Egypt http://www.egyptscience.net . 

https://doi.org/10.1016/j.compeleceng.2018.02.024 

0045-7906/© 2018 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.compeleceng.2018.02.024
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compeleceng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compeleceng.2018.02.024&domain=pdf
mailto:mohamed_elhoseny@mans.edu.eg
http://www.egyptscience.net
https://doi.org/10.1016/j.compeleceng.2018.02.024


706 R.M. Rizk-Allah et al. / Computers and Electrical Engineering 69 (2018) 705–719 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nomenclature 

m number of sources 

n number of destinations 

K number of objective functions 

s i label of the i th source 

d j label of the i th decision variable destinations 

c k 
i j 

the penalty of transportation from s i to d j on the k th objective 

Z k k th element of objective function vector 

Z objective function vector 

x 
i j 

denotes the quantity transported from s i to d j 
� the feasible set of solutions 

E the efficient set of solutions 

Z 

+ 
0 

ideal objective function vector 

Z 

−∗ anti-ideal objective function vector 

Y space of points (objects) 

S neutrosophic set 

T S truth membership 

I S indeterminacy membership 

F S falsity membership 

t k ,s k predetermined real numbers in (0,1) 

L k lower bound of the k th objective 

U k upper bound of the k th objective 

C fuzzy constraints 

G fuzzy goal 

D fuzzy decision 

α, β , γ auxiliary parameters 

FST fuzzy set theory 

FA fuzzy approach 

TP transportation problem 

BCS best compromise solution 

NCPA neutrosophic compromise programming approach 

MO-TP multi-objective transportation problem 

transportation models, the circumstances of imprecision in the description of the problem’s parameters may appeared. Thus

the conflict and imprecise parameters nature of the MO-TP make the mathematical formulation of the problem difficult to

solve by conventional methods. To overcome this difficulty, fuzzy set theory (FST) was developed by Zadeh [5] to deal with

impreciseness and uncertainties in the candidate data. A fuzzy set was defined as a set of elements where each element has

some degree or grade of belongingness between 0 and 1 and such degrees determine the membership value of an element

in that set. Since the new concepts by Bellman and Zadeh have been introduced [6] , several inventions have been developed

based on FST to solve different types of transportation problems under imprecise aspects [7–14] . In some large-scale appli-

cations, stochastic algorithms [15,16] are employed to find a near-optimal solution. In this context, some approaches based

on genetic algorithm are employed to solve MO-TP [17,18] . 

Although FST is very useful when dealing with uncertainties, it cannot handle certain cases of uncertainties where it is

hard to depict the membership degree using one specific value. To overcome the lack of knowledge of non-membership

degrees, intuitionistic fuzzy set (IFS) was proposed in 1986 by Atanassov [19] as an extension of FST. In IFS, each element

in a set is attached with two grades, membership grade and non-membership grade, where the sum of these two grades

is restricted to less or equal to one. Thus, the grade of non-belongingness for a certain element is equal to 1 minus the

grade of belongingness. The IFS has been flourished in applications of decision making [20] . Additionally, many authors

have been employed IFS for solving different types of transportation problems [21,22] . Although the development of FST

and IFS, dealing with all sorts of uncertainty in different areas still lack for a general framework, where the indeterminate

knowledge cannot be managed. For example, let we ask the opinion of an expert regarding a particular statement, one may

say that the possibility in which the statement is true is 0.6, the statement is false is 0.5 and the statement is not sure is

0.2. This issue is beyond the scope of FST and IFS and therefore dealing with a type of indeterminate situations of uncertain

data undoubtedly becomes a true challenge. 

Recently, a generalized form of FST and IFS is the neutrosophic set that was studied by Smarandache [23] . It provides a

more general structure and very suitable form to overcome the mentioned issues. The term neutrosophy means the knowl-

edge of neutral thought and this neutral represents the primary distinction between fuzzy and intuitionistic fuzzy logic. The

neutrosophic set is established based on logic in which elements of the universe is presented by three degrees. Namely,
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truth degree, indeterminacy degree and falsity degree and they lie between [0, 1]. It differs from the intuitionistic fuzzy

sets, where the involved uncertainty is dependent of the belongingness and non-belongingness degrees; here the uncer-

tainty present, i.e., the indeterminacy factor, is independent of truth and falsity values. Since its inception by Smarandache

[23] , some attention has been developed for optimization aspects [24] . 

The main aim of the proposed approach is to provide a general structure for better dealing with impressions and uncer-

tainties in available information. Furthermore, controlling the model memberships can achieve the best compromise result

that does not only satisfy the decision maker’s preferences, but it also presents non-dominated one. Another contribu-

tion it is represented as a realized aspect to deal with impressions by considering the truth membership, indeterminacy

membership and falsity membership that are related to satisfaction, satisfaction to some extent and dissatisfaction of ob-

jectives respectively in finding the best compromise solution (BCS). Also, covering a wide spectrum of BCSs by controlling

the membership functions interactively can be achieved. To the best of our knowledge, this is the first time to extend the

Zimmermann’s concepts to solve MO-TP. 

The purpose of this study is to investigate the best compromise solution of multi-objective transportation problem (MO-

P) under neutrosophic compromise programming approach (NCPA). The proposed NCPA is developed by extending the Zim-

mermann concepts [25] the neutrosophic environment. The proposed NCPA presents a new insight in neutrosophic MO-TP

by obtaining the best compromise solution using three memberships namely, truth membership, indeterminacy membership

and falsity membership. The performance of the NCPA is tested by measuring the closeness degree using TOPSIS approach.

Illustrative examples are reported and compared with exists models in the literature. Based on the provided comparisons,

NCPA is superior to fuzzy approach and different approaches. 

The main contributions are summarized below. 

(1) To deal with uncertainties arising in data processing due to indeterminacy factors, neutrosophic compromise pro-

gramming approach (NCPA) is introduced to determine the best compromise solution (BCS). 

(2) The neutrosophic optimization model is constructed based on the neutrosophic decision set. 

(3) A novel form of closeness to the ideal solution and the farthest from an anti-ideal solution is derived by TOPSIS. 

(4) The feasibility and validity of the NCPA have been verified through two illustrative examples and comparative analysis.

(5) NCPA represents a novel form to deal with imprecise, uncertain, incomplete and inconsistent information that is very

popular in scientific and engineering situations. 

