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A B S T R A C T

This paper proposes a fuzzy clustering algorithm through neutrosophic association matrix. In the first step, data
are fuzzified into neutrosophic sets to create neutrosophic association matrix. By deriving a finite sequence of
neutrosophic association matrices, the neutrosophic equivalence matrix is generated. Finally, the lambda-cutting
is performed over the neutrosophic equivalence matrix to derive the final lambda-cutting matrix which is used to
determine the clusters. Experimental results on several benchmark datasets using different clustering criteria
show the advantage of the proposed clustering over the existing algorithms.

1. Introduction

In practice, data are often uncertain, inconsistency and un-
completed. To handle this problem, fuzzy set was proposed by Zadeh
(1965) in which uncertainty is modeled as an elemental dependence of
a set. Fuzzy sets have showed meaningful applications in many fields of
study (Nguyen, Son, Ashour, & Dey, 2018; Ye & Du, 2017). One of the
most essential utilization regarding the fuzzy set is the representation of
information such as “non-membership” and “hesitancy”. For example,
when diagnosing a patient, the doctor often concludes the patient's
illness rate corresponds to the disease rather than indicating a complete
or unspecified illness. There are several extensions of traditional fuzzy
set have been proposed such as intuitionistic fuzzy sets (Atanassov,
1986) and neutrosophic fuzzy set (Smarandache, 1998). Neutrosophic
set is the generalization of fuzzy set, intuitionistic fuzzy set and others.
Neutrosophic set has been studied and applied in various fields such as
the medical diagnosis (Mondaland and Pramanik, 2015), decision
support systems (Pramanik and Chackrabarti, 2013), robots
(Smarandache and Vladareanu, 2014), social and educational in-
formation analyzes, etc.

Clustering is an important concept along with fuzzy set theory.
Several clustering algorithms based on fuzzy set have been proposed
such as: Fuzzy C-Means (FCM) (Bezdek, Ehrlich, & Full, 1984), the
methods proposed by Ye and Fu (2016), Ye and Fu (2016), Ye and

Smarandache (2016), Ye and Zhang (2014), Ye (2014, 2016, 2017,
2018). Recently, neutrosophic association matrix usually is utilized as a
tool in many fuzzy clustering algorithms. For the fuzzy clustering al-
gorithm based on neutrosophic association matrix, the most important
step is to evaluating the similarities in order to divide the elements into
clusters. Ye and Smarandache (2016) proposed three types of measures
including Jaccard, Dice and Cosine which then be used in multi-criteria
decision making with simple neutrosophic dataset. In Ye (2014) and Ye
and Zhang (2014); Ye continued to propose new neutrosophic fuzzy
modification methods for decision-makers by combining above similar
measures. On the other hand, Ma, Wang, Wang, and Wu (2015) in-
vestigate the similar measures of tangential function for medical ap-
plications. Other studies on neutrosophicfuzzy clustering algorithms
can be found in Kuo, Potti, and Zulvia (2018), Wu, Wu, Zhou, Chen, and
Guan (2017), Ye and Fu (2016), Ye and Zhang (2014), Ye (2016).

This article proposes a new fuzzy clustering using neutrosophic as-
sociation matrix. The first step of the algorithm is to construct a neu-
trosophic association matrix from the data in the dataset. After that, a
neutrosophic equivalent matrix is constructed from neutrosophic asso-
ciation matrix. Finally, the lambda-cutting matrix is built based on
neutrosophic equivalent matrix by the lambda-cutting step. The result
clusters are defined based on the lambda-cutting matrix.

Section 2 presents some background information and proposes a
new neutrosophic clustering method though detailed analysis. Section 3

https://doi.org/10.1016/j.cie.2018.11.007
Received 8 May 2018; Received in revised form 17 September 2018; Accepted 5 November 2018

⁎ Corresponding author at: 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam.
E-mail addresses: hoangvietlong@tdtu.edu.vn (H.V. Long), Mumtaz.Ali@usq.edu.au (M. Ali), sonlh@vnu.edu.vn (L.H. Son), tudn@truongt36.edu.vn (D.N. Tu).

