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ABSTRACT We present a novel social choice theory based multi-criteria decision making method under
neutrosophic environment and a new form of truth representation of neutrosophic theory called Distributed
Indeterminacy Form (DIF). Our hybrid method consists of classical methods and an aggregation operator
used in social choice theory. In addition to this, we also use DIF function to provide a more sensitive
indeterminacy approach towards accuracy functions.We also consider reciprocal property for all individuals.
This provides, as in intuitionistic fuzzy decision making theory, a consistent decision making for each
individual. The solution approach presented in this paper in group decision making is treated under
neutrosophic individual preference relations. These new approaches seem to be more consistent with natural
human behaviour, hence should be more plausible and feasible. Moreover, the use of a similar approach to
develop some deeper soft degrees of consensus is outlined. Finally, we give a Python implementation of our
work in the Appendix section.

INDEX TERMS Neutrosophic logic, group decision making, neutrosophic preference relations, distributed
indeterminacy form, social choice theory, neutrosophic social choice theory.

I. INTRODUCTION
In most cases, it is intricate for decision-makers to accurately
reveal a preference when solving multi-criteria decision-
making (MCDM) problems with imprecise, vague or incom-
plete information. Under these conditions, fuzzy sets (fs) [1],
where the membership degree is represented by a real num-
ber in [0, 1], are viewed as a strong mechanism method for
solving MCDM problems [2], as well as reasoning approxi-
mation and pattern recognition problems. However, fs cannot
cope with particular situations where it is not easy to define
the membership degree using a specific value. In order
to obviate the absence of knowledge of non-membership
degrees, Atanassov [3] introduced intuitionistic fuzzy sets
(IFS), an extension of fs. IFS have been widely used in
the solution of some significant MCDM problems [4]–[6],
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including multigranulation [7]–[12], neural networks [13],
[14], andmedical diagnosis problems [15]. Smarandache [16]
introduced neutrosophic logic and neutrosophic sets (NS)
and Rivieccio [17] later raised concern about that an NS is
a set where each element of the universe has a degree of
truth, indeterminacy and falsity and it lies within ]−0, 1+[,
i.e. the non-standard unit interval. Clearly this is an extension
of the standard interval [0, 1]. Furthermore, the uncertainty
presented here, i.e. the indeterminacy factor, is dependent
on the truth and falsity values, whereas the incorporated
uncertainty is dependent on the degrees of belongingness and
non-belongingness of IFS [18]. Recent studies show that
neutrosophy can in fact be used in many applications.
Ye [21]–[34], Lui and Wang [35], Lui et al. [36], Liu
and Li [37], Liu and Shi [38], [39], Liu and Tang [40],
Şahin and Liu [41], Chi and Liu [41], Biswas et al. [41],
Biswas et al. [44]–[49], Monda and Pramanik [50]–[54],
Peng et al. [55], Zhang et al. [56], [57], Peng et al. [58],
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Zhang et al. [59], [60], Tian et al. [61], [62], Ji et al. [63]–[65],
Peng and Dai [66], Peng et al. [67], Peng and Liu [68], Peng
and Dai [69], and Blin and Whinston [70] are some of the
significant works on and introduced innovative methods on
decision making under fuzzy and neutrosophic environments.

In this study, we propose to distribute the indeterminacy
on truth and falsity to be aligned with real life applications
and to take into consideration such situations in which uncer-
tainty in social choices have an effective role in truth and
falsity. We determine a rational social choice solely by the
preferences of individuals in a society. A rational choice is
possible only if every individual in the society is rational.
Social choice theory investigates solutions to the problem of
making a collective decision on a fair and democratic ground.
The main purpose and subject area of social choice theory
is to study the decision making problem for collectives to
make a collective decision in a democratic manner. Of course
our main concern will be to devise a method to make a
cumulative decision rather than judging how fair the decisions
of individuals are. The collective decision will manifest itself
in neutrosophic values that the individuals give assignments
to the preferences. Every individual is assumed to be able
to assign to every preference some neutrosophic compari-
son value as pairs. We benefit from fuzzy and intuitionistic
fuzzy social choice in solving the decision problems concern-
ing neutrosophic social choice. Some well known works in
fuzzy social choice and fuzzy decision making can be found
in [70]–[75]. As for the intuitionistic fuzzy choice, we refer
the reader to [76]–[78]. The advantage of our method is that
we take care of Indeterminacy aswell into neutrosophic social
choice, while the previous methods involving fuzzy and intu-
itionistic fuzzy into social choice ignored the indeterminacy ?
which is not accurate. This paper is about not only a classical
decision making paper but also has a paper that considers
decision making, truth maker theory and a new accuracy
function interpretation (DIF). Addition to these, on the other
hand, social choice theory under neutrosophic environment
is studied for the first time, so we cannot compare other
existing methods to the method in our paper. The comparison
method is to cite some papers related to decision making.
Many of the computational social choice theories that have
been studied are based on rational individuals and their con-
sistent preferences. Knowing the fact that the consistency
of these pairwise comparisons forms the main theme, such
theories devise appropriate methods based on the winner of
the consensus of the group or based on an ordering of the
preferences with respect to a priority as a result of voting of
each individual. In any social choice, the consensus winner
is defined as the choice of the dominant individual or the
collective decision of rational individuals. The goal is to
determine the best preference picked by the group. For the
fuzzy solutions of finding a consensus, we refer the reader
to Kacprzyk et al. [79]. We introduce a mathematical model
for determining a consensus winner as a result of a collective
decision, and in case of otherwise, we present a model which
orders the preferences with respect to their weights. We also

give an example in the last part of the paper to explain
the model better. Compared with fuzzy and intuitionistic
social choice theories, our model extends the social choice
theory to neutrosophic based social choice theory in solving
practical decision problems and present a richer language
discourse.

