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A novel divergence measure and its
based TOPSIS method for multi criteria
decision-making under single-valued
neutrosophic environment

Nancy and Harish Garg∗
School of Mathematics, Thapar Institute of Engineering & Technology (Deemed University),
Patiala, Punjab, India

Abstract. The theme of this work is to present an axiomatic definition of divergence measure for single-valued neutrosophic
sets (SVNSs). The properties of the proposed divergence measure have been studied. Further, we develop a novel technique
for order preference by similarity to ideal solution (TOPSIS) method for solving single-valued neutrosophic multi-criteria
decision-making with incomplete weight information. Finally, a numerical example is presented to verify the proposed
approach and to present its effectiveness and practicality.
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1. Introduction

Intuitionistic fuzzy (IF) set (IFS) developed by
[1], is a useful tool characterized by the member-
ship and the non-membership degrees to describe the
data more accurately. Since IFS allows two degrees
of freedom into a set description, therefore, it renders
us an additional possibility to represent the uncertain
data when trying to solve decision-making problems.
Under this environment, [2, 3] presented distance and
similarity measures between the IFSs. [4] developed
the distance measures between the type-2 intuition-
istic fuzzy sets. [5] developed some series of the
distance measures while [6] presented IF cross-
entropy for IFSs. [7] presented generalized directed
divergence measures under IFS environment. [8]
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extended the IFS to the complex IFS and hence
presented some series of distance measures for it.
[9] presented some new similarity measures of IFS
based on the set pair analysis theory. Apart from
them, several other algorithms namely, score func-
tions [10–12], aggregation operators [13, 14], ranking
method [15–17] etc., under IFS environment have
gained much attention by the researchers.

From this survey, it is remarked that neither the
fuzzy set (FS) nor IFS theory is able to deal with
indeterminate and inconsistent data. For instance,
consider an expert which gives their opinion about
a certain object in such a way that 0.5 being the
“possibility that the statement is true”, 0.7 being the
“possibility that the statement is false” and 0.2 being
the “possibility that he or she is not sure”. To resolve
this, [18] introduced a new component called the
“indeterminacy-membership function” and added to
the “truth membership function” and “falsity mem-
bership function”, all which are independent of each
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other and lying in ]0−, 1+[, and the corresponding
set is known as a neutrosophic set (NS). Since it
is hard to apply the concept of NSs to the practi-
cal problems, therefore, [19] introduced the concept
of a single-valued neutrosophic set (SVNS), which is
the particular class of NS. After they came into exis-
tence, researchers have made their efforts to enrich
the concept of information measure, used to reflect
the decision maker’s imperative and nature of indi-
vidual choice, in the neutrosophic environment. [20]
introduced the distance measures while [21, 22] pre-
sented the correlation for single-valued neutrosophic
numbers(SVNNs). Also, [23] improved the concept
of cosine similarity for SVNSs which was firstly
introduced by [24] in a neutrosophic environment.
[25] presented an improved score function for ranking
the SVNNs. Apart from them, various authors incor-
porated the idea of SVNS theory into information
measures [26–29], aggregation operators [31–33] and
applied them to solve the decision-making problems.

However, TOPSIS developed by [15] is well-
known decision-making approach to find the best
alternative(s) based on its ideal values. The chief
advantages of the TOPSIS are to consider positive
and negative ideal solutions as anchor points to reflect
the contrast of the currently achievable criterion
performances. In TOPSIS, the preferred alternative
should have the shortest distance from the positive-
ideal solution and the farthest distance from the
negative-ideal solution. The difference between the
TOPSIS and the neutrosophic TOPSIS is in their rat-
ing approaches. The merit of neutrosophic TOPSIS
is to designate the importance of attributes and the
performance of alternatives with respect to various
attributes by using SVNNs instead of precise num-
bers. Under this environment, [34–36] presented the
TOPSIS method for decision-making problems based
on the distance measure to rank the alternatives.

Consequently, keeping the flexibility and effi-
ciency of SVNS, the theme of this work is to present
a novel divergence measure for SVNSs to find dis-
crimination between them. Further, based on it, a
TOPSIS method for solving neutrosophic decision-
making problem has been presented. As far we know,
there is no investigation on divergence measure in
the neutrosophic environment. The proposed mea-
sure has elegant properties, which are expressed and
tested in the paper to enhance the employability
of this measure. In contrast to the classical TOP-
SIS method, which is based on distance measure,
this paper applies the proposed divergence mea-
sure to establish the comparative index of closeness

coefficient. The strength of this extension has been
demonstrated by an example of the decision-making
process. Finally, through an example, the superiority
of divergence based TOPSIS method over classical
TOPSIS has been shown.

The rest of the text has been summarized as
follows: Section 2 introduces the divergence mea-
sure in the neutrosophic environment and various
properties have also been investigated in details. Sec-
tion 3 describes the TOPSIS approach for solving the
decision-making problems based on the divergence
measure followed by an illustrative example. Further,
various test criteria are applied to check its applicabil-
ity and explore its effectiveness. Finally, paper arrives
at conclusion in Section 4.

2. Proposed divergence measure for single-
valued neutrosophic set

In this section, we present a divergence measure
between the two SVNSs to rank it. Further, we discuss
its various properties apart from their basic axioms.

2.1. Basic concepts

Firstly, some basic definitions related to NS, SVNS
on the universal set X have been discussed.

Definition 2.1. [18] A neutrosophic set (NS) A in X is

A =
{

〈xj, ζA(xj), ρA(xj), ϑA(xj)|xj ∈ X〉
}

(1)

where ζA(xj), ρA(xj), ϑA(xj) represents the truth,
indeterminacy and falsity-membership functions
respectively, and are real standard or non-standard
subsets of ]0−, 1+[ such that 0− ≤ sup ζA(xj) +
sup ρA(xj) + sup ϑA(xj) ≤ 3+. Here, sup represents
the supremum of the set.

Definition 2.2. [18, 19] A single-valued neutrosophic
set (SVNS) A in X is defined as

A =
{

〈xj, ζA(xj), ρA(xj), ϑA(xj)|xj ∈ X〉
}

(2)

where ζA(xj), ρA(xj), ϑA(xj) ∈ [0, 1] such that
0 ≤ ζA(xj) + ρA(xj) + ϑA(xj) ≤ 3 for all xj ∈ X.
For convenience, we denote these pairs as A =
〈ζA, ρA, ϑA〉, throughout this article, and called as
single-valued neutrosophic number (SVNN).

Definition 2.3. LetA = {xj , 〈ζA(xj),ρA(xj),ϑA(xj) |
xj ∈ X〉} and B = {〈xj , ζB(xj), ρB(xj), ϑB(xj) 〉|xj ∈
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X} be two SVNSs. Then the following operations are
defined as [19]

(i) A ⊆ B if ζA(xj) ≤ ζB(xj), ρA(xj) ≥ ρB(xj) and
ϑA(xj) ≥ ϑB(xj) for all xj in X;

(ii) A = B if and only if A ⊆ B and B ⊆ A;
(iii) Ac = {xj, 〈ϑA(xj), ρA(xj), ζA(xj)|xj ∈ X〉};
(iv) A ∩ B = {〈xj, min(ζA(xj), ζB(xj)), max(ρA(xj),

ρB(xj)), max(ϑA(xj), ϑB(xj))〉|xj ∈ X
}

;
(v) A ∪ B = {〈xj, max(ζA(xj), ζB(xj)), min(ρA(xj),

ρB(xj)), min(ϑA(xj), ϑB(xj))〉|xj ∈ X
}

.

