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ABSTRACT Fault diagnosis is an extensively applied issue to monitor condition and diagnose fault for safe
and stable operation of the machine, which started to develop during the industrial revolution and contains
various theories and technologies. Due to the growing complexity of contributing factors of a fault and
the correlation of fault attributes which are often interrelated, traditional fault diagnosis methods fail to
handle with this complex condition. To solve this problem, a new fault diagnosis method based on attributes
weighted neutrosophic set is proposed in this paper. In the proposed approach, a attributes weighted model
is developed to obtain the weights of attributes by the fault information. For a sample whose fault type is
unknown, the neutrosophic set generated from the fault sample data are aggregated via the single valued
neutrosophic power weighted averaging (SVNPWA) operator with the obtained attributes weights, then,
the fault diagnosis results could be determined by the defuzzification method of fused neutrosophic set. This
proposed method have capacity to differentiate the individual impact of attributes and handle the uncertain
problems in the process of fault diagnosis. Finally, an illustrative example was provided to demonstrate the
reasonableness and effectiveness of the proposed method.

INDEX TERMS Neutrosophic set, fault diagnosis, attributes weighted, defuzzification, SVNPWA operator.

I. INTRODUCTION

Fault diagnosis plays an important role in safe and stable
operation of the machines, which was developed from the
fault diagnosis of machine equipment by the aerospace indus-
try during the industrial revolution. Fault diagnosis technique
applies various theories, such as, reliability theory, infor-
mation theory, systematology, and has been widely applied
to multiple fields, for instance, military [1], [2], economics
[3], [4], and medicine [5]-[8]. One of the problems that
must be solved when fault diagnosis technology is applied
to engineering practice is the robustness of fault diagnosis
algorithm. Fault diagnosis system needs to be insensitive to
uncertainty of diagnosis environment, which is caused by
noise, disturbance and modeling error [9]-[13]. Moreover,
there are a great deal of cases that the attributes of fault may
be correlative, and which should be considered in the process
of fault diagnosis [14]-[16].
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With the development of fault diagnosis, immense amount
of alternative approaches have been conducted in the liter-
ature. According to the professor Frank, who is the inter-
national pundit of fault diagnosis fields, all the methods of
fault diagnosis can be divided into three kinds: analytical
model based approach, signal processing based approach and
knowledge-based approach [17]. If a mathematical model
of a more accurate controlled process can be established,
the method based on the model analysis is the preferred
method. The analytical model based approach applies either
analytical or knowledge based models, or combinations of
both for fault diagnosis, such as, the work of Su and Chen
[18]-[20]. If the input and output signals of the controlled
process can be obtained and the analytic mathematical
model of the controlled object is difficult to be established,
the method based on the signal processing can be adopted.
The methods based on signal processing also has been
applied in multiple fault diagnosis problems, for example,
the research of Heydarzadeh et al. [21], [22]. When it is
difficult to establish a quantitative mathematical model of
the controlled object, the knowledge-based method can be
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used. Due to the increased complexity of modern systems,
as well as the growing requirements of security and reliability,
usually, it is very difficult to obtain the accurate mathematical
model of the system. The knowledge-based method does not
require accurate mathematical model, such as, convex opti-
mization, classification and statistical learning, probability
based methods classifiers and statistical learning methods,
especially, evidence theory, and fuzzy set theory have been
widely applied in fault diagnosis fields [23], [24]. The fault
diagnosis methods suffer from comparatively brief history
and immature theory. The requirements of minimizing the
uncertainty and dealing with the correlation of fault attributes
are still significant research work in this field.

To cope with uncertain information, Smarandache pro-
posed the concept of neutrosophic set from philosophy [25],
which are defined by the degree of truth membership, inde-
terminacy membership and falsity membership took values in
the non-standard unit interval, as the extension of the classic
set, fuzzy set (FS), intuitionistic fuzzy set (IFS) [26]. How-
ever, it is often difficult to apply neutrosophic set in engineer-
ing practice, Wang et al. introduced the concepts of interval
neutrosophic set (INS) and single valued neutrosophic set
(SVNS) [27], [28], and Ye proposed the concept of simpli-
fied neutrosophic set (SNS) [29], [30], and some theories of
them are developed, such as, distance and similarity mea-
sures correlation coefficients [31]-[34]. In order to aggregate
the neutrosophic set, many neutrosophic aggregation opera-
tors have been proposed by researchers [35]. For instance,
Peng et al. [36] developed some simplified neutrosophic
information aggregation operators, such as the simplified
neutrosophic weighted averaging (SNWA) operator and the
simplified neutrosophic weighted geometric (SNWG) oper-
ator. Furthermore, Liu and Luo introduced SVNPWA opera-
tor [37]. There have been some fault diagnosis methods based
on neutrosophic set, for instance, cotangent similarity based
measures and the misfire fault diagnosis method [38]-[40].

