A novel approach to neutrosophic sets in UP-algebras

Article - March 2020
DOI: 10.22436/jmcs.021.01.08

2 authors, including:

Metawee Songsaeng
University of Phayao
5 PUBLICATIONS 7 CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects:

UP-algebra View project
A novel approach to neutrosophic sets in UP-algebras

Metawee Songsaeng, Aiyared Iampan

Abstract

The notion of neutrosophic sets in UP-algebras was introduced by Songsaeng and Iampan [M. Songsaeng, A. Iampan, Eur. J. Pure Appl. Math., 12 (2019), 1382–1409]. In this paper, the notions of special neutrosophic UP-subalgebras, special neutrosophic near UP-filters, special neutrosophic UP-filters, special neutrosophic UP-ideals, and special neutrosophic strong UP-ideals of UP-algebras are introduced, and several properties are investigated. Conditions for neutrosophic sets to be special neutrosophic UP-subalgebras, special neutrosophic near UP-filters, special neutrosophic UP-filters, special neutrosophic UP-ideals, and special neutrosophic strong UP-ideals of UP-algebras are provided. Relations between special neutrosophic UP-subalgebras (resp., special neutrosophic near UP-filters, special neutrosophic UP-filters, special neutrosophic UP-ideals, special neutrosophic strong UP-ideals) and their level subsets are considered.

Keywords: UP-algebra, special neutrosophic UP-subalgebra, special neutrosophic near UP-filter, special neutrosophic UP-filter, special neutrosophic UP-ideal, special neutrosophic strong UP-ideal.

2020 MSC: 03G25, 03B52, 03B60.

1. Introduction and preliminaries

Smarandache [19] introduced the notion of neutrosophic sets in 1999 which is a more general platform that extends the notions of classic sets, (intuitionistic) fuzzy sets and interval valued (intuitionistic) fuzzy sets (see [19, 20]). Neutrosophic set theory is applied to various part which is referred to the site http://fs.gallup.unm.edu/neutrosophy.htm

Corresponding author
Email addresses: metawee.faith@gmail.com (Metawee Songsaeng), aiyared.ia@up.ac.th (Aiyared Iampan)
doi: 10.22436/jmcs.021.01.08
Received: 2019-11-04 Revised: 2020-01-21 Accepted: 2020-02-10
Sunsongsaeng and Iampan [23] introduced the notions of neutrosophic UP-subalgebras, neutrosophic near UP-filters, neutrosophic UP-filters, neutrosophic UP-ideals, and neutrosophic strong UP-ideals of UP-algebras.

In this paper, the notions of special neutrosophic UP-subalgebras, special neutrosophic near UP-filters, special neutrosophic UP-filters, special neutrosophic UP-ideals, and special neutrosophic strong UP-ideals of UP-algebras are introduced, and several properties are investigated. Conditions for neutrosophic sets to be special neutrosophic UP-subalgebras, special neutrosophic near UP-filters, special neutrosophic UP-filters, special neutrosophic UP-ideals, and special neutrosophic strong UP-ideals of UP-algebras are provided. Relations between special neutrosophic UP-subalgebras (resp., special neutrosophic near UP-filters, special neutrosophic UP-filters, special neutrosophic UP-ideals, special neutrosophic strong UP-ideals) and their level subsets are considered.

Before we begin our study, we will give the definition and useful properties of UP-algebras. An algebra $X = (X, \cdot, 0)$ of type $(2, 0)$ is called a UP-algebra, where X is a nonempty set, \cdot is a binary operation on X, and 0 is a fixed element of X (i.e., a nullary operation) if it satisfies the following axioms:

\begin{align*}
\text{(UP-1)} & \quad (\forall x, y, z \in X) ((y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = 0); \\
\text{(UP-2)} & \quad (\forall x \in X) (0 \cdot x = x); \\
\text{(UP-3)} & \quad (\forall x \in X) (x \cdot 0 = 0); \quad \text{and} \\
\text{(UP-4)} & \quad (\forall x, y \in X) (x \cdot y = 0, y \cdot x = 0 \Rightarrow x = y).
\end{align*}

Example 1.1 ([18]). Let X be a universal set and let $\Omega \in \mathcal{P}(X)$, where $\mathcal{P}(X)$ means the power set of X. Let $\mathcal{P}_\Omega(X) = \{A \in \mathcal{P}(X) \mid \Omega \subseteq A\}$. Define a binary operation \cdot on $\mathcal{P}_\Omega(X)$ by putting $A \cdot B = B \cap (A^C \cup \Omega)$ for all $A, B \in \mathcal{P}_\Omega(X)$, where A^C means the complement of a subset A. Then $(\mathcal{P}_\Omega(X), \cdot, 0)$ is a UP-algebra and we shall call it the generalized power UP-algebra of type 1 with respect to Ω. Let $\mathcal{P}^\Omega(X) = \{A \in \mathcal{P}(X) \mid A \subseteq \Omega\}$. Define a binary operation \circ on $\mathcal{P}^\Omega(X)$ by putting $A \circ B = B \cup (A^C \cap \Omega)$ for all $A, B \in \mathcal{P}^\Omega(X)$. Then $(\mathcal{P}^\Omega(X), \circ, \Omega)$ is a UP-algebra and we shall call it the generalized power UP-algebra of type 2 with respect to Ω. In particular, $(\mathcal{P}(X), \cdot, 0)$ is a UP-algebra and we shall call it the power UP-algebra of type 1, and $(\mathcal{P}(X), \circ, X)$ is a UP-algebra and we shall call it the power UP-algebra of type 2.

Example 1.2 ([3]). Let \mathbb{N} be the set of all natural numbers with two binary operations \circ and \cdot defined by

\begin{align*}
(\forall x, y \in \mathbb{N}) & \quad (x \circ y = \begin{cases} y, & \text{if } x < y, \\
0, & \text{otherwise,} \end{cases}) \\
(\forall x, y \in \mathbb{N}) & \quad (x \cdot y = \begin{cases} y, & \text{if } x > y \text{ or } x = 0, \\
0, & \text{otherwise,} \end{cases}).
\end{align*}

Then $(\mathbb{N}, \circ, 0)$ and $(\mathbb{N}, \cdot, 0)$ are UP-algebras.
Example 1.3 ([15]). Let \(X = \{0,1,2,3,4,5\} \) be a set with a binary operation \(\cdot \) defined by the following Cayley table:

\[
\begin{array}{c|cccccc}
\cdot & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline
0 & 0 & 1 & 2 & 3 & 4 & 5 \\
1 & 0 & 0 & 2 & 3 & 4 & 5 \\
2 & 0 & 1 & 0 & 3 & 1 & 5 \\
3 & 0 & 1 & 2 & 0 & 4 & 5 \\
4 & 0 & 0 & 0 & 3 & 0 & 5 \\
5 & 0 & 0 & 2 & 0 & 2 & 0 \\
\end{array}
\]

Then \((X, \cdot, 0) \) is a UP-algebra.

For more examples of UP-algebras, see [1, 2, 6, 17, 18].

In a UP-algebra \(X = (X, \cdot, 0) \), the following assertions are valid (see [5, 6]).

\[
(\forall x \in X)(x \cdot x = 0), \quad (1.1)
\]
\[
(\forall x, y, z \in X)(x \cdot y = 0, y \cdot z = 0 \Rightarrow x \cdot z = 0), \quad (1.2)
\]
\[
(\forall x, y, z \in X)(x \cdot y = 0 \Rightarrow (z \cdot x) \cdot (z \cdot y) = 0), \quad (1.3)
\]
\[
(\forall x, y, z \in X)(x \cdot y = 0 \Rightarrow (y \cdot z) \cdot (x \cdot z) = 0), \quad (1.4)
\]
\[
(\forall x, y \in X)(x \cdot (y \cdot x) = 0), \quad (1.5)
\]
\[
(\forall x, y \in X)((y \cdot x) \cdot x = 0 \Leftrightarrow x = y \cdot x), \quad (1.6)
\]
\[
(\forall x, y \in X)(x \cdot (y \cdot y) = 0), \quad (1.7)
\]
\[
(\forall a, x, y, z \in X)(x \cdot (y \cdot z)) \cdot (x \cdot ((a \cdot y) \cdot (a \cdot z))) = 0, \quad (1.8)
\]
\[
(\forall a, x, y, z \in X)((((a \cdot x) \cdot (a \cdot y)) \cdot z) \cdot ((x \cdot y) \cdot z) = 0), \quad (1.9)
\]
\[
(\forall x, y, z \in X)(((x \cdot y) \cdot z) \cdot (y \cdot (a \cdot z)) = 0), \quad (1.10)
\]
\[
(\forall x, y, z \in X)(x \cdot y = 0 \Rightarrow x \cdot (z \cdot y) = 0), \quad (1.11)
\]
\[
(\forall x, y, z \in X)(((x \cdot y) \cdot z) \cdot (x \cdot (y \cdot z)) = 0), \quad (1.12)
\]
\[
(\forall a, x, y, z \in X)(((x \cdot y) \cdot z) \cdot (y \cdot (a \cdot z)) = 0). \quad (1.13)
\]

From [5], the binary relation \(\leq \) on a UP-algebra \(X = (X, \cdot, 0) \) defined as follows:

\[
(\forall x, y \in X)(x \leq y \iff x \cdot y = 0).
\]

Definition 1.4 ([4, 5, 7, 21]). A nonempty subset \(S \) of a UP-algebra \((X, \cdot, 0) \) is called

1. a UP-subalgebra of \(X \) if \((\forall x, y \in S)(x \cdot y \in S) \);
2. a near UP-filter of \(X \) if

 (i) the constant 0 of \(X \) is in \(S \), and
 (ii) \((\forall x, y \in X)(y \in S \Rightarrow x \cdot y \in S) \);
3. a UP-filter of \(X \) if

 (i) the constant 0 of \(X \) is in \(S \), and
 (ii) \((\forall x, y \in X)(x \cdot y \in S, x \in S \Rightarrow y \in S) \);
4. a UP-ideal of \(X \) if

 (i) the constant 0 of \(X \) is in \(S \), and
 (ii) \((\forall x, y, z \in X)(x \cdot (y \cdot z) \in S, y \in S \Rightarrow x \cdot z \in S) \);
(5) a strong UP-ideal (renamed from a strongly UP-ideal) of \(X \) if

(i) the constant 0 of \(X \) is in \(S \), and

(ii) \((\forall x, y, z \in X)((z \cdot y) \cdot (z \cdot x) \in S, y \in S \Rightarrow x \in S) \).

Guntasow et al. [4] and Iampan [7] proved that the notion of UP-subalgebras is a generalization of near UP-filters, near UP-filters is a generalization of UP-filters, UP-filters is a generalization of UP-ideals, and UP-ideals is a generalization of strong UP-ideals. Moreover, they also proved that the only strong UP-ideal of a UP-algebra \(X \) is \(X \).

2. NSs of special types in UP-algebras

The notion of a fuzzy set in a nonempty set was first considered by Zadeh [29] in 1965. A fuzzy set (briefly, FS) in a nonempty set \(X \) (or a fuzzy subset of \(X \)) is an arbitrary function \(f : X \to [0, 1] \), where \([0, 1]\) is the unit segment of the real line, and the fuzzy set \(f \) defined by \(f(x) = 1 - f(x) \) for all \(x \in X \) is said to be the complement of \(f \) in \(X \). In 1999, Smarandache [19] introduced the notion of neutrosophic sets as the following definition. A neutrosophic set (briefly, NS) in a nonempty set \(X \) is a structure of the form:

\[
\Lambda = \{(x, \lambda_T(x), \lambda_I(x), \lambda_F(x)) \mid x \in X\},
\]

where \(\lambda_T : X \to [0, 1] \) is a truth membership function, \(\lambda_I : X \to [0, 1] \) is an indeterminate membership function, and \(\lambda_F : X \to [0, 1] \) is a false membership function. For our convenience, we will denote a NS as \(\Lambda = (X, \lambda_T, \lambda_I, \lambda_F) = (X, \lambda_{T, I, F}) = ((x, \lambda_T(x), \lambda_I(x), \lambda_F(x)) \mid x \in X\).

Definition 2.1 ([19]). Let \(\Lambda \) be a NS in a nonempty set \(X \). The NS \(\overline{\Lambda} = (X, \overline{\lambda}_{T, I, F}) \) in \(X \) defined by

\[
\begin{align*}
\overline{\lambda}_T(x) &= 1 - \lambda_T(x) \\
\overline{\lambda}_I(x) &= 1 - \lambda_I(x) \\
\overline{\lambda}_F(x) &= 1 - \lambda_F(x)
\end{align*}
\]

is called the complement of \(\Lambda \) in \(X \).

Remark ([23]). For all NS \(\Lambda \) in a nonempty set \(X \), we have \(\Lambda = \overline{\Lambda} \).

