
Measurement 135 (2019) 782–794
Contents lists available at ScienceDirect

Measurement

journal homepage: www.elsevier .com/locate /measurement
A novel computer vision based neutrosophic approach for leaf disease
identification and classification
https://doi.org/10.1016/j.measurement.2018.12.027
0263-2241/� 2018 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
Gittaly Dhingra a,⇑, Vinay Kumar b, Hem Dutt Joshi b

aDepartment of Electronics and Communication Engineering, Research Scholar, Thapar Institute of Engineering and Technology, Patiala, India
bDepartment of Electronics and Communication Engineering, Faculty, Thapar Institute of Engineering and Technology, Patiala, India

a r t i c l e i n f o a b s t r a c t
Article history:
Received 16 August 2016
Received in revised form 1 November 2018
Accepted 5 December 2018
Available online 6 December 2018

Keywords:
Leaf images
Neutrosophic logic
Texture features
Intensity features
Classifiers
The natural products are inexpensive, non-toxic, and have fewer side effects. Thus, their demand espe-
cially herbs based medical products, health products, nutritional supplements, cosmetics etc. are increas-
ing. The quality of leafs defines the degree of excellence or a state of being free from defects, deficits, and
substantial variations. Also, the diseases in leafs possess threats to the economic, and production status in
the agricultural industry worldwide. The identification of disease in leafs using digital image processing,
decreases the dependency on the farmers for the protection of agricultural products. So, the leaf disease
detection and classification is the motivation of the proposed work. In this paper, a novel fuzzy set
extended form neutrosophic logic based segmentation technique is used to evaluate the region of inter-
est. The segmented neutrosophic image is distinguished by three membership elements: true, false and
intermediate region. Based on segmented regions, new feature subset using texture, color, histogram and
diseases sequence region are evaluated to identify leaf as diseased or healthy. Also, 9 different classifiers
are used to monitor and demonstrate the discrimination power of combined feature effectiveness, where
random forest dominates the other techniques. The proposed system is validated with 400 cases (200
healthy, 200 diseased). The proposed technique could be used as an effective tool for disease identifica-
tion in leafs. A new feature set is promising and 98.4% classification accuracy is achieved.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Leafs are the major ingredients in traditional medicinal drugs.
World Health Organization (WHO) has estimated that approxi-
mately 80% of the world population still relies on traditional
medicines, which are mostly plant-based drugs [1]. Although
researchers have worked intensively to identify the diseases of
plant leafs using various techniques like DNA/RNA, polymerase
chain reaction, sensors techniques etc. [2] but the domain of com-
puter vision to recognize the symptoms of diseases in medicinal
plant leafs, still remains less explored. The objective of this paper
is to present a computer vision-based approach for detecting basil
leaf healthy or disease. Basil, an ancient and popular herbal plant is
characterized with significant health benefiting phytonutrients.
Basil has a profound significance in medicine and religious
prospective. Swiss Federal Institute of Technology observed the
existence of high quantities of (E)-beta-caryophyllene (BCP) in
basil, which is believed to be helpful in the treatment of arthritis
and inflammatory bowel diseases [3]. Basil is indigenous to the
countries of to Iran, India as well as other tropical regions of Asia
[4], contains the essential oil and oleoresin required for manufac-
turing perfumes, food flavours, and aromatherapy products [5]. It
has been used for around 300 different herbal treatments to sup-
port healthy response to stress, energy booster, increase stamina,
healing properties, promotes cardiovascular health, cancer, heart
diseases etc. The proposed paper is divided into two parts; the pre-
liminary phase develops new segmentation technique based on
Neutrosophic logic while another phase describes new features
extraction method. Based on these two phases, the classifier will
categorize leaf as healthy or diseased. The data base for the pro-
posed system contains healthy and infected basil leaf images.
The work represented in this paper is divided into 5 sections. Sec-
tion 2 gives a brief review of the literature. Section 3 represents the
technique and measures including novel segmentation and feature
extraction technique. The features accuracy is evaluated using nine
different classifiers; it is defined in Section 4. Experimental results
are illustrated in Section 5. Conclusion is discussed in Section 6.

2. Literature review

The conventional method of identification and determination of
the disease in medicinal leafs is manual. However, this manual
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Table 1
Survey of leaf disease detection and classifications system [9–40].