In practical fault diagnosis, not always all attributes are of
equal importance in diagnosis process. There have been some
attributes weighted method [41]-[44], such as, the power
average (PA) operator proposed by Yager [45], analytical
hierarchy process [45], [46] and so on. Nevertheless, most
existing methods do not suit for application under the neutro-
sophic environment to differentiate the individual impact of
attributes.

It is necessary to obtain reasonable weights of attributes
for increasing the impact of attributes that show high dis-
tinguishability. In addition, there is no definite boundary
between the fault state and the normal state, and there are
some fuzzy transition states between them. The acquisition
of fault information and the reasoning from information to
fault result both exist uncertainty. Based on the above dis-
cussions, a new fault diagnosis method based on attributes
weighted neutrosophic set is proposed in this paper. In the
proposed approach, a attributes weighted model is developed
for obtaining the weights of attributes by the fault informa-
tion. The neutrosophic set generated from the fault sample
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data are aggregated via the SVNPWA operator with the
obtained attributes weights, then, the fault diagnosis results
could be determined by the defuzzification method of neu-
trosophic set fused. There are two main traits of this method.
Firstly, the developed model could directly determine the
weights of fault attributes on the basis of the relative impor-
tance of attributes which are transferred by fault information.
Afterward, the application of neutrosophic set could handle
the uncertainty of fault information and the reasoning process
in fault diagnosis.

The remainder of this paper is organized as follows.
Section II briefly introduced some basic definition. The
developed model is described in Section III. The proposed
method for fault diagnosis is listed step by step in Section IV.
In Section V, a numerical example is given to illustrate the
accuracy and reasonableness of the proposed approach. Some
summary remarks are shown in Section VI.

Il. PRELIMINARIES
A. NEUTROSOPHIC SET
Neutrosophic set introduced by Smarandache [25] is an
extension of the classical FS [47], IFS [48] and IVIFS [49],
which is an effective method to solve the problem under
uncertain environment. The concept of neutrosophic set is
defined as follows [27]:

Definition 1: Let X be a space of points (objects), with
a generic element in X denoted by x. A neutrosophic set
A in X 1is characterized by a truth-membership function
T4, an indeterminacy-membership function /4 and a falsity-
membership function F4. Ta(x), Ia(x) and F4(x) are real
standard or non-standard subsets of ]J0~, 11[. That is:

Ta:X =107, 17
Iy X =107, 17
Fa:X =107, 171 60

There is no restriction on the sum of T4(x), I4(x) and F4(x),
$0 07 < supT(x) + supls(x) + supFa(x) < 37T.

B. THE SINGLE-VALUED NEUTROSOPHIC SET
In order to apply neutrosophic set in real scientific and
engineering applications, the notion of single valued neu-
trosophic set (SVNS) [27] is proposed as an instance of
neutrosophic set. The definition of SVNS is defined as
follows [27]:

Definition 2: Let X be a fixed set, if ua(x) : X — [0, 1],
ma(x) : X — [0, 1] and va(x) : X — [0, 1] satisfied:

xeXr pusix) el0,1]
x € X+ malx) €0, 1]
x€e€X = valx) e[0,1] and

0 < pa(x) + ma(x) +va(x) < 3, @

then an SVNS A in X can be denoted as:
A = {(x, pa(x), ma(x), va(x)) |x € X} 3)
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where na(x), ma(x) and vg(x) are membership function,
indeterminacy-membership and nonmembership function
respectively. The numbers p4(x), wa(x) and va(x) denote,
respectively, the degree of membership, the degree of hesi-
tancy and the degree of nonmembership of the element x to
A, for all x € X. with the value of w4(x) becomes smaller,
the value of x gets more certain. Otherwise, the knowledge
about x gets more uncertain.