Computers & Industrial Engineering 127 (2019) 687–697

Available online 08 November 2018
0360-8352/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03608352
https://www.elsevier.com/locate/caie
https://doi.org/10.1016/j.cie.2018.11.007
https://doi.org/10.1016/j.cie.2018.11.007
mailto:hoangvietlong@tdtu.edu.vn
mailto:Mumtaz.Ali@usq.edu.au
mailto:sonlh@vnu.edu.vn
mailto:tudn@truongt36.edu.vn
https://doi.org/10.1016/j.cie.2018.11.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2018.11.007&domain=pdf


shows the experimental result of proposed algorithm in comparison
with other relevant methods on real data sets. Conclusions are in the
Section 4.

2. The proposed clustering algorithm

2.1. Background of neutrosophic set

Let 0 be a infinitesimal number (Smarandache, 1998), i.e., for
all positive integers one has < n

1 . Let = ++1 1 , where “1” and “ ” are
its standard and non-standard parts respectively. Similarly,

=(0 ) 0 , and +]0 , 1 [ is a non-standard unit interval.
A neutrosophic set Ain the universe X is characterized by a truth,

indeterminacy, and falsehood membership functions<T (x)A , I x( )A ,
F x( )A >such that +T x I x F x( ), ( ), ( ): X ]0 , 1 [A A A and

+ +T x I x F x0 ( ) ( ) ( ) 3A A A (Smarandache, 1998).
Suppose that =A x T x I x F x x X{ ; ( ); ( ); ( ) | }1 1 1 1 and
=A x T x I x F x x X{ ; ( ); ( ); ( ) | }2 2 2 2 be two neutrosophic sets. We recall

some base relationship between neutrosophic sets (Smarandache,
1998):

A A1 2iff T x T x I x I x F x F x( ) ( ); ( ) ( ); ( ) ( )1 2 1 2 2 1 ,
=A x F x I x T x x X{ ; ( ); ( ); ( ) | }c

1 1 1 1 ,
=A A x T x T x I x I x F x F x x X{ ; min{ ( ); ( )}; max{ ( ); ( )}; max{ ( ); ( )} | }1 2 1 2 1 2 1 2 ,
=A A x T x T x I x I x F x F x x X{ ; max{ ( ); ( )}; min{ ( ); ( )}; min{ ( ); ( )} | }1 2 1 2 1 2 1 2 .

2.2. Construction of neutrosophic association matrices

Denote N X( ) by the set of all neutrosophic set.

Definition 1. Mapping ×m N X N X: ( ) ( ) [0, 1] is defined a
association coefficient function if it satisfies following properties for
all A B N X( , ) ( )

(1) m A B0 ( , ) 1;

(2) =m A B( , ) 1 iff =A B;
(3) =m A B m B A m B A( , ) ( , ) ( , ).

From this definition, we proposed the following notions and theo-
rems which will be used in the main clustering algorithm later.

Definition 2. Let =B j n( 1, 2, , )j be neutrosophic sets. = ×M m( )ij n nis
called an neutrosophic association matrix, where =m m B B( , )ij i j is
the association coefficients of Bi and Bj.

Definition 3. Let = ×M m( )ij n n be an association matrix. If
= = ×M M M m( ¯ )ij n n

2 , then M2 is a composition matrix of M

= =m m m i j n¯ max {min{ , }}, , 1, 2, , .ij p ip pj (1)

Theorem 1. If = ×M m( )ij n n is an association matrix then M2 is also an
association matrix.

Proof.

(a) For any =i j n, 1, 2, , , we have m0 1ij .

Thus,

= =m m m i j n0 ¯ max {min{ , }} 1 for all , 1, 2, , .ij p ip pj (2)

(b) Since = = =m if and only if B B i j n1 , , 1, 2, , ,ij i j it yields

= =m m m¯ max {min{ , }} 1ij p ip pj (3)

= =if and only if B B Bi p jfor some =p n1, 2, , .

(c) Since =m mij ji for all =i j n, 1, 2, , , we get

= =

= = =

m m m m m

m m m i j n

¯ max {min{ , }} max {min{ , }}

max {min{ , }} ¯ , , 1, 2, ,
ij p ip pj p pi jp

p jp pi ji (4)

Theorem 2. If = ×M m( )ij n nis an association matrix then for a positive
integer p,

=+M M Mp p2 1 2 1 (5)

is also an association matrix.