Lemma 2.3 ([27]). Let \(a, b, c \in \mathbb{R} \). Then the following statements hold:

1. \(a - \min\{b, c\} = \max\{a - b, a - c\} \), and

2. \(a - \max\{b, c\} = \min\{a - b, a - c\} \).

Lemma 2.4 ([23]). Let \(f \) be a fuzzy set in a nonempty set \(X \). Then the following statements hold:

1. \((\forall x, y, z \in X)(f(x) \geq \min\{f(y), f(z)\} \Leftrightarrow f(x) \leq \max\{f(y), f(z)\}) \);

2. \((\forall x, y, z \in X)(f(x) \leq \min\{f(y), f(z)\} \Leftrightarrow f(x) \geq \max\{f(y), f(z)\}) \);

3. \((\forall x, y, z \in X)(f(x) \geq \max\{f(y), f(z)\} \Leftrightarrow f(x) \leq \min\{f(y), f(z)\}) \); and

4. \((\forall x, y, z \in X)(f(x) \leq \max\{f(y), f(z)\} \Leftrightarrow f(x) \geq \min\{f(y), f(z)\}) \).

In what follows, let \(X \) denote a UP-algebra \((X, \cdot, 0)\) unless otherwise specified.

Definition 2.5 ([23]). A NS \(\Lambda \) in \(X \) is called a neutrosophic UP-subalgebra of \(X \) if it satisfies the following conditions:

\[
(\forall x, y \in X)(\lambda_T(x \cdot y) \geq \min\{\lambda_T(x), \lambda_T(y)\}), \quad (2.3)
\]

\[
(\forall x, y \in X)(\lambda_I(x \cdot y) \leq \max\{\lambda_I(x), \lambda_I(y)\}), \quad (2.4)
\]

\[
(\forall x, y \in X)(\lambda_F(x \cdot y) \geq \min\{\lambda_F(x), \lambda_F(y)\}). \quad (2.5)
\]
Definition 2.6 ([23]). A NS Λ in X is called a *neutrosophic near UP-filter* of X if it satisfies the following conditions:

\[
(\forall x \in X)(\lambda_T(0) \geq \lambda_T(x)), \tag{2.6}
\]
\[
(\forall x \in X)(\lambda_I(0) \leq \lambda_I(x)), \tag{2.7}
\]
\[
(\forall x \in X)(\lambda_F(0) \geq \lambda_F(x)), \tag{2.8}
\]
\[
(\forall x, y \in X)(\lambda_T(x \cdot y) \geq \lambda_T(y)), \tag{2.9}
\]
\[
(\forall x, y \in X)(\lambda_I(x \cdot y) \leq \lambda_I(y)), \tag{2.10}
\]
\[
(\forall x, y \in X)(\lambda_F(x \cdot y) \geq \lambda_F(y)). \tag{2.11}
\]

Definition 2.7 ([23]). A NS Λ in X is called a *neutrosophic UP-filter* of X if it satisfies the following conditions: (2.6), (2.7), (2.8), and

\[
(\forall x, y \in X)(\lambda_T(y) \geq \min[\lambda_T(x \cdot y), \lambda_T(x)]), \tag{2.12}
\]
\[
(\forall x, y \in X)(\lambda_I(y) \leq \max[\lambda_I(x \cdot y), \lambda_I(x)]), \tag{2.13}
\]
\[
(\forall x, y \in X)(\lambda_F(y) \geq \min[\lambda_F(x \cdot y), \lambda_F(x)]). \tag{2.14}
\]

Definition 2.8 ([23]). A NS Λ in X is called a *neutrosophic UP-ideal* of X if it satisfies the following conditions: (2.6), (2.7), (2.8), and

\[
(\forall x, y, z \in X)(\lambda_T(x \cdot z) \geq \min[\lambda_T(x \cdot (y \cdot z)), \lambda_T(y)]), \tag{2.15}
\]
\[
(\forall x, y, z \in X)(\lambda_I(x \cdot z) \leq \max[\lambda_I(x \cdot (y \cdot z)), \lambda_I(y)]), \tag{2.16}
\]
\[
(\forall x, y, z \in X)(\lambda_F(x \cdot z) \geq \min[\lambda_F(x \cdot (y \cdot z)), \lambda_F(y)]). \tag{2.17}
\]

Definition 2.9 ([23]). A NS Λ in X is called a *neutrosophic strong UP-ideal* (renamed from a neutrosophic strongly UP-ideal) of X if it satisfies the following conditions: (2.6), (2.7), (2.8), and

\[
(\forall x, y, z \in X)(\lambda_T(x) \geq \min[\lambda_T((z \cdot y) \cdot (z \cdot x)), \lambda_T(y)]), \tag{2.18}
\]
\[
(\forall x, y, z \in X)(\lambda_I(x) \leq \max[\lambda_I((z \cdot y) \cdot (z \cdot x)), \lambda_I(y)]), \tag{2.19}
\]
\[
(\forall x, y, z \in X)(\lambda_F(x) \geq \min[\lambda_F((z \cdot y) \cdot (z \cdot x)), \lambda_F(y)]). \tag{2.20}
\]

Definition 2.10 ([23]). A NS Λ in X is said to be *constant* if Λ is a constant function from X to $[0, 1]^3$. That is, λ_T, λ_I, and λ_F are constant functions from X to $[0, 1]$.

Theorem 2.11 ([23]). A NS Λ in X is constant if and only if it is a neutrosophic strong UP-ideal of X.

Songsaeng and Iampan [23] proved that the notion of neutrosophic UP-subalgebras is a generalization of neutrosophic near UP-filters, neutrosophic near UP-filters is a generalization of neutrosophic UP-filters, neutrosophic UP-filters is a generalization of neutrosophic UP-ideals, and neutrosophic UP-ideals is a generalization of neutrosophic strong UP-ideals.

Now, we introduce the notions of special neutrosophic UP-subalgebras, special neutrosophic near UP-filters, special neutrosophic UP-filters, special neutrosophic UP-ideals, and special neutrosophic strong UP-ideals of UP-algebras, provide the necessary examples, investigate their properties, and prove their generalizations.

Definition 2.12. A NS Λ in X is called an *special neutrosophic UP-subalgebra* of X if it satisfies the following conditions:

\[
(\forall x, y \in X)(\lambda_T(x \cdot y) \leq \max[\lambda_T(x), \lambda_T(y)]), \tag{2.21}
\]
\[
(\forall x, y \in X)(\lambda_I(x \cdot y) \geq \min[\lambda_I(x), \lambda_I(y)]), \tag{2.22}
\]
\[
(\forall x, y \in X)(\lambda_F(x \cdot y) \leq \max[\lambda_F(x), \lambda_F(y)]). \tag{2.23}
\]
Example 2.13. Let $X = \{0, 1, 2, 3, 4\}$ be a UP-algebra with a fixed element 0 and a binary operation \cdot defined by the following Cayley table:

\[
\begin{array}{c|ccccc}
\cdot & 0 & 1 & 2 & 3 & 4 \\
\hline
0 & 0 & 1 & 2 & 3 & 4 \\
1 & 0 & 0 & 1 & 0 & 4 \\
2 & 0 & 0 & 0 & 0 & 4 \\
3 & 0 & 1 & 1 & 0 & 4 \\
4 & 0 & 3 & 3 & 3 & 0 \\
\end{array}
\]

We define a NS Λ in X as follows:

\[\lambda_T = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0.2 & 0.3 & 0.5 & 0.7 & 0.8 \end{pmatrix}, \lambda_I = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0.7 & 0.6 & 0.5 & 0.2 \end{pmatrix}, \lambda_F = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0.1 & 0.4 & 0.6 & 0.7 & 0.9 \end{pmatrix}.\]

Hence, Λ is a special neutrosophic UP-subalgebra of X.

Definition 2.14. A NS Λ in X is called an special neutrosophic near UP-filter of X if it satisfies the following conditions:

\[(\forall x \in X)(\lambda_T(0) \leq \lambda_T(x)), \quad (2.24)\]
\[(\forall x \in X)(\lambda_I(0) \geq \lambda_I(x)), \quad (2.25)\]
\[(\forall x \in X)(\lambda_F(0) \leq \lambda_F(x)), \quad (2.26)\]
\[(\forall x, y \in X)(\lambda_T(x \cdot y) \leq \lambda_T(y)), \quad (2.27)\]
\[(\forall x, y \in X)(\lambda_I(x \cdot y) \geq \lambda_I(y)), \quad (2.28)\]
\[(\forall x, y \in X)(\lambda_F(x \cdot y) \leq \lambda_F(y)). \quad (2.29)\]

Example 2.15. Let $X = \{0, 1, 2, 3, 4\}$ be a UP-algebra with a fixed element 0 and a binary operation \cdot defined by the following Cayley table:

\[
\begin{array}{c|ccccc}
\cdot & 0 & 1 & 2 & 3 & 4 \\
\hline
0 & 0 & 1 & 2 & 3 & 4 \\
1 & 0 & 0 & 2 & 2 & 4 \\
2 & 0 & 1 & 0 & 1 & 4 \\
3 & 0 & 0 & 0 & 0 & 4 \\
4 & 0 & 1 & 2 & 3 & 0 \\
\end{array}
\]

We define a NS Λ in X as follows:

\[\lambda_T = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0.1 & 0.3 & 0.5 & 0.6 & 0.2 \end{pmatrix}, \lambda_I = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0.9 & 0.8 & 0.7 & 0.3 & 0.4 \end{pmatrix}, \lambda_F = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0.1 & 0.2 & 0.6 & 0.7 & 0.5 \end{pmatrix}.\]

Hence, Λ is a special neutrosophic near UP-filter of X.

Definition 2.16. A NS Λ in X is called an special neutrosophic UP-filter of X if it satisfies the following conditions: (2.24), (2.25), (2.26), and

\[(\forall x, y \in X)(\lambda_T(y) \leq \max(\lambda_T(x \cdot y), \lambda_T(x))), \quad (2.30)\]
\[(\forall x, y \in X)(\lambda_I(y) \geq \min(\lambda_I(x \cdot y), \lambda_I(x))), \quad (2.31)\]
\[(\forall x, y \in X)(\lambda_F(y) \leq \max(\lambda_F(x \cdot y), \lambda_F(x))). \quad (2.32)\]

Example 2.17. Let $X = \{0, 1, 2, 3, 4\}$ be a UP-algebra with a fixed element 0 and a binary operation \cdot defined by the following Cayley table:

\[
\begin{array}{c|ccccc}
\cdot & 0 & 1 & 2 & 3 & 4 \\
\hline
0 & 0 & 1 & 2 & 3 & 4 \\
1 & 0 & 0 & 2 & 2 & 4 \\
2 & 0 & 1 & 0 & 1 & 4 \\
3 & 0 & 0 & 0 & 0 & 4 \\
4 & 0 & 1 & 1 & 1 & 0 \\
\end{array}
\]
We define a NS \(\Lambda \) in \(X \) as follows:

\[
\lambda_T = \begin{pmatrix}
0 & 1 & 2 & 3 & 4 \\
0.1 & 0.5 & 0.4 & 0.5 & 0.8
\end{pmatrix},
\lambda_I = \begin{pmatrix}
0 & 1 & 2 & 3 & 4 \\
0.8 & 0.3 & 0.5 & 0.3 & 0.4
\end{pmatrix},
\lambda_F = \begin{pmatrix}
0 & 1 & 2 & 3 & 4 \\
0.2 & 0.6 & 0.4 & 0.6 & 0.3
\end{pmatrix}.
\]

Hence, \(\Lambda \) is a special neutrosophic UP-filter of \(X \).

Definition 2.20. A NS \(\Lambda \) in \(X \) is called an *special neutrosophic strong UP-ideal* of \(X \) if it satisfies the following conditions: (2.24), (2.25), (2.26), and

\[
(\forall x, y, z \in X)(\lambda_T(x \cdot z) \leq \max(\lambda_T(x \cdot (y \cdot z)), \lambda_T(y))), \tag{2.33}
\]

\[
(\forall x, y, z \in X)(\lambda_I(x \cdot z) \geq \min(\lambda_I(x \cdot (y \cdot z)), \lambda_I(y))), \tag{2.34}
\]

\[
(\forall x, y, z \in X)(\lambda_F(x \cdot z) \leq \max(\lambda_F(x \cdot (y \cdot z)), \lambda_F(y))). \tag{2.35}
\]

Example 2.19. Let \(X = \{0, 1, 2, 3, 4\} \) be a UP-algebra with a fixed element 0 and a binary operation \(\cdot \) defined by the following Cayley table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

We define a NS \(\Lambda \) in \(X \) as follows:

\[
\lambda_T = \begin{pmatrix}
0 & 1 & 2 & 3 & 4 \\
0.3 & 0.5 & 0.4 & 0.6 & 0.7
\end{pmatrix},
\lambda_I = \begin{pmatrix}
0 & 1 & 2 & 3 & 4 \\
1 & 0.7 & 0.4 & 0.7 & 0.3
\end{pmatrix},
\lambda_F = \begin{pmatrix}
0 & 1 & 2 & 3 & 4 \\
0.1 & 0.2 & 0.7 & 0.3 & 0.9
\end{pmatrix}.
\]

Hence, \(\Lambda \) is a special neutrosophic UP-ideal of \(X \).