Culture Features Techniques No. of images
considered

Image acquisition device/dataset Accuracy Researchers

Sunflower & oat
leafs

Area, size
Diameter

Thresholding,
Tracer algorithm

Up to 20 for each
disease

TMC-76 color CCD NA Tucker and
Chakraborty
et al. [9]

Maize leafs Color index Iterative method 720 images Digital camera, MS3100, captured from
greenhouse at Embrapa Corn & Sorghum,
SeteLagoas, Brazil

94�72% Sena et al. [10]

Citrus leafs Intensity and
texture
features

Discriminant
classifier

Total 40 images
20 images
[training]
20 images
[testing]

3 CCD camera (JAI, MV90) captured from central
Florida

96% Pydipati et al.
[11]

Orchid leafs Texture and
color
features

ANN 289 images
145 images
[training]
144 images
[testing]

CCD (coupled-charge device) color camera (XC-
711, Sony, Japan) Taiwan Sugar Research Institute,
Tainan.

89.6% Huang et al.
[12]

Cotton crop Co-
occurrence
matrix and
fractal
dimension

SVM 117 images The Department of Entomology, at the University
of Georgia, USA.

90% Camargo et al.
[13]

Rice leafs Texture
features

SVM 216 images CCD color camera (Nikon D80, zoom lens 18–
200 mm, F3.5–5.6, 10.2 Mega pixels) in the rice
field of China National Rice Research Institute,
located in Fuyang.

97.2% Yao et al. [14]

Citrus leafs Color and
texture
features

AdaBoost 500 images Digital camera Sony DSCP92 and Canon EOS350D.
samples collected from orange plants in winter in
2005 and 2006 from Guangdong China and in
spring in 2007 from Guangxi province, China

88% Zhang et al.
[15]

Wheat and Grapes
leafs

Color,
Texture and
Shape
features

GRNN, PNN Total 185 images
110 [training]
75 [ testing]

Common digital camera 94.29% Wang et al.
[16]

Cereals CCM ANN
SVM

750 images Images collected from University of Agricultural
Sciences, Dharwad, India

68.5% and 87%
[ANN]
77.5% and
91.16% [SVM]

Pujari et al.
[17]

Rose, beans, lemon
and banana leafs

Texture and
color
features

SVM 500 images Digital color camera. Images collected from Tamil
Nadu

94% Arivazhagan
et al. [18]

Sugarcane leafs Texture
features

SVM A set of images
[training]
30 images
[testing]

Digital color camera. Images are collected from
sugarcane fields Indonesia

80% Ratnasari et al.
[19]

Rice leaf Color
features

ANN 134 images Common digital camera. Images captured at
Greenhouse of the International Rice Research
Institute located at Los Banos, Laguna, Philippine

100% Orillo et al.
[20]

Tomato leafs Texture
features

PSO NA Digital color camera NA Muthukannan
et al. [21]

Tomato leafs Wavelets
based
features

SVM 200 im ages 10-
fold cross
validation

Digital color camera, captured at different farms
in baniseef

78%
[Invumult]
98%
[Laplacian]
88% [Cauchy]

Mokhtar et al.
[22]

Pomegranate leafs Color and
CCV features

SVM 610 images Digital color camera 82% Bhange et al.
[23]

Cucumber leafs Global and
local singular
values

SVM 100 images Agricultural demonstration zone of Northwest
A&F University

92% approx. Zhang et al.
[24]

Alfalfa leaf Texture,
shape and
color
features

SVM 899 images Digital color camera. Images taken from
LangfangForage Experimental Base, Institute of
Animal Science, Chinese Academy of Agricultural
Sciences & alfalfa fields Hebei Province, China

80% approx. Qin et al. [25]

Betel vine Color
features

Otsu
thresholding

12 images CanoScanLiDE 110 [Scanner] Dhara, Rajnandgaon
district of Chhattisgarh

NA Dey et al. [26]

Vegetable crops Color, shape
and texture
features

Combination of
two SVM
classifiers

284 images Digital color camera 87.80% Youssef Es-
saady et al.
[27]

Citrus leaf Color
histogram
and texture
features

Bagged tree
classifier

199 images DSLR camera 99.9% Ali et al. [28]

(continued on next page)
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Table 1 (continued)