For a SVNS, an single valued neutrosophic number
(SVNN) [50] is denoted by the pair (4 (x), ma(x), va(x)) and
each SVNN can be simple denoted as ¢ = (g, T, Va)s
where o € [0, 1] and puy + 7wy + ve < 3. For an SVNN

o = (Mg, Ty, Vo), With the value p, gets greater and the
value 7y, vy gets smaller, the SVNN o« = (g, 4, Vo) would
be greater .

For any two SVNNs (¢; = (Ugl, Tal, Vg1), @2 =
(Ma2, o2, vy2)), operational relations are defined as follow-
ing [51]:

(1) aq + a2 = (/JLOll + /‘L()lz - l‘(/alﬂazv 7-[0[17.[0129 \)all)az),

(2) a1 xay= (Malﬂaz’ T, + Moy — Ty oy

Vo, + Vap — Vo vO[z)a

(3) rar === pe) 7, v5), A >0,

@ o} =(up, 1= = 7)) 1= (1 —vg)"),  A>0,

5) o = (o, 1 — ey vay)s &> 0. @)

Definition 3: Let a1 = (o, Tal,Vy) and o =
(Kay»> a2, Vo, ), the standardized Euclidean distance of two
SVNNSs is defined as [52]:

— 2 — 2 _ 2
D(C(LOQ):\/(/‘L“I May)” (T, 3 Tay)”+ (Vo — Vay)
&)
C. THE SVNPWA OPERATOR
Liu proposed some simplified neutrosophic information
aggregation operators, such as the SVNPWA operator. It is
defined as follows [37]:
Definition 4: Let A; = (i, wi, vi),i = 1,2,...,n be
a collection of SVNNs, and w = (wy, wa, ..., w,)! is the
weight vector of A;(i = 1,2,...,n), with w; € [0, 1] and
n
> w; = 1. Then,
i=1
" SYNPWA(A,, Ay, ... Ay)
w1 (1+G (A1) A1 @ - @ w, (1+G (An)) Ay
i1 wi (1+G (A)) A;

(=T Ta—=w® [T [T,
i=1 i=1 i=1

i=1,2,....n. ©6)

where
w; (1+G(Ay)
Y wi(1+G(A))

n

G(A) =) Sup(Ai. A))
=1
J#

& =
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Sup(A;, A;) denotes the support for A; from A;. Mean-
while, Sup(A;, Aj) satisfies the following three properties:
(DSup(Ai, Ap) € [0, 1] (2)Sup(Ai, Aj) = Sup(Aj, Ap);
(3)Sup(Ai, Aj) = Sup(Ax, A, if | Ai —Aj I<| Ak — A |
It implies that the closer the two sets, the larger the support.
And Sup(A;, Aj) is calculated as follows:

Sup (Ai,Aj) =1—-d (Ai,Aj)

where

d (Ai, 4)) = \/% (s = ) + (i = m)* + (v = vy)°)

is the standardized Euclidean distance of two SVNNSs.

Ill. ATTRIBUTES WEIGHTED MODEL
In fault diagnosis problems, the fault types always involves
multiple attributes, which may have different relative impor-
tance in the diagnosis process. To handle with this problem,
the attributes weighted model is proposed in this paper. It is
well suited for obtaining the relative weights of attributes to
represent the intrinsic information. If the fault data collected
in the diagnosis process of all the fault types have little
difference regarding certain attribute, it indicates that this
attribute plays a less important role in the fault diagnosis
problem and should be given a smaller weight. Alternatively,
a attribute is relatively more important and should be given a
bigger weight in diagnosis process when the fault data shows
palpable difference on this attribute. That is, measuring the
difference of all fault types’ collected data on certain attribute
is pivotal for obtaining reasonable weights of attributes.

Normal distribution is one of the most common distribution
in nature, the data collected under fault environment are
always obey normal distribution. Due to the properties of
normal distribution model, the weights of attributes could be
defined as follows:

Definition 5: Let F = F1,F», ..., F, be a set of fault
types, C = Cq, Ca, ..., C, be a set of fault attributes, w =
(W1, wa, ..., wp)T is the weights of attributes:

1 — sim;
> (1 — simy)

And sim; denotes the overlap degree of all fault types’ normal
distribution models on attribute C;, and it is calculated as
follows:

)

w; =

. 012 Om
s[mi=—+...+—
Li+1L,—0p Ly + Ly — O
(0] O
4 4
Lo + L3z — O3 Ly + Ly, — Oop
OGn—1y
4o d (m—1)m (8)

Lm—l + Lm - O(m—l)m

where L; = 6 x o; denotes the relatively effective length of
normal distribution model of fault type F; on certain attribute,
o; is this normal distribution model’s standard deviation,
O; denotes the overlap length between normal distribution
models of fault type F; and fault type F; on certain attribute.
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FIGURE 1. The normal distribution of fault types.