II. FUNDAMENTAL DEFINITIONS
In classical set (cs) theory, an element either belongs to a
set or not. The membership of elements in a set is interpreted
in binary terms according to a divalent case. In fuzzy set
theory, introduced by Zadeh [1], a gradual assessment of the
membership of elements in a set is permitted by a member-
ship functionwhich takes values in the real unit interval [0, 1].
In fuzzy set theory, classical divalent sets are usually called
crisp sets. Fuzzy set theory is a generalization of the classical
set theory. IFS are sets whose elements have degrees of
membership and non-membership. IFS have been introduced
by Atanassov [3] as an extension of the notion of fuzzy set,
which itself extends the classical notion of a set. Neutrosophic
set theory is a generalization of IFS, CS, FS, paraconsistent
set, dialetheist set, paradoxist set, tautological set based on
Neutrosophy [16]. An element x(T , I ,F) belongs to the set
in the following way: it is true in the set with a degree of
t ∈ [0, 1], indeterminate with a degree of i ∈ [0, 1], and it is
false with a degree of f ∈ [0, 1].

We will now give some definitions of the fundamental
concepts related to our study.
Definition 1 [1]: Given a universal set U and a generic

element, denoted by x, a fuzzy set X in U is a set of ordered
pairs defined as
X = {(x, µX (x))|x ∈ U}, where µX : U 7−→ [0, 1] is

called the membership function of A and µX (x) is the degree
of membership of the element x in X .
Definition 2 [3]: An intuitionistic fuzzy set X over a uni-

verse of discourse U is represented as
X = {(x, µX (x), νX (x))|x ∈ U}, where µX : U 7−→ [0, 1]

and νX : U 7−→ [0, 1] are called respectively themembership
function of A and the non-membership function of A for x in
X . The degree of non-membership of the element x in X is
defined as µX (x) = 1− νX (x).
Definition 3 [16], [19]: Let U be a universe of discourse.

A neutrosophic set is defined as
N = {(x,T (x), I (x),F(x)) : x ∈ U},

which is identified by a truth-membership function TN :
U 7−→]0−, 1+[, indeterminacy-membership function IN :
U 7−→]0−, 1+[ and falsity-membership function FN :

U 7−→]0−, 1+[.
Definition 4 [16], [19]: Let U be a universe of discourse.

A single valued neutrosophic set is defined as
N = {(x,T (x), I (x),F(x)) : x ∈ U},

which is identified by a truth-membership function TN :
U 7−→ [0, 1], indeterminacy-membership function IN :
U 7−→ [0, 1] and falsity-membership function FN : U 7−→
[0, 1] with 0 ≤ TN (x)+ IN (x)+ FN (x) ≤ 3. A single-valued
neutrosophic number (SVNN) is denoted by a = (T , I ,F).
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Definition 5 [20]: Let a be a single-valued neutrosophic
number. An accuracy function H of a single-valued neutro-
sophic number is represented as follows.

H (a) =
1+ Ta − Ia(1− Ta)− Fa(1− Ia))

2
, (1)

where for all a, H (a) ∈ [0, 1]. H is an order relation which
gives an accuracy score of information of a. If H (a1) =
H (a2), then a1 = a2, that is, they have the same information.
If H (a1) < H (a2), then a2 is larger than a1.

III. ACCURACY FUNCTION AND DISTRIBUTED
INDETERMINACY FORM
For a neutrosophic value, the accuracy function H is cal-
culated by the values T , I and F . However, in the process
of making a decision, such independent values may not
yield results consistent with the decision-making process on
objects. Suppose, one has truth, falsity and indeterminacy
values applied on a concept. We cannot speak about truth by
ignoring indeterminacy. The reason is that wemake a decision
on the basis of including indeterminacy and the truth-maker
gives the values by taking into account the indeterminacy.
Sorensen [80]–[82] who published many papers on truth-
maker theory, buries the theory of indeterminacy in the truth-
maker theory. By a similar approach, we desire to calculate
the the accuracy function dependent on T and F , taking
the indeterminacy into consideration. The direct application
of this idea to neutrosophic decision making helps us to
approximate the outcomeswith a better precision by distribut-
ing the indeterminacy on neutrosophic values. Let H be an
accuracy function. This time we reflect the indeterminacy
value on the truth and falsity values in the following way:
Let a = (Ta, Ia,Fa) be a single valued neutrosophic number
with truth value Ta, indeterminacy value Ia, and falsity value
Fa. Distributed Indeterminacy Form (DIF) of a is defined
as aDIF = (Ta − TaIa, 0,Fa − FaIa). Here, we distribute
indeterminacy effect on truth and falsity. In other words,
we decrease the power of truth and falsity in proportion to
the magnitude of indeterminacy. Our aim here is to determine
how the value of truth and falsity is affected by the degree
of growth of indeterminacy. Consider the following case for
the accuracy function H . Despite that H (0.5, 0.5, 0.6) =
0.475, we have that H (0.5, 0.6, 0.6) = 0.48. In other words,
even though the precision should have been decreased when
the indeterminacy increases, we observe the opposite here.
This, at first might, may seem contradictory but the case will
become clear in a moment. So DIF gives us a method to keep
a neutrosophic number as small as possible in the ordering
of the preferences in proportional to the increment of the
indeterminacy value, provided that the truth or falsity values
are fixed.