Proof. Straightforward. □

Definition 4. If M M2 i.e.,

m m mmax {min{ , }}p ip pj ij (6)

for all =i j n, 1, 2, , , then an association matrix = ×M m( )ij n n is called

Fig. 1. Flowchart of the proposed clustering algorithm.

Table 1
The descriptions of experimental EPPO datasets.

Dataset No. elements No. attributes

eppo_standard_pp1 1452 289
eppo_standard_pm8 167 3
eppo_standard_pm4 555 35

Table 2
The descriptions of experimental UCI datasets.

Dataset No. elements No. attributes

Machine 209 10
Ecoli 336 9
Pima-indians-diabetes 768 9
Student 395 33
Transfusion 748 5
Voting-records 17 17
Climate model 540 22
Adult 806 14
Breast-cancer-wisconsin 699 11
Seed 210 8
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an equivalent association matrix.

Theorem 3. Let = ×M m( )ij n nbe an association matrix. After finite times of
compositions:

M M M M p2 4 2 (7)

there exist p: = +M Mp p2 2( 1) , and M p2 is an equivalent association
matrix.

Definition 5. Let = ×M m( )ij n n be an equivalent association matrix.
Then, = ×M m( )ij n n is called the -cutting matrix of M with [0, 1]
being the confidence level.

=
<

=m
if m
if m i j n

0 ,
1 , , 1, 2, ,ij

ij

ij (8)

2.3. Clustering algorithm based on association matrices of neutrosophic sets

Step 1: Let =U u u u{ , , , }p1 2 be a universe of discourse, and
= ( , , , )p

T
1 2 is the weight vector of =l p( 1, 2, , ),l with

[0, 1]l for all =l p1, 2, , , and == 1.l
p

l1 Consider a collection of
neutrosophic sets =B j n( 1, 2, , ),j where

= =B y T y I y F y y U j n{ , ( ), ( ), ( ) | }, 1, 2, ,j B l B l B l lj j j (9)

=y T y I y F y( ) 3 ( ) ( ) ( ),B l B l B l B lj j j j

is the degree of uncertainty of yl to B .j
Step 2: Select a neutrosophic sets association measure, such as Eq.

(10) below.
Let we noting that, by using well-known Cauchy-Schwarz inequalit

= = =
a b a b ,

i

p

i i
i

p

i i
i

p

i i
1 1

2

1

2

where == 1i
p

i1 , we can show that m B B( , )i j defined in eq. (10) sa-
tifies Definition 1.

=
+ +

+ +

+ + +

+

=

=

=

(

)

m B B
T y T y I y I y F y F y

T y I y F y

y T y I y F y

y

( , )
( ( ) ( ) ( ) ( ) ( ) ( ) )

max ( ( ) ( ) ( )

( )), ( ( ) ( ) ( )

( ))

i j
l
p

B l B l B l B l B l B l

l
p

l B l B l B l

B l l
p

l B l B l B l

B l

1
2 2 2 2 2 2

1
2 2 2

2
1

2 2 2

2

i j i j i j

i i i

i j j j

j

(10)

Step 3: If = ×M m( )ij p p is an equivalent association matrix then
build = ×M m( )ij n n using Eq. (8); otherwise derive an equivalent as-
sociation matrix M̄ by Eq. (7). Construct -cutting matrix

= ×M m¯ ( ¯ )ij n n of M̄ by Eq. (8).
Step 4: If elements of the ith line in M (or M̄ ) are the same as those

of jth line then Bi and Bj are of the same type. By this principle, we can
classify all these neutrosophic set =B j n( 1, 2, , ).j

These steps of this clustering algorithm can be seen in the following
Fig. 1.

By using the cutting matrix of the equivalent association matrix, the
new algorithm classifies neutrosophic sets according to a given con-
fidence level which is specified by elements of equivalent association
matrices and actual situations.

.

6102eYYe2014

Huang 
Our algorithms 

Fig. 2. Clustering result of 3 methods with eppo_standard_pp1 dataset.
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3. Experiments

3.1. Experimental environments

The proposed algorithm has been implemented in addition to the
methods of Ye (2014), Ye (2016) and Huang (2016) in Matlab 2015a
programming language with a PC with CPU Intel(R) Core (TM) i5-
2520M@2.4 GHz, 4096MB RAM, windows 7 Professional 64 bits.