2.2. Proposed divergence measure

Let �(X) be the class of SVNSs over the universal
set X. Then for any A, B ∈ SVNSs, a real function
D : �(X) × �(X) → R+ is called a divergence mea-
sure, denoted by D(A|B), if it satisfies the following
axioms:

(P1) D(A|B) ≥ 0
(P2) D(A|B) = D(B|A)
(P3) D(A|B) = 0 if A = B

(P4) D(A|B) = D(Ac|Bc)

Definition 2.4. For two SVNSs A = 〈ζA(xj), ρA(xj),
ϑA(xj)|xj ∈ X〉 and B = 〈ζB(xj), ρB(xj), ϑB(xj) |
xj ∈ X〉, the divergence measure of A against B is
to measure the degree of discrimination between the
pair is defined as:

D(A|B) =

1

n(
√

2 − 1)

n∑
j=1

⎡
⎢⎢⎢⎢⎢⎣

√
(ζA(xj))2 + (ζB(xj))2

2
− ζA(xj) + ζB(xj)

2

+
√

(ρA(xj))2 + (ρB(xj))2

2
− ρA(xj) + ρB(xj)

2

+
√

(ϑA(xj))2 + (ϑB(xj))2

2
− ϑA(xj) + ϑB(xj)

2

⎤
⎥⎥⎥⎥⎥⎦(3)

Theorem 2.1. The divergence measure D(A|B), as
defined in Definition 2.4, for two SVNSs A and B

satisfies the following four axioms (P1)-(P4)

(P1) D(A|B) ≥ 0,
(P2) D(A|B) = D(B|A),
(P3) D(A|B) = 0 if A = B,
(P4) D(A|B) = D(Ac|Bc)

Proof 2.1. For two SVNSs A = 〈ζA(xj), ρA(xj),
ϑA(xj) | xj ∈ X〉 and B = 〈ζB(xj), ρB(xj), ϑB(xj)
|xj ∈ X〉, we have

(P1) Since 0 ≤ ζA(xj), ρA(xj), ϑA(xj) ≤ 1 and 0
≤ ζB(xj), ρB(xj), ϑB(xj) ≤ 1 which implies

that
√

(ζA(xj))2+(ζB(xj))2

2 ≥ ζA(xj)+ζB(xj)
2 ,√

(ρA(xj))2+(ρB(xj))2

2 ≥ ρA(xj)+ρB(xj)
2 and√

(ϑA(xj))2+(ϑB(xj))2

2 ≥ ϑA(xj)+ϑB(xj)
2 for each

j. Therefore, from Equation (3), we get
D(A|B) ≥ 0.

(P2) It is trivial from the Equation (3).
(P3) Assume that A = B which implies ζA(xj) =

ζB(xj), ρA(xj) = ρB(xj) and ϑA(xj) =
ϑB(xj) for each j, which implies that

D(A|B) = 1
n(

√
2−1)

n∑
j=1

[
ζA(xj) − ζA(xj) +

ρA(xj) − ρA(xj) + ϑA(xj) − ϑA(xj)
]

= 0.

(P4) For SVNSs A and B, we have Ac = 〈ϑA(xj),
ρA(xj), ζA(xj)〉 and Bc = 〈ϑB(xj), ρB(xj),
ζB(xj)〉, so by Equation (3), we have

D(Ac|Bc)

= 1

n(
√

2 − 1)

n∑
j=1

⎡
⎢⎢⎢⎢⎢⎣

√
(ϑA(xj))2 + (ϑB(xj))2

2
− ϑA(xj) + ϑB(xj)

2

+
√

(ρA(xj))2 + (ρB(xj))2

2
− ρA(xj) + ρB(xj)

2

+
√

(ζA(xj))2 + (ζB(xj))2

2
− ζA(xj) + ζB(xj)

2

⎤
⎥⎥⎥⎥⎥⎦

= D(A|B)

Hence, D(A|B) is a valid divergence measure.
Also, it is observed that D(A|B) satisfies certain

properties which are stated as below:

Theorem 2.2. For SVNS A = 〈ζA(xj), ρA(xj), ϑA(xj)
| xj ∈ X〉, D(A|Ac) = 0 if and only if ζA(xj) =
ϑA(xj) for each xj ∈ X.

Proof 2.2. For SVNS A = 〈ζA(xj), ρA(xj), ϑA(xj)|
xj ∈ X〉, we have Ac = 〈ϑA(xj), ρA(xj), ζA(xj) |xj ∈
X〉. Thus, from Equation (3), we get

D(A|Ac) = 0

⇔ 1

n(
√

2 − 1)

n∑
j=1

2

[√
(ζA(xj))2 + (ϑA(xj))2

2
− ζA(xj)+ϑA(xj)

2

]
=0

⇔
√

(ζA(xj))2 + (ϑA(xj))2

2
− ζA(xj) + ϑA(xj)

2
=0 for each xj ∈X

⇔
(

ζA(xj)√
2

− ϑA(xj)√
2

)2

= 0 for each xj ∈ X

⇔ζA(xj) = ϑA(xj) for each xj ∈ X
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Hence, D(A|Ac) = 0 if and only if ζA(xj) =
ϑA(xj) for each xj ∈ X.

Theorem 2.3. For SVNS A = 〈ζA(xj), ρA(xj),
ϑA(xj)| xj ∈ X〉, D(A|Ac) = 1 if and only if either
ζA(xj) = 0, ϑA(xj) = 1 or ζA(xj) = 1, ϑA(xj) = 0.

Proof 2.3. For SVNS A, we have D(A|Ac) =
1 ⇔ 1

n(
√

2 − 1)

n∑
j=1

2
[√

(ζA(xj))2+(ϑA(xj))2

2 −
ζA(xj)+ϑA(xj)

2

]
= 1 ⇔

n∑
j=1

[√
(ζA(xj))2+(ϑA(xj))2

2 −
ζA(xj)+ϑA(xj)

2

]
= n(

√
2−1)
2 ⇔

√
(ζA(xj))2+(ϑA(xj))2

2 −
ζA(xj)+ϑA(xj)

2 = (
√

2−1)
2 for each xj ⇔

(ζA(xj))2 + (ϑA(xj))2 = 1 and ζA(xj) + ϑA(xj) = 1
which implies that ζA(xj)ϑA(xj) = 0 and hence
D(A|Ac) = 1 if and only if either ζA(xj) = 0,
ϑA(xj) = 1 or ζA(xj) = 1, ϑA(xj) = 0.

Theorem 2.4. For SVNSs A and B, we have
D(A|Bc) = D(Ac|B).

Proof 2.4. As Ac = 〈ϑA(xj), ρA(xj), ζA(xj)|xj ∈
X〉 and Bc = 〈ϑB(xj), ρB(xj), ζB(xj)|xj ∈ X〉 be the
complement of the SVNSs A and B, then from Equa-
tion (3) we have

D(Ac|B)

= 1

n(
√

2 − 1)

n∑
j=1

⎡
⎢⎢⎢⎢⎢⎣

√
(ϑA(xj))2 + (ζB(xj))2

2
− ϑA(xj) + ζB(xj)

2

+
√

(ρA(xj))2 + (ρB(xj))2

2
− ρA(xj) + ρB(xj)

2

+
√

(ζA(xj))2 + (ϑB(xj))2

2
− ζA(xj) + ϑB(xj)

2

⎤
⎥⎥⎥⎥⎥⎦

= 1

n(
√

2 − 1)

n∑
j=1

⎡
⎢⎢⎢⎢⎢⎣

√
(ζA(xj))2 + (ϑB(xj))2

2
− ζA(xj) + ϑB(xj)

2

+
√

(ρA(xj))2 + (ρB(xj))2

2
− ρA(xj) + ρB(xj)

2

+
√

(ϑA(xj))2 + (ζB(xj))2

2
− ϑA(xj) + ζB(xj)

2

⎤
⎥⎥⎥⎥⎥⎦

= D(A|Bc)

Divide the universe X into two disjoint parts X1 and
X2, where X1 = {xj : xj ∈ X, A(xj) ⊆ B(xj)} and
X2 = {xj : xj ∈ X, B(xj) ⊆ A(xj)}. Based on these
considerations, we further propose some properties
of the divergence measure which are explained as
follows:

Theorem 2.5. If A and B be two SVNSs defined on
universal set X, then

D(A ∩ B|A ∪ B) = D(A|B).