A. SELF COMPARISON
All comparisons on the same alternative should be assigned
a balanced value by rational individuals. The values 0.5,
(0.5, 0.5), and (0.5, 0.5, 0.5) are assigned respectively for

self-comparison by individuals in fuzzy set, intuitionistic
fuzzy set and neutrosophic set. Assigned self comparison of
a neutrosophic value a is (0.5, 0.5, 0.5) and outcome of this
number under H function is naturally H (a) = 0.5. The DIF
of this value is aDIF = (0.25, 0, 0.25) andH (0.25, 0, 0.25) =
0.375. This in turn gives us a result quite different from
self-comparison. One of the most important reasons that we
introduce the distributed indeterminacy concept is the effect
of indeterminacy over the other two values, i.e truth and
falsity. Moreover, we would like to see this effect as a rational
assignment in the self-comparison process, so we would like
to use the triplet (0.5, 0, 0.5) instead of (0, 5, 0.5, 0.5). As it
can be seen, we pull the indeterminacy factor down to zero.
Moreover, the DIF of (0.5, 0, 0.5) is equal to itself, that is
(0.5, 0, 0.5). Furthermore, the image of (0.5, 0, 0.5) under the
function H takes the value 0.5, which is just the appropriate
value for the self-comparison process.

IV. RECIPROCAL PROPERTY AND HESITATION FUNCTION
In this section, we will the define reciprocal property and
hesitation function for neutrosophy theory by reviewing
the properties and the functions in fuzzy and intuitionistic
theories.

A. RECIPROCAL PROPERTY IN FUZZY THEORY
Reference [83] A fuzzy preference relation R = (rij) on a
finite set of alternatives X is a relation in X×X which is char-
acterised by the membership functionµR : X×X 7−→ [0, 1].
Pairwise comparisons concentrate on two alternatives at a
time which enable individuals when giving their preferences.
If an individual prefers an alternative xi to another alternative
xj, then she/he should not simultaneously prefers xj to xi.
Then, the numerical representation of the comparison of two
alternatives is denoted by a reciprocal preference relation R
as follows:

rij = 1 ⇔ xi � xj
rij = 0 ⇔ xj � xi
rij = 0.5 ⇔ xj ∼ xi

In fuzzy social choice theory, we also see binary crisp prefer-
ence relations or [0, 1]-valued (fuzzy) preference relations.
xij = 1 shows the absolute degree of preference for xi over
xj. A definite preference for xi over xj is rij ∈ (0.5, 1).
Indifference between xi and xj is rij = 0.5. Reciprocal
[0, 1]-valued relations (R = (rij; ∀i, j : 0 ≤ rij ≤ 1, rij +
rji = 1) are widely used in fuzzy set theory for representing
preferences.

B. RECIPROCAL PROPERTY AND HESITATION FUNCTION
IN INTUITIONISTIC FUZZY THEORY
[76] An intuitionistic fuzzy preference relation P on a finite
set of alternatives X = {x1, . . . , xn} is characterised by
a membership function µP : X × X −→ [0, 1] and
a non-membership function νP : X × X −→ such that
0 ≤ µP(xi, xj) + νP(xi, xj) ≤ 1, ∀(xi, xj) ∈ X × X . As in
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the case for fuzzy preference relation, an intuitionistic fuzzy
preference relation is represented by the matrix P = (pij)
with pij =< µij, νij >,∀i, j = 1, 2, . . . , n. Obviously, when
the hesitancy function is the null function we have that µij +
νij = 1 (∀i, j), and the intuitionistic fuzzy preference relation
P = (pij) is mathematically equivalent to the reciprocal fuzzy
preference relation R = (rij), with rij = µij. An intuitionistic
fuzzy preference relation is referred to as reciprocalwhen the
following additional conditions are imposed:

(i) µii = νii = 0.5, ∀i ∈ {1, . . . , n}

(ii) µij = νji, ∀i, j ∈ {1, . . . , n}.

In intuitionistic fuzzy studies, the relations do not need to
have reciprocity but must satisfy rij ≤ 1− rji due to intuition-
istic index. In other words, for an IFS A, πA(x) is determined
by the following expression: πA(x) = 1 − µA(x) − νA(x) is
called the hesitancy degree of the element x ∈ X to the set A,
and πA(x) ∈ [0, 1], ∀x ∈ X .

C. RECIPROCAL PROPERTY AND HESITATION FUNCTION
IN NEUTROSOPHY THEORY
Let S = {s1, s2, s3, . . . , sn} be a set of alternatives (or
options) and m be a set of individuals. Each individual
declares his or her own preferences over S which are repre-
sented by an individual neutrosophic preference relation Rk
such that

NRk : S × S 7−→ [0, 1]× [0, 1]× [0, 1]

which is traditionally represented by a matrix Rk = [rkij =
NRk (r

k
i , r

k
j )], i, j = 1, 2, 3, .., n; k = 1, 2, 3, . . . ,m.