Culture Features Techniques No. of images
considered

Image acquisition device/dataset Accuracy Researchers

Brinjal, broad beans,
cucumber, ridge
guard, spinach
and tomato leaf

Fractal and
Color
Correlogram
features

KNN, PNN 500 images
250 images
[training]
250 images
[testing]

Digital camera
Nikon D7000 (16MP)

75.04% [KNN]
71.24% [PNN]

Tippannavar
et al. [29]

Various leaf GLCM
features

SVM, PSO NA NA 95.16–98.38% Kaur et al. [30]

Okra leaf and bitter
gourd leafs

Texture
features

Naives Bayes
classifier with
entropy based
discretization

79 images [okra]
75 images [bitter
gourd]s

Nikon D5100, Agricultural deptt, Pallishree Ltd,
West Bengal, India

95% [okra]
82.67% [bitter
gourd]

Mondal et al.
[31]

Cucumber leafs Color
features

Comprehensive
color feature
map

93 images Nikon Coolpix S3100 CCD camera, 69 images from
Tianjin Academy of Agricultural Sciences, China
and 24 images captured from internet

NA Ma et al. [32]

Basil and parsley
leafs

Statistical
features

Neural networks 15 images of each
category

Digital camera 80%
[classification]
100%
[recognition]

AL-Otaibi et al.
[33]

Apple leaf GLCM
features

SVM NA NA 98.46% Manimegalai
et al. [34]

Plant leaf [leaf
category not
mentioned]

Region
growing
algorithm

Radial Basis
Function Neural
Network

6 images for first
dataset and 270
images for second
dataset

Plant village diseases classification challenge 86.21% Chouhan et al.
[35]

Apple and cucumber
leafs

Pyramid of
histogram of
orientation
gradient

Super pixel
clustering, k-
means
clustering

150 images [apple
leafs]
150 images
[cucumber leafs]

Agricultural demonstration of district Yangling,
China

90.43% [apple]
92.15%
[cucumber]

Zhang et al.
[36]

Wheat Super pixel
based tile
extraction

Deep
convolution
neural networks

8178 images Captured with various mobile phones. Pilot sites
of Spain and Germany under natural conditions

Greater than
98%

Picon et al.
[37]

Different leafs, fish
and Kimia

Shape
features

RNN Fish = 11000
images
Kimia = 99 images
Leaf = 600images
Rotated
leaf = 3600images
Scaled leaf = 2400
images
Noised
leafs = 2400images

NA Fish = 99.07%
Kimia = 97.98%
Leaf = 84.67%
Rotated
leaf = 87.67%
Scaled
leaf = 88.92%

Junior et al.
[38]

Citrus canker Texture
features

CLAHE, SVM 70 images
[training]
30 images
[testing]

Digital camera NA Sunny et al.
[39]

Oil palm Probability
function

Naïve Bayes NA NA 80% Nababan et al.
[40]

Tomato leaf Intensity
features

Deep
convolution
neural networks

5000images Digital camera, collected from South Korea 96% Fuentes et al.
[41]

Used Abbreviations; SVM: Support Vector Machine, QDA: Quadratic Discriminant Analysis, SOM: Self-Organizing Map, ANN: Artificial Neural Networks, PNN: Probabilistic
Neural Networks, LDA: Linear Discriminant Analysis, PCA: Principal Component Analysis, GRNN: Generalized Regression Networks, RNN: Randomized Neural Network.
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process is time-consuming, tedious and moreover very subjective
[6]. In recent years, numerous methods were developed using com-
puter vision to detect and classify agricultural and horticultural
crops diseases to overcome the problems of manual techniques
[7,8]. The basic approach for all of these methods includes image
acquisition, feature extraction, feature selection and then classifi-
cation analysis with parametric or non-parametric statistics. For
effective operation of computer vision system, choice of the
image-processing methods and classification strategies are chief
concern. In literature, many efforts have been made to explain dif-
ferent modules of disease detection techniques for different agri-
cultural/horticultural applications. A survey of the research work
done during last few years on such leaf images is summarized in
Table 1. The abbreviations used are summarized in the last row
of Table 1.
3. Materials and methods

3.1. Data set collection and imaging set up

In the present work, the leaf dataset consists of four types of
healthy and diseased basil leaf images; these are Ocimum sanctum
(Kapoor basil), Ocimum tenuiflorum (Ram & Shyama basil), Oci-
mum basilicum (holy basil) and Ocimum gratissimum (Vana-holy
basil). These were collected from the herbs garden at Punjab Agri-
culture University Ludhiana, National Institute of Pharmaceutical
Education and Research (NIPER) Mohali and Punjabi University
Patiala, India for reflective study. A pictographic assessment of
the above mentioned study site is shown in Fig. 1.