The paper is structured as follows: Section 2 presents some preliminaries of MO-TP and some definitions. The neutro-

sophic compromise programming approach (NCPA) for MO-TP is described in details in Section 3 . In Section 4 , two numerical

examples are investigated. Section 5 discusses the performance regarding the results. Section 6 offers the conclusion and the

further study. 

2. Preliminaries 

2.1. Problem formulation 

MO-TP is concerned about transporting the product from m sources, s 1 , s 2 , … , s m 

to n destinations d 1 , d 2 , … , d n under K

objectives, Z 1 , Z 2 , … , Z K . Each source s i has available supply, a i ,i = 1, 2, … , m , and the destination d j , ( j = 1, 2, … , n ), bears

a certain level of demand. Additionally, transporting a unit from source s i to destination d j obliges a certain penalty c k 
i j 

for

the objective Z k . The associated penalty may be shipping cost or time of delivering or delivery safety, etc. The solution of

this problem is how to find an unknown quantity of goods, x ij which were shipped from source s i to destination d j under

the optimization aspect. With this description, the mathematical formulation of the MO-TP can be written as follows: 

P 1 : Min Z k ( x i j ) = 

m ∑ 

i =1 

n ∑ 

j=1 

c (k ) 
i j 

x i j , k = 1 , 2 , ..., K, 

Subject to 

n ∑ 

j=1 

x i j = a i , ∀ i = 1 , 2 , ..., m, 

m ∑ 

i =1 

x i j = b j , ∀ j = 1 , 2 , ..., n, 

x i j ≥ 0 , ∀ i = 1 , 2 , ..., m, j = 1 , 2 , ..., n. 

(1)

Where Z(x) = { Z 1 ( x ), Z 2 ( x ), … , Z K ( x )} is a vector of objective functions. Without loss of generality, it is usual to assume

that a i > 0 ∀ i, b j > 0 ∀ j, c (k ) 
i j 

≥ 0 ∀ (i, j) and 

∑ 

i a i = 

∑ 

j b j . In this respect, several methods have been developed to find the

solution of the MO-TP, and they are divided into two categories based on the generated solutions [7,10] . First, some methods

have been proposed to generate a set of efficient solutions. The second one is proposed based on exploring the preferred

solution or the best compromise solution among the efficient set of solutions [7] . Therefore, the practical applications affirm
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that the existences of the many efficient sets of solutions make the decision maker fall into the hesitation, so most of

the decision maker ever searches for the compromise solution, especially for complicated tasks. To deal with MO-TP, some

definitions regarding optimality are defined. 

2.2. Marginal evaluation 

For a certain objective Z 
k 

of the MO-TP (1) ( k = 1, 2, … , K ), two values, U 

k 
and L 

k 
( U 

k 
> L 

k 
), can be identified as the upper

and lower bounds of Z 
k 
. That is U 

k 
can be viewed as the highest acceptable level and L 

k 
can be viewed as an aspired level

of achievement for objective Z 
k 
, respectively. With the two levels, U 

k 
and L 

k 
we can get the marginal evaluation of every

objective Z 
k 
. By considering a marginal evaluation for the objective Z 

k 
, we defined a mapping μk : X → [0, 1] that can tell

us to what degree the decision x ∈ X makes the objective Z 
k 

close to its aspiration level L 
k 
. In addition, μk ( x ) ∈ [0, 1] is

defined as the degree of compatibility between the value Z 
k 
(x ) and aspiration level L 

k 
of the objective Z 

k 
. Regarding to

the definition of fuzzy sets, μk is just a fuzzy subset describing the fuzzy concept of “optimum” for objective Z 
k 

on feasible

solution space X , and μk ( x ) ∈ [0, 1] is the membership degree of x ∈ X to which x is compatible with the “optimal solution”

considering only the objective Z 
k 
. By specifying the highest acceptable level U 

k 
and the aspired level L 

k 
, the following form

can be utilized to obtain the marginal evaluation mapping μk : X → [0, 1] for the objective Z 
k 
, ( k = 1, 2, … , K ). 

μk (X ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 if Z k (x ) > U 

k 

1 − U 

k 
− Z k (x ) 

U 

k 
− L 

k 

if L 
k 

≤ Z k (x ) ≤ U 

k 

0 if Z k (x ) < L 
k 

(2) 

2.3. Membership function concept 

The membership function is the significant part of the fuzzy approach (FA). It enables an FA to evaluate ambiguous and

uncertain matters. The primary goal of the membership function is to act as a personal and subjective human perception as

a member of a fuzzy set. Choosing an appropriate membership function is a critical step for building an accurate fuzzy set

application. Often, a linear membership function is utilized to avoid non-linearity. Nevertheless, there are some obstacles in

selecting the solution to a problem stated in a linear membership function. The fuzzy set theory is employed to solve the

problem by assigning, for each k th objective, two values U 

k 
and L 

k 
as upper and lower bounds respectively, where L 

k 
is the

aspired level of achievement of the k th objective, U 

k 
is the highest acceptable level of achievement of k th objective, and

d 
k 

= U 

k 
− L 

k 
is the degradation allowance for the k th objective. 

2.4. Definitions of solution concept 

In this subsection, some definitions regarding the solution concept of the MO-TP are introduced. 

Definition 1 (Efficient solution [9] ): any feasible solution X ∗ = { x ∗
i j 
} ∈ � (i.e., � is the feasible set of solutions) is said to be

efficient (non-dominated or Pareto) solution of P 1 if there is no other feasible solution X = { x 
i j 
} ∈ � such that 

m ∑ 

i =1 

n ∑ 

j=1 

C k i j x i j ≤
m ∑ 

i =1 

n ∑ 

j=1 

C k i j x 
∗
i j ∀ k , k = 1 , 2 , ..., K 

and 

m ∑ 

i =1 

n ∑ 

j=1 

C k i j x i j < 

m ∑ 

i =1 

n ∑ 

j=1 

C k i j x 
∗
i j for at least one k, k = 1 , 2 , ..., K 

(3) 

Definition 2 (Compromise solution [9] ): A feasible solution X ∗ = { x ∗
i j 
} ∈ � is called a preferred or compromise solution for

the problem P 1 iff X 

∗ ∈ E ( E is the efficient set of solutions) and Z ( X 

∗) ≤ ∧ X ∈ �Z ( X ), where ∧ stands for the minimum. 