Rk =



(0.5, 0.5, 0.5) rk12 rk13 rk14

rk21 (0.5, 0.5, 0.5) rk23 rk24

rk31 rk32 (0.5, 0.5, 0.5) rk33

rk41 rk42 rk43 (0.5, 0.5, 0.5)


The matrix above shows that neutrosophic preferences of an
individual k are among s1, s2, s3, s4. Also that NRk (s1, s1) =
NRk (s2, s2) = NRk (s3, s3) = NRk (s4, s4) = (0.5, 0.5, 0.5),
NRk (s1, s2) = rk12, NRk (s3, s4) = rk34, etc. We require that
there is no larger outcome when an alternative is compared to
itself. Almost all studies in the literature on decision making
assign no value or assign zero degree to their underlying
discourse for self-comparisons. We follow a entirely compu-
tational approach here. On the other hand though, zeros given
in other previous studies may lead us have a false perception
to compare any si. For a neutrosophic preference function
mu, if mu(si, sj) = 0, then si is definitely larger than sj.
If we had a rational individual, mu(si, si) would have been
0.5, since if we do self-comparison, an alternative can not
have any advantage over itself. We use the H function in
Definition 2.5 for preciseness and to act as a neutrosophic
index of SVNNs. If i = j, then we take NRk (si, sj) to
be (0.5, 0.5, 0.5) without DIF, and (0.5, 0, 0.5) with DIF.

So, we have the following matrix:

Rk =



(0.5, 0, 0.5) rk12 rk13 rk14

rk21 (0.5, 0, 0.5) rk23 rk24

rk31 rk32 (0.5, 0, 0.5) rk33

rk41 rk42 rk43 (0.5, 0, 0.5)


The function H (called neutrosophic index or neutrosophic
hesitation function) assigns each aij neutrosophic value to a
number in [0, 1].

We have that

H (aij) =
1+ T (aij)− I (aij)(1− T (aij))− F(aij)(1− I (aij))

2
(2)

Now, we have a newmatrix RHk = [H (rkij ) = H k (NRk (si, sj))],
where i, j = 1, 2, 3, . . . , n; k = 1, 2, 3, . . . ,m. More
explicitly,

RHk =


H ((0.5, 0, 0.5)) H (rk12) H (rk13) H (rk14)

H (rk21) H ((0.5, 0, 0.5)) H (rk23) H (rk24)

H (rk31) H (rk32) H ((0.5, 0, 0.5)) H (rk34)

H (rk41) H (rk42) H (rk43) H ((0.5, 0, 0.5))


We find it more appropriate to use the notion of hesi-

tation in order to have consistency between the choosers
(individuals) and their preference. Here, we benefit from
the IFS. In utilizing IFS, we provide a hybrid account of
the neutrosophic accuracy function by hesitation. We adopt
intuitionistic index in our study since we use the function
H as a solid index throughout the paper. Not every H k (rij)
needs to be reciprocal, i.e. H k (rij) 6= 1 − H k (rji) but should
be quasi-reciprocal. That is, H (rkij ) ≤ 1 − H (rkji ), for each
i, j = 1, . . . , n. If k is not quasi-reciprocal, we call k an
irrational individual. If i = j, then we just take NRk (ai, aj) =
(0.5, 0.5, 0.5) since H ((0.5, 0.5, 0.5)) = 0.5 irrespective
of DIF. Furthermore, when we consider DIF, the neutro-
sophic value of the assignment made by a rational individual
on the same preference is (0.5, 0, 0.5) from now on, and
H ((0.5, 0, 0.5)) = 0.5 as desired.

DIF(Rk ) =


(0.5, 0, 0.5) DIF(rk12) DIF(rk13) DIF(rk14)

DIF(rk21) (0.5, 0, 0.5) DIF(rk23) DIF(rk24)

DIF(rk31) DIF(rk32) (0.5, 0, 0.5) DIF(rk33)

DIF(rk41) DIF(rk42) DIF(rk43) (0.5, 0, 0.5)


Ri : preference matrix of the ith individual,
DIF(Ri) : DIF of preference matrix of the ith individual,
RHi : range of preference matrix of the ith individual under

H function,
rHk (ij) : represents the element at the row i and column j

of RHi for individual k ,
hk (ij) : distribution of the kth individual’s votes for

each pairwise comparison of alternative’s value is determined
through 0.5 derived from RHi ,
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[[hk ]] : the matrix obtained by each element of hk (ij),
[[Hij]] : matrix of the group vote,
Ak : the degree for preference k assigned by the group,
akij : majority determination value for preference k of the

group (the element at the row i and column j of [[hk ]]),
H k
ij : majority determination value for preference k of the

group under H function,

hk (ij) =

{
1, rHk (ij) > 0.5
0, otherwise

Hπij : average majority determination value of the group
under H function,
Hπ : consensus winner determination matrix,
C(si) : social aggregation function for the alternative

(preference) si,
Example 6: Suppose that there are three experts m1, m2,

m3 and four facilities s1, s2, s3, s4 in the same business
industry. We assume that all experts are rational and so
we assume all neutrosophic values satisfy quasi-reciprocal
property. We also take the self-comparison value to be
(0.5, 0, 0.5). Each expert assigns some neutrosophic opinion
value by comparing the facilities in pairs as follows:
Rmi is the set of assigned values (preferences) bymi to pairs

in the facilities where 1 ≤ i ≤ 3.

