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Abstract: In this paper, a novel similarity measure for interval-valued intuitionistic fuzzy sets is
introduced, which is based on the transformed interval-valued intuitionistic triangle fuzzy numbers.
Its superiority is shown by comparing the proposed similarity measure with some existing similarity
measures by some numerical examples. Furthermore, the proposed similarity measure is applied to
deal with pattern recognition and medical diagnosis problems.
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1. Introduction

As a generalization concept of fuzzy set (FS) introduced by Zadeh [1], the definition of intuitionistic
fuzzy set (IFS) was initiated by Atanassov [2] for dealing with vague and uncertain information,
which elaborately describe uncertain information by membership degree, non-membership degree and
hesitancy degree. In [3], Gau and Buehrer presented the definition of vague set. In [4], Bustince and
Burillo have showed that the notion of IFSs and vague sets coincide with each other. In order to deal
with indeterminate and inconsistent information, Smarandache [5] proposed a neutrosophic set (NS).
In the NS, indeterminacy-membership IA(x) is independent, thus making the NS more flexible and
the most suitable for solving some decision-making problems related to the use of incomplete and
imprecise information, uncertainties, predictions and so on. Zhang [6,7] studied algebraic and lattice
structure for neutrosophic sets.

The conception of similarity measure for IFSs is one of the most important subjects for degree of
similarity between objects in IFS theory. Chen [8] proposed the similarity measure based on a vague set
for the first time. Hong [9] introduced a new similarity measure based on vague set and overcame some
drawbacks of Chen’s similarity measure. Szmidt and Kacprzyk [10] extend Hamming distance and
Euclidean distance to construct intuitionistic fuzzy similarity measure. However, Wang and Xin [11]
implied that Szmidt and Kacprzyk’s distance measure [10] were ineffective in some situations.
Grzegorzewski [12] extended some novel similarity measures for IFSs based on Hausdorff distance.
Chen [13] pointed out some defects of Grzegorzewski’s similarity measure and show some counter
examples. On the other hand, some studies defined new similarity measures for IFSs, rather than
extending the well-known distance measures. Li and Cheng [14] presented a new similarity measure
between IFSs and applied it to pattern recognition. Mitchell [15] indicated that similarity measure of
Li and Cheng [14] had some counter-intuitive cases and modified that similarity measure based
on a statistical perspective. Furthermore, Liang and Shi [16] presented some counter instances
to indicate that the similarity measure of Li and Cheng [14] was not suitable for some situations,
and proposed several new similarity measures for IFS. Ye [17] conducted a similarity comparative
study of existing similarity measures for IFSs and proposed a cosine similarity measure and weighted
cosine similarity measure. Xu [18] acquainted a sequence of similarity measures for IFSs and applied
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to solve multiple attribute decision-making problems. Boran et al. [19] proposed a new general
type of similarity measures for IFSs with two parameters, expressing Lp-norm and give its relation
with existing similarity measures. Zhang and Yu [20] presented a new distance measure based on
interval comparison, where the IFSs were respectively transformed into the symmetric triangular fuzzy
numbers. Comparison with the widely used methods indicated that the proposed method contained
more information, with much less loss of information. Luo and Zhao [21] proposed a new distance
measure for IFSs, which is based on a matrix norm and a strictly increasing (or decreasing) binary
function, and applied it to solve pattern recognition problems.

As the development of IFSs, Atanassov introduced interval-valued intuitionistic fuzzy set
(IVIFS) [22], which the membership degree, non-membership degree and hesitancy degree are
represented by subinterval of [0, 1]. It therefore can represent the dynamic character of features
accurately. Due to the advantages of IVIFSs in practical application, various similarity measures based
on IVIFSs were studied extensively by many researchers from different angles and applied to many
areas such as medical diagnosis, pattern recognition problem and so on. Liu [23] proposed a set of
axiomatic definitions for entropy measures between IVIFSs, which extends Szmidt and Kacprzyk’s
axioms formulated for entropy between IFSs. Xu [24] generalized some formulas of similarity measures
of IFSs to IVIFSs. Wei [25] proposed an new similarity measure for IVIFSs, and also applied to
solve problems on pattern recognitions, multi-criteria fuzzy decision-making and medical diagnosis.
Singh [26] introduced a new cosine similarity measure for IVIFSs and applied to pattern recognition.
Khalaf [27] advanced a new approach for medical diagnosis by IVIFSs, which is generalized by the
application of IFS theory. Dhivya [28] presented a new similarity measure for IVIFSs based on the mid
points of transformed triangular fuzzy numbers.

However, there are some drawbacks in some existing similarity measures for IVIFSs, most of
which get counterintuitive results in some situations and they cannot get correct classification
results for dealing with the pattern recognition problems and medical diagnosis problems.
For example, letting A =< [0.20, 0.30], [0.40, 0.60] >, B1 =< [0.30, 0.40], [0.40, 0.60] > and B2 =<

[0.30, 0.40], [0.30, 0.50] > be IVIFSs, we can compute the similarity measures between A and Bi
(i = 1, 2) by Formulas (1), (2) and (4) (see Section 3). Obviously, we have the result B1 6=B2 because the
membership degree of B1 is identical to that of B2, and the non-membership degree of B1 is not identical
to that of B2. Therefore, we should obtain Si(A, B1) 6= Si(A, B2)(i = 1, 2). However, we can obtain that
S1(A, B1) = S1(A, B2) = S2(A, B1) = S2(A, B2) = 0.9 by the Formulas (1) and (2) (for p = 1), which is
not reasonable. Meanwhile, we can get SD(A, B1) = 1 by Formula (4), which does not satisfy the
second axiom of the definition for similarity measure. Therefore, we need to develop a new similarity
measure to overcome these drawbacks.

The rest of the paper is organized as follows: Section 2 reviews some necessary definitions related
to IVIFS. In Section 3, some existing similarity measures are reviewed. In Section 4, a novel similarity
measure is introduced. The geometric interpretation of the new similarity measure and the explanation
of parameters are briefly given in Section 5. Applications in pattern recognition and medical diagnosis
are presented in Section 6. The conclusions for this paper are given in the last section.

2. Preliminary

In this section, we review the basic concepts related to IVIFSs that will be used in this paper.

Definition 1 ([1]). A fuzzy set A in the unverse of discourse X = {x1, x2, . . . , xn} is defined as follows:

A = {< x, µA(x) > |x ∈ X},

where µA(x) : X → [0, 1] is the membership degree.
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Definition 2 ([2]). An intuitionistic fuzzy set A in a universe of discourse X = {x1, x2, . . . , xn} is defined
as follows:

A = {< x, µA(x), νA(x) > |x ∈ X},

where µA(x) : X → [0, 1] and νA(x) : X → [0, 1] are membership and non-membership degree, respectively,
such that: 0 ≤ µA(x) + νA(x) ≤ 1.

The third parameter of intuitionistic fuzzy set A is: πA(x) = 1− µA(x)− νA(x), which is known as the
intuitionistic fuzzy index or the hesitation degree of whether x belongs to A or not. It is obviously seen that
0 ≤ πA(x) ≤ 1. If πA(x) is small; then, knowledge about x is more certain; if πA(x) is great, then knowledge
about x is more uncertain.