Proof 2.5. Let A = 〈ζA(xj), ρA(xj), ϑA(xj)|xj ∈
X〉 and B = 〈ζB(xj), ρB(xj), ϑB(xj)|xj ∈ X〉 be two
SVNSs defined on the universal set X, then by Equa-
tion (3), we have

D(A ∩ B|A ∪ B) = 1

n(
√

2 − 1)

n∑
j=1⎡

⎢⎢⎢⎢⎢⎣

√
(ζA∩B(xj))2 + (ζA∪B(xj))2

2
− ζA∩B(xj) + ζA∪B(xj)

2

+
√

(ρA∩B(xj))2 + (ρA∪B(xj))2

2
− ρA∩B(xj) + ρA∪B(xj)

2

+
√

(ϑA∩B(xj))2 + (ϑA∪B(xj))2

2
− ϑA∩B(xj) + ϑA∪B(xj)

2

⎤
⎥⎥⎥⎥⎥⎦

= 1

n(
√

2 − 1)

∑
xj∈X1

⎡
⎢⎢⎢⎢⎢⎣

√
(ζA(xj))2 + (ζB(xj))2

2
− ζA(xj) + ζB(xj)

2

+
√

(ρA(xj))2 + (ρB(xj))2

2
− ρA(xj) + ρB(xj)

2

+
√

(ϑA(xj))2 + (ϑB(xj))2

2
− ϑA(xj) + ϑB(xj)

2

⎤
⎥⎥⎥⎥⎥⎦

+ 1

n(
√

2 − 1)

∑
xj∈X2

⎡
⎢⎢⎢⎢⎢⎣

√
(ζB(xj))2 + (ζA(xj))2

2
− ζB(xj) + ζA(xj)

2

+
√

(ρB(xj))2 + (ρA(xj))2

2
− ρB(xj) + ρA(xj)

2

+
√

(ϑB(xj))2 + (ϑA(xj))2

2
− ϑB(xj) + ϑA(xj)

2

⎤
⎥⎥⎥⎥⎥⎦

= D(A|B)

Thus, the result holds.

Theorem 2.6. For two SVNSs A and B, we have

(i) D(A|A ∪ B) = D(B|A ∩ B)
(ii) D(A|A ∩ B) = D(B|A ∪ B)

(iii) D(A|A ∪ B) + D(A|A ∩ B) = D(A|B)
(iv) D(B|A ∪ B) + D(B|A ∩ B) = D(A|B)

Proof 2.6. We will prove the first part and rest can
be proved in the same manner. By the definition of
divergence, we have

D(A|A ∪ B) = 1

n(
√

2 − 1)

n∑
j=1⎡

⎢⎢⎢⎢⎢⎣

√
(ζA(xj))2 + (ζA∪B(xj))2

2
− ζA(xj) + ζA∪B(xj)

2

+
√

(ρA(xj))2 + (ρA∪B(xj))2

2
− ρA(xj) + ρA∪B(xj)

2

+
√

(ϑA(xj))2 + (ϑA∪B(xj))2

2
− ϑA(xj) + ϑA∪B(xj)

2

⎤
⎥⎥⎥⎥⎥⎦



Nancy and H. Garg / A novel divergence measure and its based TOPSIS method under SVNS 105

= 1

n(
√

2 − 1)

∑
xj∈X1

⎡
⎢⎢⎢⎢⎢⎣

√
(ζA(xj))2 + (ζB(xj))2

2
− ζA(xj) + ζB(xj)

2

+
√

(ρA(xj))2 + (ρB(xj))2

2
− ρA(xj) + ρB(xj)

2

+
√

(ϑA(xj))2 + (ϑB(xj))2

2
− ϑA(xj) + ϑB(xj)

2

⎤
⎥⎥⎥⎥⎥⎦

+ 1

n(
√

2 − 1)

∑
xj∈X2

⎡
⎢⎢⎢⎢⎢⎣

√
(ζA(xj))2 + (ζA(xj))2

2
− ζA(xj) + ζA(xj)

2

+
√

(ρA(xj))2 + (ρA(xj))2

2
− ρA(xj) + ρA(xj)

2

+
√

(ϑA(xj))2 + (ϑA(xj))2

2
− ϑA(xj) + ϑA(xj)

2

⎤
⎥⎥⎥⎥⎥⎦

= 1

n(
√

2 − 1)

∑
xj∈X1

⎡
⎢⎢⎢⎢⎢⎣

√
(ζA(xj))2 + (ζB(xj))2

2
− ζA(xj) + ζB(xj)

2

+
√

(ρA(xj))2 + (ρB(xj))2

2
− ρA(xj) + ρB(xj)

2

+
√

(ϑA(xj))2 + (ϑB(xj))2

2
− ϑA(xj)+ϑB(xj)

2

⎤
⎥⎥⎥⎥⎥⎦
(4)

Also,

D(B|A ∩ B) = 1

n(
√

2 − 1)

n∑
j=1⎡

⎢⎢⎢⎢⎢⎣

√
(ζB(xj))2 + (ζA∩B(xj))2

2
− ζB(xj) + ζA∩B(xj)

2

+
√

(ρB(xj))2 + (ρA∩B(xj))2

2
− ρB(xj) + ρA∩B(xj)

2

+
√

(ϑB(xj))2 + (ϑA∩B(xj))2

2
− ϑB(xj) + ϑA∩B(xj)

2

⎤
⎥⎥⎥⎥⎥⎦

= 1

n(
√

2 − 1)

∑
xj∈X1

⎡
⎢⎢⎢⎢⎢⎣

√
(ζB(xj))2 +(ζA(xj))2

2
− ζB(xj) + ζA(xj)

2

+
√

(ρB(xj))2 +(ρA(xj))2

2
− ρB(xj) + ρA(xj)

2

+
√

(ϑB(xj))2 +(ϑA(xj))2

2
− ϑB(xj) + ϑA(xj)

2

⎤
⎥⎥⎥⎥⎥⎦

+ 1

n(
√

2 − 1)

∑
xj∈X2

⎡
⎢⎢⎢⎢⎢⎣

√
(ζB(xj))2 + (ζB(xj))2

2
− ζB(xj) + ζB(xj)

2

+
√

(ρB(xj))2 + (ρB(xj))2

2
− ρB(xj) + ρB(xj)

2

+
√

(ϑB(xj))2 + (ϑB(xj))2

2
− ϑB(xj) + ϑB(xj)

2

⎤
⎥⎥⎥⎥⎥⎦

= 1

n(
√

2 − 1)

∑
xj∈X1

⎡
⎢⎢⎢⎢⎢⎣

√
(ζA(xj))2 + (ζB(xj))2

2
− ζA(xj) + ζB(xj)

2

+
√

(ρA(xj))2 + (ρB(xj))2

2
− ρA(xj) + ρB(xj)

2

+
√

(ϑA(xj))2 + (ϑB(xj))2

2
− ϑA(xj)+ϑB(xj)

2

⎤
⎥⎥⎥⎥⎥⎦
(5)

Then, from Equations (4) and (5), we get D(A|A ∪
B) = D(B|A ∩ B).