Definition 2.20. A NS \(\Lambda \) in \(X \) is called an *special neutrosophic strong UP-ideal* of \(X \) if it satisfies the following conditions: (2.24), (2.25), (2.26), and

\[
(\forall x, y, z \in X)(\lambda_T((z \cdot y) \cdot (z \cdot x))) = \max(\lambda_T((z \cdot y) \cdot (z \cdot x)), \lambda_T(y))), \tag{2.36}
\]

\[
(\forall x, y, z \in X)(\lambda_I((z \cdot y) \cdot (z \cdot x))) \geq \min(\lambda_I((z \cdot y) \cdot (z \cdot x)), \lambda_I(y))), \tag{2.37}
\]

\[
(\forall x, y, z \in X)(\lambda_F((z \cdot y) \cdot (z \cdot x))) \leq \max(\lambda_F((z \cdot y) \cdot (z \cdot x)), \lambda_F(y))). \tag{2.38}
\]

Example 2.21. Let \(X = \{0, 1, 2, 3, 4\} \) be a UP-algebra with a fixed element 0 and a binary operation \(\cdot \) defined by the following Cayley table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

We define a NS \(\Lambda \) in \(X \) as follows:

\[
(\forall x \in X) \begin{pmatrix}
\lambda_T(x) = 0.5 \\
\lambda_I(x) = 0.4 \\
\lambda_F(x) = 0.7
\end{pmatrix}.
\]

Hence, \(\Lambda \) is a special neutrosophic strong UP-ideal \(X \).
Theorem 2.22. Every special neutrosophic UP-subalgebra of X satisfies the conditions (2.24), (2.25), and (2.26).

Proof. Assume that Λ is a special neutrosophic UP-subalgebra of X. Then for all $x \in X$,

$$
\lambda_T(0) = \lambda_T(x \cdot x) \leq \max\{\lambda_T(x), \lambda_T(x)\} = \lambda_T(x) \quad \text{by (1.1) and (2.21)}
$$

$$
\lambda_I(0) = \lambda_I(x \cdot x) \geq \min\{\lambda_I(x), \lambda_I(x)\} = \lambda_I(x) \quad \text{by (1.1) and (2.22)}
$$

$$
\lambda_F(0) = \lambda_F(x \cdot x) \leq \max\{\lambda_F(x), \lambda_F(x)\} = \lambda_F(x) \quad \text{by (1.1) and (2.23)}.
$$

Hence, Λ satisfies the conditions (2.24), (2.25), and (2.26). □

By Lemma 2.4 (1) and (4), we have the following five theorems.

Theorem 2.23. A NS Λ in X is a neutrosophic UP-subalgebra of X if and only if $\overline{\Lambda}$ is a special neutrosophic UP-subalgebra of X.

Theorem 2.24. A NS Λ in X is a neutrosophic near UP-filter of X if and only if $\overline{\Lambda}$ is a special neutrosophic near UP-filter of X.

Theorem 2.25. A NS Λ in X is a neutrosophic UP-filter of X if and only if $\overline{\Lambda}$ is a special neutrosophic UP-filter of X.

Theorem 2.26. A NS Λ in X is a neutrosophic UP-ideal of X if and only if $\overline{\Lambda}$ is a special neutrosophic UP-ideal of X.

Theorem 2.27. A NS Λ in X is a neutrosophic strong UP-ideal of X if and only if $\overline{\Lambda}$ is a special neutrosophic strong UP-ideal of X.

Theorem 2.28. A NS Λ in X is constant if and only if it is a special neutrosophic strong UP-ideal of X.

Proof. It is straightforward by Remark 2.2 and Theorems 2.11 and 2.27. □

By Remark 2.2 and Theorems 2.23, 2.24, 2.25, 2.26, and 2.27, we have that the notion of special neutrosophic UP-subalgebras is a generalization of special neutrosophic near UP-filters, special neutrosophic near UP-filters is a generalization of special neutrosophic UP-filters, special neutrosophic UP-filters is a generalization of special neutrosophic UP-ideals, and special neutrosophic UP-ideals is a generalization of special neutrosophic strong UP-ideals. Moreover, by Theorem 2.28, we obtain that special neutrosophic strong UP-ideals and constant neutrosophic set coincide.

Theorem 2.29. If Λ is a special neutrosophic UP-subalgebra of X satisfying the following condition:

$$
(\forall x, y \in X) \left(x \cdot y \neq 0 \Rightarrow \begin{cases}
\lambda_T(x) \leq \lambda_T(y) \\
\lambda_I(x) \geq \lambda_I(y) \\
\lambda_F(x) \leq \lambda_F(y)
\end{cases} \right),
$$

then Λ is a special neutrosophic near UP-filter of X.

Proof. Assume that Λ is a special neutrosophic UP-subalgebra of X satisfying the condition (2.39). By Theorem 2.22, we have Λ satisfies the conditions (2.24), (2.25), and (2.26). Next, let $x, y \in X$.

Case 1: $x \cdot y = 0$. Then

$$
\lambda_T(x \cdot y) = \lambda_T(0) \leq \lambda_T(y) \quad \text{by (2.24)}
$$

$$
\lambda_I(x \cdot y) = \lambda_I(0) \geq \lambda_I(y) \quad \text{by (2.25)}
$$

$$
\lambda_F(x \cdot y) = \lambda_F(0) \leq \lambda_F(y) \quad \text{by (2.26)}.
$$
Hence, \(\Lambda \) satisfies the conditions (2.24), (2.25), and (2.26). Next, let \(x \in X \).

Proof. Assume that \(\Lambda \) satisfies the condition (2.41). Then \(\Lambda \) satisfies the conditions (2.24), (2.25), and (2.26). Next, let \(x, y, z \in X \). Then

\[
\max\{\lambda_T(x \cdot y), \lambda_T(x)\} = \max\{\lambda_1(x \cdot y), \lambda_1(x)\} \quad \text{by (2.40)}
\]

\[
\geq \max\{\lambda_1(y), \lambda_T(x)\} \quad \text{by (2.28)}
\]

\[
= \max\{\lambda_T(y), \lambda_T(x)\} \quad \text{by (2.40)}
\]

\[
\geq \lambda_T(y),
\]

\[
\min\{\lambda_1(x \cdot y), \lambda_1(x)\} = \min\{\lambda_T(x \cdot y), \lambda_1(x)\} \quad \text{by (2.40)}
\]

\[
\leq \min\{\lambda_T(y), \lambda_1(x)\} \quad \text{by (2.27)}
\]

\[
= \min\{\lambda_1(y), \lambda_1(x)\} \quad \text{by (2.40)}
\]

\[
\leq \lambda_1(y),
\]

\[
\max\{\lambda_F(x \cdot y), \lambda_F(x)\} = \max\{\lambda_1(x \cdot y), \lambda_F(x)\} \quad \text{by (2.40)}
\]

\[
\geq \max\{\lambda_1(y), \lambda_F(x)\} \quad \text{by (2.28)}
\]

\[
= \max\{\lambda_F(y), \lambda_F(x)\} \quad \text{by (2.40)}
\]

\[
\geq \lambda_F(y).
\]

Hence, \(\Lambda \) is a special neutrosophic UP-filter of \(X \). □

Theorem 2.30. If \(\Lambda \) is a special neutrosophic near UP-filter of \(X \) satisfying the following condition:

\[
\lambda_T = \lambda_1 = \lambda_F,
\]

then \(\Lambda \) is a special neutrosophic UP-filter of \(X \).

Proof. Assume that \(\Lambda \) is a special neutrosophic near UP-filter of \(X \) satisfying the condition (2.40). Then \(\Lambda \) satisfies the conditions (2.24), (2.25), and (2.26). Next, let \(x, y, z \in X \). Then

\[
\max\{\lambda_T(x \cdot y), \lambda_T(x)\} = \max\{\lambda_1(x \cdot y), \lambda_1(x)\} \quad \text{by (2.40)}
\]

\[
\geq \max\{\lambda_1(y), \lambda_T(x)\} \quad \text{by (2.28)}
\]

\[
= \max\{\lambda_T(y), \lambda_T(x)\} \quad \text{by (2.40)}
\]

\[
\geq \lambda_T(y),
\]

\[
\min\{\lambda_1(x \cdot y), \lambda_1(x)\} = \min\{\lambda_T(x \cdot y), \lambda_1(x)\} \quad \text{by (2.40)}
\]

\[
\leq \min\{\lambda_T(y), \lambda_1(x)\} \quad \text{by (2.27)}
\]

\[
= \min\{\lambda_1(y), \lambda_1(x)\} \quad \text{by (2.40)}
\]

\[
\leq \lambda_1(y),
\]

\[
\max\{\lambda_F(x \cdot y), \lambda_F(x)\} = \max\{\lambda_1(x \cdot y), \lambda_F(x)\} \quad \text{by (2.40)}
\]

\[
\geq \max\{\lambda_1(y), \lambda_F(x)\} \quad \text{by (2.28)}
\]

\[
= \max\{\lambda_F(y), \lambda_F(x)\} \quad \text{by (2.40)}
\]

\[
\geq \lambda_F(y).
\]

Hence, \(\Lambda \) is a special neutrosophic UP-filter of \(X \). □

Theorem 2.31. If \(\Lambda \) is a special neutrosophic UP-filter of \(X \) satisfying the following condition:

\[
(\forall x, y, z \in X) \left\{ \begin{array}{l}
\lambda_T(y \cdot (x \cdot z)) = \lambda_T(x \cdot (y \cdot z)) \\
\lambda_1(y \cdot (x \cdot z)) = \lambda_1(x \cdot (y \cdot z)) \\
\lambda_F(y \cdot (x \cdot z)) = \lambda_F(x \cdot (y \cdot z))
\end{array} \right. \quad (2.41)
\]

then \(\Lambda \) is a special neutrosophic UP-ideal of \(X \).

Proof. Assume that \(\Lambda \) is a special neutrosophic UP-filter of \(X \) satisfying the condition (2.41). Then \(\Lambda \) satisfies the conditions (2.24), (2.25), and (2.26). Next, let \(x, y, z \in X \). Then

\[
\lambda_T(x \cdot z) \leq \max\{\lambda_T(y \cdot (x \cdot z)), \lambda_T(y)\} \quad \text{by (2.30)}
\]

\[
= \max\{\lambda_T(x \cdot (y \cdot z)), \lambda_T(y)\} \quad \text{by (2.41) for} \lambda_T
\]

\[
\lambda_1(x \cdot z) \geq \min\{\lambda_1(y \cdot (x \cdot z)), \lambda_1(y)\} \quad \text{by (2.31)}
\]

\[
= \min\{\lambda_1(x \cdot (y \cdot z)), \lambda_1(y)\} \quad \text{by (2.41) for} \lambda_1
\]

\[
\lambda_F(x \cdot z) \leq \max\{\lambda_F(y \cdot (x \cdot z)), \lambda_F(y)\} \quad \text{by (2.32)}
\]

\[
= \max\{\lambda_F(x \cdot (y \cdot z)), \lambda_F(y)\} \quad \text{by (2.41) for} \lambda_F.
\]

Hence, \(\Lambda \) is a special neutrosophic UP-ideal of \(X \). □
Theorem 2.32. If Λ is a NS in X satisfying the following condition:

\[
(\forall x, y, z \in X) \left(z \leq x \cdot y \Rightarrow \begin{cases}
\lambda_T(z) \leq \max(\lambda_T(x), \lambda_T(y)) \\
\lambda_1(z) \geq \min(\lambda_1(x), \lambda_1(y)) \\
\lambda_F(z) \leq \max(\lambda_F(x), \lambda_F(y))
\end{cases} \right),
\]

then Λ is a special neutrosophic UP-subalgebra of X.

Proof. Assume that Λ is a NS in X satisfying the condition (2.42). Let \(x, y \in X \). By (1.1), we have \(x \cdot y = 0 \), that is, \(x \cdot y \geq x \cdot y \). It follows from (2.42) that

\[
\lambda_T(x \cdot y) \leq \max(\lambda_T(x), \lambda_T(y)), \quad \lambda_1(x \cdot y) \geq \min(\lambda_1(x), \lambda_1(y)), \quad \lambda_F(x \cdot y) \leq \max(\lambda_F(x), \lambda_F(y)).
\]

Hence, Λ is a special neutrosophic UP-subalgebra of X.