Definition 3 (Ideal solution). The ideal solution of the P 1 is the point Z 0 
+ = (Z 1 

0 
, Z 2 

0 
, ..., Z K 

0 
) such that Z k 

0 
=

Mi n X∈ �
∑ m 

i =1 

∑ n 
j=1 c 

(k ) 
i j 

x 
i j 
, k = 1 , 2 , ..., K. 

Definition 4 (Anti-Ideal solution). The anti-ideal solution of the P 1 is the point Z 

−∗ = (Z 1 ∗ , Z 2 ∗ , ..., Z K ∗ ) such that Z k ∗ =
Ma x X∈ �

∑ m 

i =1 

∑ n 
j=1 c 

(k ) 
i j 

x 
i j 
, k = 1 , 2 , ..., K. 

Definition 5 (Neutrosophic set [23] ): Assume a set Y be a space of points (objects) and y ∈ Y . A neutrosophic set S in Y

is characterized by three memberships namely, truth T S ( y ), indeterminacy I S ( y ) and a falsity F S ( y ) and it is denoted by the

following form: 

S = { < y, T S (y ) , I S (y ) , F S (y ) > | y ∈ Y } (4)
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Where T S ( y ), I S ( y ) and F S ( y ) are real standard or non-standard subsets belong to ]0 − , 1 + [, that is, T S ( y ): Y → ]0 − , 1 + [,
I S ( y ): Y → ]0 − , 1 + [, and F S ( y ): Y → ]0 − , 1 + [. 

There is no restriction on the sum of T S ( y ), I S ( y ) and F S ( y ) so that 0 − ≤ sup ( T S (y )) + sup ( I S (y )) + sup ( F S (y )) ≤ 3 + . 

3. Neutrosophic compromise programming for MO-TP 

In this section, a new approach based on neutrosophic set to solve MOTP is presented. The proposed approach has been

inspired by extending Zimmermann’s concepts [25] in neutrosophic aspect. The proposed neutrosophic compromise pro-

gramming approach (NCPA) introduces a new insight in handling the indeterminacy occupied into the optimization prob-

lems, with the aim to simultaneously maximizes the degrees of truth (satisfaction), falsity (dissatisfaction) and minimizes

the degree of indeterminacy (satisfaction to some extent) of a neutrosophic decision. Bellman and Zadeh [6] have been in-

troduced three concepts for the fuzzy set: fuzzy decision (D) fuzzy goal (G) and fuzzy constraints (C), and implemented

these concepts in many applications of decision-making under fuzziness. The fuzzy decision is defined as follows: 

D = G ∩ C (5)

Accordingly, the neutrosophic decision set D N , a conjunction of neutrosophic objectives and constraints, is defined 

D N = 

( 

K ⋂ 

k =1 

G k 

) ( 

m ⋂ 

i =1 

C i 

) 

= ( x, T D (x ) , I D (x ) , F D (x ) ) (6)

where 

T D (x ) = min 

{
T G 1 (x ) , T G 2 (x ) , ..., T G K (x ) ;
T C 1 (x ) , T C 2 (x ) , ..., T C m (x ) 

}
for all x ∈ X (7)

I D (x ) = min 

{
I G 1 (x ) , I G 2 (x ) , ..., I G K (x ) ;
I C 1 (x ) , I C 2 (x ) , ..., I C m (x ) 

}
for all x ∈ X (8)

F D (x ) = max 

{
F G 1 (x ) , F G 2 (x ) , ..., F G K (x ) ;
F C 1 (x ) , F C 2 (x ) , ..., F C m (x ) 

}
for all x ∈ X (9)

where T D ( x ) is the truth-membership function, I D ( x ) is the indeterminacy membership function, and F D ( x ) is falsity mem-

bership function of neutrosophic decision set D N . 

To formulate the membership functions for the MO-TP, the bounds for each objective function is determined. The

lower and upper for each objective are denoted by L k and U k that is calculated as follows: each objective is optimized

as a single objective subjected to the problem constraints. By solving K objectives individually, we obtain K solutions,

X 

1 , X 

2 , … , X 

K . Afterward, these solutions are substituted in each objective to explore the bounds for each objective as follows:

 k = max { F k (x ) } K 
k =1 

and L k = min { F k (x ) } K 
k =1 

. 

Then the bounds for the neutrosophic environment are calculated as flows: 

U 

T 
k 

= U 

k 
, L T 

k 
= L 

k 
for truth membership 

U 

F 
k 

= U 

T 
k 
, L F 

k 
= L T 

k 
+ t k 

(
U 

T 
k 

− L T 
k 

)
for falsity membership 

U 

I 
k 

= L T 
k 

+ s k 
(
U 

T 
k 

− L T 
k 

)
, L I 

k 
= L T 

k 
for indeterminacy membership 

where t k ,s k are predetermined real numbers in (0,1). 

According to the above bounds, the membership functions can be introduced as follows: 

T k ( Z k (x )) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

1 if Z k (x ) < L T 
k 

1 − Z k (x ) − L T 
k 

U 

T 
k 

− L T 
k 

if L T 
k 

≤ Z k (x ) ≤ U 

T 
k 

0 if Z k (x ) > U 

T 
k 

(10)

I k ( Z k (x )) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

1 if Z k (x ) < L I 
k 

1 − Z k (x ) − L I 
k 

U 

I 
k 
− L I 

k 

if L I 
k 

≤ Z k (x ) ≤ U 

I 
k 

0 if Z k (x ) > U 

I 
k 

(11)

F k ( Z k (x )) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

1 if Z k (x ) > U 

F 
k 

1 − U 

F 
k 

− Z k (x ) 

U 

F 
k 

− L F 
k 

if L F 
k 

≤ Z k (x ) ≤ U 

F 
k 

0 if Z k (x ) < L F 
k 

(12)
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Where U 

(. ) 
k 


 = L (. ) 
k 

for all objectives. If U 

(. ) 
k 

= L (. ) 
k 

for any membership, then the value of this membership is set to one.

Following the Bellman and Zadeh [6] , the neutrosophic optimization model of MO-TP (P 2 ) can be stated as follows: 

P 2 : Max min k =1 , 2 ,...,K T k ( Z k (x )) 

Min max k =1 , 2 ,...,K F k ( Z k (x )) 

Max min k =1 , 2 ,...,K I k ( Z k (x )) 

S. t. 

n ∑ 

j=1 

x i j = a i , i = 1 , 2 , ..., m, 

m ∑ 

i =1 

x i j = b j , j = 1 , 2 , ..., n, 

x 
i j 

≥ 0 , i = 1 , 2 , ..., m, j = 1 , 2 , ..., n. 