Theorem 2.7. If A and B be two SVNSs defined on
the universal sets X, then

(i) D(A|C) + D(B|C) − D(A ∪ B|C) ≥ 0,
(ii) D(A|C) + D(B|C) − D(A ∩ B|C) ≥ 0

Proof 2.7. In this property, we prove only the first
part because of having analogously similar proofs.

D(A|C)

= 1

n(
√

2 − 1)

n∑
j=1

⎡
⎢⎢⎢⎢⎢⎣

√
(ζA(xj))2 + (ζC(xj))2

2
− ζA(xj) + ζC(xj)

2

+
√

(ρA(xj))2 + (ρC(xj))2

2
− ρA(xj) + ρC(xj)

2

+
√

(ϑA(xj))2 + (ϑC(xj))2

2
− ϑA(xj) + ϑC(xj)

2

⎤
⎥⎥⎥⎥⎥⎦

D(B|C)

= 1

n(
√

2 − 1)

n∑
j=1

⎡
⎢⎢⎢⎢⎢⎣

√
(ζB(xj))2 + (ζC(xj))2

2
− ζB(xj) + ζC(xj)

2

+
√

(ρB(xj))2 + (ρC(xj))2

2
− ρB(xj) + ρC(xj)

2

+
√

(ϑB(xj))2 + (ϑC(xj))2

2
− ϑB(xj) + ϑC(xj)

2

⎤
⎥⎥⎥⎥⎥⎦

and

D(A ∪ B|C) = 1

n(
√

2 − 1)

n∑
j=1⎡

⎢⎢⎢⎢⎢⎣

√
(ζA∪B(xj))2 + (ζC(xj))2

2
− ζA∪B(xj) + ζC(xj)

2

+
√

(ρA∪B(xj))2 + (ρC(xj))2

2
− ρA∪B(xj) + ρC(xj)

2

+
√

(ϑA∪B(xj))2 + (ϑC(xj))2

2
− ϑA∪B(xj) + ϑC(xj)

2

⎤
⎥⎥⎥⎥⎥⎦

= 1

n(
√

2 − 1)

∑
xj∈X1

⎡
⎢⎢⎢⎢⎢⎣

√
(ζB(xj))2 + (ζC(xj))2

2
− ζB(xj) + ζC(xj)

2

+
√

(ρB(xj))2 + (ρC(xj))2

2
− ρB(xj) + ρC(xj)

2

+
√

(ϑB(xj))2 + (ϑC(xj))2

2
− ϑB(xj) + ϑC(xj)

2

⎤
⎥⎥⎥⎥⎥⎦

+ 1

n(
√

2 − 1)

∑
xj∈X2

⎡
⎢⎢⎢⎢⎢⎣

√
(ζA(xj))2 + (ζC(xj))2

2
− ζA(xj) + ζC(xj)

2

+
√

(ρA(xj))2 + (ρC(xj))2

2
− ρA(xj) + ρC(xj)

2

+
√

(ϑA(xj))2 + (ϑC(xj))2

2
− ϑA(xj) + ϑC(xj)

2

⎤
⎥⎥⎥⎥⎥⎦
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Then,

D(A|C) + D(B|C) − D(A ∪ B|C)

= 1

n(
√

2 − 1)

∑
xj∈X1

⎡
⎢⎢⎢⎢⎢⎣

√
(ζA(xj))2 + (ζC(xj))2

2
− ζA(xj) + ζC(xj)

2

+
√

(ρA(xj))2 + (ρC(xj))2

2
− ρA(xj) + ρC(xj)

2

+
√

(ϑA(xj))2 + (ϑC(xj))2

2
− ϑA(xj) + ϑC(xj)

2

⎤
⎥⎥⎥⎥⎥⎦

+ 1

n(
√

2 − 1)

∑
xj∈X2

⎡
⎢⎢⎢⎢⎢⎣

√
(ζB(xj))2 + (ζC(xj))2

2
− ζB(xj) + ζC(xj)

2

+
√

(ρB(xj))2 + (ρC(xj))2

2
− ρB(xj) + ρC(xj)

2

+
√

(ϑB(xj))2 + (ϑC(xj))2

2
− ϑB(xj) + ϑC(xj)

2

⎤
⎥⎥⎥⎥⎥⎦

Since, ζ(xj), ρ(xj), ϑ(xj) ∈ [0, 1] for all xj ∈ X.
Thus, we get D(A|C) + D(B|C) − D(A ∪ B|C) ≥
0.

Theorem 2.8. For three SVNSs A, B and C, we have

D(A ∩ B|C) + D(A ∪ B|C) = D(A|C) + D(B|C)

Proof 2.8. For three SVNSs A = 〈ζA(xj), ρA(xj),
ϑA(xj)|xj ∈ X〉, B = 〈ζB(xj), ρB(xj), ϑB(xj)|xj ∈
X〉 and C = 〈ζC(xj), ρC(xj), ϑC(xj)|xj ∈ X〉 and by
definition of the divergence measure, we have

D(A ∩ B|C) = 1

n(
√

2 − 1)

n∑
j=1⎡

⎢⎢⎢⎢⎢⎣

√
(ζA∩B(xj))2 + (ζC(xj))2

2
− ζA∩B(xj) + ζC(xj)

2

+
√

(ρA∩B(xj))2 + (ρC(xj))2

2
− ρA∩B(xj) + ρC(xj)

2

+
√

(ϑA∩B(xj))2 + (ϑC(xj))2

2
− ϑA∩B(xj) + ϑC(xj)

2

⎤
⎥⎥⎥⎥⎥⎦

= 1

n(
√

2 − 1)

∑
j∈X1

⎡
⎢⎢⎢⎢⎢⎣

√
(ζA(xj))2 + (ζC(xj))2

2
− ζA(xj) + ζC(xj)

2

+
√

(ρA(xj))2 + (ρC(xj))2

2
− ρA(xj) + ρC(xj)

2

+
√

(ϑA(xj))2 + (ϑC(xj))2

2
− ϑA(xj) + ϑC(xj)

2

⎤
⎥⎥⎥⎥⎥⎦

+ 1

n(
√

2 − 1)

∑
j∈X2

⎡
⎢⎢⎢⎢⎢⎣

√
(ζB(xj))2 + (ζC(xj))2

2
− ζB(xj) + ζC(xj)

2

+
√

(ρB(xj))2 + (ρC(xj))2

2
− ρB(xj) + ρC(xj)

2

+
√

(ϑB(xj))2 + (ϑC(xj))2

2
− ϑB(xj) + ϑC(xj)

2

⎤
⎥⎥⎥⎥⎥⎦

Also,

D(A ∪ B|C) = 1

n(
√

2 − 1)

n∑
j=1⎡

⎢⎢⎢⎢⎢⎣

√
(ζA∪B(xj))2 + (ζC(xj))2

2
− ζA∪B(xj) + ζC(xj)

2

+
√

(ρA∪B(xj))2 + (ρC(xj))2

2
− ρA∪B(xj) + ρC(xj)

2

+
√

(ϑA∪B(xj))2 + (ϑC(xj))2

2
− ϑA∪B(xj) + ϑC(xj)

2

⎤
⎥⎥⎥⎥⎥⎦

= 1

n(
√

2 − 1)

∑
j∈X1

⎡
⎢⎢⎢⎢⎢⎣

√
(ζB(xj))2 + (ζC(xj))2

2
− ζB(xj) + ζC(xj)

2

+
√

(ρB(xj))2 + (ρC(xj))2

2
− ρB(xj) + ρC(xj)

2

+
√

(ϑB(xj))2 + (ϑC(xj))2

2
− ϑB(xj) + ϑC(xj)

2

⎤
⎥⎥⎥⎥⎥⎦

+ 1

n(
√

2 − 1)

∑
j∈X2

⎡
⎢⎢⎢⎢⎢⎣

√
(ζA(xj))2 + (ζC(xj))2

2
− ζA(xj) + ζC(xj)

2

+
√

(ρA(xj))2 + (ρC(xj))2

2
− ρA(xj) + ρC(xj)

2

+
√

(ϑA(xj))2 + (ϑC(xj))2

2
− ϑA(xj) + ϑC(xj)

2

⎤
⎥⎥⎥⎥⎥⎦

Thus, by adding these equations, we get D(A ∩
B|C) + D(A ∪ B|C) = D(A|C) + D(B|C).