Theorem 2.33. If Λ is a NS in X satisfying the following condition:

\[
(\forall x, y, z \in X) \left(z \leq x \cdot y \Rightarrow \begin{cases}
\lambda_T(z) \leq \lambda_T(y) \\
\lambda_1(z) \geq \lambda_1(y) \\
\lambda_F(z) \leq \lambda_F(y)
\end{cases} \right),
\]

then Λ is a special neutrosophic near UP-filter of X.

Proof. Assume that Λ is a NS in X satisfying the condition (2.43). Let \(x \in X \). By (UP-2) and (1.1), we have \(0 \cdot (x \cdot x) = 0 \), that is, \(0 \leq x \cdot x \). It follows from (2.43) that \(\lambda_T(0) \leq \lambda_T(x), \lambda_1(0) \geq \lambda_1(x) \), and \(\lambda_F(0) \leq \lambda_F(x) \). Next, let \(x, y \in X \). By (1.1), we have \((x \cdot y) \cdot (x \cdot y) = 0 \), that is, \(x \cdot y \geq x \cdot y \). It follows from (2.43) that

\[
\lambda_T(x \cdot y) \leq \lambda_T(y), \quad \lambda_1(x \cdot y) \geq \lambda_1(y), \quad \lambda_F(x \cdot y) \leq \lambda_F(y).
\]

Hence, Λ is a special neutrosophic near UP-filter of X.

Theorem 2.34. If Λ is a NS in X satisfying the following condition:

\[
(\forall x, y, z \in X) \left(z \leq x \cdot y \Rightarrow \begin{cases}
\lambda_T(y) \leq \max(\lambda_T(z), \lambda_T(x)) \\
\lambda_1(y) \geq \min(\lambda_1(z), \lambda_1(x)) \\
\lambda_F(y) \leq \max(\lambda_F(z), \lambda_F(x))
\end{cases} \right),
\]

then Λ is a special neutrosophic UP-filter of X.

Proof. Assume that Λ is a NS in X satisfying the condition (2.44). Let \(x \in X \). By (UP-3), we have \(x \cdot (x \cdot 0) = 0 \), that is, \(x \leq x \cdot 0 \). It follows from (2.44) that

\[
\lambda_T(0) \leq \max(\lambda_T(x), \lambda_T(x)) = \lambda_T(x), \quad \lambda_1(0) \geq \min(\lambda_1(x), \lambda_1(x)) = \lambda_1(x), \quad \lambda_F(0) \leq \max(\lambda_F(x), \lambda_F(x)) = \lambda_F(x).
\]

Next, let \(x, y \in X \). By (1.1), we have \((x \cdot y) \cdot (x \cdot y) = 0 \), that is, \(x \cdot y \geq x \cdot y \). It follows from (2.44) that

\[
\lambda_T(y) \leq \max(\lambda_T(x \cdot y), \lambda_T(x)), \quad \lambda_1(y) \geq \min(\lambda_1(x \cdot y), \lambda_1(x)), \quad \lambda_F(y) \leq \max(\lambda_F(x \cdot y), \lambda_F(x)).
\]

Hence, Λ is a special neutrosophic UP-filter of X.

Theorem 2.35. If Λ is a NS in X satisfying the following condition:

\[
(\forall a, x, y, z \in X) \left(a \leq x \cdot (y \cdot z) \Rightarrow \begin{cases}
\lambda_T(x \cdot z) \leq \max(\lambda_T(a), \lambda_T(y)) \\
\lambda_1(x \cdot z) \geq \min(\lambda_1(a), \lambda_1(y)) \\
\lambda_F(x \cdot z) \leq \max(\lambda_F(a), \lambda_F(y))
\end{cases} \right),
\]

then Λ is a special neutrosophic UP-ideal of X.
Proof. Assume that Λ is a NS in X satisfying the condition \eqref{2.45}. Let $x \in X$. By (UP-3), we have $x \cdot (0 \cdot (x \cdot 0)) = 0$, that is, $x \leq 0 \cdot (x \cdot 0)$. It follows from \eqref{2.45} that
\begin{align*}
\lambda_T(0) &= \lambda_T(0 \cdot 0) \leq \max(\lambda_T(x), \lambda_T(x)) = \lambda_T(x), \\
\lambda_I(0) &= \lambda_I(0 \cdot 0) \geq \min(\lambda_I(x), \lambda_I(x)) = \lambda_I(x), \\
\lambda_F(0) &= \lambda_F(0 \cdot 0) \leq \max(\lambda_F(x), \lambda_F(x)) = \lambda_F(x).
\end{align*}
(UP-2)

Next, let $x, y, z \in X$. By \eqref{1.1}, we have $(x \cdot (y \cdot z)) \cdot (x \cdot (y \cdot z)) = 0$, that is, $x \cdot (y \cdot z) \geq x \cdot (y \cdot z)$. It follows from \eqref{2.45} that
\begin{align*}
\lambda_T(x \cdot z) &= \max(\lambda_T(x \cdot (y \cdot z)), \lambda_T(y)), \\
\lambda_I(x \cdot z) &= \min(\lambda_I(x \cdot (y \cdot z)), \lambda_I(x)), \\
\lambda_F(x \cdot z) &= \max(\lambda_F(x \cdot (y \cdot z)), \lambda_F(y)) [\text{UP-2}].
\end{align*}

Hence, Λ is a special neutrosophic UP-ideal of X. \hfill \square

For any fixed numbers $\alpha^+, \alpha^-, \beta^+, \beta^-, \gamma^+, \gamma^- \in [0, 1]$ such that $\alpha^+ < \alpha^-, \beta^+ < \beta^-, \gamma^+ < \gamma^-$ and a nonempty subset G of X, a NS $\Lambda_G^{\alpha^+, \beta^+, \gamma^+, \gamma^-} = (X, \lambda_{G_T}[\alpha^+], \lambda_{G_I}[\beta^+], \lambda_{G_F}[\gamma^+])$ in X, where $\lambda_{G_T}[\alpha^+], \lambda_{G_I}[\beta^+], \lambda_{G_F}[\gamma^+]$ are functions on X which are given as follows:
\begin{align*}
\lambda_{G_T}[\alpha^+](x) &= \begin{cases}
\alpha^+, & \text{if } x \in G, \\
\alpha^-, & \text{otherwise},
\end{cases} \\
\lambda_{G_I}[\beta^+](x) &= \begin{cases}
\beta^-, & \text{if } x \in G, \\
\beta^+, & \text{otherwise},
\end{cases} \\
\lambda_{G_F}[\gamma^+](x) &= \begin{cases}
\gamma^+, & \text{if } x \in G, \\
\gamma^-, & \text{otherwise}.
\end{cases}
\end{align*}

A NS $G\lambda_{G_T}[\alpha^+, \beta^+, \gamma^+, \gamma^-] = (X, G\lambda_{G_T}[\alpha^+], G\lambda_{G_I}[\beta^+], G\lambda_{G_F}[\gamma^+])$ in X, where $G\lambda_{G_T}[\alpha^+], G\lambda_{G_I}[\beta^+], \text{ and } G\lambda_{G_F}[\gamma^-]$ are functions on X which are given as follows:
\begin{align*}
G\lambda_{G_T}[\alpha^+](x) &= \begin{cases}
\alpha^-, & \text{if } x \in G, \\
\alpha^+, & \text{otherwise},
\end{cases} \\
G\lambda_{G_I}[\beta^+](x) &= \begin{cases}
\beta^+, & \text{if } x \in G, \\
\beta^-, & \text{otherwise},
\end{cases} \\
G\lambda_{G_F}[\gamma^+](x) &= \begin{cases}
\gamma^-, & \text{if } x \in G, \\
\gamma^+, & \text{otherwise}.
\end{cases}
\end{align*}

Lemma 2.36. Let $\alpha^+, \alpha^-, \beta^+, \beta^-, \gamma^+, \gamma^- \in [0, 1]$. Then the following statements hold:

(1) $\Lambda_G^{\alpha^+, \beta^+, \gamma^+, \gamma^-} = \Lambda_G^{1-\alpha^+, 1-\beta^-, 1-\gamma^-, \gamma^-}$, and

(2) $G\Lambda_{G_T}[\alpha^+, \beta^+, \gamma^+, \gamma^-] = \Lambda_G^{1-\alpha^-, 1-\beta^+, 1-\gamma^-, \gamma^-}$.

Proof.

(1). Let $\Lambda_G^{\alpha^+, \beta^+, \gamma^+, \gamma^-}$ be a NS in X. Then $\Lambda_G^{\alpha^+, \beta^+, \gamma^+, \gamma^-} = (X, \lambda_{G_T}[\alpha^+], \lambda_{G_I}[\beta^+], \lambda_{G_F}[\gamma^+])$. Since
\begin{align*}
\lambda_{G_T}[\alpha^+](x) &= \begin{cases}
\alpha^+, & \text{if } x \in G, \\
\alpha^-, & \text{otherwise},
\end{cases} \\
\lambda_{G_I}[\beta^+](x) &= \begin{cases}
\beta^-, & \text{if } x \in G, \\
\beta^+, & \text{otherwise},
\end{cases} \\
\lambda_{G_F}[\gamma^+](x) &= \begin{cases}
\gamma^+, & \text{if } x \in G, \\
\gamma^-, & \text{otherwise}.
\end{cases}
\end{align*}

Thus
\begin{align*}
\lambda_{G_T}[\alpha^+](x) &= \begin{cases}
1 - \alpha^+, & \text{if } x \in G, \\
1 - \alpha^-, & \text{otherwise},
\end{cases} = G\lambda_{G_T}[1-\alpha^+](x), \\
\lambda_{G_I}[\beta^+](x) &= \begin{cases}
1 - \beta^-, & \text{if } x \in G, \\
1 - \beta^+, & \text{otherwise},
\end{cases} = G\lambda_{G_I}[1-\beta^+](x), \\
\lambda_{G_F}[\gamma^+](x) &= \begin{cases}
1 - \gamma^+, & \text{if } x \in G, \\
1 - \gamma^-, & \text{otherwise},
\end{cases} = G\lambda_{G_F}[1-\gamma^+](x).
\end{align*}

Hence, $(X, G\lambda_{G_T}[1-\alpha^+], G\lambda_{G_I}[1-\beta^+], G\lambda_{G_F}[1-\gamma^+]) = \Lambda_G^{1-\alpha^-, 1-\beta^+, 1-\gamma^-, \gamma^-}$. \\

(2). Let \(G \Lambda_{\alpha^+, \beta^+, \gamma^-} \) be a NS in \(X \). Then \(G \Lambda_{\alpha^+, \beta^+, \gamma^-}(x) = (X, G \lambda_T(\alpha^+), G \lambda_{I}(\beta^+), G \lambda_{F}(\gamma^-)). \) Since

\[
G \lambda_T(\alpha^+)(x) = \begin{cases}
\alpha^-, & \text{if } x \in G, \\
\alpha^+, & \text{otherwise},
\end{cases}
\]

\[
G \lambda_I(\beta^+)(x) = \begin{cases}
\beta^+, & \text{if } x \in G, \\
\beta^-, & \text{otherwise},
\end{cases}
\]

\[
G \lambda_{F}(\gamma^-)(x) = \begin{cases}
\gamma^-, & \text{if } x \in G, \\
\gamma^+, & \text{otherwise}.
\end{cases}
\]

Thus

\[
G \lambda_T(\alpha^+)(x) = \begin{cases}
1 - \alpha^-, & \text{if } x \in G, \\
1 - \alpha^+, & \text{otherwise}
\end{cases} = \lambda_T(1 - \alpha^-)(x),
\]

\[
G \lambda_I(\beta^+)(x) = \begin{cases}
1 - \beta^+, & \text{if } x \in G, \\
1 - \beta^- & \text{otherwise}
\end{cases} = \lambda_I(1 - \beta^+)(x),
\]

\[
G \lambda_{F}(\gamma^-)(x) = \begin{cases}
1 - \gamma^-, & \text{if } x \in G, \\
1 - \gamma^+ & \text{otherwise}
\end{cases} = \lambda_{F}(1 - \gamma^-)(x).
\]

Hence, \((X, \lambda_T(1 - \alpha^-), \lambda_I(1 - \beta^+), \lambda_{F}(1 - \gamma^-)) = \Lambda_{1 - \alpha^-} \Lambda_{1 - \beta^+} \Lambda_{1 - \gamma^-} \).

\[\square\]

Lemma 2.37. If the constant 0 of \(X \) is in a nonempty subset \(G \) of \(X \), then a NS \(G \Lambda_{\alpha^+, \beta^+, \gamma^-} \) in \(X \) satisfies the conditions (2.24), (2.25), and (2.26).