Rm1

= {(s1, s1) = (0.5, 0, 0.5), (s1, s2) = (0.45, 0.24, 0.27),

(s1, s3) = (0.31, 0.14, 0.66), (s1, s4) = (0.8, 0.3, 0),

(s2, s1) = (0.1, 0.45, 0.52), (s2, s2) = (0.5, 0, 0.5),

(s2, s3) = (0.48, 0.26, 0.37), (s2, s4) = (0.2, 0.7, 0.8),

(s3, s1) = (0.61, 0.43, 0.71), (s3, s2) = (0.31, 0, 0.71),

(s3, s3) = (0.5, 0, 0.5), (s3, s4) = (0.76, 0.23, 0.27),

(s4, s1) = (0.1, 0.6, 0.9), (s4, s2) = (0.81, 0.55, 0.33),

(s4, s3) = (0.11, 0.32, 0.59), (s4, s4) = (0.5, 0, 0.5)}

Rm2

= {(s1, s1) = (0.5, 0, 0.5), (s1, s2) = (0.2, 0.4, 0.7),

(s1, s3) = (0.21, 0.55, 0.95), (s1, s4) = (0.4, 0.5, 0.3),

(s2, s1) = (0.29, 0.53, 0.38), (0.29, 0.53, 0.38),

(s2, s2) = (0.5, 0, 0.5), (s2, s3) = (0.62, 0.45, 0.16),

(s2, s4) = (0.2, 0.7, 0.8), (s3, s1) = (0.72, 0.15, 0.18),

(s3, s2) = (0.11, 0.13, 0.79), (s3, s3) = (0.5, 0, 0.5),

(s3, s4) = (0.51, 0.45, 0.53), (s4, s1)= (0.15, 0.35, 0.23),

(s4, s2) = (0.81, 0.55, 0.33), (s4, s3)= (0.17, 0.57, 0.36),

(s4, s4) = (0.5, 0, 0.5)}

Rm3

= {(s1, s1) = (0.5, 0, 0.5), (s1, s2) = (0.3, 0.45, 0.7),

(s1, s3) = (0.1, 0.85, 0.78), (s1, s4) = (0.4, 0.5, 0.3),

(s2, s1) = (0.36, 0.51, 0.39), (s2, s2) = (0.5, 0, 0.5),

(s2, s3) = (0.62, 0.45, 0.16), (s2, s4) = (0.1, 0.8, 0.21),

(s3, s1) = (0.92, 0.1, 0.16), (s3, s2) = (0.11, 0.13, 0.79),

(s3, s3) = (0.5, 0, 0.5), (s3, s4) = (0.23, 0.45, 0.74),

(s4, s1) = (0.15, 0.35, 0.23), (s4, s2) = (0.6, 0.2, 0.1),

(s4, s3) = (0.57, 0.57, 0.36), (s4, s4) = (0.5, 0, 0.5)}

Rm4

= {(s1, s1) = (0.5, 0, 0.5), (s1, s2) = (0.2, 0.4, 0.7),

(s1, s3) = (0.25, 0.87, 0.38), (s1, s4) = (0.4, 0.5, 0.3),

(s2, s1) = (0.29, 0.53, 0.38), (s2, s2) = (0.5, 0, 0.5),

(s2, s3) = (0.62, 0.45, 0.16), (s2, s4)= (0.34, 0.66, 0.21),

(s3, s1) = (0.73, 0.87, 0.56), (s3, s2)= (0.14, 0.19, 0.79),

(s3, s3) = (0.5, 0, 0.5), (s3, s4) = (0.21, 0.45, 0.66),

(s4, s1) = (0.16, 0.35, 0.23), (s4, s2) = (0.6, 0.4, 0.8),

(s4, s3) = (0.68, 0.57, 0.36), (s4, s4) = (0.5, 0, 0.5)}

We now represent each Rmi in matrix form and then calculate
their distributed indeterminacy forms DIF(Rmi ).

Rm1 =

 (0.5, 0, 0.5) (0.45, 0.24, 0.27) (0.31, 0.14, 0.66) (0.8, 0.3, 0)
(0.1, 0.45, 0.52) (0.5, 0, 0.5) (0.48, 0.26, 0.37) (0.2, 0.7, 0.8)
(0.61, 0.43, 0.71) (0.31, 0, 0.71) (0.5, 0, 0.5) (0.76, 0.23, 0.27)
(0.1, 0.6, 0.9) (0.81, 0.55, 0.33) (0.11, 0.32, 0.59) (0.5, 0, 0.5)


DIF(Rm1 ) =

 (0.5, 0.5, 0.5) (0.342, 0, 0.2052) (0.2666, 0, 0.5676) (0.56, 0, 0)
(0.055, 0, 0.286) (0.5, 0, 0.5) (0.3552, 0, 0.2738) (0.06, 0, 0.24)

(0.3477, 0, 0.4047) (0.31, 0, 0.71) (0.5, 0, 0.5) (0.5852, 0, 0.2079)
(0.04, 0, 0.36) (0.3645, 0, 0.1485) (0.0748, 0, 0.4012) (0.5, 0, 0.5)


Rm2 =

 (0.5, 0, 0.5) (0.2, 0.4, 0.7) (0.21, 0.55, 0.95) (0.4, 0.5, 0.3)
(0.29, 0.53, 0.38) (0.5, 0, 0.5) (0.62, 0.45, 0.16) (0.2, 0.7, 0.8)
(0.72, 0.15, 0.18) (0.11, 0.13, 0.79) (0.5, 0, 0.5) (0.51, 0.45, 0.53)
(0.15, 0.35, 0.23) (0.81, 0.55, 0.33) (0.17, 0.57, 0.36) (0.5, 0, 0.5)


DIF(Rm2 ) =

 (0.5, 0.5, 0.5) (0.12, 0, 0.42) (0.0945, 0, 0.4275) (0.2, 0, 0.15)
(0.1363, 0, 0.1786) (0.5, 0, 0.5) (0.341, 0, 0.088) (0.06, 0, 0.24)
(0.612, 0, 0.153) (0.0957, 0, 0.6873) (0.5, 0, 0.5) (0.2805, 0, 0.2915)

(0.0975, 0, 0.1495) (0.3645, 0, 0.1485) (0.0731, 0, 0.1548) (0.5, 0, 0.5)