The images are taken to the research laboratory and cleaned for
non-uniform distribution of dust to attain similar surface condition
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for all leaf categories. After cleansing of the leaf samples, leafs are
then taken to an imaging station and images of leaf samples are
acquired indoor to minimize the noxious effects of variants in
ambient lighting conditions. To simulate outdoor environments
and to avoid factors such as illumination and orientation four flu-
orescent bulbs with natural light filters and reflectors are used.
Leafs were digitally captured in color using EOS 5D Mark III, 22.3
megapixel CMOS sensor with resolution of 5760 � 3840 pixels,
14-bit A/D Conversion, wide Range ISO Setting 100 25600, which
can shoot up to 6 frames per second (fps) from a constant height
(45 cm) over the center of the imaging station. A camera positioned
vertically from the samples to contain all the components, with
best possible resolution. The camera was stipulated on a camera
stand which reduces the movement of hand and capturing uniform
images of basil leafs. The degree of the damage caused in leafs var-
ied between the leaf samples. Images were captured under con-
trolled field conditions to reduce the unfavourable effects of
deviation in surrounding lighting conditions. To obtain uniform
illumination four 16 W cool white fluorescent bulbs (4500 K color
temperature) placed at 30 cm above the imaging station surface.
Lamps (bulbs) with natural light reflectors located at 45 degree
angle to ensure proper lighting. Fig. 2 represents the experimental
set up of proposed system.

The database consists of 400 images which include 200 healthy
and 200 diseased leafs of different categories of leafs i.e. Ocimum
sanctum (Kapoor basil), Ocimum tenuiflorum (Ram & Shyama
basil), Ocimum basilicum (holy basil) and Ocimum gratissimum
(Vana-holy basil). A hundred samples each for the four classes of
leafs are collected. The diseases of leaf samples investigated are
downy mildew, aphids, gray mold, bacterial leaf spot and fusarium
wilt. Fig. 3 represents the healthy and diseased basil leafs.
Fig. 1. Study sites of basil plants, from whe
3.2. System model

The system model is comprised of four essential steps as
follows:

1. Preprocessing: The aim of preprocessing is to bring out details
that are obscured with contrast limited adaptive histogram
equalization method [42] for better contrast.

2. Segmentation: After preprocessing transform the image into
neutrosophic domain, which segments the images into three
different regions: True, False and Intermediate segments.

3. Feature extraction: Design a new feature pool based on seg-
mented three regions to distinguish healthy and diseased leafs.

4. Classification: Nine different classifiers are used for final classi-
fication decision.

These four phases have been discussed in detail in the following
sub-sections. The flow chart shown in Fig. 4 represents the pro-
posed methodology.
3.2.1. Pre-processing
Quality of image is improved by adjusting the intensities of the

image in order to highlight the target areas i.e. diseased visual area
after data collection is completed. Contrast Limited Adaptive His-
togram Equalization (CLAHE) algorithm is deployed for image
enhancement, it works on small sections of the image instead of
whole image. As thenamesuggestsCLAHEalgorithmapplies thehis-
togram equalization after partition the image into contextual
regions [42]. Itmakes thehidden features of the image clearly visible
and distribution of used gray values. Bilinear interpolation is used to
combine the adjacent tiles for elimination of artificially induced
re different basil leafs were collected.



 Camera   Lens

Compu

(a)

(b) (c)

    Lamp                             

   Illumina�on 

Ligh�ng and sample module 

Fig. 2. a) Pictorial view of experimental set up, b) & c) Image acquisition system with different leaf structures.

786 G. Dhingra et al. /Measurement 135 (2019) 782–794
boundaries. The contrast inhomogeneous‘ areas can be limited to
avoid amplifying any noise that might be present in the image.