In order to perform the evaluation, two kinds of datasets have been
used. The first dataset is the set of EPPO standard dataset which is taken
from EPPO Global Database. It provides a large dataset for variety types
as agriculture, forestry and plan protection. Other 10 benchmark da-
tasets (Machine, Ecoli, Pima-indians-diabetes, Student, Transfusion,
Voting-records, Climate Model, Adult, Breast-cancer-wisconsin, Seed)
have been taken from UCI dataset (UCI Machine Learning Datasets) (see
Tables 1 and 2).

Experimental objectives: The quality of all clustering algorithms is
evaluated by 3 indices namely DB, SSWC, IVF, VRC and BH.

(a) Davies-Bouldin (DB) (Davies and Bouldin, 1979):

Let xi be an “n”-dimensional feature vector assigned to clusterCi and
x̄i is the centroid ofCi. Denote d̄l, d̄m by the average distances of clusters
Cm and C ,l respectively and dm l, is the distance between them.

=d
N

x x¯ 1 || ¯ ||;l
l x C

i l
i l

=d x x|| ¯ ¯ ||.l m l m,

If k is the number of clusters, then DB is called the Davies-Bouldin
index with

=
=

DB
k

D1

l

k

l
1 (11)

=D Dmax{ };l
m l

l m,

= +D d d d( ¯ ¯ )/l m l m m l, ,

The lower value of DB criterion is better.

(b) Simplified Silhouete Width Criterion (SSWC):

Supposed that xj is the point of cluster A and ap j, is the average
distance of xj to points in A, while bp j, is the minimum average distance
from xj to all other clusters.

Then the silhouette of xj is defined by

=S
b a

a bmax{ , }
.x

p j p j

p j p j

, ,

, ,
j

The Simplified Silhouete Width Criterion is

=
=

SSWC
N

S1

j

N

x
1

j
(12)

Using SSWC, the greater value shows more efficient algorithm.

(c) IFV (Atanassov, 1986):

6102eY4102eY

Our algorithms Huang 

Fig. 3. Clustering result of 3 methods with eppo_standard_pm8 dataset.
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= ×
= = =

IFV
C N

u C
N

u SD1 1 log 1 log
j

C

k

N

kj
k

N

kj
max

D1 1

2
2

1
2

2

(13)

where

=SD V Vmax || || ,max
k j

k j
2

=
= =C N

X V¯ 1 1 || ||D
j

C

k

N

k j
1 1

2

Here, Xk is the element belonging to cluster kth and Vk is the centroid of
this cluster.

The maximal value of IFV indicates the better performance.

(d) Calinski-Harabasz Criterion (VRC) (Kaufman and Rouseeuw,
1991):

The Calinski-Harabasz criterion is called the variance ratio criterion
(VRC). VRC is defined as

= ×VRC N k
k

SS
SS

( )
( 1)k

B

W (14)

where SSB, SSW are the overall between-cluster and within-cluster
variance respectively, k and N are the number of clusters and ob-
servations. SSB is defined as

=
=

n m mSS || ||B
i

k

i i
1

2

where k is the number of clusters, mi is the centroid of cluster i, m is the

overall mean of the data, and m m|| ||i is the L2 norm (Euclidean dis-
tance) between the two vectors. SSW is defined as

=
=

x mSS || ||W
i

k

x c
i

1

2

i

where x is a data point, ci is the ith cluster, mi is the centroid of cluster i
and x m|| ||i is Euclidean distance between the two vectors.

The maximal value of VRC show the better performance.

(e) Ball-Hall criterion (BH) (Atanassov, 1986):

The Ball-Hall criterion (BH) is the mean, through all the clusters, of
their mean dispersion:

=
= =

BH
c n

u x v1 1 || ||
i

c

i j

n

ij i i
1 1

2

(15)

where ni is the number of observations in the i-th cluster, and uijis the
membership degree of xiin the i-th cluster.

The maximal value of BH the better performance.