Definition 3 ([22]). An interval-valued intuitionistic fuzzy set A in a universe of discourse X =

{x1, x2, . . . , xn} is defined as follows:

A = {< x, µA(x), νA(x) > |x ∈ X} = {< x, [µ−A(x), µ+
A(x)], [ν−A (x), ν+A (x)] > |x ∈ X},

where µA(x) ⊆ [0, 1], νA(x) ⊆ [0, 1], which satisfies 0 ≤ µ+
A(x) + ν+A (x) ≤ 1.

The intervals µA(x) and νA(x) denote the membership degree and non-membership degree, respectively.
Furthermore, for each x ∈ X, we can compute the hesitance degree πA(x) = [π−A (xi), π+

A (xi)] = [1 −
µ+

A(x)− ν+A (x), 1− µ−A(x)− ν−A (x)].

Definition 4 ([29]). For every two IVIFSs A and B in the universe of discourse X, we have the following
relations:

(1): A ⊆ B iff (∀x ∈ X)µ−A(x) ≤ µ−B (x) and µ+
A(x) ≤ µ+

B (x) and ν−A (x) ≥ ν−B (x) and ν+A (x) ≥ ν+B (x).
(2): A∪B =

〈
x, [max(µ−A(x), µ−B (x)), max(µ+

A(x), µ+
B (x))], [min(ν−A (x), ν−B (x)), min(ν+A (x), ν+B (x))]

〉
.

(3): A∩B =
〈

x, [min(µ−A(x), µ−B (x)), min(µ+
A(x), µ+

B (x))], [max(ν−A (x), ν−B (x)), max(ν+A (x), ν+B (x))]
〉

.
(4): A = B iff (∀x ∈ X)µ−A(x) = µ−B (x) and µ+

A(x) = µ+
B (x) and ν−A (x) = ν−B (x) and ν+A (x) = ν+B (x).

(5): Ac =
〈

x, [ν−A (x), ν+A (x)], [µ−A(x), µ+
A(x)]

〉
Definition 5 ([18]). Let A and B be interval-valued intuitionistic fuzzy sets in the unverse of discourse
X = {x1, x2, . . . , xn}, a mapping S : IVIFS(X)× IVIFS(X) → [0, 1], S(A, B) is called to be a similarity
measure between A and B, if S(A, B) satisfies the following properties:

(S1): 0 ≤ S(A, B) ≤ 1,
(S2): S(A, B) = 1 if and only if A = B,
(S3): S(A, B) = S(B, A),
(S4): If A ⊆ B ⊆ C, then S(A, C) ≤ S(A, B), and S(A, C) ≤ S(B, C).

3. Some Existing Similarity Measures

In this section, we review some existing similarity measures.
Let A = {< xi, [µ−A(xi), µ+

A(xi)], [ν−A (xi), ν+A (xi)] > |xi ∈ X}, B = {< xi, [µ−B (xi), µ+
B (xi)], [ν−B (xi),

ν+B (xi)] > |xi ∈ X} be IVIFSs defined on a universe of discourse X = {x1, x2, . . . , xn}. The following
Formulas (1)–(4) are similarity measures based on IVIFSs:

Xu’s similarity measure([24]):

S1(A, B) = 1− p

√
1

4n

n

∑
i=1

(
∣∣µ−A(xi)− µ−B (xi)

∣∣p + ∣∣µ+
A(xi)− µ+

B (xi)
∣∣p + ∣∣ν−A (xi)− ν−B (xi)

∣∣p + ∣∣ν+A (xi)− ν+B (xi)
∣∣p), (1)

S2(A, B) = 1− p

√
1
n

n

∑
i=1

max(
∣∣µ−A(xi)− µ−B (xi)

∣∣p ,
∣∣µ+

A(xi)− µ+
B (xi)

∣∣p ,
∣∣ν−A (xi)− ν−B (xi)

∣∣p ,
∣∣ν+A (xi)− ν+B (xi)

∣∣p). (2)
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Wei’s similarity measure ([25]):

SW(A, B) =
1
n

n

∑
i=1

2−min(µ−i , ν−i )−min(µ+
i , ν+i )

2 + max(µ−i , ν−i ) + max(µ+
i , ν+i )

, (3)

where

µ−i =
∣∣µ−A(xi)− µ−B (xi)

∣∣ , µ+
i =

∣∣µ+
A(xi)− µ+

B (xi)
∣∣ ,

ν−i =
∣∣ν−A (xi)− ν−B (xi)

∣∣ , ν+i =
∣∣ν+A (xi)− ν+B (xi)

∣∣ .

Dhivya’s similarity measure ([28]):

SD(A, B) = 1− 1
n ∑n

i=1(
1
2 (|ψ

−
A (xi)− ψ−B (xi)|+ |ψ+

A (xi)− ψ+
B (xi)|) · (1− σA(xi)+σB(xi)

2 )+

|σA(xi)− σB(xi)| · ( σA(xi)+σB(xi)
2 )),

(4)

where

ψ−A =
µ−A(xi) + 1− ν−A (xi)

2
, ψ+

A =
µ+

A(xi) + 1− ν+A (xi)

2
,

ψ−B =
µ−B (xi) + 1− ν−B (xi)

2
, ψ+

B =
µ+

B v + 1− ν+B (xi)

2
,

σA(xi) = 1− 1
2
(µ−A(xi) + µ+

A(xi) + ν−A (xi) + ν+A (xi)),

σB(xi) = 1− 1
2
(µ−B (xi) + µ+

B (xi) + ν−B (xi) + ν+B (xi)).

4. A New Similarity Measure between Interval-Valued Intuitionistic Fuzzy Sets

Definition 6. Let A, B be IVIFSs defined in universe of discourse X = {x1, x2, . . . , xn}, and A = {<
xi, [µ−A(xi), µ+

A(xi)], [ν−A (xi), ν+A (xi)] > |xi ∈ X}, B = {< xi, [µ−B (xi), µ+
B (xi)], [ν−B (xi), ν+B (xi)] > |xi ∈ X}.

We call

Sp(A, B) = 1−


1

2n

n
∑

i=1

∣∣∣∣ t1[(µ
−
A(xi)−µ−B (xi))+(µ+

A(xi)−µ+
B (xi))]−[(ν−A (xi)−ν−B (xi))+(ν+A (xi)−ν+B (xi))]

2(t1+1)

∣∣∣∣p
+

∣∣∣∣ t2[(ν
−
A (xi)−ν−B (xi))+(ν+A (xi)−ν+B (xi))]−[(µ−A(xi)−µ−B (xi))+(µ+

A(xi)−µ+
B (xi))]

2(t2+1)

∣∣∣∣p


1
p

(5)

a similarity measure between A and B. t1, t2, p ∈ [1,+∞). Here, three parameters: p is the Lp-norm and t1, t2

identifies the level of uncertainty.