Theorem 2.9. For two SVNSs A and B, we have

(i) D(A|B) = D(Ac|Bc)
(ii) D(A|Bc) = D(Ac|B)

(iii) D(A|B) + D(Ac|B) = D(Ac|Bc) + D(A|Bc)

Proof 2.9. First and second parts are similar and third
part can be proved by adding first and second one.
Proof of the part (ii) follows from Theorem 2.4.

Definition 2.5. For two SVNSs A = 〈ζA(xj), ρA(xj),
ϑA(xj)| xj ∈ X〉 and B = 〈ζB(xj), ρB(xj), ϑB(xj)|
xj ∈ X〉, the weighted divergence measure of A
against B is to measure the degree of discrimination
between the pair is defined as:

Dw(A|B) = 1

(
√

2 − 1)

n∑
j=1

wj

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
(ζA(xj))2 + (ζB(xj))2

2
− ζA(xj) + ζB(xj)

2

+
√

(ρA(xj))2 + (ρB(xj))2

2
− ρA(xj) + ρB(xj)

2

+
√

(ϑA(xj))2 + (ϑB(xj))2

2
− ϑA(xj) + ϑB(xj)

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)
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3. TOPSIS approach based on proposed
divergence measure for MCDM problems

In this section, a TOPSIS method based on the
proposed divergence measure for SVNSs has been
presented succeeded by an illustrative example to
demonstrate the approach.

3.1. Maximizing divergence method for
determine the weights

In this subsection, we construct a nonlinear pro-
gramming model by maximizing the divergence
value D(w) to find the optimal weights of the cri-
teria. For this, let � be the set of the partially known
weight information. For jth criteria, the divergence
of the ith alternative to all the other alternatives can
be defined as follows:

Dij =
m∑

q=1

D(Aij|Aqj)

where D(Aij|Aqj) denotes the divergence measure
between the two alternatives Aij and Aqj defined in
Definition 2.4.

Let Dj =
m∑

i=1
Dij =

m∑
i=1

m∑
q=1

D(Aij|Aqj) represents

the total divergence values of all the alternatives to
other alternatives for jth attributes and hence

D(w) =
n∑

j=1

wjDj =
n∑

j=1

m∑
i=1

m∑
q=1

wjD(Aij|Aqj)

represents the total divergence values of all the alter-
natives with respect to all criteria.

Under these, a nonlinear optimization model has
been constructed to determine the optimal weight
vector as follow:

max D(w) =
n∑

j=1

m∑
i=1

m∑
q=1

wjD(Aij|Aqj)

subject to wj ∈ �, wj ≥ 0,

n∑
j=1

wj = 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7)

By solving this model, we get the optimal weight
w = (w1, w2, . . . , wn)T of the criteria.

On the other hand, if information about the criteria
weights are completely unknown, then we establish
another nonlinear optimization model as

max D(w) =
n∑

j=1

m∑
i=1

m∑
q=1

wjD(Aij|Aqj)

subject to wj ≥ 0, (8)

n∑
j=1

w2
j = 1

Solve the above model by using the Lagrangian
multiplier method and hence get the normalized
weight vector as

wj =

m∑
i=1

m∑
q=1

D(Aij|Aqj)

n∑
j=1

m∑
i=1

m∑
q=1

D(Aij|Dqj)
(9)

3.2. Proposed TOPSIS approach based on
divergence measure

TOPSIS method [15] is a simple and effective tool
to solve the decision-making problems which aims
to pick out the best alternative(s) with the short-
est distance from the positive ideal solution (PIS)
and the farthest distance from the negative ideal
solution (NIS). In this section, instead of using the
distance measures to figure the relative closeness
coefficient, the concept of divergence measure is
appropriately applied to the main structure of the
TOPSIS method. For it, assume that there are ‘m’
alternatives denoted by A1, A2, . . . , Am which are
being evaluated with respect to ‘n’ criteria namely,
C1, C2, . . . , Cn by an expert. The preferences related
to each alternative Ai(i = 1, 2, . . . , m) are repre-
sented under the SVNS environment which are
denoted by αij = 〈ζij, ρij, ϑij〉, i = 1, 2, . . . , m; j =
1, 2, . . . , n, where ζij , ρij , ϑij represents the degree
of satisfaction, indeterminacy, and dissatisfaction,
respectively, of Ai corresponding to criteria Cj

such that 0 ≤ ζij, ρij, ϑij ≤ 1 and ζij + ρij + ϑij ≤
3. Then, the following steps of the TOPSIS method
have been summarized for solving the decision-
making problems under SVNN information by using
the proposed measures as:
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Step 1: Arrange the collective information: The
information related to each alternative
Ai(i = 1, 2, . . . , m) with respect to the
different criteria Cj(j = 1, 2, . . . , n) are
arranged in the form of the neutrosophic
decision-matrix D which is represented
as

D =

⎛
⎜⎜⎜⎝

C1 C2 . . . Cn

A1 α11 α12 . . . α1n

A2 α21 α22 . . . α2n
...

...
...

. . .
...

Am αm1 αm2 . . . αmn

⎞
⎟⎟⎟⎠

Step 2: Normalize the decision matrix: Since
there are two types in criteria, one is
benefit type and the contrary is cost
type. Therefore, to balance the physical
dimensions and eliminate the influ-
ence of the criterion types, the matrix
D = (αij)m×n is converted to standard
matrix R = (rij)m×n by transforming the
rating values of cost type into benefit type
criteria, if any, by using the normalization
formula:

rij =
{

〈ζij, ρij, ϑij〉 ; for benefit type criteria

〈ϑij, ρij, ζij〉 ; for cost type criteria

Step 3: Determine the attribute weights:
The weights of the different criteria
w = (w1, w2, . . . , wn)T are determined
by solving the optimization model 7 or
8 accordingly whether the information
about the criteria weights are partially
known and completely unknown.

Step 4: Determine the discrimination of each
alternative from ideal and anti-ideal
alternatives: As 0 ≤ ζij, ρij, ϑij ≤ 1 and
hence all rating values of the alternative as
given in decision matrix R = (rij)m×n are
SVNNs. Therefore, accordingly the mem-
bership degrees of relative positive ideal
ideal solution (RPIS) may be expressed
as A+ = 〈1, 0, 0〉1×n. Similarly, the
membership degrees of the relative
negative ideal solution (RNIS) may be
summarized as A− = 〈0, 1, 1〉1×n. From
these, it has been seen that A+ and A− are
complement to each other. Furthermore,
instead of fixing the degree of A+ to be 1,
0 and 0, the decision maker may varying
it by defining A+ and A− respectively as

〈ζ+
j , ρ+

j , ϑ+
j 〉)1×n, and 〈ζ−

j , ρ−
j , ϑ−

j 〉)1×n

where ζ+
j = max

i
{ζij|i = 1, 2, . . . , m},

ρ+
j = min

i
{ρij|i = 1, 2, . . . , m},

ϑ+
j = min

i
{ϑij|i = 1, 2, . . . , m},

ζ−
j = min

i
{ζij|i = 1, 2, . . . , m},

ρ−
j = max

i
{ρij|i = 1, 2, . . . , m},

ϑ−
j = max

i
{cij|i = 1, 2, . . . , m}. From

this, it has been clearly seen that (〈ζ−
j , ρ−

j ,

ϑ−
j 〉) ⊆ (〈ζij, ρij, ϑij〉) ⊆ (〈ζ+

j , ρ+
j , ϑ+

j 〉).
In order to compare the different alter-
natives, the divergence measure defined
in Equation (6) is used to measures the
degree of discrimination between an
alternative Ai and the RPIS A+ as well as
the RNIS A− as follows:

Dw(Ai|A+) = 1

(
√

2 − 1)

n∑
j=1

wj

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
(ζij(rij))2 + (ζ+

j
(rij))2

2
−

ζij(rij) + ζ+
j

(rij)

2

+

√
(ρij(rij))2 + (ρ+

j
(rij))2

2
−

ρij(rij) + ρ+
j

(rij)

2

+

√
(ϑij(rij))2 + (ϑ+

j
(rij))2

2
−

ϑij(rij) + ϑ+
j

(rij)

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

and

Dw(Ai|A−) = 1

(
√

2 − 1)

n∑
j=1

wj

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
(ζij(rij))2 + (ζ−

j
(rij))2

2
−

ζij(rij) + ζ−
j

(rij)

2

+

√
(ρij(rij))2 + (ρ−

j
(rij))2

2
−

ρij(rij) + ρ−
j

(rij)

2

+

√
(ϑij(rij))2 + (ϑ−

j
(rij))2

2
−

ϑij(rij) + ϑ−
j

(rij)

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

Step 5: Compute the relative-closeness coefficient:
Based on Equations (10) and (11), the
relative-closeness coefficient of the alter-
native Ai(i = 1, 2, . . . , m) with respect to
A+ and A− is defined as follows:

Ri = Dw(Ai|A−)

Dw(Ai|A−) + Dw(Ai|A+)
(12)



Nancy and H. Garg / A novel divergence measure and its based TOPSIS method under SVNS 109

provided Dw(Ai|A+) /= 0. It has been
seen that 0 ≤ D(Ai|A−) ≤ D(Ai|A−)
+D(Ai|A+) and hence 0 ≤ Ri ≤ 1.

1. Rank the alternative: Based on the
descending order of the values of Ri, we
rank the alternatives Ai(i = 1, 2, . . . , m)
and select the best alternative(s).

3.3. Illustrative Example

A travel agency naming, Marricot Trip mate ,
has excelled in providing travel related services to

domestic and Inbound tourists . Agency wants to pro-
vide more facilities like detailed information, online
booking capabilities, allow to book and sell airline
tickets, car rentals, hotels, and other travel related
services etc. to their customers. For this purpose,
agency intends to find an appropriate information
technology (IT) software development company that
delivers affordable solutions through software devel-
opment. To complete this motive, agency forms a
set of five companies (alternatives), namely, Zensar
Tech (A1), NIIT Tech (A2), HCL Tech(A3), Hex-
aware Tech(A4), and Tech Mahindra (A5) and the
selection is held on the basis of the different criteria,
namely, Technology Expertise (C1), Service quality
(C2), Project Management (C3), Industry Experi-
ence (C4). Now, we can obtain the evaluation of an
alternative Ai(i = 1, 2, 3, 4, 5) with respect to the cri-
terion Cj(j = 1, 2, 3, 4) from the questionnaire of a
domain expert. For instance, corresponding to alter-
native A1 under criterion C1, when we ask the opinion
of an expert about the alternative A1 with respect to
the criterion C1, he or she may that the “possibil-
ity degree in which the statement is good” is 0.5,
“the statement is false” is 0.4 and “the degree in
which he or she is unsure” is 0.3. In this case, the
evaluation of this alternative is represented as SVNN

α11 = 〈0.5, 0.3, 0.4〉. In the similar manner, we can
obtain all the evaluations of the alternatives Ai with
respect to criterion Cj . Then, the following steps of
the proposed approach have been executed to find the
most desirable alternative(s).

Step 1: The complete rating values of all the alter-
natives under single-valued neutrosophic
information under above four criteria are
summarized are listed in the follow-
ing single-valued neutrosophic decision
matrix D = (αij) as

D =

⎛
⎜⎜⎜⎜⎝

C1 C2 C3 C4

A1 〈0.5, 0.3, 0.4〉 〈0.5, 0.2, 0.5〉 〈0.2, 0.2, 0.6〉 〈0.3, 0.2, 0.4〉
A2 〈0.7, 0.1, 0.3〉 〈0.7, 0.2, 0.3〉 〈0.6, 0.3, 0.2〉 〈0.6, 0.4, 0.2〉
A3 〈0.5, 0.3, 0.4〉 〈0.6, 0.2, 0.4〉 〈0.6, 0.1, 0.2〉 〈0.5, 0.1, 0.3〉
A4 〈0.7, 0.3, 0.2〉 〈0.7, 0.2, 0.2〉 〈0.4, 0.5, 0.2〉 〈0.5, 0.2, 0.2〉
A5 〈0.4, 0.1, 0.3〉 〈0.5, 0.1, 0.2〉 〈0.4, 0.1, 0.5〉 〈0.4, 0.3, 0.6〉

⎞
⎟⎟⎟⎟⎠

Step 2: Since all the criteria are of the benefit
types, so there is no need of normalizing
process.

Step 3: Consider the partial information about the
criterion weights given by � = {0.10 ≤
w1 ≤ 0.2, 0.2 ≤ w2 ≤ 0.3, 0.2 ≤ w3 ≤
0.25, 0.15 ≤ w4 ≤ 0.25, wj ≥ 0,

∑4
j=1

wj = 1} and hence the optimization
model (7) is constructed as follows:

maximize D(w) = 0.3344w1 + 0.2372w2

+ 0.7670w3 + 0.4519w4

subject to w ∈ �

By solving this model, we get the
optimal weight vector of criteria w =
(0.2, 0.3, 0.25, 0.25)T .

Step 4: The RPIS and RNIS is calculated
from the given information as A+ =
{(C1, 〈0.7, 0.1, 0.2〉), (C2, 〈0.7, 0.1, 0.2〉),
(C3, 〈0.6, 0.1, 0.2〉), (C4, 〈0.6, 0.1, 0.2〉)}
and A− = {(C1, 〈0.4, 0.3, 0.4〉), (C2, 〈0.5,
0.2, 0.5〉), (C3, 〈0.2, 0.5, 0.6〉), (C4, 〈0.3,
0.4, 0.6〉)}. Thus, the degree of discrim-
ination between the alternative Ai(i =
1, 2, 3, 4, 5) to A+ and A− are computed
by using Equations (10) and (11) and get
as
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Dw(A1|A+)

= 1

(
√

2 − 1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2

⎧⎨
⎩
√

0.52 + 0.72

2
− 0.5 + 0.7

2

⎫⎬
⎭+ 0.3

⎧⎨
⎩
√

0.52 + 0.72

2
− 0.5 + 0.7

2

⎫⎬
⎭

+ 0.25

⎧⎨
⎩
√

0.22 + 0.62

2
− 0.2 + 0.6

2

⎫⎬
⎭+ 0.25

⎧⎨
⎩
√

0.32 + 0.62

2
− 0.3 + 0.6

2

⎫⎬
⎭

+ 0.2

⎧⎨
⎩
√

0.32 + 0.12

2
− 0.3 + 0.1

2

⎫⎬
⎭+ 0.3

⎧⎨
⎩
√

0.22 + 0.12

2
− 0.2 + 0.1

2

⎫⎬
⎭

+ 0.25

⎧⎨
⎩
√

0.22 + 0.12

2
− 0.2 + 0.1

2

⎫⎬
⎭+ 0.25

⎧⎨
⎩
√

0.22 + 0.12

2
− 0.2 + 0.1

2

⎫⎬
⎭

+ 0.2

⎧⎨
⎩
√

0.42 + 0.22

2
− 0.4 + 0.2

2

⎫⎬
⎭+ 0.3

⎧⎨
⎩
√

0.52 + 0.22

2
− 0.5 + 0.2

2

⎫⎬
⎭

+ 0.25

⎧⎨
⎩
√

0.62 + 0.22

2
− 0.6 + 0.2

2

⎫⎬
⎭+ 0.25

⎧⎨
⎩
√

0.42 + 0.22

2
− 0.4 + 0.2

2

⎫⎬
⎭

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0.1487

and

Dw(A1|A−)