(13) 

By using auxiliary parameters, problem P 2 can be transformed to the following form (P 3 ): 

P 3 : Max α

Max γ

Min β

S. t. 

T Z k (x ) ≥ α , I Z k (x ) ≥ γ , F Z k (x ) ≤ β , 

n ∑ 

j=1 

x i j = a i , i = 1 , 2 , ..., m, 

m ∑ 

i =1 

x i j = b j , j = 1 , 2 , ..., n, 

x 
i j 

≥ 0 , i = 1 , 2 , ..., m, j = 1 , 2 , ..., n. 

α ≥ γ , α ≥ β, α + γ + β ≤ 3 , α, γ , β ∈ [0 , 1] , 

(14) 

The simplified model of MO-TP can be represented as follows: 

P 4 : Max α − β + γ

S. t. 

n ∑ 

j=1 

x i j = a i , i = 1 , 2 , ..., m, 

m ∑ 

i =1 

x i j = b j , j = 1 , 2 , ..., n, 

x 
i j 

≥ 0 , i = 1 , 2 , ..., m, j = 1 , 2 , ..., n. 

Z k (x ) + (U 

T 
k 

− L T 
k 
) α ≤ U 

T 
k 

, 

Z k (x ) + (U 

I 
k 
− L I 

k 
) γ ≤ U 

I 
k 
, 

Z k (x ) − (U 

F 
k 

− L F 
k 
) β ≤ L F 

k 
, 

α ≥ γ , α ≥ β, α + γ + β ≤ 3 , 

α, γ , β ∈ [0 , 1] , k = 1 , 2 , ..., K 

(15) 

The procedures using the neutrosophic optimization approach for solving MO-TP can be summarized as follows: 

Step 1. Solve each objective function individually as a single objective transportation problem (SOTP) subject to the con-

straints. Let X 

1 , X 

2 , … , X 

K denote the respective ideal solutions for K different objective ( Z k ∗(x ) , k = 1 , 2 , ..., K) trans-

portation problems. It is supposed that at least two ideal solutions out of the set of all ideal solutions are different

and has the different bound values. If all K objectives have the same solutions, X 1 = X 2 = ... = X K = { x i j } m,n 
i, j=1 

choose

one of them as the optimal compromise solution and go to step 6. Otherwise, go to step 2. 

Step 2. For the obtained K solutions evaluate all the K objectives functions and then compute the lower and upper bounds

for all objectives, U k = max { F k (x ) } K 
k =1 

and L k = min { F k (x ) } K 
k =1 

. 
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Step 3. Define all membership functions using Eqs. (10) , (11) and (12) . 

Step 4. Construct the neutrosophic programming model (P 2 ) and then formulate its equivalent model (P 4 ) as in Eq. (15) . 

Step 5. Solve neutrosophic model using TORA package to obtain the best compromise solution then determine the values

of the K objective functions 

Step 6. Step 6: Stop. 

Step 7. To cover a wide spectrum of compromise solution ask the DM for specified values for t k and s k . 

Step 8. Use the TOPSIS approach to rank the solutions by different approaches. 

3.1. Stage 2: ranking the solutions 

In this subsection, the Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) [17] is employed to

rank all the compromise solutions with the aim to obtain the best compromise solution among different methods. It is

developed based on minimizing the distance from an ideal solution and maximizing the distance from the ant-ideal point

solution simultaneously. 

(1) Record the compromise solutions Z ij from M methods over K objectives, i = 1, 2, … , M , j = 1, 2, … , K . 

(2) Compute the normalized rating r ij for element Z ij . 

(3) Ask the DM for the weight w j that associated with each objective to obtain the weighted matrix v ij = w j r ij . 

(4) Determine the ideal solution (best performance on each objective) S + . 

S + = { v + 1 , v 
+ 
2 , .., v 

+ 
j 
, .., v + K } = 

{(
max v ij | j ∈ J 1 

)
, 
(
min v ij | j ∈ J 2 

)
, i = 1 , ...., n 

}
(16)

Where J 1 is the benefit values and J 2 is the cost attributes. 

(5) Compute the anti-ideal solution (worse performance on each objective) S − . 

S − = { v −1 , v −2 , .., v −j , .. v −K } = 

{(
min v ij | j ∈ J 1 

)
, 
(
max v ij | j ∈ J 2 

)
, i = 1 , ...., n 

}
(17)

(6) Calculate the distances to ideal ( D 

+ 
i 

) and anti-ideal ( D 

_ 

i 
) respectively. 

D 

+ 
i 

= 

√ √ √ √ 

K ∑ 

j=1 

( v i j − v + 
j 
) 

2 
and D 

_ 

i = 

√ √ √ √ 

K ∑ 

j=1 

( v i j − v −
j 
) 

2 
(18)

(7) Determine the relative closeness to the ideal solution and the farthest to an anti-ideal solution using the following

ratio and observe the compromise solution with the maximum ratio. 

R = 

D i 
−

D i 
− + D i 

+ (19)

Due to due to existence of different methodologies for solving multi-objective transportation problem, ranking and com-

paring these methods become a new challenge. Thus, it is needed to present a tool to aid in ranking and selecting the

best method. Therefore, TOPSIS is introduced to rank the performances among different methods in terms of their optimal

solutions, where the alternatives consist of the optimal solutions and the criteria are the objective functions. 

4. Illustrative examples 

To demonstrate the neutrosophic optimization procedures, two illustrative examples two examples of MO-TP are consid-

ered [7] . 

Example 1. Let us consider a MO-TP with the following characteristics: 

Supplies: a 1 = 8, a 2 = 19, a 3 = 17. 

Demand: b 1 = 11, b 2 = 3, b 3 = 14, b 4 = 16. 