Theorem 1. Sp(A, B) is a similarity measure between IVIFSs A and B.

Proof. Let A, B, C be IVIFSs defined on a universe of discourse X = {x1, x2, . . . , xn}, and A = {<
xi, [µ−A(xi), µ+

A(xi)], [ν−A (xi), ν+A (xi)] > |xi ∈ X}, B = {< xi, [µ−B (xi), µ+
B (xi)], [ν−B (xi), ν+B (xi)] > |xi ∈ X},

and C = {< xi, [µ−C (xi), µ+
C (xi)], [ν−C (xi), ν+C (xi)] > |xi ∈ X}.

(1) Firstly, we know that, for arbitrary xi ∈ X:

t1[(µ
−
A(xi)− µ−B (xi)) + (µ+

A(xi)− µ+
B (xi))]− [(ν−A (xi)− ν−B (xi)) + (ν+A (xi)− ν+B (xi))]

= [t1(µ
−
A(xi)− µ−B (xi))− (ν−A (xi)− ν−B (xi))] + [t1(µ

+
A(xi)− µ+

B (xi))− (ν+A (xi)− ν+B (xi))].
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For µ−A(xi), µ−B (xi), ν−A (xi), ν−B (xi) ∈ [0, 1], then we have −t1 ≤ t1(µ
−
A(xi) − µ−B (xi)) ≤ t1,

−1 ≤ ν−A (xi)− ν−B (xi) ≤ 1. Thus, we obtain that

−(t1 + 1) ≤ t1(µ
−
A(xi)− µ−B (xi))− (ν−A (xi)− ν−B (xi)) ≤ t1 + 1.

Similarly,
−(t1 + 1) ≤ t1(µ

+
A(xi)− µ+

B (xi))− (ν+A (xi)− ν+B (xi)) ≤ t1 + 1.

Thus,

0 ≤
∣∣∣∣∣ t1[(µ

−
A(xi)− µ−B (xi)) + (µ+

A(xi)− µ+
B (xi))]− [(ν−A (xi)− ν−B (xi)) + (ν+A (xi)− ν+B (xi))]

2(t1 + 1)

∣∣∣∣∣
p

≤ 1.

By the same way, we have

0 ≤
∣∣∣∣∣ t2[(ν

−
A (xi)− ν−B (xi)) + (ν+A (xi)− ν+B (xi))]− [(µ−A(xi)− µ−B (xi)) + (µ+

A(xi)− µ+
B (xi))]

2(t2 + 1)

∣∣∣∣∣
p

≤ 1.

Therefore,

0 ≤


1

2n

n
∑

i=1

∣∣∣∣ t1[(µ
−
A(xi)−µ−B (xi))+(µ+

A(xi)−µ+
B (xi))]−[(ν−A (xi)−ν−B (xi))+(ν+A (xi)−ν+B (xi))]

2(t1+1)

∣∣∣∣p
+

∣∣∣∣ t2[(ν
−
A (xi)−ν−B (xi))+(ν+A (xi)−ν+B (xi))]−[(µ−A(xi)−µ−B (xi))+(µ+

A(xi)−µ+
B (xi))]

2(t2+1)

∣∣∣∣p
 ≤ 1.

That is, 0 ≤ Sp(A, B) ≤ 1.
(2) A = B, if and only if for arbitrary xi ∈ X, we have µ−A(xi) = µ−B (xi), µ+

A(xi) = µ+
B (xi),

ν−A (xi) = ν−B (xi), ν+A (xi) = ν+B (xi). It is obvious that Sp(A, B) = 1.
(3) For Sp(A, B), we have∣∣t1[(µ

−
A(xi)− µ−B (xi)) + (µ+

A(xi)− µ+
B (xi))]− [(ν−A (xi)− ν−B (xi)) + (ν+A (xi)− ν+B (xi))]

∣∣p
=

∣∣−t1[(µ
−
A(xi)− µ−B (xi)) + (µ+

A(xi)− µ+
B (xi))] + [(ν−A (xi)− ν−B (xi)) + (ν+A (xi)− ν+B v)]

∣∣p
=

∣∣t1[(µ
−
B (xi)− µ−A(xi)) + (µ+

B (xi)− µ+
A(xi))]− [(ν−B (xi)− ν−A (xi))− (ν+B (xi)− ν+A (xi))]

∣∣p .

Similarly,∣∣t2[(ν
−
A (xi)− ν−B (xi)) + (ν+A (xi)− ν+B (xi))]− [(µ−A(xi)− µ−B (xi)) + (µ+

A(xi)− µ+
B (xi))]

∣∣p
=

∣∣−t2[(ν
−
A (xi)− ν−B (xi)) + (ν+A (xi)− ν+B (xi))] + [(µ−A(xi)− µ−B (xi)) + (µ+

A(xi)− µ+
B (xi))]

∣∣p
=

∣∣t2[(ν
−
B (xi)− ν−A (xi))− (ν+B (xi)− ν+A (xi))]− [(µ−B (xi)− µ−A(xi))− (µ+

B (xi)− µ+
A(xi))]

∣∣p .

Thus, Sp(A, B) = Sp(B, A).
(4) For A, B, C be IVIFSs, the similarity measure A and B, and A and C are the following:

Sp(A, B) = 1−


1

2n

n
∑

i=1

∣∣∣∣ t1[(µ
−
A(xi)−µ−B (xi))+(µ+

A(xi)−µ+
B (xi))]−[(ν−A (xi)−ν−B (xi))+(ν+A (xi)−ν+B (xi))]

2(t1+1)

∣∣∣∣p
+

∣∣∣∣ t2[(ν
−
A (xi)−ν−B (xi))+(ν+A (xi)−ν+B (xi))]−[(µ−A(xi)−µ−B (xi))+(µ+

A(xi)−µ+
B (xi))]

2(t2+1)

∣∣∣∣p


1
p

,

Sp(A, C) = 1−


1

2n

n
∑

i=1

∣∣∣∣ t1[(µ
−
A(xi)−µ−C (xi))+(µ+

A(xi)−µ+
C (xi))]−[(ν−A (xi)−ν−C (xi))+(ν+A (xi)−ν+C (xi))]

2(t1+1)

∣∣∣∣p
+

∣∣∣∣ t2[(ν
−
A (xi)−ν−C (xi))+(ν+A (xi)−ν+C (xi))]−[(µ−A(xi)−µ−C (xi))+(µ+

A(xi)−µ+
C (xi))]

2(t2+1)

∣∣∣∣p


1
p

.
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If A ⊆ B ⊆ C, then µ−A(xi) ≤ µ−B (xi) ≤ µ−C (xi), µ+
A(xi) ≤ µ+

B (xi) ≤ µ+
C (xi), ν−C (xi) ≤ ν−B (xi) ≤

ν−A (xi), and ν+C (xi) ≤ ν+B (xi) ≤ ν+A (xi). Then, we have∣∣t1[(µ
−
A(xi)− µ−B (xi)) + (µ+

A(xi)− µ+
B (xi))]− [(ν−A (xi)− ν−B (xi)) + (ν+A (xi)− ν+B (xi))]

∣∣
= t1[(µ

−
B (xi)− µ−A(xi)) + (µ+

B (xi)− µ+
A(xi))] + [(ν−A (xi)− ν−B (xi)) + (ν+A (xi)− ν+B (xi))]

≤ t1[(µ
−
C (xi)− µ−A(xi)) + (µ+

C (xi)− µ+
A(xi))] + [(ν−A (xi)− ν−C (xi)) + (ν+A (xi)− ν+C (xi))]

=
∣∣t1[(µ

−
A(xi)− µ−C (xi)) + (µ+

A(xi)− µ+
C (xi))]− [(ν−A (xi)− ν−C (xi)) + (ν+A (xi)− ν+C (xi))]

∣∣ .