This definition of attributes’ weights model are shown in
(Fig. 1). In this figure, the normal distribution figures are gen-
erated from three fault types under certain attribute, the over-
lap intervals between fault types are shown as O12, O13 and
093, and the relatively effective length of normal distribution
model of certain fault type is defined as L; = 6 X oj, 0j is
this normal distribution model’s standard deviation. Then the
weights of attributes can be calculated via Eq. (7) and Eq. (8).

IV. THE PROPOSED METHOD
In practical fault diagnosis problems, due to the increasing
uncertainty of the fault diagnosis process and the complex
correlation of attributes, the fault type of unknown fault is not
easy to be precisely determined. In this section, a new fault
diagnosis method based on attributes weighted neutrosophic
set is proposed for diagnosing the fault type of unknown fault
sample. Consider an unknown fault sample S with n attributes
(C = {C1,C,,...,Cy}), whose data have been collected
under each attribute, the proposed method would be used for
diagnosing this fault sample S. The flow chart of the proposed
method is shown in Fig. 2, and the detailed procedures are
elaborated step by step as follows:
(i) Supposed that there are m fault types (F =
{F1, Fa, ..., Fy}) with n attributes (C = {Cy, Ca, ...,
Cy}). Collect data of each fault type under each
attribute.

(i) Generate the SVNS for unknown fault sample S based
on collected data of fault types. For the data of each
fault type under every attributes, generating modified
normal distribution model which is obtained by using
arithmetic average u and variance o2 of a group of
data as the arithmetic average and standard deviation
of the normal distribution model, the modified normal
distribution is defined as follow:

_a=p?
N =e¢ 272
denoted as N (i, o). For the data of the unknown fault
sample S, there are a number under each attribute,
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FIGURE 2. The block diagram of the proposed method.
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FIGURE 3. Generation of membership degree.

then this number could generate a line model which is
perpendicular to x-axis.

The normal distribution function indicates the distribu-
tion probability density of the data. The membership
degree of SVNS is defined as the value of the vertical
coordinate of the intersection point between the line
model of S and the normal distribution model of fault
type. The curves of two models (Fig. 3) and the defini-
tion of membership degree p are as follows:

"= Ys, 9

where the y; represents the value of the vertical coor-
dinate of the intersection point between the unknown
fault sample S and fault type F;.

The nonmembership degree which is correlate with the
membership degree is defined as follows:

v=1-pu, (10)
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Due to the indeterminacy-membership degree indicates
the uncertainty degree of neutrosophic information, it is
defined as follows:

Oj

m
2.0
i=1

=

(1)

where the o; represents the standard deviation of the
data of fault type F; under certain attribute. Hence,
the SVNS generated from Eq. (9,10,11) are as Table 1:

TABLE 1. The generated SVNS for S based on fault data data.

Fault Type Attribute

o) (o I Cn
a1 (p11,m1,v11)  (p12,T12,v12) (B1n, T1n, Vin)
Py (p21,m21,v21)  (p22,m22,122) (B2n, T2n, Van)
Fmn (Hmlyﬂ'mlyl’ml) (/J'm,277Tm27Vm,2) ce (,Ufmnyﬂ'mnyl’mn)

(iii) Generate the weights vector of attributes based on fault
data via the proposed attributes weighted model in
Section III. Then the generated weights vector is as
follows:

w = [wi, wa, - - wy]

(iv) Aggregate generated SVNS based on all attributes of
each fault type with the weights vector of attributes.
The n SVNNSs of each fault type would be fused via
SVNPWA operator Eq. (6). For inatance:

-5 01p) (12)

Then, the fused SVNS matrix F is shown as follows:

o] = SVNPWA(O[“, 12, ..