Rm3 =

 (0.5, 0, 0.5), (0.3, 0.45, 0.7), (0.76, 0.35, 0.38), (0.4, 0.5, 0.3)
(0.36, 0.51, 0.39), (0.5, 0, 0.5), (0.62, 0.45, 0.16), (0.46, 0.46, 0.21)
(0.92, 0.86, 0.35), (0.11, 0.13, 0.79), (0.5, 0, 0.5), (0.23, 0.45, 0.74)
(0.15, 0.35, 0.23), (0.6, 0.4, 0.8), (0.57, 0.57, 0.36), (0.5, 0, 0.5)


DIF(Rm3 ) =

 (0.5, 0, 0.5) (0.165, 0, 0.385) (0.494, 0, 0.247) (0.2, 0, 0.15)
(0.1764, 0, 0.1911) (0.5, 0, 0.5) (0.341, 0, 0.088) (0.2484, 0, 0.1134)
(0.1288, 0, 0.049) (0.0957, 0, 0.6873) (0.5, 0, 0.5) (0.1265, 0, 0.407)
(0.0975, 0, 0.1495) (0.36, 0, 0.48) (0.2451, 0, 0.1548) (0.5, 0, 0.5)


Rm4 =

 (0.5, 0, 0.5), (0.2, 0.4, 0.7), (0.51, 0.35, 0.38), (0.4, 0.5, 0.3)
(0.29, 0.53, 0.38), (0.5, 0, 0.5), (0.62, 0.45, 0.16), (0.34, 0.66, 0.21)
(0.73, 0.87, 0.56), (0.14, 0.19, 0.79), (0.5, 0, 0.5), (0.21, 0.45, 0.66)
(0.16, 0.35, 0.23), (0.6, 0.4, 0.8), (0.68, 0.57, 0.36), (0.5, 0, 0.5)


DIF(Rm4 ) =

 (0.5, 0, 0.5) (0.12, 0, 0.42) (0.3315, 0, 0.247) (0.2, 0, 0.15)
(0.1363, 0, 0.1786) (0.5, 0, 0.5) (0.341, 0, 0.088) (0.1156, 0, 0.0714)
(0.0949, 0, 0.0728) (0.1134, 0, 0.6399) (0.5, 0, 0.5) (0.1155, 0, 0.363)
(0.104, 0, 0.1495) (0.36, 0, 0.48) (0.2924, 0, 0.1548) (0.5, 0, 0.5)



Nowwe apply theH function toDIF(Ri) and then obtain RHi .

RHm1
=


0.5 0.5684 0.3495 0.78

0.3844 0.5 0.5407 0.41
0.4715 0.3 0.5 0.6886
0.34 0.608 0.3368 0.5


hm1 (ij) =

{
1, rHm1

(ij) > 0.5
0, otherwise

[[hm1 ]] =


0 1 0 1
0 0 1 0
0 0 0 1
0 1 0 0



RHm2
=


0.5 0.35 0.3335 0.525

0.4788 0.5 0.6265 0.41
0.7295 0.2041 0.5 0.4945
0.474 0.474 0.4591 0.5


42004 VOLUME 8, 2020



S. Topal et al.: New Group Decision Making Method With DIF Under Neutrosophic Environment

hm2 (ij) =

{
1, rHm2

(ij) > 0.5
0, otherwise

[[hm2 ]] =


0 0 0 1
0 0 1 0
1 0 0 0
0 0 0 0


RHm3
=


0.5 0.39 0.6234 0.525

0.4926 0.5 0.6265 0.5675
0.5399 0.2041 0.5 0.35975
0.474 0.4399 0.54515 0.5


hm3 (ij) =

{
1, rHm3

(ij) > 0.5
0, otherwise

[[hm3 ]] =


0 0 1 1
0 0 1 1
1 0 0 0
0 0 1 0


RHm4
=


0.5 0.35 0.5422 0.525

0.4788 0.5 0.6265 0.5221
0.511 0.2367 0.5 0.3762
0.477 0.439 0.5688 0.5


hm4 (ij) =

{
1, rHm4

(ij) > 0.5
0, otherwise

[[hm4 ]] =


0 0 1 1
0 0 1 1
1 0 0 0
0 0 1 0


The next step is to collect and compare the preferences.

To do this, we add the columns of [[Hij]] and divide it to
number of the alternatives.

Ak =
1
m

∑
[[Hik ]]

such that 1 ≤ k ≤ m

Hπij =


1
m

∑m

k=1
akij, i 6= j

0, i = j

such that i, j = 1, 2, . . . n and k = 1, 2, . . . ,m.

Hπ12 =
am1
12 + a

m2
12 + a

m3
12 + a

m4
12

4
=

1+ 0+ 0+ 0
4

=
1
4
,

Hπ13 =
1
2
, Hπ14 = 1, Hπ21 = 0,Hπ23 = 1,Hπ24 =

1
2
,

Hπ31 =
3
4
, Hπ32 = 0, Hπ34 =

1
4
,Hπ41 = 0,Hπ42 =

1
4
,

Hπ43 =
1
2

Hπ =



−
1
4

1
2

1

0 − 1
1
2

3
4

0 −
1
2

0
1
4

1
2
−


We now define the notion of a consensus winner.

Definition 7 [74]: si ∈ W is called a consensus winner if
and only if ∀sj 6= si : rij > 0.5, where rij ∈ Hπ .
In our example above, there is no winner because there
are multiple numbers greater than 0.5. If there is a con-
sensus winner, it must be unique and the set W must
be a singleton since the reciprocal property must hold.
Of course, it is easy to define that α-consensus winner
for different α-values. So we define a social aggrega-
tion average function C to calculate the order of si in
the group to the extent that individuals are not against
option si.