Penalties: 

C 1 = 

⎡ 

⎣ 

1 2 7 7 

1 9 3 4 

8 9 4 6 

⎤ 

⎦ , C 2 = 

⎡ 

⎣ 

4 4 3 4 

5 8 9 10 

6 2 5 1 

⎤ 

⎦ 
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Step 1: The MO-TP model 

Min Z 1 = x 11 + 2 x 12 + 7 x 13 + 7 x 14 + x 21 + 9 x 22 + 3 x 23 + 

4 x 24 + 8 x 31 + 9 x 32 + 4 x 33 + 6 x 34 

Min Z 2 = 4 x 11 + 4 x 12 + 3 x 13 + 3 x 14 + 5 x 21 + 8 x 22 + 9 x 23 + 

10 x 24 + 6 x 31 + 2 x 32 + 5 x 33 + x 34 

Sub ject to : 

x 11 + x 12 + x 13 + x 14 = 8 

x 21 + x 22 + x 23 + x 24 = 19 

x 31 + x 32 + x 33 + x 34 = 17 

x 11 + x 21 + x 31 = 11 

x 12 + x 22 + x 32 = 3 

x 13 + x 23 + x 33 = 14 

x 14 + x 24 + x 34 = 16 

x i j ≥ 0 and integer ∀ i, j. 

Step 2: Solve the above model as single objective to find the individual solution as X 1 = (5, 3, 0, 0, 6, 0, 0, 13, 0, 0,

14, 3) and X 2 = (0, 0, 8, 0, 11, 2, 6, 0, 0, 1, 0, 16). 

Step 3: Compute the objectives using the obtained solutions and then determine the bounds for each objective:

Z 1 ( X 1 ) = 143, Z 1 ( X 2 ) = 208, Z 2 ( X 1 ) = 167, Z 2 ( X 2 ) = 265, i.e., 143 ≤ Z 1 ≤ 208 and 167 ≤ Z 2 ≤ 265. 

Step 4: Formulate the membership functions based on neutrosophic terminology for the two objectives: 

For Z 1 : 

U 

T 
Z 1 

= 208 , L T Z 1 = 143 

U 

F 
Z 1 

= U 

T 
Z 1 

= 208 , L F Z 1 = L T Z 1 + t 1 = 143 + t 1 

U 

I 
Z 1 

= L T Z 1 + s 1 = 143 + s 1 , L I Z 1 = L T Z 1 = 143 

T 1 ( Z 1 (x )) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 i f Z 1 (x ) < 143 

1 − Z 1 (x ) − 143 

208 − 143 

i f 143 ≤ Z 1 (x ) ≤ 208 

0 i f Z 1 (x ) > 208 

I 1 ( Z 1 (x )) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 i f Z 1 (x ) < 143 

1 − Z 1 (x ) − 143 

s 1 
i f 143 ≤ Z 1 (x ) ≤ 143 + s 1 

0 i f Z 1 (x ) > 143 + s 1 

F 1 ( Z 1 (x )) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 i f Z 1 (x ) > 208 

1 − 208 − Z 1 (x ) 

208 − 143 − t 1 
i f 143 + t 1 ≤ Z 1 (x ) ≤ 208 

0 i f Z 1 (x ) < 143 + t 1 

For Z 2 : 

U 

T 
Z 2 

= 265 , L T Z 2 = 167 

U 

F 
Z 2 

= U 

T 
Z 2 

= 265 , L F Z 2 = L T Z 2 + t 2 = 167 + t 2 

U 

I 
Z 2 

= L T Z 2 + s 2 = 167 + s 2 , L I Z 2 = L T Z 2 = 167 

T 2 ( Z 2 (x )) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 i f Z 2 (x ) < 167 

1 − Z 2 (x ) − 167 

265 − 167 

i f 167 ≤ Z 2 (x ) ≤ 265 

0 i f Z 2 (x ) > 265 
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I 2 ( Z 2 (x )) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 i f Z 2 (x ) < 167 

1 − Z 2 (x ) − 167 

s 1 
i f 167 ≤ Z 2 (x ) ≤ 167 + s 1 

0 i f Z 2 (x ) > 167 + s 1 

F 2 ( Z 2 (x )) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 i f Z 2 (x ) > 265 

1 − 265 − Z 2 (x ) 

265 − 167 − t 1 
i f 167 + t 1 ≤ Z 2 (x ) ≤ 265 

0 i f Z 2 (x ) < 143 + t 1 

Step 5: Constitute the neutrosophic model of MO-TP: 

Max α − β + γ

Sub ject to : 

x 11 + x 12 + x 13 + x 14 = 8 

x 21 + x 22 + x 23 + x 24 = 19 

x 31 + x 32 + x 33 + x 34 = 17 

x 11 + x 21 + x 31 = 11 

x 12 + x 22 + x 32 = 3 

x 13 + x 23 + x 33 = 14 

x 14 + x 24 + x 34 = 16 

x 11 + 2 x 12 + 7 x 13 + 7 x 14 + x 21 + 9 x 22 + 3 x 23 + 4 x 24 + 8 x 31 + 9 x 32 + 4 x 33 + 6 x 34 + 65 α ≤ 208 

4 x 11 + 4 x 12 + 3 x 13 + 3 x 14 + 5 x 21 + 8 x 22 + 9 x 23 + 10 x 24 + 6 x 31 + 2 x 32 + 5 x 33 + x 34 + 98 α ≤ 265 

x 11 + 2 x 12 + 7 x 13 + 7 x 14 + x 21 + 9 x 22 + 3 x 23 + 4 x 24 + 8 x 31 + 9 x 32 + 4 x 33 + 6 x 34 + t 1 γ − t 1 ≤ 143 

4 x 11 + 4 x 12 + 3 x 13 + 3 x 14 + 5 x 21 + 8 x 22 + 9 x 23 + 10 x 24 + 6 x 31 + 2 x 32 + 5 x 33 + x 34 + t 2 γ − t 2 ≤ 167 

x 11 + 2 x 12 + 7 x 13 + 7 x 14 + x 21 + 9 x 22 + 3 x 23 + 4 x 24 + 8 x 31 + 9 x 32 + 4 x 33 + 6 x 34 + (β − 1)(143 + s 1 ) − 208 β ≤ 0 

4 x 11 + 4 x 12 + 3 x 13 + 3 x 14 + 5 x 21 + 8 x 22 + 9 x 23 + 10 x 24 + 6 x 31 + 2 x 32 + 5 x 33 + x 34 + (β − 1)(167 + s 2 ) −265 β ≤ 0 

α ≥ γ , α ≥ β, α + γ + β ≤ 3 , α, γ , β ∈ [0 , 1] , 0 ≤ t 1 , s 1 , ≤ 65 , 0 ≤ t 2 , s 2 ≤ 98 , 

x i j ≥ 0 and integer ∀ i, j. 

