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A NOVEL TRIANGULAR INTERVAL TYPE-2 INTUITIONISTIC

FUZZY SETS AND THEIR AGGREGATION OPERATORS

HARISH GARG, SUKHVEER SINGH

Abstract. The objective of this work is to present a triangular interval type-
2 (TIT2) intuitionistic fuzzy sets and their corresponding aggregation opera-
tors, namely, TIT2 intuitionistic fuzzy weighted averaging, TIT2 intuitionistic

fuzzy ordered weighted averaging and TIT2 intuitionistic fuzzy hybrid aver-
aging based on Frank norm operation laws. Furthermore, based on these op-
erators, an approach to multi-criteria decision-making, in which assessments

are in the form of TIT2 intuitionistic fuzzy numbers has been developed. A
practical example to illustrate the decision-making process has been presented
and compared their results with the existing operator results.

1. Introduction

In a real-life, uncertainties play a dominant role during the analysis and without
handling of its, the decision maker(s) can’t give their preferences to an accurate
level. The main objective of an analysis is to handle the data so as to minimize their
uncertainties level. For handling this, fuzzy set (FS) [38] and its extensions such as
intuitionistic fuzzy set (IFSs) [1,3], interval-valued intuitionistic fuzzy set (IVIFSs)
[2] etc., have been proposed by the researchers during the last decades. Under these
environments, the various researchers pay more attention to aggregate the different
alternatives using weighted and ordered weighted aggregation operators during the
information fusion process. For instance, Xu [37], Xu and Yager [36] presented
geometric, as well as, averaging aggregation operators for aggregating the different
intuitionistic fuzzy numbers (IFNs). Later on, Wang and Liu [33] extended these
operators by using Einstein norm operations. Garg [11] had presented generalized
intuitionistic fuzzy interactive geometric interaction operators using Einstein norm
operations for aggregating the different intuitionistic fuzzy information. Garg [17],
further, proposed some series of interactive aggregations operators for IFNs. Liu
[24] presented weighted averaging aggregation operators under the Hamacher-norm
operations. Apart from that, recently, many authors [7,12–16,18–20,22,29,35] have
shown the great interest in the study of the decision-making problems under the
IFS or IVIFSs environments.

Since all the above works have been investigated under the ordinary fuzzy set
(henceforth called as a type-1 fuzzy set) environment, in which they have been
assumed that the membership function corresponding to their element is exact. But
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however, in some circumstances, it is difficult for the decision-maker to determine
an exact membership function for a fuzzy set. In order to overcome it, the concept
of the type-2 fuzzy sets (T2FSs) was introduced by Zadeh [39], as an extension of
the type-1 fuzzy set. Such sets are fuzzy sets whose membership values themselves
are type-1 fuzzy set and is characterized by primary function, secondary function
and a footprint of uncertainty (FOU). It is the new third dimension of T2FSs
and the footprint of uncertainty can reflect more additional degrees of freedom
that make it more capable of handling imprecision and imperfect information in
the real-world application. Hence, T2FSs are receiving more and more attentions
from researchers and have been successfully developed both in theoretical and in
practical aspects. But due to the high complexities of T2FSs, it is difficult to
apply in the real situation. For this, an interval type-2 fuzzy sets (IT2FSs) has
been considered [25] which contain membership values from zero to one. Castillo
et al. [4] discussed the short remarks on FS, IT2FS, general T2FS and IFS. Chen
and Lee [5], Chen et al. [6] presented a fuzzy decision -making method based on the
ranking values as well as the arithmetic operations of IT2FSs. As all the existing
works have been examined under the T2FSs environment by considering only the
degree of the membership during an analysis. But, in the real-life situation, it is
not possible to make a decision without considering the degree of non-membership
(also called as a dissatisfactory degree), as it is difficult for the person to give their
preferences towards an object in terms of single or exact number. Thus, for handling
it, there is a need for the degree of non-membership into the analysis. Therefore,
to overcome it, a degree of membership, non-membership and their corresponding
FOU have been considered during the present analysis and called a theory as an
interval type-2 intuitionistic fuzzy sets (IT2IFSs).