3.2.2. Segmentation technique
Image segmentation is a difficult task due to the complexity and

diversity of images [7–43]. Factors such as illumination [44], con-
trast [45], and noise [46] etc. affect segmentation results. The goal
of segmentation is to locate the suspicious areas to diagnose the
disease. We have proposed new Neutrosophic logic approach as a
segmentation technique. A neutrosophic set is an extended form
of the fuzzy set, tautological set, dialetheist set, paradoxist set,
intuitionistic set and paraconsistent set [47]. An image is repre-
sented using three different membership elements asðTÞ, (I) and
(F). Where T defines the truth scale, F as thescale of false and I rep-
resent the scale of intermediate. All elements considered are inde-
pendent of each other. A pixel in the Neutrosophic logic domain is
characterized asP t; i; ff g, in the way as it is t% true, i%indetermi-
nate and f% as false [48].

3.2.2.1. Mapping T, F & I (Region of interest evaluation). In the pro-
posed method, the diseased area of leaf employed as the true part
(T), healthy element represented as false part (F) and intermediate
element (I) is defined as neither healthy (F) nor diseased (T). The
neutrosophic domain provides extra element as ‘I’ which provides
amore efficientway to handle the degree of uncertainty. To evaluate
diseased segment, the original image pixels are transformed from
RGB to CIELab color space for better color perception as compared
to the standardRGBspace [49]. CIELabcolor space consists of 3 chan-
nels, as (L), (a)* and (b)*,where (L) channel represents lightnesswith
values 0 (black) to 100 (white), positive values of (a*) channel indi-
cate amount of red while negative values indicate amount of green
color opponent and (b*) channel, positive values indicate yellow
and negative value indicates amount of blue. After enhancement
and color transformation, T, I, F are mapped as follows:

1. To acquire unhealthy segment: Let the input image isIiðx; yÞ.
After contrast enhancement, it is represented as Icðx; yÞ, then
diseased segment TIS x; yð Þ is formularized as

TIS x; yð Þ ¼ IC x; yð Þ � Fa x; yð Þ ð1Þ
Fa x;yð Þ is the binary mask obtained from (a*) chromaticity layer
where, the color falls along the red-green axis. Where, (*) after L,
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a, b pronounced star and it discriminate CIE version from Hunter’s
version. It performs bitwise multiplication. It separates the disease
patches from different color populations. Diseases patches can be of
yellow, brown, black and purple color. True section can eliminate
healthy i.e. green section from the image. The flow diagram of a
region of interest evaluation is shown in Fig. 5.

2. The healthy segment of leaf is evaluated as

FIS x; yð Þ ¼ 1� TIS x;yð Þ ð2Þ
where, FIS x;yð Þ represents a healthy segment of leafs. Healthy sec-
tion represents the green color or section of leaf image.

3. Intermediate segment is considered as the stage which is not
exactly diseased or healthy as well, we can consider it as onset
disease. To evaluate intermediate portion, initially original
image, Iiðx; y) is transformed into CMYK color space Icmykðx; y)
for extracting yellow color [50] denoted as Iyðx; y) in the leaf
which is observed due to chemical changes, rust disease, and
chlorophyll breakdown etc.

IIS x; yð Þ ¼ Mg x; yð Þ �My x; yð Þ ð3Þ
Further green color is extracted from original imagesIiðx; y) as

Igreenðx; y). Where,Mg x; yð ÞandMy x; yð Þ are the masks that represent
remaining portion of the leaf where yellow and green segmen are
not considered. So, TISðx; yÞ. represents the degree of being a dis-
eased segment, FIS x; yð Þ is the degree of being a healthy segment
and IIS x; yð Þ is a degree of being not healthy not diseased as well.
Fig. 6 represents the pictorial representation of extracted true, false
and intermediate region.

3.3. Feature extraction

Feature extraction is to reduce the image data by measuring
certain features or properties of each segmented regions [51]. Fea-
tures are used to define the distinct characteristics of an image
[52]. After image segmentation, the next important task is to
extract the useful features of the image in order to diagnose the
disease. We use new feature pool illustrated in the following sub-
sections with details. Feature table exhibits histogram information
content, damage structure index, disease sequence region and bin
binary pattern features. The catalogue of features are illustrate in
Table 2.where:

x, y = Pixel location
Ti = Pixel count of diseased area
Ii = Pixel count of on set off diseases area
Fi = Healthy region pixel count of leaf
GK = Centre value,
GC = Neighbourhoods pixel
K = Number of pixel in the neighbourhood.