The above model can be solved using the TORA software for integer values of x ij 

x 11 = 4 , x 12 = 3 , x 13 = 1 , x 14 = 0 , x 21 = 7 , x 22 = 0 , x 23 = 12 , x 24 = 0 , x 31 = 0 , 

x 32 = 0 , x 33 = 1 , x 34 = 16 , t 1 = 65 , t 2 = 100 . 34 , s 1 = 18 . 50 , s 2 = 50 . 62 , α = 0 . 714 , β = 0 , γ = 0 . 714 . 

Z 1 = 160 , Z 2 = 195 . 

Example 2. Let us employ another model of MO-TP with the following characteristics. 

Supplies: a 1 = 5, a 2 = 4, a 3 = 2, a 4 = 9. 

Demand: b 1 = 4, b 2 = 4, b 3 = 6, b 4 = 2, b 5 = 4. 

Penalties: 

C 1 = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

9 12 9 6 9 

7 3 7 7 5 

6 5 9 11 3 

6 8 11 2 2 

⎤ 

⎥ ⎥ ⎥ ⎦ 

C 2 = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

2 9 8 1 4 

1 9 9 5 2 

8 1 8 4 5 

2 8 6 9 8 

⎤ 

⎥ ⎥ ⎥ ⎦ 

C 3 = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

2 4 6 3 6 

4 8 4 9 2 

5 3 5 3 6 

6 9 6 3 1 

⎤ 

⎥ ⎥ ⎥ ⎦ 

This model optimizes three objectives simultaneously. 
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Step 1: The MO-TP model 

Min Z 1 = 9 x 11 + 12 x 12 + 9 x 13 + 6 x 14 + 9 x 15 + 7 x 21 + 3 x 22 + 7 x 23 + 

7 x 24 + 5 x 25 + 6 x 31 + 5 x 32 + 9 x 33 + 6 x 34 + 3 x 35 + 

6 x 41 + 8 x 42 + 11 x 43 + 2 x 44 + 2 x 45 

Min Z 2 = 2 x 11 + 9 x 12 + 8 x 13 + x 14 + 4 x 15 + x 21 + 9 x 22 + 9 x 23 + 

5 x 24 + 2 x 25 + 8 x 31 + x 32 + 8 x 33 + 4 x 34 + 5 x 35 + 

2 x 41 + 8 x 42 + 6 x 43 + 9 x 44 + 8 x 45 

Min Z 3 = 2 x 11 + 4 x 12 + 6 x 13 + 3 x 14 + 6 x 15 + 4 x 21 + 8 x 22 + 4 x 23 + 

9 x 24 + 2 x 25 + 5 x 31 + 3 x 32 + 5 x 33 + 3 x 34 + 6 x 35 + 

6 x 41 + 9 x 42 + 6 x 43 + 3 x 44 + x 45 

Sub ject to : 

x 11 + x 12 + x 13 + x 14 + x 15 = 5 

x 21 + x 22 + x 23 + x 24 + x 25 = 4 

x 31 + x 32 + x 33 + x 34 + x 35 = 2 

x 41 + x 42 + x 43 + x 44 + x 45 = 9 

x 11 + x 21 + x 31 + x 41 = 4 

x 12 + x 22 + x 32 + x 42 = 4 

x 13 + x 23 + x 33 + x 43 = 6 

x 14 + x 24 + x 34 + x 44 = 2 

x 15 + x 25 + x 35 + x 45 = 4 

x i j ≥ 0 and integer ∀ i, j. 

Step 2: Solve the above model as single objective to find the individual solution as X 1 = (0, 0, 5, 0, 0, 0, 4, 0, 0, 0, 1, 0,

1, 0, 0, 3, 0 , 0, 2, 4) , X 2 = (3, 0, 0, 2, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 1, 2 , 6, 0, 0) and X 3 = (3, 2, 0, 0, 0, 0, 0, 4, 0,

0, 0, 2, 0, 0, 0, 1, 0 , 2, 2, 4). 

Step 3: Compute the objectives using the obtained solutions and then determine the bounds for each objective:

Z ( X 1 ) = (102, 148, 100), Z ( X 2 ) = (157, 72, 86) and Z ( X 3 ) = (129, 126, 64) i.e., 102 ≤ Z 1 ≤ 157 , 72 ≤ Z 2 ≤ 148 and 64

≤ Z 3 ≤ 100. 

Step 4: Formulate the membership functions based on neutrosophic terminology for the three objectives: 

For Z 1 : 

U 

T 
Z 1 

= 157 , L T Z 1 = 102 

U 

F 
Z 1 

= U 

T 
Z 1 

= 157 , L F Z 1 = L T Z 1 + t 1 = 102 + t 1 

U 

I 
Z 1 

= L T Z 1 + s 1 = 102 + s 1 , L I Z 1 = L T Z 1 = 102 

T 1 ( Z 1 (x )) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 i f Z 1 (x ) < 102 

1 − Z 1 (x ) − 102 

157 − 102 

i f 102 ≤ Z 1 (x ) ≤ 157 

0 i f Z 1 (x ) > 157 

I 1 ( Z 1 (x )) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 i f Z 1 (x ) < 102 

1 − Z 1 (x ) − 102 

s 1 
i f 102 ≤ Z 1 (x ) ≤ 102 + s 1 

0 i f Z 1 (x ) > 102 + s 1 
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F 1 ( Z 1 (x )) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 i f Z 1 (x ) > 157 

1 − 157 − Z 1 (x ) 

157 − 102 − t 1 
i f 102 + t 1 ≤ Z 1 (x ) ≤ 157 

0 i f Z 1 (x ) < 102 + t 1 

For Z 2 : 

U 

T 
Z 2 

= 148 , L T Z 2 = 72 

U 

F 
Z 2 

= U 

T 
Z 2 

= 148 , L F Z 2 = L T Z 2 + t 2 = 72 + t 2 

U 

I 
Z 2 

= L T Z 2 + s 2 = 72 + s 2 , L I Z 2 = L T Z 2 = 72 

T 2 ( Z 2 (x )) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 i f Z 2 (x ) < 72 

1 − Z 2 (x ) − 72 

148 − 72 

i f 72 ≤ Z 2 (x ) ≤ 148 

0 i f Z 2 (x ) > 148 

I 2 ( Z 2 (x )) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 i f Z 2 (x ) < 72 