Proof. If \(0 \in G \), then \(G \lambda_T(\alpha^+)(0) = \alpha^- \), \(G \lambda_I(\beta^+)(0) = \beta^+ \), and \(G \lambda_{F}(\gamma^-)(0) = \gamma^- \). Thus

\[
(\forall x \in X) \begin{cases}
G \lambda_T(\alpha^+)(0) = \alpha^- = G \lambda_I(\alpha^-)(x), \\
G \lambda_I(\beta^+)(0) = \beta^- = G \lambda_I(\beta^-)(x), \\
G \lambda_{F}(\gamma^-)(0) = \gamma^- = G \lambda_{F}(\gamma^-)(x)
\end{cases}
\]

Hence, \(G \Lambda_{\alpha^+, \beta^+, \gamma^-} \) satisfies the conditions (2.24), (2.25), and (2.26).

\[\square\]

Lemma 2.38. If a NS \(G \Lambda_{\alpha^+, \beta^+, \gamma^-} \) in \(X \) satisfies the condition (2.24) (resp., (2.25), (2.26)), then the constant 0 of \(X \) is in a nonempty subset \(G \) of \(X \).

Proof. Assume that a NS \(G \Lambda_{\alpha^+, \beta^+, \gamma^-} \) in \(X \) satisfies the condition (2.24). Then \(G \lambda_T(\alpha^-)(x) \leq G \lambda_T(\alpha^-)(x) \) for all \(x \in X \). Since \(G \) is nonempty, there exists \(g \in G \). Thus \(G \lambda_T(\alpha^-)(g) = \alpha^- \), so \(G \lambda_T(\alpha^-)(0) \leq G \lambda_T(\alpha^-)(g) = \alpha^- \), that is, \(G \lambda_T(\alpha^-)(0) = \alpha^- \). Hence, \(0 \in G \).

\[\square\]

Theorem 2.39. A NS \(G \Lambda_{\alpha^+, \beta^+, \gamma^-} \) in \(X \) is a special neutrosophic UP-subalgebra of \(X \) if and only if a nonempty subset \(G \) of \(X \) is a UP-subalgebra of \(X \).

Proof. Assume that \(G \Lambda_{\alpha^+, \beta^+, \gamma^-} \) is a special neutrosophic UP-subalgebra of \(X \). Let \(x, y \in G \). Then \(G \lambda_T(\alpha^-)(x) = \alpha^- = G \lambda_T(\alpha^-)(y) \). Thus

\[
G \lambda_T(\alpha^-)(x \cdot y) \leq \max\{G \lambda_T(\alpha^-)(x), G \lambda_T(\alpha^-)(y)\} = \alpha^- \leq G \lambda_T(\alpha^-)(x \cdot y) \text{ by (2.21)}
\]

and so \(G \lambda_T(\alpha^-)(x \cdot y) = \alpha^- \). Thus \(x \cdot y \in G \). Hence, \(G \) is a UP-subalgebra of \(X \). Conversely, assume that \(G \) is a UP-subalgebra of \(X \). Let \(x, y \in X \).
Case 1: $x, y \in G$. Then

$$G_{\lambda^T[\alpha^-]}(x) = \alpha^- = G_{\lambda^T[\alpha^+]}(y), G_{\lambda_1[\beta^-]}(x) = \beta^+ = G_{\lambda_1[\beta^+]}(y), \quad G_{\lambda^F[\gamma^-]}(x) = \gamma^- = G_{\lambda^F[\gamma^+]}(y).$$

Thus

$$\max\{G_{\lambda^T[\alpha^-]}(x), G_{\lambda^T[\alpha^+]}(y)\} = \alpha^-,$$

$$\min\{G_{\lambda_1[\beta^-]}(x), G_{\lambda_1[\beta^+]}(y)\} = \beta^+,$$

$$\max\{G_{\lambda^F[\gamma^-]}(x), G_{\lambda^F[\gamma^+]}(y)\} = \gamma^-.$$

Since G is a UP-subalgebra of X, we have $x \cdot y \in G$ and so $G_{\lambda^T[\alpha^-]}(x \cdot y) = \alpha^-$, $G_{\lambda_1[\beta^+]}(x \cdot y) = \beta^+$, and $G_{\lambda^F[\gamma^-]}(x \cdot y) = \gamma^-$. Hence,

$$G_{\lambda^T[\alpha^-]}(x \cdot y) = \alpha^- \leq \alpha^- = \max\{G_{\lambda^T[\alpha^-]}(x), G_{\lambda^T[\alpha^+]}(y)\},$$

$$G_{\lambda_1[\beta^+]}(x \cdot y) = \beta^+ \geq \beta^+ = \min\{G_{\lambda_1[\beta^-]}(x), G_{\lambda_1[\beta^+]}(y)\},$$

$$G_{\lambda^F[\gamma^-]}(x \cdot y) = \gamma^- \leq \gamma^- = \max\{G_{\lambda^F[\gamma^-]}(x), G_{\lambda^F[\gamma^+]}(y)\}.$$

Case 2: $x \not\in G$ or $y \not\in G$. Then

$$G_{\lambda^T[\alpha^+]}(x) = \alpha^- \text{ or } G_{\lambda^T[\alpha^-]}(y) = \alpha^-,$$

$$G_{\lambda_1[\beta^+]}(x) = \beta^+ \text{ or } G_{\lambda_1[\beta^-]}(y) = \beta^-,$$

$$G_{\lambda^F[\gamma^+]}(x) = \gamma^- \text{ or } G_{\lambda^F[\gamma^-]}(y) = \gamma^-.$$

Thus

$$\max\{G_{\lambda^T[\alpha^-]}(x), G_{\lambda^T[\alpha^-]}(y)\} = \alpha^-,$$

$$\min\{G_{\lambda_1[\beta^-]}(x), G_{\lambda_1[\beta^-]}(y)\} = \beta^-,$$

$$\max\{G_{\lambda^F[\gamma^-]}(x), G_{\lambda^F[\gamma^-]}(y)\} = \gamma^-.$$

Therefore,

$$G_{\lambda^T[\alpha^+]}(x \cdot y) \geq \alpha^- = \max\{G_{\lambda^T[\alpha^-]}(x), G_{\lambda^T[\alpha^-]}(y)\},$$

$$G_{\lambda_1[\beta^+]}(x \cdot y) \leq \beta^+ = \min\{G_{\lambda_1[\beta^-]}(x), G_{\lambda_1[\beta^+]}(y)\},$$

$$G_{\lambda^F[\gamma^+]}(x \cdot y) \geq \gamma^- = \max\{G_{\lambda^F[\gamma^-]}(x), G_{\lambda^F[\gamma^-]}(y)\}.$$

Hence, $G_{\lambda^T[\alpha^-], \lambda_1^T[\beta^-], \lambda^F[\gamma^-]}$ is a special neutrosophic UP-subalgebra of X. \qed

Theorem 2.40. A NS $G_{\lambda^T[\alpha^-], \lambda_1^T[\beta^-], \lambda^F[\gamma^-]}$ in X is a special neutrosophic near UP-filter of X if and only if a nonempty subset G of X is a near UP-filter of X.

Proof. Assume that $G_{\lambda^T[\alpha^-], \lambda_1^T[\beta^-], \lambda^F[\gamma^-]}$ is a special neutrosophic near UP-filter of X. Since $G_{\lambda^T[\alpha^-], \lambda_1^T[\beta^-], \lambda^F[\gamma^-]}$ satisfies the condition (2.24), it follows from Lemma 2.38 that $0 \in G$. Next, let $x \in X$ and $y \in G$. Then $G_{\lambda^T[\alpha^-]}(y) = \alpha^-$. Thus

$$G_{\lambda^T[\alpha^-]}(x \cdot y) \leq \alpha^- = \max\{G_{\lambda^T[\alpha^-]}(x), G_{\lambda^T[\alpha^-]}(y)\} \quad \text{by (2.27)}$$

and so $G_{\lambda^T[\alpha^-]}(x \cdot y) = \alpha^-$. Thus $x \cdot y \in G$. Hence, G is a near UP-filter of X.

Conversely, assume that G is a near UP-filter of X. Since $0 \in G$, it follows from Lemma 2.37 that $G_{\lambda^T[\alpha^-], \lambda_1^T[\beta^-], \lambda^F[\gamma^-]}$ satisfies the conditions (2.24), (2.25), and (2.26). Next, let $x, y \in X$.

Case 1: \(y \in G \). Then \(G \lambda_T[\alpha_\alpha^-](y) = \alpha^- \), \(G \lambda_I[\beta_\beta^+](y) = \beta^+ \), and \(G \lambda_F[\gamma_{\gamma_Y}^-](y) = \gamma^- \). Since \(G \) is a near UP-filter of \(X \), we have \(x \cdot y \in G \) and so \(G \lambda_T[\alpha_\alpha^-](x \cdot y) = \alpha^- \), \(G \lambda_I[\beta_\beta^+](x \cdot y) = \beta^+ \), and \(G \lambda_F[\gamma_{\gamma_Y}^-](x \cdot y) = \gamma^- \). Thus
\[
G \lambda_T[\alpha_\alpha^-](x \cdot y) = \alpha^- \leq \alpha^- = G \lambda_T[\alpha_\alpha^-](y),
\]
\[
G \lambda_I[\beta_\beta^+](x \cdot y) = \beta^+ \geq \beta^+ = G \lambda_I[\beta_\beta^+](y),
\]
\[
G \lambda_F[\gamma_{\gamma_Y}^-](x \cdot y) = \gamma^- \leq \gamma^- = G \lambda_F[\gamma_{\gamma_Y}^-](y).
\]

Case 2: \(y \notin G \). Then \(G \lambda_T[\alpha_\alpha^-](y) = \alpha^+ \), \(G \lambda_I[\beta_\beta^+](y) = \beta^- \), and \(G \lambda_F[\gamma_{\gamma_Y}^-](y) = \gamma^+ \). Thus
\[
G \lambda_T[\alpha_\alpha^-](x \cdot y) \leq \alpha^+ = G \lambda_T[\alpha_\alpha^-](y),
\]
\[
G \lambda_I[\beta_\beta^+](x \cdot y) \geq \beta^- = G \lambda_I[\beta_\beta^+](y),
\]
\[
G \lambda_F[\gamma_{\gamma_Y}^-](x \cdot y) \leq \gamma^+ = G \lambda_F[\gamma_{\gamma_Y}^-](y).
\]

Hence, \(G \Lambda[\alpha^-_\alpha, \beta^+_\beta, \gamma^-_{\gamma_Y}] \) is a special neutrosophic near UP-filter of \(X \).

\[\square\]

Theorem 2.41. A NS \(G \Lambda[\alpha^-_\alpha, \beta^+_\beta, \gamma^-_{\gamma_Y}] \) in \(X \) is a special neutrosophic UP-filter of \(X \) if and only if a nonempty subset \(G \) of \(X \) is a UP-filter of \(X \).

Proof. Assume that \(G \Lambda[\alpha^-_\alpha, \beta^+_\beta, \gamma^-_{\gamma_Y}] \) is a special neutrosophic UP-filter of \(X \). Since \(G \Lambda[\alpha^-_\alpha, \beta^+_\beta, \gamma^-_{\gamma_Y}] \) satisfies the condition (2.24), it follows from Lemma 2.38 that \(0 \in G \). Next, let \(x, y \in X \) be such that \(x \cdot y \in G \) and \(x \in G \). Then \(G \lambda_T[\alpha_\alpha^-](x \cdot y) = \alpha^- \leq G \lambda_T[\alpha_\alpha^-](y) \) by (2.30) and so \(G \lambda_T[\alpha_\alpha^-](y) = \alpha^- \). Thus \(y \in G \). Hence, \(G \) is a UP-filter of \(X \).

Conversely, assume that \(G \) is a UP-filter of \(X \). Since \(0 \in G \), it follows from Lemma 2.37 that \(G \Lambda[\alpha^-_\alpha, \beta^+_\beta, \gamma^-_{\gamma_Y}] \) satisfies the conditions (2.24), (2.25), and (2.26). Next, let \(x, y \in X \).