3.3.1. Histogram information content (HIC)
Histogram is easy to compute and effective in characterizing

both global and local distributions of colors in an image. Histogram
information content defines the relative information content by
finding the probability of occurrence of relative information about
each plane in the image. Information will vary for every leaf for
each plane. HIC is defined as

HIC ¼ log
1

histogram information contents of segmented regions

� �

ð4Þ
HIC is evaluated for all three segments TIS; FIS, IIS for each red,

green and blue plane.
3.3.2. Disease sequence region (DSR)
Disease Sequence Region (DSR) defines the correlation of indi-

vidual neighbouring pixels with perceived pixel difference of the
image, that is, pixel deviations between neighbouring pixels, refer
Eqs. (5) and (6). We have calculated DSR for every extracted region
(red, green and blue) of image vertically and horizontally. The DSR
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Fig. 4. Flow chart of system model for proposed method.
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defined for vertical and horizontal orientation are given in Eqs. (5)
and (6) as

Vertical deviation of intensity

DSRðVÞ ¼
Xm�1

x¼0

Xn�1

y¼0

P x;yþDyð Þ � P x;yð Þ
� � ð5Þ

Horizontal deviation of intensity

DSRðHÞ ¼
Xm�1

x¼0

Xn�1

y¼0

P xþDx;yð Þ � P x;yð Þ
� � ð6Þ

DSR ¼ DSR Vð ÞDSR Hð Þ
� � ð7Þ

where, x and y defines pixel location. Depending on horizontal and
vertical deviations, we measure the deviation difference between
healthy and non-healthy leaf.

3.3.3. Damage index (DI)
The damage index defined as the amount of spaces taken by dis-

eased segment of leaf given as by
DI ¼
Pm

i¼1

Pn
i¼1 Ti þ Iið ÞPm

i¼1

Pn
i¼1Fi

ð8Þ

where, Ti represents pixel count of diseased area, Ii represents pixel
count of on set off diseases area and Fi represents healthy region
pixel count of leaf and higher DI value indicates more diseased
region. DI represents possible presence of damage (diseases) at leaf
structure.

3.3.4. Bin binary pattern (BBP)
A new texture descriptor as BBP is introduced to describe the

local structure information of leaf. The BBP linearly interpolates
the pixel value of neighborhood to form an operator which defines
the structure to distinguish all individual patterns (healthy or non-
healthy leafs). To make it computationally simple, three separate
planes (red, green, blue) are considered and the histogram is cre-
ated for the same. The histograms are then split into 9 bins and
mapped to 3 � 3 matrix to evaluate its mean intensity value and
calculate the difference between the center pixel and neighboring
pixels as defined in Eq. (9).

BBP k;Rð Þ xc;ycð Þ ¼
Xk

k¼0
Gk � Gcð Þ2k ð9Þ



Extract yellow color 
mask with calculating 
difference from RGB 
channels

False = 1- True

Healthy (represents 
only green segment 
or healthy part of 
leaf)

Transform RGB to 
CMYK color space. 

Compare mask and 
perform color adjustments 

Leaf segmented based on 
these three components 

Intermediate (Not healthy 
as well as diseased)

Evaluate green 
color mask

Start

Input leaf image  

Enhancement using 
CLAHE algorithm

Transform RGB to 
LAB color space 

Using (a) opponent 
generate binary mask 

Multiply binary mask 
with original image 

True (represents only 
diseased segment of 

leaf)

Transform into 
neutrosophic domain

Fig. 5. Flow chart of system model for proposed segmentation method.

G. Dhingra et al. /Measurement 135 (2019) 782–794 789
The weights for obtained different binary pattern are given in a
clockwise direction starting from top-left and its corresponding
values. Where, GK represents centre value, GC defines neighbour-
hoods pixel, xC and yC represents pixel value and K, defines number
of pixel in the neighbourhood.