3.2. The comparison of performance

Figs. 2–4 show the result of clustering algorithms where a color
represents a cluster. The number of clusters depends on each method
and their configurations parameters. Here we choose the number of
clusters in each algorithm by approximating each other. Through each
figure and its sub-figure it is possible to see that the proposed algorithm
expresses clusters more clearly than other algorithms.

Figs. 5–8 show the result of clustering algorithms for each UCI

Huang 

6102eY4102eY

Our algorithms 
Fig. 4. Clustering result of 3 methods with eppo_standard_pm4 dataset.
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dataset. Tables 3 and 4 present some comparative results of proposed
method with existing works on EPPO and UCI dataset.

Tables 5 and 6 present the clustering time of algorithms for 3 da-
tasets of EPPO and UCI.

On the performance graph, the clustering results of the proposed

algorithm are more obvious and less noise-intensive than those of the
existing methods. The graphs show that the clustering results are
nearest-neighbor groups will have the same color. It is clear that our
algorithm genereates obvious clusters in the dataset compared to the
other algorithms. Besides, it has less noise-intensive elements which are

Machine Ecoli 

Pima-indians-diabetes Student 

Transfusion Voting-records 

Climate Model Adult 

Breast-cancer-wisconsin Seed 
Fig. 5. Clustering result of our algorithm with 10 UCI dataset.
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far from others.
For clustering quality, the proposed algorithm has higher SSWC,

IFV, BH and VRC values than those of Ye (2014), Ye (2016) and Huang
algorithms. The dataset which has the large number of elements such
as: eppo_standard_pp1, Adult, Pima-indians-diabetes, proposed algo-
rithm mostly show the better indices value compared to Ye (2014), Ye

(2016) and Huang algorithms. About the running time of algorithms,
most of the results show that the running time of the proposed algo-
rithm is better than that of Huang algorithm and is longer than Ye
(2016) and Ye (2014) algorithms. The evaluation indicators show that
Ye (2016) algorithm has nearly similar indexes to Ye (2014) but has the
better running time. Our algorithm has less running time compared to

Machine Ecoli 

Pima-indians-diabetes Student 

Transfusion Voting-records 

Climate Model Adult 

Breast-cancer-wisconsin Seed 
Fig. 6. Clustering result of Ye (2014) with 10 UCI dataset.
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Ye (2014) and Huang algorithms with datasets such as eppo_s-
tandard_pm4, Ecoli, Transfusion, Adult, Breast-cancer-wisconsin.

4. Conclusions

This paper proposed a new fuzzy clustering algorithm based on

association matrix using the neutrosophic set. After constructing a
neutrosophic association matrix from the data, a neutrosophic equiva-
lent matrix is designed based on association matrix. The next step is to
construct the lambda-cutting matrix based on neutrosophic equivalent
matrix by the lambda-cutting step. Finally, the clusters are defined on
the basis of lambda-cutting matrix. To assess the quality of clusters,

Machine Ecoli 

Pima-indians-diabetes Student 

Transfusion Voting-records 

Climate Model Adult 

Breast-cancer-wisconsin Seed 
Fig. 7. Clustering result of Ye (2016) with 10 UCI dataset.
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Machine Ecoli 

Pima-indians-diabetes Student 

Transfusion Voting-records 

Climate Model Adult 

Breast-cancer-wisconsin Seed 
Fig. 8. Clustering result of Huang with 10 UCI dataset.
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different clustering validaty indices are used.
The experimental results on the EPPO and UCI datasets show that

the quality of the proposed algorithm is better than the comparative
clustering algorithms. The clustering results are also well distributed

and noises and exceptions. However, the runtime of our algorithm is
usually longer than other algorithms. Therefore, in the future, we will
study the improvement of the runtime of the fuzzy clustering algorithm
on the neutrosophic fuzzy sets.

Table 3
Comparative result of proposed method with existing works on EPPO dataset (Bold shows the best results in a column).