By the same reason, we have∣∣t2[(ν
−
A (xi)− ν−B (xi)) + (ν+A (xi)− ν+B (xi))]− [(µ−A(xi)− µ−B (xi)) + (µ+

A(xi)− µ+
B (xi))]

∣∣
≤

∣∣t2[(ν
−
A (xi)− ν−C (xi)) + (ν+A (xi)− ν+C (xi))]− [(µ−A(xi)− µ−C (xi)) + (µ+

A(xi)− µ+
C (xi))]

∣∣ .

Therefore, Sp(A, B) ≥ Sp(A, C), and Sp(B, C) ≥ Sp(A, C).
In conclusion, Sp(A, B) is a similarity measure between IVIFSs A and B.

Remark 1. If interval-valued intuitionistic fuzzy sets A and B degenerates to intuitionistic fuzzy set, i.e.,
µ−A = µ+

A , ν−A = ν+A , and µ−B = µ+
B , ν−B = ν+B , then

Sp(A, B) = 1−
{

1
n

n

∑
i=1

∣∣∣∣ t1(µA − µB)− (νA − νB)

2(t1 + 1)

∣∣∣∣p + ∣∣∣∣ t2(νA − νB)− (µA − µB)

2(t2 + 1)

∣∣∣∣p
} 1

p

(6)

is a new similarity measure between intuitionistic fuzzy sets A and B.

Remark 2. In the environment of IFSs, and when t1 = t2 = t, the proposed similarity measure

Sp(A, B) = 1−
{

1
2n(t + 1)p

n

∑
i=1

(|t(µA − µB)− (νA − νB)|p + |t(νA − νB)− (µA − µB)|p)
} 1

p

(7)

is the similarity measure between intuitionistic fuzzy sets A and B in the literature ([19]).

Example 1. Supposing that Ai and Bi are two IVIFSs, we can compute the similarity measures between Ai
and Bi by different similarity measures listed in Table 1.

Table 1. Comparison of similarity measures in the environment of IVIFSs (interval-valued intuitionistic
fuzzy set) (counter-intuitive cases are in bold type; p = 1 in S1 and S2; p = 1, t1 = 2, t2 = 3 in Sp).

1 2 3 4

Ai < [0.20, 0.30], [0.40, 0.60] > < [0.20, 0.30], [0.40, 0.60] > < [0.20, 0.30], [0.30, 0.50] > < [0.20, 0.30], [0.30, 0.50] >
Bi < [0.30, 0.40], [0.40, 0.60] > < [0.30, 0.40], [0.30, 0.50] > < [0.30, 0.40], [0.40, 0.60] > < [0.30, 0.40], [0.30, 0.50] >

S1 [24] 0.90 0.90 0.90 0.95
S2 [24] 0.90 0.90 0.90 0.90
SD [28] 1.00 0.98 0.95 0.94
Sp 0.95 0.90 0.80 0.94

In Table 1, by comparing the first column and the second column, we can find that Si(A1, B1) =

Si(A2, B2)(i = 1, 2) when A1 = A2, B1 6=B2. Similarly, by comparing the third column and the fourth
column, we can find S2(A3, B3) = S2(A4, B4) when A3 = A4, B3 6=B4. Therefore, we can determine that the
similarity measure S1 and S2 is not reasonable. Meanwhile, we find that SD(A1, B1) = 1 when A1 6=B1, which
is not satisfy the second axiom of the definition for similarity measure. Most importantly, we can observe that
the proposed similarity measure Sp can overcome these drawbacks. Therefore, our novel similarity measure for
IVIFSs is more reasonable than others.
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5. Geometric Interpretation of the Novel Similarity Measure

In this section, we briefly interpret the proposed similarity measure and explain the functionality
of parameters t1, t2 and p defined in the proposed similarity measure.

Let A =< [µ−A , µ+
A ], [ν

−
A , ν+A ] >, B =< [µ−B , µ+

B ], [ν
−
B , ν+B ] > be interval-valued intuitionistic

fuzzy numbers. We can split A into two intuitionistic fuzzy numbers, i.e., A− =< µ−A , ν−A > and
A+ =< µ+

A , ν+A >. For intuitionistic fuzzy set A−, µ−A can be equal to any value in [µ−A , µ−A + π+
A ] and

ν−A can be equal to any value in [ν−A , ν−A + π+
A ], where π+

A = 1− µ−A − ν−A . Similarly, µ+
A can be equal to

any value in [µ+
A , µ+

A + π−A ] and ν+A can be equal to any value in [ν+A , ν+A + π−A ] for intuitionistic fuzzy
set A+, where π−A = 1− µ+

A − ν+A . Then, the possible values for A− and A+ illustrated in Figure 1 as
the two triangles. As the center of gravity, D− and D+ are the most informative points in the triangle
A− and A+, respectively.

However, < µ−A +
π+

A
t1+1 , ν−A +

π+
A

t2+1 > (t1, t2∈[1,+∞)) can represent any point in the triangle A−.

Especially when t1 = t2 = t, < µ−A +
π+

A
t+1 , ν−A +

π+
A

t+1 > can denote the point of middle line of the

triangle bevel. In the same way, < µ+
A +

π−A
t1+1 , ν+A +

π−A
t2+1 > (t1, t2∈[1,+∞)) represents any point in the

triangle A+.
The following is the calculation process:

Firstly, A
′− =

〈
µ−A +

π+
A

t1+1 , ν−A +
π+

A
t2+1

〉
denotes possible points of triangle A−. By the same token,

A
′+ =

〈
µ+

A +
π−A

t1+1 , ν+A +
π−A

t2+1

〉
denotes possible points of triangle A+. Similarly, we can obtain that

B
′− =

〈
µ−B +

π+
B

t1+1 , ν−B +
π+

B
t1+1

〉
and B

′+ =

〈
µ+

B +
π−B

t1+1 , ν+B +
π−B

t1+1

〉
denote any points in triangles B−

and B+, respectively.
Secondly, the average of A

′− and A
′+ can be computed as follows:

A
′′
=< µ

′′
A, ν

′′
A >=

〈
2 + t1(µ

−
A + µ+

A)− (ν−A + ν+A )

2(t1 + 1)
,

2 + t2(µ
−
A + µ+

A)− (ν−A + ν+A )

2(t2 + 1)

〉
.