Case 1: \(x \cdot y \in G \) and \(x \in G \). Then
\[
G \lambda_T[\alpha_\alpha^-](x \cdot y) = \alpha^- = G \lambda_T[\alpha_\alpha^-](x),
\]
\[
G \lambda_I[\beta_\beta^+](x \cdot y) = \beta^+ = G \lambda_I[\beta_\beta^+](x),
\]
\[
G \lambda_F[\gamma_{\gamma_Y}^-](x \cdot y) = \gamma^- = G \lambda_F[\gamma_{\gamma_Y}^-](x).
\]
Since \(G \) is a UP-filter of \(X \), we have \(y \in G \) and so \(G \lambda_T[\alpha_\alpha^-](y) = \alpha^- \), \(G \lambda_I[\beta_\beta^+](y) = \beta^+ \), and \(G \lambda_F[\gamma_{\gamma_Y}^-](y) = \gamma^- \). Thus
\[
G \lambda_T[\alpha_\alpha^-](y) = \alpha^- \leq \alpha^- = \max\{G \lambda_T[\alpha_\alpha^-](x \cdot y), G \lambda_T[\alpha_\alpha^-](x)\},
\]
\[
G \lambda_I[\beta_\beta^+](y) = \beta^+ \geq \beta^+ = \min\{G \lambda_I[\beta_\beta^+](x \cdot y), G \lambda_I[\beta_\beta^+](x)\},
\]
\[
G \lambda_F[\gamma_{\gamma_Y}^-](y) = \gamma^- \leq \gamma^- = \max\{G \lambda_F[\gamma_{\gamma_Y}^-](x \cdot y), G \lambda_F[\gamma_{\gamma_Y}^-](x)\}.
\]

Case 2: \(x \cdot y \notin G \) or \(x \notin G \). Then
\[
G \lambda_T[\alpha_\alpha^-](x \cdot y) = \alpha^+ \text{ or } G \lambda_T[\alpha_\alpha^-](x) = \alpha^+,
\]
\[
G \lambda_I[\beta_\beta^+](x \cdot y) = \beta^- \text{ or } G \lambda_I[\beta_\beta^+](x) = \beta^-,
\]
\[
G \lambda_F[\gamma_{\gamma_Y}^-](x \cdot y) = \gamma^+ \text{ or } G \lambda_F[\gamma_{\gamma_Y}^-](x) = \gamma^+.
\]
Thus
\[
\begin{align*}
\max\{G\lambda_T^{[\alpha^+]}(x \cdot y), G\lambda_T^{[\alpha^-]}(x)\} &= \alpha^+, \\
\min\{G\lambda_I^{[\beta^+]}(x \cdot y), G\lambda_I^{[\beta^-]}(x)\} &= \beta^-,
\end{align*}
\]
\[
\max\{G\lambda_F^{[\gamma^+]}(x \cdot y), G\lambda_F^{[\gamma^-]}(x)\} = \gamma^+.
\]

Therefore,
\[
\begin{align*}
G\lambda_T^{[\alpha^+]}(x) &\leq \alpha^+ = \max\{G\lambda_T^{[\alpha^+]}(x \cdot y), G\lambda_T^{[\alpha^-]}(x)\}, \\
G\lambda_I^{[\beta^+]}(x) &\geq \beta^- = \min\{G\lambda_I^{[\beta^+]}(x \cdot y), G\lambda_I^{[\beta^-]}(x)\}, \\
G\lambda_F^{[\gamma^+]}(x) &\leq \gamma^+ = \max\{G\lambda_F^{[\gamma^+]}(x \cdot y), G\lambda_F^{[\gamma^-]}(x)\}.
\end{align*}
\]

Hence, \(G\lambda^{[\alpha^-, \beta^+, \gamma^-]}_X\) is a special neutrosophic UP-filter of \(X\).

Theorem 2.42. A NS \(G\lambda^{[\alpha^-, \beta^+, \gamma^-]}_X\) in \(X\) is a special neutrosophic UP-ideal of \(X\) if and only if a nonempty subset \(G\) of \(X\) is a UP-ideal of \(X\).

Proof. Assume that \(G\lambda^{[\alpha^-, \beta^+, \gamma^-]}_X\) is a special neutrosophic UP-ideal of \(X\). Since \(G\lambda^{[\alpha^-, \beta^+, \gamma^-]}_X\) satisfies the condition (2.24), it follows from Lemma 2.38 that \(0 \in G\). Next, let \(x, y, z \in X\) be such that \(x \cdot (y \cdot z) \in G\) and \(y \in G\). Then \(G\lambda_T^{[\alpha^+]}(x \cdot (y \cdot z)) = \alpha^- = G\lambda_T^{[\alpha^-]}(y)\). Thus
\[
G\lambda_T^{[\alpha^+]}(x \cdot z) \leq \max\{G\lambda_T^{[\alpha^+]}(x \cdot (y \cdot z)), G\lambda_T^{[\alpha^-]}(y)\} = \alpha^- \leq G\lambda_T^{[\alpha^+]}(x \cdot z) \text{ by (2.33)}
\]
and so \(G\lambda_T^{[\alpha^+]}(x \cdot z) = \alpha^-\). Thus \(x \cdot z \in G\). Hence, \(G\) is a UP-ideal of \(X\).

Conversely, assume that \(G\) is a UP-ideal of \(X\). Since \(0 \in G\), it follows from Lemma 2.37 that \(G\lambda^{[\alpha^-, \beta^+, \gamma^-]}_X\) satisfies the conditions (2.24), (2.25), and (2.26). Next, let \(x, y, z \in X\).

Case 1: \(x \cdot (y \cdot z) \in G\) and \(y \in G\). Then
\[
\begin{align*}
G\lambda_T^{[\alpha^+]}(x \cdot (y \cdot z)) &= \alpha^- = G\lambda_T^{[\alpha^-]}(y), \\
G\lambda_I^{[\beta^+]}(x \cdot (y \cdot z)) &= \beta^+ = G\lambda_I^{[\beta^-]}(y), \\
G\lambda_F^{[\gamma^+]}(x \cdot (y \cdot z)) &= \gamma^- = G\lambda_F^{[\gamma^-]}(y).
\end{align*}
\]

Thus
\[
\begin{align*}
\max\{G\lambda_T^{[\alpha^+]}(x \cdot (y \cdot z)), G\lambda_T^{[\alpha^-]}(y)\} &= \alpha^-,
\min\{G\lambda_I^{[\beta^+]}(x \cdot (y \cdot z)), G\lambda_I^{[\beta^-]}(y)\} &= \beta^+,
\max\{G\lambda_F^{[\gamma^+]}(x \cdot (y \cdot z)), G\lambda_F^{[\gamma^-]}(y)\} &= \gamma^-.
\end{align*}
\]

Since \(G\) is a UP-ideal of \(X\), we have \(x \cdot z \in G\) and so \(G\lambda_T^{[\alpha^+]}(x \cdot z) = \alpha^-, G\lambda_I^{[\beta^+]}(x \cdot z) = \beta^+, \) and \(G\lambda_F^{[\gamma^+]}(x \cdot z) = \gamma^-\). Thus
\[
\begin{align*}
G\lambda_T^{[\alpha^+]}(x \cdot z) &= \alpha^- \leq \alpha^- = \max\{G\lambda_T^{[\alpha^+]}(x \cdot (y \cdot z)), G\lambda_T^{[\alpha^-]}(y)\}, \\
G\lambda_I^{[\beta^+]}(x \cdot z) &= \beta^+ \geq \beta^+ = \min\{G\lambda_I^{[\beta^+]}(x \cdot (y \cdot z)), G\lambda_I^{[\beta^-]}(y)\}, \\
G\lambda_F^{[\gamma^+]}(x \cdot z) &= \gamma^- \leq \gamma^- = \max\{G\lambda_F^{[\gamma^+]}(x \cdot (y \cdot z)), G\lambda_F^{[\gamma^-]}(y)\}.
\end{align*}
\]
Case 2: \(x \cdot (y \cdot z) \not\in G \) or \(y \not\in G \). Then

\[
\begin{align*}
G\lambda_T^{[\alpha^+]}(x \cdot (y \cdot z)) &= \alpha^+ \text{ or } G\lambda_T^{[\alpha^-]}(y) = \alpha^+ , \\
G\lambda_I^{[\beta^+]}(x \cdot (y \cdot z)) &= \beta^- \text{ or } G\lambda_I^{[\beta^-]}(y) = \beta^- , \\
G\lambda_F^{[\gamma^+]}(x \cdot (y \cdot z)) &= \gamma^+ \text{ or } G\lambda_F^{[\gamma^-]}(y) = \gamma^+ .
\end{align*}
\]

Thus

\[
\begin{align*}
\max[G\lambda_T^{[\alpha^+]}(x \cdot (y \cdot z)), G\lambda_T^{[\alpha^-]}(y)] &= \alpha^+ , \\
\min[G\lambda_I^{[\beta^+]}(x \cdot (y \cdot z)), G\lambda_I^{[\beta^-]}(y)] &= \beta^- , \\
\max[G\lambda_F^{[\gamma^+]}(x \cdot (y \cdot z)), G\lambda_F^{[\gamma^-]}(y)] &= \gamma^+ .
\end{align*}
\]

Therefore,

\[
\begin{align*}
G\lambda_T^{[\alpha^+]}(x \cdot z) &\leq \alpha^+ = \max[G\lambda_T^{[\alpha^+]}(x \cdot (y \cdot z)), G\lambda_T^{[\alpha^-]}(y)] , \\
G\lambda_I^{[\beta^+]}(x \cdot z) &\geq \beta^- = \min[G\lambda_I^{[\beta^+]}(x \cdot (y \cdot z)), G\lambda_I^{[\beta^-]}(y)] , \\
G\lambda_F^{[\gamma^+]}(x \cdot z) &\leq \gamma^+ = \max[G\lambda_F^{[\gamma^+]}(x \cdot (y \cdot z)), G\lambda_F^{[\gamma^-]}(y)] .
\end{align*}
\]

Hence, \(G\Lambda^{[\alpha^+, \beta^+, \gamma^-]} \) is a special neutrosophic UP-ideal of \(X \).

Theorem 3.24. A NS \(G\Lambda^{[\alpha^-, \beta^+, \gamma^-]} \) in \(X \) is a special neutrosophic strong UP-ideal of \(X \) if and only if a nonempty subset \(G \) of \(X \) is a strong UP-ideal of \(X \).

Proof. Assume that \(G\Lambda^{[\alpha^-, \beta^+, \gamma^-]} \) is a special neutrosophic strong UP-ideal of \(X \). By Theorem 2.28, we have \(G\lambda_T^{[\alpha^+]} \) is constant, that is, \(G\lambda_T^{[\alpha^-]} \) is constant. Since \(G \) is nonempty, we have \(G\lambda_T^{[\alpha^-]}(x) = \alpha^- \) for all \(x \in X \). Thus \(G = X \). Hence, \(G \) is a strong UP-ideal of \(X \).

Conversely, assume that \(G \) is a strong UP-ideal of \(X \). Then \(G = X \), so

\[
(\forall x \in X) \begin{cases}
G\lambda_T^{[\alpha^+]}(x) = \alpha^- \\
G\lambda_I^{[\beta^+]}(x) = \beta^+ \\
G\lambda_F^{[\gamma^+]}(x) = \gamma^-
\end{cases}
\]

Thus \(G\lambda_T^{[\alpha^-]} \), \(G\lambda_I^{[\beta^+]} \), and \(G\lambda_F^{[\gamma^+]} \) are constant, that is, \(G\Lambda^{[\alpha^-, \beta^+, \gamma^-]} \) is constant. By Theorem 2.28, we have \(G\Lambda^{[\alpha^-, \beta^+, \gamma^-]} \) is a special neutrosophic strong UP-ideal of \(X \).

3. Level subsets of a NS of special types

In this paper, we discuss the relationships among special neutrosophic UP-subalgebras (resp., special neutrosophic near UP-filters, special neutrosophic UP-filters, special neutrosophic UP-ideals, special neutrosophic strong UP-ideals) of UP-algebras and their level subsets.

Definition 3.1 ([21]). Let \(f \) be a fuzzy set in \(X \). For any \(t \in [0, 1] \), the sets

\[
\begin{align*}
U(f; t) &= \{ x \in X \mid f(x) \geq t \} , \\
L(f; t) &= \{ x \in X \mid f(x) \leq t \} , \\
E(f; t) &= \{ x \in X \mid f(x) = t \}
\end{align*}
\]

are called an upper \(t \)-level subset, a lower \(t \)-level subset, and an equal \(t \)-level subset of \(f \), respectively.

Theorem 3.2. A NS \(\Lambda \) in \(X \) is a special neutrosophic UP-subalgebra of \(X \) if and only if for all \(\alpha, \beta, \gamma \in [0, 1] \), the sets \(L(\lambda_T; \alpha), U(\lambda_I; \beta), \) and \(L(\lambda_F; \gamma) \) are UP-subalgebras of \(X \) if \(L(\lambda_T; \alpha), U(\lambda_I; \beta), \) and \(L(\lambda_F; \gamma) \) are nonempty.
Proof. Assume that Λ is a special neutrosophic UP-subalgebra of X. Let $\alpha, \beta, \gamma \in [0, 1]$ be such that $L(\lambda; \alpha), U(\lambda; \beta),$ and $L(\lambda; \gamma)$ are nonempty.

Let $x, y \in L(\lambda; \alpha)$. Then $\lambda_T(x) \leq \alpha$ and $\lambda_T(y) \leq \alpha$, so α is a upper bound of $\{\lambda_T(x), \lambda_T(y)\}$. By (2.21), we have $\lambda_T(x \cdot y) \leq \max\{\lambda_T(x),\lambda_T(y)\} \leq \alpha$. Thus $x \cdot y \in L(\lambda; \alpha)$.