Algorithm of BBP is described as follows:

Input: Input leaf image
Output: Set of unique decimal values represents the local

structure information

Step 1: Calculate true, false and intermediate using neutrosophic
segmentation

Step 2: Divide image into 9 different bins using histogram w.r.t to
red, green and blue plane

Step 3: Calculate mean of all bins.
Step 4: Evaluate the difference of all neighbourhood bins w.r.t to

centre value using Eq. (9).
Step 5: Assign weights
Step 6: Obtain unique decimal values
The whole procedure of BBP is defined briefly in Fig. 7 briefly step
by step.
4. Classification

In this paper, we evaluate nine classifiers accuracies and effec-
tiveness and select the best one. The brief summary of the classifi-
cation models are listed below:

� Decision tree: Supervised learning algorithm estimates the sig-
nificance of a target variable using numerous input variables
[53].

� Random forest: Ensemble learning method, works using bag-
ging method to construct a group of decision tree using random
subgroup of the data [54].

� Support vector machine: Discriminative approach described by
separating hyper plane that increases the boundary between
the two classes [55].

� AdaBoost: Boosting approach where, multiple weak classifiers
are engaged to make a single strong classifier [56].

� Linear models: Linear models analysis of covariance and single
stratum analysis of variance [57].

� Naives Bayes: Supervised learning algorithm based on Bayes
theorem with the naive assumption of independence between
every pair of features [58]

� K-NN: Instance based learning, where data is classified based on
stored and labeled instances according to some distance/simi-
larity function [59].



(c) True region (a) Input image (b) Pre-processed image

(d) False region (e) Intermediate region

Fig. 6. Regions detection results: a) Represents original captured image, b) Pre-processing using CLAHE algorithm, c) True region which represents the diseases region, d)
False region, where healthy region of leaf is presented, e) Intermediate region of the leaf.

Table 2
Catalogue of features.

Features Expressions

Histogram information
content

HIC ¼ log 1
histogram information contents of segmented regions

� 	

Disease sequence region DFRðHÞ ¼
Pm�1

x¼0
Pn�1

y¼0 ðPðxþDx;yÞ � �Pðx;yÞÞ
DFRðVÞ ¼

Pm�1
x¼0

Pn�1
y¼0 ðPðx;yþDyÞ � Pðx;yÞÞ

Damage structure index
DI ¼

Pm

i¼1

Pn

i¼1
ðTiþIiÞPm

i¼1

Pn

i¼1
ðFiÞ

Bin Binary pattern BBPðk;RÞðxc; ycÞ ¼
Pk

k¼0ðGk � GcÞ2k
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� Artificial neural networks: Mathematical model simulate data
based on structure and functions of biological

Neural networks [60,61].

� Discriminant analysis: Builds predicative model with analysis of
regression and variance to define relationship between one
dependent variable and one or more independent variable [62].

The tuning parameters of machine learning methods are tabu-
lated in Table 3. It also indicates models, methods packages and
platform used for calculating and finding parameters. On the basis
of parameters, classifiers will categorize image as healthy or dis-
ease leafs.
5. Experimental results

5.1. Leaf images dataset

The database consists of 400 images which include 200 healthy
and 200 diseased leafs of different categories ofleafs i.e. Ocimum
sanctum (Kapoor basil), Ocimum tenuiflorum (Ram & Shyama
basil), Ocimum basilicum (holy basil) and Ocimum gratissimum
(Vana-holy basil). A hundred samples each for the four classes of
leafs are collected. During our experiments, we use both Matlab
(2015a) and R open (version 3.2.2) software tools on Sony Vaio
Core i3, 2.2-GHz platform.

5.2. Classification model evaluation metrics

Different evaluation parameters were used to measure the per-
formance of the classification process [63], defined as

PrecisionðPositive predicted valueÞ ¼ TP
TPþ FP

ð10Þ

Recall ¼ TP
TPþ FN

ð11Þ

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

ð12Þ

Error rate ¼ FPþ FN
TPþ TNþ FPþ FN

ð13Þ

Specificity Trueneagtiverateð Þ ¼ TP
TPþ FP

ð14Þ

Negative predicted valve ðNPVÞ ¼ FP
TNþ FP

ð15Þ

where, TP = True Positive, TN = True Negative, FP = False Positive,
FN = False Negative

5.3. Feature discriminability test (Training-Testing Experiment)

In this section, we analyze the prediction results of nine
machine learning methods on the basis of training-testing dataset
described in Table 4. The distribution of data in the training-testing
experiment is set to 70% and 30% respectively for all models.
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Table 3
Tuning parameters of classifiers.