We can also get the mean value of B
′− and B

′+:

B
′′
=< µ

′′
B, ν

′′
B >=

〈
2 + t1(µ

−
B + µ+

B )− (ν−B + ν+B )

2(t1 + 1)
,

2 + t2(µ
−
B + µ+

B )− (ν−B + ν+B )

2(t2 + 1)

〉
.

The absolute difference between A
′′

and B
′′

is calculated as follows:∣∣∣µ′′A − µ
′′
B

∣∣∣ = ∣∣∣∣∣ t1[(µ
−
A − µ−B ) + (µ+

A − µ+
B )]− [(ν−A − ν−B ) + (ν+A − ν+B )]

2(t1 + 1)

∣∣∣∣∣ ,

∣∣∣ν′′A − ν
′′
B

∣∣∣ = ∣∣∣∣∣ t2[(ν
−
A − ν−B ) + (ν+A − ν+B )]− [(µ−A − µ−B ) + (µ+

A − µ+
B )]

2(t2 + 1)

∣∣∣∣∣ .

∣∣∣µ′′A − µ
′′
B

∣∣∣ and
∣∣∣ν′′A − ν

′′
B

∣∣∣ to the power of p is equal to the following:

∣∣∣µ′′A − µ
′′
B

∣∣∣p =

∣∣t1[(µ
−
A − µ−B ) + (µ+

A − µ+
B )]− [(ν−A − ν−B ) + (ν+A − ν+B )]

∣∣p
2p(t1 + 1)p ,

∣∣∣ν′′A − ν
′′
B

∣∣∣p =

∣∣t2[(ν
−
A − ν−B ) + (ν+A − ν+B )]− [(µ−A − µ−B ) + (µ+

A − µ+
B )]
∣∣p

2p(t2 + 1)p .
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The average value of
∣∣∣µ′′A − µ

′′
B

∣∣∣p and
∣∣∣ν′′A − ν

′′
A

∣∣∣p is calculated as follows:

1
2

(∣∣∣µ′′A − µ
′′
B

∣∣∣p + ∣∣∣ν′′A − ν
′′
A

∣∣∣p)
=

1
2

∣∣∣∣∣ t1[(µ
−
A − µ−B ) + (µ+

A − µ+
B )]− [(ν−A − ν−B ) + (ν+A − ν+B )]

2(t1 + 1)

∣∣∣∣∣
p

+
1
2

∣∣∣∣∣ t2[(ν
−
A − ν−B ) + (ν+A − ν+B )]− [(µ−A − µ−B ) + (µ+

A − µ+
B )]

2(t2 + 1)

∣∣∣∣∣
p

.

Figure 1. Possible value for A− and A+.

The p root of the average value of
∣∣∣µ′′A − µ

′′
B

∣∣∣p and
∣∣∣ν′′A − ν

′′
A

∣∣∣p is calculated as:

{
1
2

(∣∣∣µ′′A − µ
′′
B

∣∣∣p + ∣∣∣ν′′A − ν
′′
B

∣∣∣p)} 1
p
=


∣∣∣∣ t1[(µ

−
A−µ−C )+(µ+

A−µ+
C )]−[(ν−A−ν−C )+(ν+A−ν+C )]

2(t1+1)

∣∣∣∣p
+

∣∣∣∣ t2[(ν
−
A−ν−C )+(ν+A−ν+C )]−[(µ−A−µ−C )+(µ+

A−µ+
C )]

2(t2+1)

∣∣∣∣p


1
p

.

For an interval-valued intuitionistic fuzzy set instead of interval-valued intuitionistic fuzzy
number, i.e., there is more than one feature in the discourse of universe, such as X = {x1, x2, . . . , xn}:

Sp(A, B) = 1−


1

2n

n
∑

i=1

∣∣∣∣ t1[(µ
−
A(xi)−µ−B (xi))+(µ+

A(xi)−µ+
B (xi))]−[(ν−A (xi)−ν−B (xi))+(ν+A (xi)−ν+B (xi))]

2(t1+1)

∣∣∣∣p
+

∣∣∣∣ t2[(ν
−
A (xi)−ν−B (xi))+(ν+A (xi)−ν+B (xi))]−[(µ−A(xi)−µ−B (xi))+(µ+

A(xi)−µ+
B (xi))]

2(t2+1)

∣∣∣∣p


1
p

.

In particular, A
′− = D− =

〈
µ−A +

1−µ−A−ν−A
3 , ν−A +

1−µ−A−ν−A
3

〉
and A

′+ = D+ =〈
µ+

A +
1−µ+

A−ν+A
3 , ν+A +

1−µ+
A−ν+A
3

〉
when t1 = t2 = 2. Without a doubt, D− and D+ are the most

concentrated points of information in triangle A− and A+, respectively; therefore, they are also the
most significant points in all possible meaningful points.
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6. Applications

In this section, the proposed similarity measure is used to solve the real life problems under the
IVIFSs environment and obtained results have been compared with some existing similarity measures.

6.1. Pattern Recognition

6.1.1. Algorithms for Pattern Recognition

Letting X = {x1, x2, . . . , xn} be a finite universe of discourse, there exists m patterns
which are denoted by IVIFSs Aj = {< x1, [µ−Aj

(x1), µ+
Aj
(x1)], [ν−Aj

(x1), ν+Aj
(x1)] >, . . . ,<

x1, [µ−Aj
(xn), µ+

Aj
(xn)], [ν−Aj

(xn), ν+Aj
(xn)] > |x1, . . . , xn ∈ X} (j = 1, 2, . . . , m) and there is a test sample

to be classified which is denoted by an IVIFS B = {< x1, [µ−B (x1), µ+
B (x1)], [ν−B (x1), ν+B (x1)] >, . . . ,<

x1, [µ−B (xn), µ+
B (xn)], [ν−B (xn), ν+B (xn)] > |x1, . . . , xn ∈ X}. The recognition process is as follows:

Step 1. Calculate the similarity measure S(B, Aj) between B and Aj(j = 1, . . . , m).
Step 2. Choose the maximum one S(B, Aj0) from S(B, Aj) (j = 1, 2, . . . , m), i.e., S(B, Aj0) =

max
1≤j≤m

S(B, Aj). Then, the test sample B is classified the pattern Aj0 .

6.1.2. Applications for Pattern Recognition

Example 2. Assume that there are four classes of ores Ai(i = 1, 2, 3, 4) in the area developed by
a coal mine company, for which the related feature information are expressed by IVIFSs, and Ai =

{< x1,
[
µ−Ai

(x1), µ+
Ai
(x1)

]
,
[
ν−Ai

(x1), ν+Ai
(x1)

]
>, . . . ,< x4,

[
µ−Ai

(x4), µ+
Ai
(x4)

]
,
[
ν−Ai

(x4), ν+Ai
(x4)

]
>

|x1, x2, x3, x4 ∈ X}, which are presented in Table 2. Now, there is an unknown ore B and our aim is to
classify B into the four kinds of ores above.

Table 2. Feature matrix of A1, A2, A3, A4 and B.