1 − Z 2 (x ) − 72 

s 1 
i f 72 ≤ Z 2 (x ) ≤ 72 + s 1 

0 i f Z 2 (x ) > 72 + s 1 

F 2 ( Z 2 (x )) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 i f Z 2 (x ) > 148 

1 − 148 − Z 2 (x ) 

148 − 72 − t 1 
i f 72 + t 1 ≤ Z 2 (x ) ≤ 148 

0 i f Z 2 (x ) < 72 + t 1 

For Z 3 : 

U 

T 
Z 2 

= 100 , L T Z 2 = 64 

U 

F 
Z 2 

= U 

T 
Z 2 

= 100 , L F Z 2 = L T Z 2 + t 2 = 64 + t 2 

U 

I 
Z 2 

= L T Z 2 + s 2 = 64 + s 2 , L I Z 2 = L T Z 2 = 64 

T 3 ( Z 3 (x )) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 i f Z 3 (x ) < 64 

1 − Z 3 (x ) − 64 

100 − 64 

i f 64 ≤ Z 3 (x ) ≤ 100 

0 i f Z 3 (x ) > 100 

I 3 ( Z 3 (x )) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 i f Z 3 (x ) < 64 

1 − Z 3 (x ) − 64 

s 1 
i f 64 ≤ Z 3 (x ) ≤ 64 + s 1 

0 i f Z 3 (x ) > 64 + s 1 

F 3 ( Z 3 (x )) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 i f Z 3 (x ) > 100 

1 − 100 − Z 3 (x ) 

100 − 64 − t 1 
i f 64 + t 1 ≤ Z 3 (x ) ≤ 100 

0 i f Z 3 (x ) < 64 + t 1 
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Step 5: Constitute the neutrosophic model of MO-TP: 

Max α − β + γ

Min Z 2 = 2 x 11 + 9 x 12 + 8 x 13 + x 14 + 4 x 15 + x 21 + 9 x 22 + 9 x 23 + 

5 x 24 + 2 x 25 + 8 x 31 + x 32 + 8 x 33 + 4 x 34 + 5 x 35 + 

2 x 41 + 8 x 42 + 6 x 43 + 9 x 44 + 8 x 45 

Min Z 3 = 2 x 11 + 4 x 12 + 6 x 13 + 3 x 14 + 6 x 15 + 4 x 21 + 8 x 22 + 4 x 23 + 

9 x 24 + 2 x 25 + 5 x 31 + 3 x 32 + 5 x 33 + 3 x 34 + 6 x 35 + 

6 x 41 + 9 x 42 + 6 x 43 + 3 x 44 + x 45 

Sub ject to : 

x 11 + x 12 + x 13 + x 14 + x 15 = 5 

x 21 + x 22 + x 23 + x 24 + x 25 = 4 

x 31 + x 32 + x 33 + x 34 + x 35 = 2 

x 41 + x 42 + x 43 + x 44 + x 45 = 9 

x 11 + x 21 + x 31 + x 41 = 4 

x 12 + x 22 + x 32 + x 42 = 4 

x 13 + x 23 + x 33 + x 43 = 6 

x 14 + x 24 + x 34 + x 44 = 2 

x 15 + x 25 + x 35 + x 45 = 4 

x i j ≥ 0 and integer ∀ i, j. 

9 x 11 + 12 x 12 + 9 x 13 + 6 x 14 + 9 x 15 + 7 x 21 + 3 x 22 + 7 x 23 + 7 x 24 + 5 x 25 + 6 x 31 + 5 x 32 + 9 x 33 + 6 x 34 + 3 x 35 + 

6 x 41 + 8 x 42 + 11 x 43 + 2 x 44 + 2 x 45 + 55 α ≤ 157 

2 x 11 + 9 x 12 + 8 x 13 + x 14 + 4 x 15 + x 21 + 9 x 22 + 9 x 23 + 5 x 24 + 2 x 25 + 8 x 31 + x 32 + 8 x 33 + 4 x 34 + 5 x 35 + 

2 x 41 + 8 x 42 + 6 x 43 + 9 x 44 + 8 x 45 + 76 α ≤ 148 

2 x 11 + 4 x 12 + 6 x 13 + 3 x 14 + 6 x 15 + 4 x 21 + 8 x 22 + 4 x 23 + 9 x 24 + 2 x 25 + 5 x 31 + 3 x 32 + 5 x 33 + 3 x 34 + 6 x 35 + 

6 x 41 + 9 x 42 + 6 x 43 + 3 x 44 + x 45 + 36 α ≤ 100 

9 x 11 + 12 x 12 + 9 x 13 + 6 x 14 + 9 x 15 + 7 x 21 + 3 x 22 + 7 x 23 + 7 x 24 + 5 x 25 + 6 x 31 + 5 x 32 + 9 x 33 + 6 x 34 + 3 x 35 + 

6 x 41 + 8 x 42 + 11 x 43 + 2 x 44 + 2 x 45 + t 1 γ − t 1 ≤ 102 

2 x 11 + 9 x 12 + 8 x 13 + x 14 + 4 x 15 + x 21 + 9 x 22 + 9 x 23 + 5 x 24 + 2 x 25 + 8 x 31 + x 32 + 8 x 33 + 4 x 34 + 5 x 35 + 

2 x 41 + 8 x 42 + 6 x 43 + 9 x 44 + 8 x 45 + t 2 γ − t 2 ≤ 72 

2 x 11 + 4 x 12 + 6 x 13 + 3 x 14 + 6 x 15 + 4 x 21 + 8 x 22 + 4 x 23 + 9 x 24 + 2 x 25 + 5 x 31 + 3 x 32 + 5 x 33 + 3 x 34 + 6 x 35 + 

6 x 41 + 9 x 42 + 6 x 43 + 3 x 44 + x 45 + t 3 γ − t 3 ≤ 64 

9 x 11 + 12 x 12 + 9 x 13 + 6 x 14 + 9 x 15 + 7 x 21 + 3 x 22 + 7 x 23 + 7 x 24 + 5 x 25 + 6 x 31 + 5 x 32 + 9 x 33 + 6 x 34 + 3 x 35 + 

6 x 41 + 8 x 42 + 11 x 43 + 2 x 44 + 2 x 45 + (β − 1)(102 + s 1 ) − 157 β ≤ 0 

2 x 11 + 9 x 12 + 8 x 13 + x 14 + 4 x 15 + x 21 + 9 x 22 + 9 x 23 + 5 x 24 + 2 x 25 + 8 x 31 + x 32 + 8 x 33 + 4 x 34 + 5 x 35 + 