C(si) =
1

m− 1

∑
i6=j

rij, (3)

where i, j = 1, 2, . . . ,m.

C(s1) =
7
12
, C(s2) =

6
12
, C(s3) =

5
12
,C(s4) =

3
12
.

So, C(s1) > C(s2) > C(s3) > C(s4).

V. CONCLUSION
The main aim of this paper is to bring into attention the
interplay between neutrosophy and social choice theory.
Within the framework of this intention, we have taken inher-
itance from studies on fuzzy and intuitionistic fuzzy social
choice theory and developed the neutrosophic based social
choice theory. First we defined the DIF , which was used in
Sorensen’s truth-maker theory to distribute the indeterminacy
on truth and falsity values for certain neutrosophic calcula-
tions. We believe that the notion of DIF gives a new insight,
breath and different perspectives for neutrosophic studies.
Through DIF , we emphasize hesitation and reciprocal char-
acteristics in self-comparisons and other pairwise compar-
isons to define a consistent decision maker. We determine a
consensus winner if exists. In case of otherwise, we obtain
orders of the given alternatives by defining a social aggre-
gation average function. Finally we give in the Appendix,
a Python implementation of an algorithm computing the
output in the order of

n
11

seconds, where n is the input
size (the number of matrices), when executed in a mid-end
computer.

A. FURTHER RESEARCH DIRECTIONS
Some future researches to extend and diversify this work may
include the following ideas:
• studying the quantifiers most, at most, etc [86],
• considering interval valued neutrosophic sets [87],
• considering bipolar valued neutrosophic sets [88],
• introducing different forms of DIF depending on under-

lying models,
• presenting several forms of aggregation operators [89],
• applications on plithogenic sets [90].
• applications on Maclaurin symmetric mean, q-rung

orthopair 2-tuple linguistic aggregation and continuous
interval-valued Pythagorean operators [91]- [93].
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APPENDIX
A Python implementation [84], [85] of the group decision
making method with distributed indeterminacy form under
neutrosophic environment is as follows:
from __future__ import division

from collections import defaultdict

import math

import sys

R1=[ [ (0.5,0,0.5),(0.45,0.24,0.27), (0.31,0.14,0.66) , (0.8,0.3,0)],

[(0.1,0.45,0.52) , (0.5,0,0.5), (0.48,0.26,0.37) , (0.2,0.7,0.8)],

[(0.61,0.43,0.71) , (0.31,0,0.71) , (0.5,0,0.5) , (0.76,0.23,0.27)],

[(0.1,0.6,0.9) , (0.81,0.55,0.33) , (0.11,0.32,0.59) , (0.5,0,0.5)]]

R2=[ [ (0.5,0,0.5),(0.2,0.4,0.7), (0.21,0.55,0.95) , (0.4,0.5,0.3)],

[(0.29,0.53,0.38) , (0.5,0,0.5), (0.62,0.45,0.16) , (0.2,0.7,0.8)],

[(0.72,0.15,0.18) , (0.11,0.13,0.79) , (0.5,0,0.5) , (0.51,0.45,0.53)],

[(0.15,0.35,0.23) , (0.81,0.55,0.33) , (0.17,0.57,0.36) , (0.5,0,0.5)] ]

R3=[ [ (0.5,0,0.5),(0.3,0.45,0.7), (0.1,0.85,0.78) , (0.4,0.5,0.3)],

[(0.36,0.51,0.39) , (0.5,0,0.5), (0.62,0.45,0.16) , (0.1,0.8,0.21)],

[(0.92,0.1,0.16) , (0.11,0.13,0.79) , (0.5,0,0.5) , (0.23,0.45,0.74)],

[(0.15,0.35,0.23) , (0.6,0.2,0.1) , (0.57,0.57,0.36) , (0.5,0,0.5)] ]

R4=[ [ (0.5,0,0.5),(0.2,0.4,0.7), (0.25,0.87,0.38) , (0.4,0.5,0.3)],

[(0.29,0.53,0.38) , (0.5,0,0.5), (0.62,0.45,0.16) , (0.34,0.66,0.21)],

[(0.73,0.87,0.56) , (0.14,0.19,0.79) , (0.5,0,0.5) , (0.21,0.45,0.66)],

[(0.16,0.35,0.23) , (0.6,0.4,0.8) , (0.68,0.57,0.36) , (0.5,0,0.5)] ]

AllTogether= {’R1’: [[ (0.5,0,0.5),(0.45,0.24,0.27), (0.31,0.14,0.66) , (0.8,0.3,0)],