Feature1 Feature2 Feature3 Feature4

A1 < [0.10, 0.50], [0.20, 0.30] > < [0.10, 0.30], [0.00, 0.20] > < [0.30, 0.50], [0.20, 0.40] > < [0.20, 0.50], [0.10, 0.30] >
A2 < [0.20, 0.40], [0.15, 0.35] > < [0.20, 0.20], [0.05, 0.15] > < [0.20, 0.60], [0.30, 0.30] > < [0.30, 0.40], [0.15, 0.25] >
A3 < [0.15, 0.30], [0.30, 0.40] > < [0.20, 0.40], [0.50, 0.60] > < [0.50, 0.60], [0.15, 0.35] > < [0.25, 0.45], [0.30, 0.40] >
A4 < [0.20, 0.35], [0.10, 0.65] > < [0.35, 0.60], [0.05, 0.30] > < [0.15, 0.30], [0.40, 0.55] > < [0.15, 0.25], [0.45, 0.55] >
B < [0.30, 0.40], [0.10, 0.50] > < [0.10, 0.40], [0.25, 0.40] > < [0.20, 0.30], [0.10, 0.35] > < [0.15, 0.40], [0.20, 0.50] >

Compute the similarity measures S(Ai, B) between B and Ai. By analyzing the computed results in Table 3,
we can easily see that, if S1 is used for pattern recognition, we can obtain that S1(A1, B) = S1(A2, B) =

S1(A4, B) > S1(A3, B). In this way, we can not classify the sample B into a certain pattern accurately. If SW is
used for pattern recognition, we can obtain that SW(A2, B) = SW(A4, B) > SW(A1, B) = SW(A3, B). In this
way, we can not make sure if the sample B belongs to one of A2 and A4. If we use SD for pattern recognition, we
can get S(A3, B) = S(A4, B) > S(A2, B) > S(A1, B). In this way, we can not classify the sample B into one
of A3 and A4. If we use Sp for pattern recognition, we can get S(A1, B) > S(A2, B) > S(A3, B) > S(A4, B).
According to the principle of recognition, S2 and Sp can get the same recognition result, i.e., the sample B can be
classified into the pattern A3. However, we can not distinguish which one is bigger between A2 and A4 when
using S2 to calculate the similarity measure. Therefore, we can assign the sample B to the pattern A3.
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Table 3. Pattern recognition result under different similarity measures (counter-intuitive cases are in
bold type; p = 1 in S1 and S2; p = 1, t1 = 2, t2 = 3 in Sp; N.A. means method is not applicable).

S(A1, B) S(A2, B) S(A3, B) S(A4, B) Classification Results

S1 [24] 0.87 0.87 0.86 0.87 N.A.
S2 [24] 0.75 0.76 0.79 0.76 A3
SW [25] 0.78 0.79 0.78 0.79 N.A.
SD [28] 0.82 0.86 0.88 0.88 N.A.
Sp 0.82 0.81 0.88 0.75 A3

Example 3 ([30]). In this example, a pattern recognition example about classification of building materials
is used to illustrate the proposed similarity measure. Suppose that there are four classes of building
material, which are denoted by the IVIFSs Aj = {< x1, [µ−Aj

(x1), µ+
Aj
(x1)], [ν−Aj

(x1), ν+Aj
(x1)] >, . . . ,<

x12, [µ−Aj
(x12), µ+

Aj
(x12)], [ν−Aj

(x12), ν+Aj
(x12)] > |x1, . . . , x12 ∈ X} (j = 1, . . . , 4) in the feature space

X = {x1, x2, . . . , x12}, and there is an unknown pattern B:

A1 = {< x1, [0.1, 0.2], [0.5, 0.6] >,< x2, [0.1, 0.2], [0.7, 0.8] >,< x3, [0.5, 0.6], [0.3, 0.4] >,

< x4, [0.8, 0.9], [0.0, 0.1] >,< x5, [0.4, 0.5], [0.3, 0.4] >,< x6, [0.0, 0.1], [0.8, 0.9] >,

< x7, [0.3, 0.4], [0.5, 0.6] >,< x8, [1.0, 1.0], [0.0, 0.0] >,< x9, [0.2, 0.3], [0.6, 0.7] >,

< x10, [0.4, 0.5], [0.4, 0.5] >,< x11, [0.7, 0.8], [0.1, 0.2] >,< x12, [0.4, 0.5], [0.4, 0.5] >},

A2 = {< x1, [0.5, 0.6], [0.3, 0.4] >,< x2, [0.6, 0.7], [0.1, 0.2] >,< x3, [1.0, 1.0], [0.0, 0.0] >,

< x4, [0.1, 0.2], [0.6, 0.7] >,< x5, [0.0, 0.1], [0.8, 0.9] >,< x6, [0.7, 0.8], [0.1, 0.2] >,

< x7, [0.5, 0.6], [0.3, 0.4] >,< x8, [0.6, 0.7], [0.2, 0.3] >,< x9, [1.0, 1.0], [0.0, 0.0] >,

< x10, [0.1, 0.2], [0.7, 0.8] >,< x11, [0.0, 0.1], [0.8, 0.9] >,< x12, [0.7, 0.8], [0.1, 0.2] >},

A3 = {< x1, [0.4, 0.5], [0.3, 0.4] >,< x2, [0.6, 0.7], [0.2, 0.3] >,< x3, [0.9, 1.0], [0.0, 0.0] >,

< x4, [0.0, 0.1], [0.8, 0.9] >,< x5, [0.0, 0.1], [0.8, 0.9] >,< x6, [0.6, 0.7], [0.2, 0.3] >,

< x7, [0.1, 0.2], [0.7, 0.8] >,< x8, [0.2, 0.3], [0.6, 0.7] >,< x9, [0.5, 0.6], [0.2, 0.4] >,

< x10, [1.0, 1.0], [0.0, 0.0] >,< x11, [0.3, 0.4], [0.4, 0.5] >,< x12, [0.0, 0.1], [0.8, 0.9] >},

A4 = {< x1, [1.0, 1.0], [0.0, 0.0] >,< x2, [1.0, 1.0], [0.0, 0.0] >,< x3, [0.8, 0.9], [0.0, 0.1] >,

< x4, [0.7, 0.8], [0.1, 0.2] >,< x5, [0.0, 0.1], [0.7, 0.9] >,< x6, [0.0, 0.1], [0.8, 0.9] >,

< x7, [0.1, 0.2], [0.7, 0.8] >,< x8, [0.1, 0.2], [0.7, 0.8] >,< x9, [0.4, 0.5], [0.3, 0.4] >,

< x10, [1.0, 1.0], [0.0, 0.0] >,< x11, [0.3, 0.4], [0.4, 0.5] >,< x12, [0.0, 0.1], [0.8, 0.9] >},

B = {< x1, [0.9, 1.0], [0.0, 0.0] >,< x2, [0.9, 1.0], [0.0, 0.0] >,< x3, [0.7, 0.8], [0.1, 0.2] >,

< x4, [0.6, 0.7], [0.1, 0.2] >,< x5, [0.0, 0.1], [0.8, 0.9] >,< x6, [0.1, 0.2], [0.7, 0.8] >,

< x7, [0.1, 0.2], [0.7, 0.8] >,< x8, [0.1, 0.2], [0.7, 0.8] >,< x9, [0.4, 0.5], [0.3, 0.4] >,

< x10, [1.0, 1.0], [0.0, 0.0] >,< x11, [0.3, 0.4], [0.4, 0.5] >,< x12, [0.0, 0.1], [0.7, 0.9] >}.