Dataset Algorithms DB SSWC IFV BH VRC

eppo_standard_pp1 Ye (2014) 28.155232 0.557163 399.482864 168.9738 17.35721
Ye (2016) 30.859587 0.712286 559.711 168.9738 5.687921
Huang 11.39557 0.7122857 169.1306 502.946 17.39153
Our algorithms 508.395223 0.998623 589.791505 954.5629 549.1699

eppo_standard_pm4 Ye (2014) 5.720429 0.660127 20036.600822 809.8115 2.439143
Ye (2016) 5.720429 0.712286 559711.19511 809.8115 17.39153
Huang 37.41549 0.5571625 120343.9 457.7613 14.17068
Our algorithms 145.697383 1 8769117.4027 2421.778 104.8944

eppo_standard_pm8 Ye (2014) 38.40345 0.581924 13108.155304 276.2727 35.75515
Ye (2016) 3.323803 0.671745 10186.476571 276.2727 51.26642
Huang 9.254573 0.6717447 18058.79 678.711 29.77364
Our algorithms 72.11886 1 475193.42427 678.711 46.57749

Table 4
Comparative result of proposed method with existing works on UCI dataset (Bold shows the best results in a column).

Dataset Algorithms DB SSWC IFV BH VRC

Machine Ye (2014) 5.915397 0.713387 2202.371205 316.5159 9.838657
Ye (2016) 5.915397 0.732526 11930.22742 316.5159 13.67363
Huang 9.61929 0.7325257 38586.25 316.5159 11.85429
Our algorithms 47.998991 0.976077 982376.1554 350.2164 35.1964

Ecoli Ye (2014) 3.565735 0.627976 5478.954648 503.9417 59.81451
Ye (2016) 3.565735 0.669643 1623.947206 503.9417 59.81451
Huang 7.915799 0.6696428 86658.27 561.5002 24.56112
Our algorithms 22.725662 0.976190 2044.066447 629.8456 87.06884

Pima-indians-diabetes Ye (2014) 13.353669 0.582044 342.650457 987.0068 5.133967
Ye (2016) 13.353669 0.604180 711.035495 987.0068 8.611765
Huang 17.10831 0.6041797 105005.5 412.7064 8.93186
Our algorithms 28.815353 0.998698 11550516.8 1503.658 215.6549

Student Ye (2014) 10.481221 0.701304 2415.889826 321.3741 6.521691
Ye (2016) 9.481033 0.739278 436.856690 321.3741 7.394256
Huang 10.75008 0.7392785 32736.64 559.4407 5.65088
Our algorithms 17.841839 0.997468 1799002.62 343.1385 38.59601

Transfusion Ye (2014) 9.021250 0.449237 29.925621 3890.629 31.88744
Ye (2016) 8.447838 0.473301 1122.64171 3890.629 164.6639
Huang 6.472221 0.4733007 136553.8 3677.43 36.65331
Our algorithms 235.937925 0.998663 25249993.7 2241.555 200.3411

Voting-records Ye (2014) 13.752153 0.563254 1508.53905 276.1446 5.647962
Ye (2016) 13.752153 0.593139 530.391568 276.1446 17.40125
Huang 20.55124 0.5931388 43389.4 125.984 15.03395
Our algorithms 28.490218 0.997701 2491275.55 385.8623 362.5158

Climate Model Ye (2014) 18.176141 0.631502 110.930930 765.7976 233.9937
Ye (2016) 15.753252 0.664836 478.678148 765.7976 233.9937
Huang 14.12625 0.6648356 45979.65 332.3088 20.20007
Our algorithms 41.314469 0.979630 3640465.96 703.2882 145.0514

Adult Ye (2014) 10.765577 0.625310 561.240913 747.0846 9.08805
Ye (2016) 10.765577 0.661290 842.216071 747.0846 9.548958
Huang 11.57448 0.6612903 150282.1 1374.654 12.08014
Our algorithms 22.284901 0.998759 1075.57670 1753.58 174.5424

Breast-cancer-wisconsin Ye (2014) 6.489717 0.648971 235.262610 5383.542 48.67108
Ye (2016) 6.489717 0.367668 1391.64800 5383.542 150.4453
Huang 7.395256 0.3676681 91756.83 1993.873 124.6162
Our algorithms 451.37170 0.997139 29578245.5 2421.802 622.2076

Seed Ye (2014) 12.447586 0.762020 2269.41915 71.16163 5.195465
Ye (2016) 12.703965 0.804877 231.222876 71.16163 7.294668
Huang 15.25937 0.8048768 8260.108 79.94008 6.050869
Our algorithms 19.157250 0.995238 258.476251 118.9233 53.81705
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