= 1

(
√

2 − 1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2

⎧⎨
⎩
√

0.52 + 0.42

2
− 0.5 + 0.4

2

⎫⎬
⎭+ 0.3

⎧⎨
⎩
√

0.52 + 0.52

2
− 0.5 + 0.5

2

⎫⎬
⎭

+ 0.25

⎧⎨
⎩
√

0.22 + 0.22

2
− 0.2 + 0.2

2

⎫⎬
⎭+ 0.25

⎧⎨
⎩
√

0.32 + 0.32

2
− 0.3 + 0.3

2

⎫⎬
⎭

+ 0.2

⎧⎨
⎩
√

0.32 + 0.32

2
− 0.3 + 0.3

2

⎫⎬
⎭+ 0.3

⎧⎨
⎩
√

0.22 + 0.22

2
− 0.2 + 0.2

2

⎫⎬
⎭

+ 0.25

⎧⎨
⎩
√

0.22 + 0.52

2
− 0.2 + 0.5

2

⎫⎬
⎭+ 0.25

⎧⎨
⎩
√

0.22 + 0.42

2
− 0.2 + 0.4

2

⎫⎬
⎭

+ 0.2

⎧⎨
⎩
√

0.42 + 0.42

2
− 0.4 + 0.4

2

⎫⎬
⎭+ 0.3

⎧⎨
⎩
√

0.52 + 0.52

2
− 0.5 + 0.5

2

⎫⎬
⎭

+ 0.25

⎧⎨
⎩
√

0.62 + 0.62

2
− 0.6 + 0.6

2

⎫⎬
⎭+ 0.25

⎧⎨
⎩
√

0.42 + 0.62

2
− 0.4 + 0.6

2

⎫⎬
⎭

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0.0357
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Similarly, we can calculate the oth-
ers and get Dw(A2|A+) = 0.0512;
Dw(A2|A−) = 0.1453; Dw(A3|A+) =
0.0466; Dw(A3|A−) = 0.1457;
Dw(A4|A+) = 0.0661; Dw(A4|A−) =
0.1298; Dw(A5|A+) = 0.0914 and Dw

(A5|A−) = 0.0933.
Step 5: The closeness coefficients of ith alter-

native Ai(i = 1, 2, 3, 4, 5) is calculated

by using Equation (12) and are given
as R1 = 0.1936; R2 = 0.7396; R3 =
0.7577; R4 = 0.6628; and R5 = 0.5052.

Step 6: Therefore, the optimal ranking of these
five alternatives are A3 � A2 � A4 �
A5 � A1, and thus, the best alternative is
A3 namely HCL Tech.

3.4. Test Criteria for proposed approach

Some decision-making methods deals with irreg-
ularities which may lead to give some undesirable
results when some of the information in the given
decision matrix is changed. Therefore, their approach
is not acceptable to rank the alternatives and hence
a validity of the newly proposed methods is neces-
sary. [37] established the following testing criteria to
evaluate the validity of such types of methods.

Test criterion 1: “An effective decision-making
method should not change the indication of the best
alternative on replacing a non-optimal alternative by
another worse alternative without changing the rela-
tive importance of each decision criteria.”

Test criterion 2: “An effective decision-making
method should follow transitive property.”

Test criterion 3: “When a decision-making prob-
lem is decomposed into smaller problems and same
method is applied on smaller problems to rank the
alternatives, combined ranking of the alternatives
should be identical to the original ranking of un-
decomposed problem.”

The validity of the proposed TOPIS method is
tested using these test criteria.

3.4.1. Validity test under test criterion 1
Under this test criterion, the rating values of the

non-optimal alternative A1 and the worse alternative
A5 is replaced with the another ones and hence their
updated decision matrix is summarized as

D =

⎛
⎜⎜⎜⎜⎝

C1 C2 C3 C4

A1 〈0.4, 0.3, 0.5〉 〈0.5, 0.2, 0.5〉 〈0.6, 0.2, 0.2〉 〈0.4, 0.2, 0.3〉
A2 〈0.7, 0.1, 0.3〉 〈0.7, 0.2, 0.3〉 〈0.6, 0.3, 0.2〉 〈0.6, 0.4, 0.2〉
A3 〈0.5, 0.3, 0.4〉 〈0.6, 0.2, 0.4〉 〈0.6, 0.1, 0.2〉 〈0.5, 0.1, 0.3〉
A4 〈0.7, 0.3, 0.2〉 〈0.7, 0.2, 0.2〉 〈0.4, 0.5, 0.2〉 〈0.5, 0.2, 0.2〉
A5 〈0.3, 0.1, 0.4〉 〈0.2, 0.1, 0.5〉 〈0.5, 0.1, 0.4〉 〈0.6, 0.3, 0.4〉

⎞
⎟⎟⎟⎟⎠

Based on this information, by applying the
proposed approach, we compute the divergence mea-
sures of each alternative Ai(i = 1, 2, . . . , 5) to RPIS
(A+) and RNIS (A−) are Dw(A1|A+) = 0.0889,
Dw(A1|A−) = 0.0703, Dw(A2|A+) = 0.0512,
Dw(A2|A−) = 0.1307, Dw(A3|A+) = 0.0466,
Dw(A3|A−) = 0.1247, Dw(A4 |A+) = 0.0661,
Dw(A4|A−) = 0.1337, Dw(A5|A+) = 0.1309
and Dw(A5|A−) = 0.0650. Thus, the optimal
values of the relative closeness coefficient of
each alternative are computed by using Equation
(12) as R1 = 0.4416; R2 = 0.7187; R3 = 0.7279
R4 = 0.6693 and R5 = 0.3317. According to the
descending order of these values, the alternatives
are ranked as A3 � A2 � A4 � A1 � A5. Thus, the
best alternative is remain unchanged i.e., A3. Hence
the proposed method is valid under test criterion 1.

3.4.2. Validity test using test criterion 2 and 3
Under it, if we decomposed the original prob-

lem into a set of {A1, A2, A4}, {A1, A3, A5},
{A2, A4, A5}, {A2, A3, A5} and {A1, A3, A4}, then
the proposed approach has been applied to these
subproblems. The ranking orders of the alterna-
tives is A2 � A4 � A1, A3 � A5 � A1, A2 � A4 �
A5, A3 � A2 � A5 and A3 � A4 � A1 respectively
and hence the combined ranking order is A3 �
A2 � A4 � A5 � A1, which is identical to original
problem. Therefore, it displays transitive property
and hence the proposed method is valid under the
test criterion 2 and 3.
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3.5. Superiority of the proposed approach over
the existing approaches

In this section, we have presented some counterex-
amples to show that the existing approaches [20, 23,
26] under SVNS environment fails to rank the given
alternatives while the proposed divergence measure
can overcome their shortcoming.