Calculate the similarity measure S(Aj, B) between IVIFSs Aj (j = 1, 2, 3, 4) and B by use of Formulas (1)–(5).
It is obvious that the similarity measure in the literature ([30]) is the special case of S1 and S2, and the computed
result is the same as ([30]). According to Table 4 and the recognition principle, the unknown pattern can be
classified properly in A4 by the computation of similarity measure. This conclusion coincides with that in [30].
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Table 4. Pattern recognition results under different similarity measures (counter-intuitive cases are in
bold type; p = 1 in S1 and S2, p = 1, t1 = 2, t2 = 3 in Sp).

S(A1, B) S(A2, B) S(A3, B) S(A4, B) Recognition Results

S1 [24] 0.59 0.58 0.81 0.97 A4
S2 [24] 0.53 0.53 0.79 0.94 A4
SW [25] 0.48 0.47 0.74 0.94 A4
SD [28] 0.64 0.56 0.83 0.98 A4
Sp 0.60 0.58 0.85 0.97 A4

6.2. Applications for Medical Diagnosis

Researchers proposed a lot of methods from different points of view to deal with problems of
medical diagnosis. Refs. [27,31–33] presented several ways to deal with the problems of medical
diagnosis. In this section, the methods of pattern recognition are used for solving medical diagnosis
problems, i.e., patients are unknown test samples, diseases are several patterns, and the symptom set
is the set universe of discourse. Our aim is to classify patients in one of the illnesses, respectively.

Example 4. Let A = {A1 (Viral fever), A2 (Typhoid), A3 (Pneumonia), A4 (Stomach problem)} be a set of
diagnoses and X = {x1 (Temperature), x2 (Cough), x3 (Headache), x4 (Stomach pain)} be a set of symptoms.
The disease–symptom matrix that is represented by IVIFSs is listed in Table 5.

Table 5. Disease–symptom matrix.

x1 (Temperature) x2 (Cough) x3 (Headache) x4 (Stomach Pain)

A1 (Viral fever) < [0.8, 0.9], [0.0, 0.1] > < [0.7, 0.8], [0.1, 0.2] > < [0.5, 0.6], [0.2, 0.3] > < [0.6, 0.8], [0.1, 0.2] >
A2 (Typhoid) < [0.5, 0.6], [0.1, 0.3] > < [0.8, 0.9], [0.0, 0.1] > < [0.6, 0.8], [0.1, 0.2] > < [0.4, 0.6], [0.1, 0.2] >
A3 (Pneumonia) < [0.7, 0.8], [0.1, 0.2] > < [0.7, 0.9], [0.0, 0.1] > < [0.4, 0.6], [0.2, 0.4] > < [0.3, 0.5], [0.2, 0.4] >
A4 (Stomach problem) < [0.8, 0.9], [0.0, 0.1] > < [0.7, 0.8], [0.1, 0.2] > < [0.7, 0.9], [0.0, 0.1] > < [0.8, 0.9], [0.0, 0.1] >

Suppose the patient B can be represented as:
B = {< x1, [0.4, 0.5], [0.1, 0.2] >,< x2, [0.7, 0.8], [0.1, 0.2] >,< x3, [0.9, 0.9], [0.0, 0.1] >,<

x4, [0.3, 0.5], [0.2, 0.4] >}.
Our aim is to classify the patient B in one of the illnesses A1, A2, A3 and A4. Then, we can have the

following results in the environment of IVIFSs, which are listed in Table 6.

Table 6. Computed results under different similarity measures (counter-intuitive cases are in bold type;
p = 1 in S1 and S2; p = 1, t1 = 2, t2 = 3 in Sp).

S(A1, B) S(A2, B) S(A3, B) S(A4, B) Recognition Result

S1 [24] 0.81 0.89 0.86 0.84 A2
S2 [24] 0.73 0.80 0.78 0.73 A2
SW [25] 0.82 0.80 0.79 0.77 A2
SD [28] 0.82 0.91 0.86 0.84 A2
Sp 0.83 0.89 0.87 0.85 A2

Considering the recognition principle of the maximum similarity degree for the IVIFSs, we can obtain the
consequence that the similarity measure between A2 and B is the largest one. However, the similarity measures
S2 could not distinguish which one is bigger between A1 and A4. Thus, we can classify the patient B to illness
A2 due to the recognition principle. Therefore, we can diagnose that the patient’s disease is typhoid.

7. Conclusions

In this paper, a novel similarity measure for IVIFSs is proposed, which is obtained by splitting an
IVIFS into two IFSs and computing the average value of the p power of any points in two triangles
composed of the two intuitionistic fuzzy sets. Its superiority is presented by comparing the developed
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similarity measure with some existing similarity measures. Thus, we can use the similarity measure to
deal with the problems with vagueness and uncertainty. For example, pattern recognition, medical
diagnosis, game theory and so on.

In fact, we can choose different values of the three parameters (t1, t2 and p in Formula (5)) when
facing different problems. However, there are some difficulties when choosing the value of parameters.
This is also a problem to be solved in the future.

Author Contributions: M.L. initiated the research and provide the framework of this paper. J.L. wrote and
complete this paper with M.L.’s validity and helpful suggeations.

Acknowledgments: The authors would like to thank the reviewers for their valuable comments and suggestions.
This research was supported by the National Natural Science Foundation of China (Grant No. 61773019).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
2. Atanassov, K.T.; Rangasamy, P. Intuitionistic Fuzzy Sets. Fuzzy Sets Syst. 1986, 20, 87–96. [CrossRef]
3. Gau, W.L.; Buehrer, D.J. Vague sets. IEEE Trans. Syst. Man Cybern. 1993, 23, 610–614. [CrossRef]
4. Bustince, H.; Burillo, P. Vague sets are intuitionistic fuzzy sets. Fuzzy Sets Syst. 1996, 79, 403–405. [CrossRef]
5. Smarandache, F. A Unifiying Field in Logics: Neutrosophic Logic, Neutrosophy, Neutrosophic Set, Neutrosophic

Probability; American Research Press: Rehoboth, DE, USA, 1999.
6. Zhang, X.H.; Smarandache, F.; Liang, X.L. Neutrosophic duplet semi-group and cancellable neutrosophic

triplet groups. Symmetry 2017, 9, 275. [CrossRef]
7. Zhang, X.H.; Bo, C.X.; Smarandache, F.; Park, C. New operations of totally dependent- neutrosophic sets and

totally dependent-neutrosophic soft sets. Symmetry 2018, 10, 187. [CrossRef]
8. Chen, S.M. Similarity measures between vague sets and between elements. IEEE Trans. Syst. Man Cybern.