2 x 41 + 8 x 42 + 6 x 43 + 9 x 44 + 8 x 45 + (β − 1)(72 + s 2 ) − 148 β ≤ 0 

2 x 11 + 4 x 12 + 6 x 13 + 3 x 14 + 6 x 15 + 4 x 21 + 8 x 22 + 4 x 23 + 9 x 24 + 2 x 25 + 5 x 31 + 3 x 32 + 5 x 33 + 3 x 34 + 6 x 35 + 

6 x 41 + 9 x 42 + 6 x 43 + 3 x 44 + x 45 + (β − 1)(64 + s 2 ) − 100 β ≤ 0 

α ≥ γ , α ≥ β, α + γ + β ≤ 3 , α, γ , β ∈ [0 , 1] , 0 ≤ t 1 , s 1 ≤ 55 , 0 ≤ t 2 , s 2 ≤ 76 , 0 ≤ t 2 , s 2 ≤ 36 , 

x i j ≥ 0 and integer ∀ i, j. 
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Table 1 

Comparisons between the proposed NCPA with other existing approaches for Example 1 . 

Methods Z 1 Z 2 D + 
i 

D −
i 

R Rank 

Ideal 143 167 0 2.39E-4 1 1 

Anti-ideal 208 265 2.39E-4 0 0 7 

Proposed NCPA 160 195 6.59E-05 1.73E-4 0.7241 2 

Waiel [7] 170 190 7.68E-05 1.66E-4 0.6841 5 

Ringuest and Rinks [8] 186 174 1.02E-4 1.78E-4 0.6350 6 

FEIGP [10] 176 175 7.93E-05 1.84E-4 0.6994 4 

Waiel [9] 168 185 6.79E-05 1.77E-4 0.7226 3 

Nomani et al. [11] 176 175 7.93E-05 1.84E-4 0.6994 4 

Murthy [12] 160 195 6.59E-05 1.73E-4 0.7241 2 

Bander et al. [13] 176 175 7.93E-05 1.84E-4 0.6994 4 

Table 2 

Comparisons between the proposed NCPA with other existing approaches for Example 2 . 

Methods Z 1 Z 2 Z 3 D + 
i 

D −
i 

R Rank 

Ideal 102 72 64 0 2.90E-4 1 1 

Anti-ideal 157 148 100 2.90E-4 0 0 7 

Proposed NCPA 132 100 76 1.11E-4 1.82E-4 0.6207 2 

Ringuest and Rinks [8] 127 104 76 1.15E-4 1.77E-4 0.6064 4 

Waiel [7] 122 106 80 1.27E-4 1.64E-4 0.5638 6 

Mousa et al. [17] 127 104 76 1.15E-4 1.77E-4 0.6064 4 

Zaki et al. [18] 126.79 100 77.52 1.10E-4 1.79E-4 0.6184 3 

FEIGP [10] 132 100 76 1.11E-4 1.82E-4 0.6207 2 

Nomani et al. [11] 127 104 76 1.15E-4 1.77E-4 0.6064 4 

Murthy [12] 122 106 80 1.27E-4 1.64E-4 0.5638 6 

Zangiabadi et al. [14] 126.79 103.10 77.52 1.17E-4 1.74E-4 0.5979 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The above model can be solved using the TORA software for integer values of x ij 

x 11 = 3 , x 12 = 0 , x 13 = 0 , x 14 = 2 , x 15 = 0 , x 21 = 1 , x 22 = 2 , x 23 = 1 , x 24 = 0 , x 25 = 0 , 

x 31 = 0 , x 32 = 2 , x 33 = 0 , x 34 = 0 , x 35 = 0 , x 41 = 0 , x 42 = 0 , x 43 = 5 , x 44 = 0 , x 45 = 4 , 

t 1 = 33 . 5 , t 2 = 30 , t 3 = 12 , s 1 = 33 . 49 , s 2 = 30 , s 3 = 12 , α = 0 . 454 , β = 0 , γ = 0 . 

Z 1 = 132 , Z 2 = 100 , Z 3 = 76 . 

5. Results and discussion 

The proposed neutrosophic compromise programming approach (NCPA) is investigated using two numerical examples.

The methodology begins by obtaining the ideal solution (individual minimum), and anti-ideal solution (individual maxi-

mum) and then the membership functions for truth, indeterminacy and falsity degrees are constructed. Afterwards, the

neutrosophic model for MO-TP is formulated to obtain the best compromise solution. The obtained solution is compared

solutions with other existing approaches as in Tables 1 and 2 for Examples 1and 2 respectively. According to Table 1 and

Table 2 , the results clarify that the NCPA has a better solution than the existing approaches for both examples concerning

the ratio ( R ) that obtained by TOPSIS approach. Although the obtained solution by NCPA is identical to FEIGP [10] , the pro-

posed NCPA can save the computations, where FEIGP has been employed interactive procedures that have been skunked the

border through this strategy. Due to conflicting among the objectives obtaining any improvement in one objective will lead

to sacrificing in the other objectives. So, we have compared the results based on the TOPSIS approach, which may be a best

ranking method in a realistic sense. Accordingly, we can conclude that the NCPA proposed is superior to the other existing

methods. 

6. Conclusion 

In many transportation situations, the well-known approaches such as probability theory or fuzzy set are not adequate to

deal with these situations in which the indeterminacy inherently is involved. Under this circumstance, this paper presents

a novel neutrosophic compromise programming approach (NCPA) to deal with the multi-objective transportation (MO-TP).

This approach is characterized by simultaneously maximizing the degrees of truth (satisfaction), falsity (dissatisfaction) and

minimizing the degree of indeterminacy (satisfaction to some extent) of a neutrosophic decision. The efficiency of the NCPA

is investigated using TOPSIS approach, where the proposed NCPA gets the better outcomes regarding the ranking of values

in respect of TOPSIS approach. This result demonstrates the superiority of the results on existing techniques. Although the

merits of the neutrosophic set in addressing uncertainty it needs to be specified from a technical point of view, especially
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when dealing with real applications. Future research can be concentrated on developing generalized framework of neu-

trosophic set that is suitable for different practical problems such as nonlinear programming, fractional programming, and

multilevel programming problems. 
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