[(0.1,0.45,0.52) , (0.5,0,0.5), (0.48,0.26,0.37), (0.2,0.7,0.8)],

[(0.61,0.43,0.71) , (0.31,0,0.71) , (0.5,0,0.5) , (0.76,0.23,0.27)],

[(0.1,0.6,0.9) , (0.81,0.55,0.33) , (0.21,0.32,0.59) , (0.5,0,0.5)]],

’R2’: [[ (0.5,0,0.5),(0.2,0.4,0.7), (0.21,0.55,0.95) , (0.4,0.5,0.3)],

[(0.29,0.53,0.38) , (0.5,0,0.5), (0.62,0.45,0.16) , (0.83,0.46,0.21)],

[(0.72,0.15,0.18) , (0.11,0.13,0.79) , (0.5,0,0.5) , (0.51,0.45,0.53)],

[(0.15,0.35,0.23) , (0.6,0.4,0.8) , (0.47,0.57,0.36) , (0.5,0,0.5)]],

’R3’: [[ (0.5,0,0.5),(0.3,0.45,0.7), (0.76,0.35,0.38) , (0.4,0.5,0.3)],

[(0.36,0.51,0.39) , (0.5,0,0.5), (0.62,0.45,0.16) , (0.46,0.46,0.21)],

[(0.92,0.86,0.35) , (0.11,0.13,0.79) , (0.5,0,0.5) , (0.23,0.45,0.74)],

[(0.15,0.35,0.23) , (0.6,0.4,0.8) , (0.57,0.57,0.36) , (0.5,0,0.5)]],

’R4’: [[ (0.5,0,0.5),(0.2,0.4,0.7), (0.51,0.35,0.38) , (0.4,0.5,0.3)],

[(0.29,0.53,0.38) , (0.5,0,0.5), (0.62,0.45,0.16) , (0.34,0.66,0.21)],

[(0.73,0.87,0.56) , (0.14,0.19,0.79) , (0.5,0,0.5) , (0.21,0.45,0.66)],

[(0.16,0.35,0.23) , (0.6,0.4,0.8) , (0.68,0.57,0.36) , (0.5,0,0.5)]]}

def AccuracyFunction(T,I,F):

HV= (1+ T - I*(1-T)-F*(1-I))/2

return HV

def DIF(T,I,F):

T1=math.fabs(T-I*T)

F1=math.fabs(F-I*F)

DIFi=’(’+str(T1)+’,’+str(0)+’,’+str(F1)+’)’

return DIFi

def AccuracyIntedeteminacyDistubition(T,I,F):

T1=math.fabs(T-I*T)

F1=math.fabs(F-I*F)

ID=AccuracyFunction(T1,I,F1)

return ID

def RationalityChecker(R):

columnR=len(R)

idn=0

rowR=len(R[0])

for i in range(0,rowR-1):

if R[i][i] != (0.5, 0, 0.5):

print ’(,’,i,i,") is not (0.5, 0, 0.5), so, s ",i, ’ is not rational agent’

idn=1

for i in range(0,rowR):

for j in range(0,rowR):

if i !=j:

t1=R[i][j][0]

i1=R[i][j][1]

f1=R[i][j][2]

A1=AccuracyIntedeteminacyDistubition(t1,i1,f1)

t2=R[j][i][0]

i2=R[j][i][1]

f2=R[j][i][2]

A2=AccuracyIntedeteminacyDistubition(t2,i2,f2)

if A1 > 1-A2 : # A1~must be less than~or~equal to 1-A2

idn=1

print R[i][j], ’ and ’, R[j][i], ’ does not satisfy hesitation

property’

return idn

def RHcreation(K):

global RHtogether

RHtogether= defaultdict()

for i in K.keys():

columnAll=len(K[i])

rowAll1=len(K[i][0])

rowAll2=len(K[i][0])

for j in range(0,rowAll1):

for k in range(0,rowAll2):

t1=K[i][j][k][0]

i1=K[i][j][k][1]

f1=K[i][j][k][2]

A=AccuracyIntedeteminacyDistubition(t1,i1,f1)

if i not in RHtogether.keys():

RHtogether[i]=[A]

else:

RHtogether[i].extend([A])

number= int(math.sqrt(len(RHtogether[i])))

m=0

new_list=[]

while m<len(RHtogether[i]):

new_list.append( RHtogether[i][m:m + number])

m+= number

RHtogether[i]=new_list

return RHtogether

def OneZero(K):

global H

H=defaultdict()

for i in K.keys():

columnAllin=len(K[i])

rowAl1=len(K[i][0])

for j in range(0,columnAllin):
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for k in range(0,rowAl1):

if K[i][j][k]>0.5:

if i not in H:

H[i]=[1]

else:

H[i].append(1)

else:

if i not in H:

H[i]=[0]

else:

H[i].append(0)

number= int(math.sqrt(len(H[i])))

m=0

new_list=[]

while m<len(H[i]):

new_list.append( H[i][m:m + number])

m+= number

H[i]=new_list

return H

def H_pi_ij(K):

global Hpij

Hpij= defaultdict()

columnAllin112=len(H)

for i in range(0,columnAllin112):

Topij=0

for j in range(0,columnAllin112):

Topij=0

for k in H.keys():

if i != j:

Topij = Topij + H[k][i][j]

else:

Topij=0

aij=str(i+1)+str(j+1)

TopijAvarage= Topij/len(H)

if aij not in Hpij.keys():

TopijAvarage= Topij/len(H)

Hpij[aij]=TopijAvarage

else:

Hpij[aij]=TopijAvarage

return Hpij

def Alternative_Ordinary(Hpij):

global ORD

ORD= defaultdict()

Number_Of_Alternatives=int(math.sqrt(len(Hpij)))

for i in range(1,Number_Of_Alternatives+1):

istr=str(i)

Top=0

for k in Hpij.keys():

if istr==k[1]:

Top=Top+Hpij[k]

TopJavarage= Top/Number_Of_Alternatives

if istr not in ORD.keys():

istA=’Alternative ’+istr

ORD[istA]=TopJavarage

else:

ORD[istA]=TopJavarage

return ORD

def GroupDecisionWithID(m):

for i in AllTogether.keys():

if RationalityChecker(AllTogether[i])==1:

print ’inconsistent agent’

Step1=RHcreation(m)

Step2=OneZero(Step1)

Step3=H_pi_ij(Step2)

Step4=Alternative_Ordinary(Step3)

return Step4
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