Part B Cybern. 1997, 27, 153-158. [CrossRef] [PubMed]
9. Hong, D.H.; Kim, C. A note on similarity measures between vague sets and between elements. Inf. Sci. 1999,

115, 83–96. [CrossRef]
10. Szmidt, E.; Kacprzyk, J. Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst. 2000, 114, 505–518.

[CrossRef]
11. Wang, W.Q.; Xin, X.L. Distance measure between intuitionistic fuzzy sets. Pattern Recognit. Lett. 2005,

26, 2063–2069. [CrossRef]
12. Grzegorzewski, P. Distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on

the Hausdorff metric. Fuzzy Sets Syst. 2004, 148, 319–328. [CrossRef]
13. Chen, T.Y. A note on distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on

the Hausdorff metric. Fuzzy Sets Syst. 2007, 158, 2523–2525. [CrossRef]
14. Li, D.F.; Cheng, C. New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions.

Pattern Recognit. Lett. 2002, 23, 221–225. [CrossRef]
15. Mitchell, H.B. On the Dengfeng-Chuntian similarity measure and its application to pattern recognition.

Pattern Recognit. Lett. 2003, 24, 3101–3104. [CrossRef]
16. Liang, Z.Z.; Shi, P. Similarity measures on intuitionistic fuzzy sets. Pattern Recognit. Lett. 2003, 24, 2687–2693.

[CrossRef]
17. Ye, J. Cosine similarity measures for intuitionistic fuzzy sets and their applications. Math. Comput. Model.

2011, 53, 91–97. [CrossRef]
18. Xu, Z.S. Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute

decision making. Fuzzy Optim. Decis. Mak. 2007, 6, 109–121. [CrossRef]
19. Boran, F.E.; Akay, D. A biparametric similarity measure on intuitionistic fuzzy sets with applications to

pattern recognition. Inf. Sci. 2014, 255, 45–57. [CrossRef]
20. Zhang, H.M.; Yu, L.Y. New distance measures between intuitionistic fuzzy sets and interval-valued fuzzy

sets. Inf. Sci. 2013, 245, 181–196. [CrossRef]
21. Luo, M.X.; Zhao, R.R. A distance measure between intuitionistic fuzzy sets and its application in medical

diagnosis. Artif. Intell. Med. 2018, 89, 34–39. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/S0165-0114(86)80034-3
http://dx.doi.org/10.1109/21.229476
http://dx.doi.org/10.1016/0165-0114(95)00154-9
http://dx.doi.org/10.3390/sym9110275
http://dx.doi.org/10.3390/sym10060187
http://dx.doi.org/10.1109/3477.552198
http://www.ncbi.nlm.nih.gov/pubmed/18255852
http://dx.doi.org/10.1016/S0020-0255(98)10083-X
http://dx.doi.org/10.1016/S0165-0114(98)00244-9
http://dx.doi.org/10.1016/j.patrec.2005.03.018
http://dx.doi.org/10.1016/j.fss.2003.08.005
http://dx.doi.org/10.1016/j.fss.2007.04.024
http://dx.doi.org/10.1016/s0167-8655(01)00110-6
http://dx.doi.org/10.1016/S0167-8655(03)00169-7
http://dx.doi.org/10.1016/S0167-8655(03)00111-9
http://dx.doi.org/10.1016/j.mcm.2010.07.022
http://dx.doi.org/10.1007/s10700-007-9004-z
http://dx.doi.org/10.1016/j.ins.2013.08.013
http://dx.doi.org/10.1016/j.ins.2013.04.040
http://dx.doi.org/10.1016/j.artmed.2018.05.002
http://www.ncbi.nlm.nih.gov/pubmed/29891424


Symmetry 2018, 10, 441 13 of 13

22. Atanassov, K.T.; Gargov, G. Interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989, 31, 343–349.
[CrossRef]

23. Liu, X.D.; Zheng, S.H.; Xiong, F.L. Entropy and subsethood for general interval-valued intuitionistic fuzzy
sets. Int. Conf. Fuzzy Syst. Knowl. Discov. 2005, 42–52. [CrossRef]

24. Xu, Z.S.; Chen, J. An overview of distance and simiarity measures of intuitionistic fuzzy sets. Int. J. Uncertain.
Fuzziness Knowl.-Based Syst. 2008, 16, 529–555. [CrossRef]

25. Wei, C.P.; Wang, P.; Zhang, Y.Z. Entropy, similarity measure of interval-valued intuitionistic fuzzy sets and
their applications. Inf. Sci. 2011, 181, 4273-4286. [CrossRef]

26. Singh, P. A New Method on Measure of Similarity between Interval-Valued Intuitionistic Fuzzy Sets for
Pattern Recognition. J. Appl. Comput. Math. 2012, 1. [CrossRef]

27. Khalaf, M. Medical diagnosis via interval valued intuitionistic fuzzy sets. Ann. Fuzzy Math. Inf. 2013,
6, 245–249.

28. Dhivya, J.; Sridevi, B. Similarity measure between interval-valued intuitionistic fzzy sets and their
applications to medical diagnosis and pattern recognition. Int. J. Math. Arch. 2018, 9, 58–65.

29. Meng, F.Y.; Chen, X. Entropy and similarity measure for Atannasov’s interval-valued intuitionistic fuzzy
sets and their application. Fuzzy Optim. Decis. Mak. 2015, 15, 75–101. [CrossRef]

30. Xu, Z.S. On similarity measures of interval-valued intuitionistic fuzzy sets and their application to pattern
recognitions. J. Southeast Univ. 2007, 23, 027.

31. Mathew, T.J.; Sherly, E.; Alcantud, J.C.R. A multimodal adaptive approach on soft set based diagnostic risk
prediction system. J. Intell. Fuzzy Syst. 2018, 34, 1609–1618. [CrossRef]

32. Celik, Y.; Yamak, S. Fuzzy soft set theory applied to medical diagnosis using fuzzy arithmetic operations.
J. Inequal. Appl. 2013 , 1, 82. [CrossRef]

33. De, S.K.; Biswas, R.; Roy, A.R. An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets Syst.
2001, 117, 209–213. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0165-0114(89)90205-4
http://dx.doi.org/10.1007/11539506-6
http://dx.doi.org/10.1142/S0218488508005406
http://dx.doi.org/10.1016/j.ins.2011.06.001
http://dx.doi.org/10.4172/2168-9679.1000101
http://dx.doi.org/10.1007/s10700-015-9215-7
http://dx.doi.org/10.3233/JIFS-169455
http://dx.doi.org/10.1186/1029-242X-2013-82
http://dx.doi.org/10.1016/S0165-0114(98)00235-8
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminary
	Some Existing Similarity Measures
	A New Similarity Measure between Interval-Valued Intuitionistic Fuzzy Sets
	Geometric Interpretation of the Novel Similarity Measure
	Applications
	Pattern Recognition
	Algorithms for Pattern Recognition
	Applications for Pattern Recognition

	Applications for Medical Diagnosis

	Conclusions
	References