Example 3.1. Consider a decision-making problem
in which there are two alternatives, namely, A1 and
A2 which are evaluated by a decision maker under
the three different criteria denoted by C1, C2 and
C3. The preference values of each alternative given
by the decision maker are summarized under SVNS
environment as follows:

K =
( C1 C2 C3

A1 〈0.5, 0.2, 0.3〉 〈0.6, 0.3, 0.1〉 〈0.3, 0.2, 0.4〉
A2 〈0.4, 0.3, 0.2〉 〈0.6, 0.2, 0.2〉 〈0.4, 0.3, 0.3〉

)
(13)

In order to find the best alternative, we utilize the
existing TOPSIS approach as proposed by [36]. For
it, the following steps of their approach are followed
as

Step 1: The information of each alternative in
SVNS environment is represented in the
form of decision matrix as given in Equa-
tion (13).

Step 2: The positive and negative ideal
solutions are obtained as A+ =
{〈0.5, 0.2, 0.2〉, 〈0.6, 0.2, 0.1〉, 〈0.4, 0.2,

0.3〉} and A− = {〈0.4, 0.3, 0.3〉,
〈0.6, 0.3, 0.2〉, 〈0.3, 0.3, 0.4〉}, respec-
tively.

Step 3: Based on these values, the hamming
distance measures between the alterna-
tives Ai(i = 1, 2) and ideals solutions
are evaluted as d(A1, A

+) = 0.0444,
d(A1, A

−) = 0.0444, d(A2, A
+) =

0.0444 and d(A2, A
−) = 0.0444.

Step 4: Thus, the optimal values of
the relative closeness coefficient
Ri = d(Ai,A

−)
d(Ai,A+)+d(Ai,A−) of each alter-

native Ai(i = 1, 2) are computed as
R1 = 0.5 and R2 = 0.5. Hence, this
method is unable to rank the given
alternatives.

On the other hand, if we utilize the proposed
divergence measure to compute the discrimination
between the alternatives and the ideal solutions
then their measurement values are D(A1|A+) =
0.0137, D(A2|A+) = 0.0167, D(A1|A−) = 0.0167
and D(A2|A−) = 0.0137. Thus, the relative close-
ness coefficient Ri(i = 1, 2) of the alternative Ai (i =
1, 2) is computed by using Equation (12) as R1 =
0.5500 andR2 = 0.4500. SinceR1 > R2 which gives
us that A1 is better alternative than A2. Therefore,
proposed divergence based TOPSIS approach is able
to rank the alternatives in the situation when existing
approach fails.

Example 3.2. Consider two set of SVNSs A1 and A2
defined over the universal set X = {x1, x2, . . . , x5}
as

A1 =
{

〈x1, 0.5, 0.3, 0.2〉, 〈x2, 0.5, 0.2, 0.3〉, 〈x3, 0.9,

0.0, 0.1〉, 〈x4, 0.5, 0.4, 0.1〉, 〈x5, 0.7, 0.1, 0.2〉

}

and

A2 =
{

〈x1, 0.7, 0.2, 0.1〉, 〈x2, 0.5, 0.4, 0.1〉, 〈x3, 0.9,

0.1, 0.0〉, 〈x4, 0.6, 0.3, 0.1〉, 〈x5, 0.8, 0.0, 0.2〉

}

Then the aim of this problem is to classify the
unknown pattern B ∈ SVNS(X) which is defined as

B =
{

〈x1, 0.7, 0.1, 0.2〉, 〈x2, 0.6, 0.3, 0.1〉, 〈x3, 0.7,

0.1, 0.2〉, 〈x4, 0.5, 0.4, 0.1〉, 〈x5, 0.4, 0.5, 0.1〉

}

in one of the class of A1 and A2. For it, if we
apply the existing normalized Hamming (dN ) and
Euclidean (qN ) distances [20] as defined in Equations
(14) and (15) respectively, between the alternatives
Ai(i = 1, 2) and the unknown pattern B

dN (Ai, B) =

1

3n

n∑
j=1

⎧⎪⎪⎨
⎪⎪⎩

|ζAi (xj) − ζB(xj)|
+ |ρAi (xj) − ρB(xj)|
+ |ϑAi (xj) − ϑB(xj)|

⎫⎪⎪⎬
⎪⎪⎭ (14)

and

qN (Ai, B) =√√√√√√√√
1

3n

n∑
j=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
ζAi (xj) − ζB(xj)

)2
+ (ρAi (xj) − ρB(xj)

)2
+ (ϑAi (xj) − ϑB(xj)

)2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(15)

then, we get the measurement values correspond-
ing to the set A1 and A2 as dN (A1, B) =
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dN (A2, B) = 0.1333 and qN (A1, B) = qN (A2, B) =
0.1751. Thus, this existing approach is unable to clas-
sify the pattern B with any one of the class of A1 and
A2. On the other hand, if we apply the proposed diver-
gence measure between the alternative Ai(i = 1, 2)
and B, then we get their values as D(A1|B) = 0.0901
and D(A2|B) = 0.1061. Hence, we conclude that
unknown patternB is most likely to belong to the class
of A2. Therefore, the proposed divergence measure
is successfully work in those cases where the existing
measure fails.

Example 3.3. Consider two SVNSs
A1 = {〈x1, 0.6, 0.1, 0.2〉, 〈x2, 0.5, 0.1, 0.3〉,
〈x3, 0.4, 0.1, 0.1〉} and A2 = {〈x1, 0.5, 0.1 ,0.2〉,
〈x2, 0.4, 0.1, 0.3〉, 〈x3, 0.4, 0.1, 0.1〉} defined
over the universal set X = {x1, x2, x3}. Let the
ideal solution considered by decision maker
is B = {〈x1, 0.6, 0.1, 0.2〉, 〈x2, 0.4, 0.1, 0.3〉,
〈x3, 0.5, 0.1, 0.1〉}. In order to rank these alter-
natives, we apply the existing improved cosine
similarity measures [23], defined in Equations (16)
and (17), as

SC1(Ai, B)

= 1

n

n∑
j=1

cos

⎡
⎢⎢⎣π

2
max

⎛
⎜⎜⎝

|ζAi (xj) − ζB(xj)|,
|ρAi (xj) − ρB(xj)|,
|ϑAi (xj) − ϑB(xj)|

⎞
⎟⎟⎠
⎤
⎥⎥⎦(16)

and

SC2(Ai, B)

= 1

n

n∑
j=1

cos

⎡
⎢⎢⎣π

6

⎛
⎜⎜⎝

|ζAi (xj) − ζB(xj)|
+ |ρAi (xj) − ρB(xj)|
+ |ϑAi (xj) − ϑB(xj)|

⎞
⎟⎟⎠
⎤
⎥⎥⎦ (17)

and hence obtain their corresponding measurement
values are SC1(A1, B) = SC1(A2, B) = 0.3292 and
SC2(A1, B) = SC2(A2, B) = 0.3315. Thus, their
approach is unable to rank the alternatives. On the
other hand, if we compute the proposed divergence
measurement values for these two alternatives, then
we get their respective values are D(A1, B) = 0.0045
and D(A2, B) = 0.0041 and hence conclude that A1
is the best alternative than A3.

Hence, we can say that the proposed divergence
measures, as well as their corresponding TOPSIS
approach, are able to solve the decision-making prob-
lem in a better way under SVNS environment where
the existing studies fail to rank the alternatives.

4. Conclusion

In this manuscript, the theory of SVNS has been
enriched by proposing a new information measure,
called as divergence measure, to evaluate the discrim-
ination between the two SVNSs. Some properties
and the correlations of the measure have been inves-
tigated in detail. A maximizing divergence method
has been presented to determine the optimal criterion
weights under SVN environment. Then, a single-
valued neutrosophic TOPSIS is proposed to solve
the decision-making problems. A practical example
is given to validate its effectiveness and practicality.
From the study, we resolve that the proposed mea-
sure shows its superiority in those cases also where
the existing measures fail to classify the objects. In
the future, we will extend the proposed approach to
the Pythagorean fuzzy set environment [38–40] and
uncertain and fuzzy environment [41–43].
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