Fi (1, 71, v1)
Fy | (u2,m2,v2)

Fy, (Mms TTms Vin)

(v) Determine the fault type of the unknown fault sample
S. Due to the fuzziness of the unknown fault sample
and the fault types, the application of defuzzification
method could obtain the result of fault diagnosis, which
could reduce the amount of calculation in the process of
fault diagnosis. Defuzzy and calculate the crisp number
of each SVNN as follows [53]:

i

Wi i

Ci = pi+ (m)( ) (13)
C; is the degree of which the information extracted
from the data of unknown fault sample support each
fault type. As a result, the fault type of the unknown
fault sample S would be the fault type whose crisp
number C; is max.
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V. ILLUSTRATIVE EXAMPLE AND DISCUSSION

In this section, a case study of a motor rotor is provided to
demonstrate the potential applications and validity of the pro-
posed method. As the important part of rotating machinery,
motor rotor is the main object of monitoring and diagnosis.
This example uses multi-functional flexible rotor test-bed
as the experimental equipment. All mechanical equipment
in operation will produce certain vibration signals which
would change when the fault occurs. When the fault occurs,
the frequency and augment of amplitude of different faults are
distinct. The vibration energy of three kinds of fault types are
mostly concentrated on 1 — 3X. Therefore, supposed there is
an unknown fault sample S, and four attributes has been set:

1) Cp: the vibration amplitude when acceleration fre-
quency of the rotor is the basic frequency 1X.

2) Cy: the vibration amplitude when acceleration fre-
quency of the rotor is the frequency 2X.

3) C3: the vibration amplitude when acceleration fre-
quency of the rotor is the frequency 3X.

4) Cg4: average amplitude of vibration displacement in
time-domain.

The data in this paper is originated from [54]. The data of S
under four attributes has been collected. This group of data of
S1 under four attributes is showed as follows:

S1 Data =[0.3322  0.3393 0.1302 9.6780]

(i) Collect the fault data of each fault type under each
attribute. There are three fault types set up on the test-
bed:

1. Fy: rotor imbalance.
2. F5: rotor misalignment.
3. F3: support base loosening.

For each attribute of each fault type, a group of data
were collected. The data in this paper is originated
from [54]. For instance, forty number of F| under C
is showed as follows:

Fy¢,$ partial Data
= [0.1663 0.1590 0.15680.1485 0.1723

0.2006 0.1903 0.1908 0.1986 0.1843
0.1785 0.1610 0.1579 0.1511 0.1532
0.1647 0.1628 0.1646 0.1634 0.1642
0.1648 0.1640 0.1674 0.0661 0.1659

0.1650
0.1555
0.1542

0.16330.1632 0.1604 0.1542
0.1562 0.15400.1564 0.1557
0.1546 0.1571 0.1537 0.1536]

(i) Generate the SVNS for unknown fault sample S based
on fault data. Each group of data of each fault type
under each feature is used for establishing the modified
normal distribution model. The generated normal dis-
tributions of fault types and the line model of unknown
fault sample S are listed in Table 2:
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TABLE 2. Multiple distribution of fault types and unknown fault sample.

Fault type Attribute
Ch C Cs Cy

" N(0.1619,0.0101) N(0.1488,0.0173) N(0.1131,0.0071) N(4.3035,0.3204)

Fy N(0.1821,0.0136) N(0.3320,0.0106) N(0.2461,0.0362) N(4.7533,0.4653)

F3 N(0.3301,0.0075) N(0.3459,0.0142) N(0.1370,0.0122) N(9.7948,0.0888)

S1 x=0.3322 x=0.3393 x=0.1302 x=9.6780

TABLE 3. The generated SVNS for S; based on fault data of every fault types under every features.
Fault Type Attribute
C1 Co Cs Cy

Py (0.0000,0.3232,1.0000) (0.0000,0.4109,1.0000) (0.0543,0.1276,0.9457) (0.0000,0.3664,1.0000)
Py (0.0000,0.4370,1.0000) (0.7862,0.2514,0.2138) (0.0058,0.6517,0.9942) (0.0000,0.5321,1.0000)
F3 (0.9622,0.2398,0.0378) (0.8981,0.3377,0.1019) (0.8587,0.2207,0.1413) (0.4209,0.1015,0.5791)

Then calculate the SVNS by the Eq. (9)(10)(11). For
instance, the distribution of S1¢, Data is x = 0.3322,
the distribution of Fi¢, Data is N(0.1619, 0.0101),
the SVNN generated from the two distributions is
(0.0000, 0.3232, 1.0000). The generated SVNS are
listed in Table 3.