Model Method Package Tuning parameter(s)

R(version 3.2.2) Decision Tree Rpart rpart Min Split = 20, Max Depth = 30, Min Bucket
Random forest Rf randomForest Number of tree = 500
Support Vector Machine Svm e1071 Kernel Radial Basis
AdaBoost Ada Ada Max Depth = 30, Min Split = 20, xval = 10,
LM Lm Glm Multinomial
Artificial Neural networks Neuralnet Neuralnet Hlayers = 10, MaxNWts = 10000, maxit = 100

Matlab(2015a) Naives Bayes NBModel fitcnb No.of observation = 150
KNN knn_model fitcknn NumObservations = 150, Distance= ‘euclidean’, NumNeighbours:5
Discriminant Analysis obj fitcdisr No. of observation = 150, DiscrimType: ‘linear’

Table 4
Testing and training data distribution of healthy and diseased leafs.

Data set Total samples Training samples Testing samples

Healthy 200 140 60
Diseased 200 140 60
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Figs. 8–10 illustrates the classification accuracy of all classifiers
with respect to various evaluation parameters as defined in Sec-
tion 5.2. Compared to other machine learning models, random for-
est maintains a high accuracy.

Another performance measures are Receiver Operating Charac-
teristics (ROC) and Area under the Curve (AUC). ROC is an efficient
method for evaluating discrimination power of statistical model
[64]. It plots the sensitivity versus specificity across the different
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Fig. 11. ROC curve of random forest.

Table 5
Performance comparison on different testing –training partition.

Models Training and testing partition evaluation

Random Forest 50–50% 60–40% 70–30% 80–20%
97.03% 98.4% 98.4% 98.4%

792 G. Dhingra et al. /Measurement 135 (2019) 782–794



Table 6
Performance comparison of various classifiers.

Classifiers Proposed method (Accuracy) Pydipati et al. [11] (Accuracy) SFM Features [66] (Accuracy) Law features [67] (Accuracy)

Decision tree 91.8% 88.9% 91.3% 77.5%
Naives Bayes 92.31% 85.9% 76.1% 90%
KNN 96.92 70.4% 89.13% 72.5%
SVM 90.8% 77.8% 89.13% 92.5%
Random Forest 98.4% 94.6% 91.9% 91.9%
AdaBoost 95.03% 94.6% 91.9% 91.9%
ANN 80.33% 93% 78.4 96%
Discriminant Analysis 80% 81.5% 82.6 80%
GLM 95.03 90% 89.9% 89.9%
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possible threshold values. It provides the capability to access the
performance of classifier. Where, AUC process the whole two
dimensional area under the entire ROC curve. The AUC portray
the probability that an indiscriminately selected positive example
is accurately rated with greater suspicion than a randomly chosen
negative example [65]. AUC ranges in value from 0 to 1. High value
of AUC typically reflects good discrimination competence of a clas-
sifier. An area of 1 represents a perfect test; an area of 0.5 repre-
sents a worthless test. The model performs better if an ROC
curve is lifted up and away from the diagonal. Fig. 11 shows ROC
curve of Random forest.

5.4. Performance of features

Furthermore, the accuracy is evaluated on 50–50, 60–40, 70–30
and 80–20 testing-training partition respectively to ensure its uni-
formity as illustrated in Table 5. Results show that Random forest
performs well in all testing-training partition.

In the next experiment, we compare the classification accuracy
of our proposed features with respect to the traditional feature
extraction methods [11,66,67]. As shown in Table 6 proposed
method gives better performance than other classifiers.
6. Conclusion

The main contribution of this paper is to successfully design
new segmentation technique together with a new set of features.
The whole procedure was described, respectively, from gathering
images to segmentation and finally classification. Based on the seg-
mentation new features have been extracted. These features com-
bine the discrimination power of intensity and texture of leafs.
Nine classifiers are used to measure the accuracy of proposed fea-
tures. These proposed features give promising results and has been
compared with existing feature extraction methods. The developed
model was able to distinguish healthy and diseases leaf. Based on
the graphical analysis, RF performs better than other machine
learning models with 98.4% accuracy.

Future studies could focus on to extend proposed work to clas-
sify each diseases category individually and estimate the severity
of the detected diseases. An undiscovered amalgamation of feature
extraction, feature selection and learning methods can also be
explored to enhance the efficacy of diseases detection and classifi-
cation models.
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