Let $x, y \in U(\lambda; \beta)$. Then $\lambda_I(x) \geq \beta$ and $\lambda_I(y) \geq \beta$, so β is an lower bound of $\{\lambda_I(x), \lambda_I(y)\}$. By (2.22), we have $\lambda_I(x \cdot y) \geq \min\{\lambda_I(x),\lambda_I(y)\} \geq \beta$. Thus $x \cdot y \in U(\lambda; \beta)$.

Let $x, y \in L(\lambda; \gamma)$. Then $\lambda_F(x) \leq \gamma$ and $\lambda_F(y) \leq \gamma$, so γ is a upper bound of $\{\lambda_F(x), \lambda_F(y)\}$. By (2.23), we have $\lambda_F(x \cdot y) \leq \max\{\lambda_F(x),\lambda_F(y)\} \leq \gamma$. Thus $x \cdot y \in L(\lambda; \gamma)$.

Hence, $L(\lambda; \alpha), U(\lambda; \beta)$, and $L(\lambda; \gamma)$ are UP-subalgebras of X.

Conversely, assume that for all $\alpha, \beta, \gamma \in [0, 1]$, the set $L(\lambda; \alpha), U(\lambda; \beta)$, and $L(\lambda; \gamma)$ are UP-subalgebras if $L(\lambda; \alpha), U(\lambda; \beta)$, and $L(\lambda; \gamma)$ are nonempty.

Let $x, y \in X$. Then $\lambda_T(x), \lambda_I(x) \in [0, 1]$. Choose $\alpha = \max\{\lambda_T(x),\lambda_I(x)\}$. Thus $\lambda_T(x) \leq \alpha$ and $\lambda_I(x) \leq \alpha$, so $x, y \in L(\lambda; \alpha)$. By assumption, we have $L(\lambda; \alpha)$ is a UP-subalgebra of X and so $x, y \in L(\lambda; \alpha)$. Thus $\lambda_T(x \cdot y) \leq \alpha = \max\{\lambda_T(x),\lambda_I(x)\}$.

Let $x, y \in X$. Then $\lambda_I(x), \lambda_I(y) \in [0, 1]$. Choose $\beta = \min\{\lambda_I(x),\lambda_I(y)\}$. Thus $\lambda_I(x) \geq \beta$ and $\lambda_I(y) \geq \beta$, so $x, y \in U(\lambda; \beta)$. By assumption, we have $U(\lambda; \beta)$ is a UP-subalgebra of X and so $x, y \in U(\lambda; \beta)$. Thus $\lambda_I(x \cdot y) \geq \beta = \min\{\lambda_I(x),\lambda_I(y)\}$.

Let $x, y \in X$. Then $\lambda_F(x), \lambda_F(y) \in [0, 1]$. Choose $\gamma = \max\{\lambda_F(x),\lambda_F(y)\}$. Thus $\lambda_F(x) \leq \gamma$ and $\lambda_F(y) \leq \gamma$, so $x, y \in L(\lambda; \gamma)$. By assumption, we have $L(\lambda; \gamma)$ is a UP-subalgebra of X and so $x, y \in L(\lambda; \gamma)$. Thus $\lambda_F(x \cdot y) \leq \gamma = \max\{\lambda_F(x),\lambda_F(y)\}$.

Therefore, Λ is a special neutrosophic UP-subalgebra of X. □

Theorem 3.3. A NS Λ in X is a special neutrosophic near UP-filter of X if and only if for all $\alpha, \beta, \gamma \in [0, 1]$, the sets $L(\lambda; \alpha), U(\lambda; \beta)$, and $L(\lambda; \gamma)$ are near UP-filters of X if $L(\lambda; \alpha), U(\lambda; \beta)$, and $L(\lambda; \gamma)$ are nonempty.

Proof. Assume that Λ is a special neutrosophic near UP-filter of X. Let $\alpha, \beta, \gamma \in [0, 1]$ be such that $L(\lambda; \alpha), U(\lambda; \beta)$, and $L(\lambda; \gamma)$ are nonempty.

Let $x \in L(\lambda; \alpha)$. Then $\lambda_T(x) \leq \alpha$. By (2.24), we have $\lambda_T(0) \leq \lambda_T(x) \leq \alpha$. Thus $0 \in L(\lambda; \alpha)$. Next, let $y \in L(\lambda; \alpha)$. Then $\lambda_T(y) \leq \alpha$. By (2.27), we have $\lambda_T(x \cdot y) \leq \lambda_T(y) \leq \alpha$. Thus $x \cdot y \in L(\lambda; \alpha)$.

Let $x \in U(\lambda; \beta)$. Then $\lambda_I(x) \geq \beta$. By (2.25), we have $\lambda_I(0) \geq \lambda_I(x) \geq \beta$. Thus $0 \in U(\lambda; \beta)$. Next, let $y \in U(\lambda; \beta)$. Then $\lambda_I(y) \geq \beta$. By (2.28), we have $\lambda_I(x \cdot y) \geq \lambda_I(y) \geq \beta$. Thus $x \cdot y \in U(\lambda; \beta)$.

Let $x \in L(\lambda; \gamma)$. Then $\lambda_F(x) \leq \gamma$. By (2.26), we have $\lambda_F(0) \leq \lambda_F(x) \leq \gamma$. Thus $0 \in L(\lambda; \gamma)$. Next, $y \in L(\lambda; \gamma)$. Then $\lambda_F(y) \leq \gamma$. By (2.28), we have $\lambda_F(x \cdot y) \leq \lambda_F(y) \leq \gamma$. Thus $x \cdot y \in L(\lambda; \gamma)$.

Hence, $L(\lambda; \alpha), U(\lambda; \beta)$, and $L(\lambda; \gamma)$ are near UP-filters of X.

Conversely, assume that for all $\alpha, \beta, \gamma \in [0, 1]$, the set $L(\lambda; \alpha), U(\lambda; \beta)$, and $L(\lambda; \gamma)$ are near UP-filters if $L(\lambda; \alpha), U(\lambda; \beta)$, and $L(\lambda; \gamma)$ are nonempty.

Let $x \in X$. Then $\lambda_T(0) \in [0, 1]$. Choose $\alpha = \lambda_T(x)$. Thus $\lambda_T(x) \leq \alpha$, so $x \in L(\lambda; \alpha) \neq \emptyset$. By assumption, we have $L(\lambda; \alpha)$ is a UP-filter of X and so $0 \in L(\lambda; \alpha)$. Thus $\lambda_T(0) \leq \alpha = \lambda_T(x)$. Next, let $y \in X$. Then $\lambda_T(y) \in [0, 1]$. Choose $\alpha = \lambda_T(y)$. Thus $\lambda_T(y) \leq \alpha$, so $y \in L(\lambda; \alpha) \neq \emptyset$. By assumption, we have $L(\lambda; \alpha)$ is a UP-filter of X, and so $x \cdot y \in L(\lambda; \alpha)$. Thus $\lambda_T(x \cdot y) \leq \alpha = \lambda_T(y)$.

Let $x \in X$. Then $\lambda_I(0) \in [0, 1]$. Choose $\beta = \lambda_I(x)$. Thus $\lambda_I(x) \geq \beta$, so $x \in U(\lambda; \beta) \neq \emptyset$. By assumption, we have $U(\lambda; \beta)$ is a UP-filter of X, and so $x \cdot y \in U(\lambda; \beta)$. Thus $\lambda_I(x \cdot y) \geq \beta = \lambda_I(x)$.

Let $x \in X$. Then $\lambda_F(0) \in [0, 1]$. Choose $\gamma = \lambda_F(x)$. Thus $\lambda_F(x) \leq \gamma$, so $x \in L(\lambda; \gamma) \neq \emptyset$. By assumption, we have $L(\lambda; \gamma)$ is a UP-filter of X, and so $x \cdot y \in L(\lambda; \gamma)$. Thus $\lambda_F(x \cdot y) \leq \gamma = \lambda_F(x)$.

Therefore, Λ is a special neutrosophic near UP-filter of X. □
Theorem 3.4. A NS Λ in X is a special neutrosophic UP-filter of X if and only if for all $\alpha, \beta, \gamma \in [0,1]$, the sets $L(\lambda_T; \alpha), U(\lambda_I; \beta)$, and $L(\lambda_F; \gamma)$ are UP-filters of X if $L(\lambda_T; \alpha), U(\lambda_I; \beta)$, and $L(\lambda_F; \gamma)$ are nonempty.

Proof. Assume that Λ is a special neutrosophic UP-filter of X. Let $\alpha, \beta, \gamma \in [0,1]$ be such that $L(\lambda_T; \alpha), U(\lambda_I; \beta)$, and $L(\lambda_F; \gamma)$ are nonempty.

Let $x \in L(\lambda_T; \alpha)$. Then $\lambda_T(x) \leq \alpha$. By (2.24), we have $\lambda_T(0) \leq \lambda_T(x) \leq \alpha$. Thus $0 \in L(\lambda_T; \alpha)$. Next, let $x \cdot y \in L(\lambda_T; \alpha)$ and $x \in L(\lambda_T; \alpha)$. Then $\lambda_T(x \cdot y) \leq \alpha$ and $\lambda_T(x) \leq \alpha$, so α is a upper bound of $\{\lambda_T(x \cdot y), \lambda_T(x)\}$. By (2.30), we have $\lambda_T(y) \leq \max(\lambda_T(x \cdot y), \lambda_T(x)) \leq \alpha$. Thus $y \in L(\lambda_T; \alpha)$.

Let $x \in U(\lambda_I; \beta)$. Then $\lambda_I(x) \geq \beta$. By (2.25), we have $\lambda_I(0) \geq \lambda_I(x) \geq \beta$. Thus $0 \in U(\lambda_I; \beta)$. Next, let $x \cdot y \in U(\lambda_I; \beta)$ and $x \in U(\lambda_I; \beta)$. Then $\lambda_I(x \cdot y) \geq \beta$ and $\lambda_I(x) \geq \beta$, so β is an lower bound of $\{\lambda_I(x \cdot y), \lambda_I(x)\}$. By (2.31), we have $\lambda_I(y) \geq \min(\lambda_I(x \cdot y), \lambda_I(x)) \geq \beta$. Thus $y \in U(\lambda_I; \beta)$.

Let $x \in L(\lambda_F; \gamma)$. Then $\lambda_F(x) \leq \gamma$. By (2.26), we have $\lambda_F(0) \leq \lambda_F(x) \leq \gamma$. Thus $0 \in L(\lambda_F; \gamma)$. Next, let $x \cdot y \in L(\lambda_F; \gamma)$ and $x \in L(\lambda_F; \gamma)$. Then $\lambda_F(x \cdot y) \leq \gamma$ and $\lambda_F(x) \leq \gamma$, so γ is a upper bound of $\{\lambda_F(x \cdot y), \lambda_F(x)\}$. By (2.32), we have $\lambda_F(y) \leq \max(\lambda_F(x \cdot y), \lambda_F(x)) \leq \gamma$. Thus $y \in L(\lambda_F; \gamma)$.

Hence, $L(\lambda_T; \alpha), U(\lambda_I; \beta)$, and $L(\lambda_F; \gamma)$ are UP-filters of X.

Conversely, assume that for all $\alpha, \beta, \gamma \in [0,1]$, the set $L(\lambda_T; \alpha), U(\lambda_I; \beta)$, and $L(\lambda_F; \gamma)$ are UP-ideals if $L(\lambda_T; \alpha), U(\lambda_I; \beta)$, and $L(\lambda_F; \gamma)$ are nonempty.

Let $x \in L(\lambda_T; \alpha)$. Then $\lambda_T(x) \leq \alpha$. By (2.24), we have $\lambda_T(0) \leq \lambda_T(x) \leq \alpha$. Thus $0 \in L(\lambda_T; \alpha)$. Next, let $x \cdot y \cdot z \in L(\lambda_T; \alpha)$ and $y \in L(\lambda_T; \alpha)$. Then $\lambda_T(x \cdot y \cdot z) \leq \alpha$ and $\lambda_T(y) \leq \alpha$, so α is an upper bound of $\{\lambda_T(x \cdot y \cdot z), \lambda_T(y)\}$. By (2.33), we have $\lambda_T(y) \leq \max(\lambda_T(x \cdot y \cdot z), \lambda_T(y)) \leq \alpha$. Thus $x \cdot z \in L(\lambda_T; \alpha)$.