(iii) Generate the weights vector of attributes based on fault
data via the proposed attributes weighted model in
Section III. The figures of modified normal distribution
models of three fault types under four attributes are as
Fig. 4:

Then the generated weights vector is as follows:

w =[0.2913, 0.2075, 0.2903, 0.2108]

(iv) Aggregate generated SVNS based on all attributes of
each fault type. Fusing the SVNNs based on the four
attributes of each fault type by SVNPWA operator
Eq. (6) with the wights vector w. Take the SVNNs
based on fault type F; as an example, it could be fused
as follows:

a; = SVNPWA(a11, @12, @13, 214)
= SVNPWA((0.0000, 0.3232, 1.0000),
(0.0000, 0.4109, 1.0000),
(0.0543, 0.1276, 0.9457),
(0.0000, 0.3664, 1.0000))
= (0.0158, 0.2675, 0.9842)
The others are shown in Table 4.
(v) Determine the fault type of the unknown fault sample
S1. Finally, using the defuzzification method Eq. (13)
to deal with the SVNNS fault diagnosis matrix which is

shown in Table 4. The crisp numbers and their ranks of
three fault types are shown in Table 5.
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TABLE 4. The result of fusing the four attributes’ SVNNs based on each
fault type.

Fault Type SVNS
Py (0.0158,0.2675,0.9842)
F (0.2382,0.4672,0.7618)
I3 (0.8829,0.2131,0.1171)

TABLE 5. The rank of the crisp number of three fault types.

Fault type crisp number rank
Py 0.020050 3
Fy 0.349535 2
F3 1.071004 1

According to the above rank result, the fault type of S
diagnosed by the proposed method is F3, which is identical
with the actual fault type. The reasonableness of the proposed
method could be demonstrate via this diagnosis results, and
the advantage of the proposed method would be shown as
follows.

Moreover, the proposed method is used for verifying 120
unknown fault samples, and the accuracy of diagnosis results
is 98.33%. And equal weights in the aggregating process
is also applied for diagnosing the same 120 unknown fault
samples, the accuracy of diagnosis results is 93.33%. The
diagnosis results are shown as Table 6.

According the comparison results in Table 6, it can be seen
that the attributes weighted is significant in fault diagnosis
problems. It is widely admitted that the attributes of fault may
have different relative importance in the diagnosis process.
The proposed method defines a attributes weighted model
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FIGURE 4. Generation of weights of attributes.

TABLE 6. Diagnosis results of applying the proposed method and equal
weights.

Unknown Fault ~ The proposed Method Equal Weights
times of right times of error times of right times of error
Fy 38 2 38 2
Fy 40 0 40 0
F3 40 0 34 6

based on the similarity of distribution of fault data to derive
attributes’ weights, which avoids the subjective randomness
of selecting the attributes weights; while some approach just
assumes that all the attributes have equal weights and some
approach gives the wights of attributes directly in the diagno-
sis process, which may produce the unreasonable final diag-
nosis results. Based on the above comparison analysis, it can
be concluded that the combination of the attributes weighted
model, neutrosophic set and SVNPWA operator could handle
with the different importance of attributes and uncertainty
in the fault diagnosis problems, which could obtain accurate
diagnosis results.

VI. CONCLUSION

Fault diagnosis is an widely applied issue to monitor condi-
tion and diagnose fault for safety and reliability. However,
the relative importance of attributes and some uncertain fac-
tors failed to be considered in the fault diagnosis process.
Confronted with this problem, a new fault diagnosis method
based on attributes weighted neutrosophic set is proposed in
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this paper. In the proposed approach, a attributes weighted
model is developed for obtaining the weights of attributes
with the fault information. The focus of this method include
three points: firstly, the different importance of attributes
in diagnosis process is obtained in this proposed attributes
weighted model with the completely unknown weight infor-
mation, which is convenient and reasonable for obtaining
attributes’ weights; afterward, the uncertainty of fault types
and unknown fault sample both are considered in the applica-
tion of neutrosophic set; finally, the SVNPWA operator could
be used for aggregating the SVNS, which considers uncer-
tainty of fault information indicated with the neutrosophic set.
The application prospect of the proposed method in solving
the fault diagnosis problem is optimistic. Further work will
focus on the application of neutrosophic set with the proposed
attributes weighted model, and the subjective weights of
attributes would be considered in the fault diagnosis problem.
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