Let $x \in U(\lambda_I; \beta)$. Then $\lambda_I(x) \geq \beta$. By (2.25), we have $\lambda_I(0) \geq \lambda_I(x) \geq \beta$. Thus $0 \in U(\lambda_I; \beta)$. Next, let $x \cdot y \cdot z \in U(\lambda_I; \beta)$ and $y \in U(\lambda_I; \beta)$. Then $\lambda_I(x \cdot y \cdot z) \geq \beta$ and $\lambda_I(y) \geq \beta$, so β is a lower bound of $\{\lambda_I(x \cdot y \cdot z), \lambda_I(y)\}$. By (2.34), we have $\lambda_I(x \cdot y \cdot z) \leq \min(\lambda_I(x \cdot y \cdot z), \lambda_I(y)) \geq \beta$. Thus $x \cdot z \in U(\lambda_I; \beta)$.

Let $x \in L(\lambda_F; \gamma)$. Then $\lambda_F(x) \leq \gamma$. By (2.26), we have $\lambda_F(0) \leq \lambda_F(x) \leq \gamma$. Thus $0 \in L(\lambda_F; \gamma)$. Next, let $x \cdot y \cdot z \in L(\lambda_F; \gamma)$ and $y \in L(\lambda_F; \gamma)$. Then $\lambda_F(x \cdot y \cdot z) \leq \gamma$ and $\lambda_F(y) \leq \gamma$, so γ is a upper bound of $\{\lambda_F(x \cdot y \cdot z), \lambda_F(y)\}$. By (2.35), we have $\lambda_F(x \cdot z) \leq \max(\lambda_F(x \cdot y \cdot z), \lambda_F(y)) \leq \gamma$. Thus $x \cdot z \in L(\lambda_F; \gamma)$.

Hence, $L(\lambda_T; \alpha), U(\lambda_I; \beta)$, and $L(\lambda_F; \gamma)$ are UP-ideals of X.

Therefore, Λ is a special neutrosophic UP-filter of X. □

Theorem 3.5. A NS Λ in X is a special neutrosophic UP-ideals of X if and only if for all $\alpha, \beta, \gamma \in [0,1]$, the sets $L(\lambda_T; \alpha), U(\lambda_I; \beta)$, and $L(\lambda_F; \gamma)$ are UP-ideals of X if $L(\lambda_T; \alpha), U(\lambda_I; \beta)$, and $L(\lambda_F; \gamma)$ are nonempty.

Proof. Assume that Λ is a special neutrosophic UP-ideal of X. Let $\alpha, \beta, \gamma \in [0,1]$ be such that $L(\lambda_T; \alpha), U(\lambda_I; \beta)$, and $L(\lambda_F; \gamma)$ are nonempty.

Let $x \in L(\lambda_T; \alpha)$. Then $\lambda_T(x) \leq \alpha$. By (2.24), we have $\lambda_T(0) \leq \lambda_T(x) \leq \alpha$. Thus $0 \in L(\lambda_T; \alpha)$. Next, let $x \cdot y \cdot z \in L(\lambda_T; \alpha)$ and $y \in L(\lambda_T; \alpha)$. Then $\lambda_T(x \cdot y \cdot z) \leq \alpha$ and $\lambda_T(y) \leq \alpha$, so α is an upper bound of $\{\lambda_T(x \cdot y \cdot z), \lambda_T(y)\}$. By (2.33), we have $\lambda_T(y) \leq \max(\lambda_T(x \cdot y \cdot z), \lambda_T(y)) \leq \alpha$. Thus $x \cdot z \in L(\lambda_T; \alpha)$.

Let $x \in U(\lambda_I; \beta)$. Then $\lambda_I(x) \geq \beta$. By (2.25), we have $\lambda_I(0) \geq \lambda_I(x) \geq \beta$. Thus $0 \in U(\lambda_I; \beta)$. Next, let $x \cdot y \cdot z \in U(\lambda_I; \beta)$ and $y \in U(\lambda_I; \beta)$. Then $\lambda_I(x \cdot y \cdot z) \geq \beta$ and $\lambda_I(y) \geq \beta$, so β is a lower bound of $\{\lambda_I(x \cdot y \cdot z), \lambda_I(y)\}$. By (2.34), we have $\lambda_I(x \cdot y \cdot z) \leq \min(\lambda_I(x \cdot y \cdot z), \lambda_I(y)) \geq \beta$. Thus $x \cdot z \in U(\lambda_I; \beta)$.

Let $x \in L(\lambda_F; \gamma)$. Then $\lambda_F(x) \leq \gamma$. By (2.26), we have $\lambda_F(0) \leq \lambda_F(x) \leq \gamma$. Thus $0 \in L(\lambda_F; \gamma)$. Next, let $x \cdot y \cdot z \in L(\lambda_F; \gamma)$ and $y \in L(\lambda_F; \gamma)$. Then $\lambda_F(x \cdot y \cdot z) \leq \gamma$ and $\lambda_F(y) \leq \gamma$, so γ is a upper bound of $\{\lambda_F(x \cdot y \cdot z), \lambda_F(y)\}$. By (2.35), we have $\lambda_F(x \cdot z) \leq \max(\lambda_F(x \cdot y \cdot z), \lambda_F(y)) \leq \gamma$. Thus $x \cdot z \in L(\lambda_F; \gamma)$.

Hence, $L(\lambda_T; \alpha), U(\lambda_I; \beta)$, and $L(\lambda_F; \gamma)$ are UP-ideals of X.

Conversely, assume that for all $\alpha, \beta, \gamma \in [0,1]$, the set $L(\lambda_T; \alpha), U(\lambda_I; \beta)$, and $L(\lambda_F; \gamma)$ are UP-ideals if $L(\lambda_T; \alpha), U(\lambda_I; \beta)$, and $L(\lambda_F; \gamma)$ are nonempty.
Let \(x \in X \). Then \(\lambda_T(x) \in [0,1] \). Choose \(\alpha = \lambda_T(x) \). Thus \(\lambda_T(x) \leq \alpha \), so \(x \in L(\lambda_T; \alpha) \neq \emptyset \). By assumption, we have \(L(\lambda_T; \alpha) \) is a UP-ideal of \(X \) and so \(0 \in L(\lambda_T; \alpha) \). Thus \(\lambda_T(0) \leq \alpha = \lambda_T(x) \). Next, let \(x, y, z \in X \). Then \(\lambda_T(x \cdot (y \cdot z)), \lambda_T(y) \in [0,1] \). Choose \(\alpha = \max(\lambda_T(x \cdot (y \cdot z)), \lambda_T(y)) \). Thus \(\lambda_T(x \cdot (y \cdot z)) \leq \alpha \) and \(\lambda_T(y) \leq \alpha \), so \(x \cdot (y \cdot z), y \in L(\lambda_T; \alpha) \neq \emptyset \). By assumption, we have \(L(\lambda_T; \alpha) \) is a UP-ideal of \(X \) and so \(x \cdot z \in L(\lambda_T; \alpha) \). Thus \(\lambda_T(x \cdot z) \leq \alpha = \max(\lambda_T(x \cdot (y \cdot z)), \lambda_T(y)) \).

Let \(x \in X \). Then \(\lambda_1(x) \in [0,1] \). Choose \(\beta = \lambda_1(x) \). Thus \(\lambda_1(x) \geq \beta \), so \(x \in U(\lambda_1; \beta) \neq \emptyset \). By assumption, we have \(U(\lambda_1; \beta) \) is a UP-ideal of \(X \) and so \(0 \in U(\lambda_1; \beta) \). Thus \(\lambda_1(0) \geq \beta = \lambda_1(x) \). Next, let \(x, y, z \in X \). Then \(\lambda_1(x \cdot (y \cdot z)), \lambda_1(y) \in [0,1] \). Choose \(\beta = \min(\lambda_1(x \cdot (y \cdot z)), \lambda_1(y)) \). Thus \(\lambda_1(x \cdot (y \cdot z)) \geq \beta \) and \(\lambda_1(y) \geq \beta \), so \(x \cdot (y \cdot z), y \in U(\lambda_1; \beta) \neq \emptyset \). By assumption, we have \(U(\lambda_1; \beta) \) is a UP-ideal of \(X \) and so \(x \cdot z \in U(\lambda_1; \beta) \). Thus \(\lambda_1(x \cdot z) \geq \beta = \min(\lambda_1(x \cdot (y \cdot z)), \lambda_1(y)) \).

Therefore, \(\Lambda \) is a special neutrosophic UP-ideal of \(X \).

\[\square\]

Definition 3.6 ([23]). Let \(\Lambda \) be a NS in \(X \). For \(\alpha, \beta, \gamma \in [0,1] \), the sets

\[
U \cup U(\alpha, \beta, \gamma) = \{ x \in X \mid \lambda_T \geq \alpha, \lambda_1 \leq \beta, \lambda_F \geq \gamma \},
\]

\[
L \cup L(\alpha, \beta, \gamma) = \{ x \in X \mid \lambda_T \leq \alpha, \lambda_1 \geq \beta, \lambda_F \leq \gamma \},
\]

\[
E(\alpha, \beta, \gamma) = \{ x \in X \mid \lambda_T = \alpha, \lambda_1 = \beta, \lambda_F = \gamma \}
\]

are called a \(U \cup U \)-\((\alpha, \beta, \gamma) \)-level subset, an \(L \cup L \)-\((\alpha, \beta, \gamma) \)-level subset, and an \(E \)-\((\alpha, \beta, \gamma) \)-level subset of \(\Lambda \), respectively. Then we see that

\[
U \cup U(\alpha, \beta, \gamma) = U(\lambda_T; \alpha) \cap L(\lambda_1; \beta) \cap U(\lambda_F; \gamma),
\]

\[
L \cup L(\alpha, \beta, \gamma) = L(\lambda_T; \alpha) \cap U(\lambda_1; \beta) \cap L(\lambda_F; \gamma),
\]

\[
E(\alpha, \beta, \gamma) = E(\lambda_T; \alpha) \cap E(\lambda_1; \beta) \cap E(\lambda_F; \gamma).
\]

Corollary 3.7. A NS \(\Lambda \) in \(X \) is a special neutrosophic UP-subalgebra of \(X \) if and only if for all \(\alpha, \beta, \gamma \in [0,1] \), \(L \cup L(\alpha, \beta, \gamma) \) is a UP-subalgebra of \(X \), where \(L \cup L(\alpha, \beta, \gamma) \) is nonempty.

Proof. It is straightforward by Theorem 3.2. \[\square\]

Corollary 3.8. A NS \(\Lambda \) in \(X \) is a special neutrosophic near UP-filter of \(X \) if and only if for all \(\alpha, \beta, \gamma \in [0,1] \), \(L \cup L(\alpha, \beta, \gamma) \) is a near UP-filter of \(X \), where \(L \cup L(\alpha, \beta, \gamma) \) is nonempty.

Proof. It is straightforward by Theorem 3.3. \[\square\]

Corollary 3.9. A NS \(\Lambda \) in \(X \) is a special neutrosophic UP-filter of \(X \) if and only if for all \(\alpha, \beta, \gamma \in [0,1] \), \(L \cup L(\alpha, \beta, \gamma) \) is a UP-filter of \(X \), where \(L \cup L(\alpha, \beta, \gamma) \) is nonempty.

Proof. It is straightforward by Theorem 3.4. \[\square\]

Corollary 3.10. A NS \(\Lambda \) in \(X \) is a special neutrosophic UP-ideal of \(X \) if and only if for all \(\alpha, \beta, \gamma \in [0,1] \), \(L \cup L(\alpha, \beta, \gamma) \) is a UP-ideal of \(X \), where \(L \cup L(\alpha, \beta, \gamma) \) is nonempty.

Proof. It is straightforward by Theorem 3.5. \[\square\]
4. Conclusions

In this paper, we have introduced the notions of special neutrosophic UP-subalgebras, special neutrosophic near UP-filters, special neutrosophic UP-filters, special neutrosophic UP-ideals, and special neutrosophic strong UP-ideals of UP-algebras and investigated some of their important properties. Then, we have the diagram of generalization of NSs of special types in UP-algebras as shown in Figure 1.

\[
\begin{align*}
(2.42) & \quad \text{Special neutrosophic UP-subalgebra} \\
(2.43) & \quad \text{Special neutrosophic near-UP-filter} \\
(2.44) & \quad \text{Special neutrosophic UP-filter} \\
(2.45) & \quad \text{Special neutrosophic UP-ideal} \\
& \quad \text{Special neutrosophic strongly UP-ideal} \\
& \quad \text{Constant neutrosophic set}
\end{align*}
\]

Figure 1: NSs of special types in UP-algebras.

In our future study, we will apply this notion/results to other type of NSs in UP-algebras. Also, we will study the soft set theory/cubic set theory of special neutrosophic UP-subalgebras, special neutrosophic near UP-filters, special neutrosophic UP-filters, special neutrosophic UP-ideals, and special neutrosophic strong UP-ideals.

Acknowledgment

This work was supported by the Unit of Excellence, University of Phayao. The authors wish to express their sincere thanks to the referees for the valuable suggestions which lead to an improvement of this paper.

References