For a decision-making problem, an essential important step is how to aggregate
the decision-making information in different formats with aggregation operators. In
that direction, various authors have investigated the problems of the DM under the
T2FSs environment by using different aggregation operators as well as information
measures [8, 21, 23, 26–28, 30, 32, 34, 40]. All aforementioned aggregation operators
are mainly based on the algebraic operational laws of general t-norms and their dual
t-conorms. The most widely used norm operations are product and probabilistic
sum [9], because these pairs of the triangular norm are useful to carry out comput-
ing. However, the main drawbacks of the probability triangular norms are that lack
of flexibility and robustness. Apart from them, some of the existing aggregation op-
erators are derived by either the fuzzy extension principle or based on the triangular
norms. As the fundamental of information fusion, triangle norms play an important
role and have been successfully used, to overcome the drawbacks of the probabil-
ity triangular norms, to derive various fuzzy aggregation operators [11, 17, 33, 36].
However, until now, there is no research about interval type-2 intuitionistic fuzzy
aggregation operator based on triangular norm operations. In order to fill this gap,
we will utilize the Frank triangle norms to develop some desirable interval type-2
intuitionistic fuzzy aggregation operators in this paper.

Frank triangle norms [10], is one of the most important norm operations and the
generalizations of probabilistic and product t-norm and t-conorm. Further, frank
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triangle norms are the only triangle norm which satisfying the compatibility prop-
erty. Since the Frank triangle norms involve the parameter, this can provide more
flexibility and robustness in the process of information fusion and make it more
adequate to model practical decision-making problems than other triangle norms.
To the best of our knowledge, very fewer investigations on aggregation operators
based on Frank t-norms for the decision-making problems have been done by the
authors. For instance, Qin and Liu [30] have presented an aggregation operator
for triangular interval type-2 fuzzy set during the decision-making process. Nancy
and Garg [29] proposed the weighted averaging and geometric aggregation operator
based on the Frank norm operations and called as single-valued neutrosophic Frank
weighted averaging and geometric operators respectively. Qin et al. [31] presented a
hesitant fuzzy aggregation operator based on the Frank t-norm operations. There-
fore, it is meaningful to study aggregation operators based on Frank triangle norms
operations and their application in decision-making under triangle interval type-2
intuitionistic fuzzy sets environment.

Thus, keeping inspiration from the fact that IT2IFSs have great powerful ability
to model the imprecise and ambiguous information in real-world applications, the
present paper have developed the various aggregation operators for the triangular
IT2IFSs based on the Frank t-norms for decision-making problems. For it, firstly
the basic operational laws based on the Frank t-norms have been defined on the
triangular interval type-2 intuitionistic fuzzy numbers (TIT2IFNs). Based on these
laws, some aggregation operators, namely triangular interval type-2 intuitionistic
fuzzy (TIT2IF) weighted averaging, ordered weighted averaging and hybrid aver-
aging have been proposed. Finally, a decision-making method approach has been
presented for solving the decision-making problem under the triangular IT2IFS
environment.

The remainder of this paper is shown as follows. In section 2, we briefly intro-
duce some basic concepts of T2FSs, IT2FSs, and Frank t-norms. In section 3, we
establish the T2IFSs, TIT2IFSs, and their corresponding Frank t-norms operation
laws. In Section 4, we present some newly weighted aggregation operators and
discuss some desirable properties in detail. In Section 5, we develop an approach
to decision-making process under the TIT2IF environment and then illustrate with
a practical example. Section 6 gives the concluding remarks.

2. Preliminaries

2.1. Type 2 fuzzy set [26]. In this section, we will briefly review some of the
basic concepts of type-2 fuzzy sets and the Frank t-norms.

Definition 2.1. A T2FS α in the universe of discourse X, is characterized by a
type-2 membership function µα(x, u) and is defined as follows:

α =
{
((x, u), µα(x, u)) | x ∈ X,u ∈ jx ⊆ [0, 1]

}
in which 0 ≤ µα(x, u) ≤ 1. Moreover, α can also be expressed as

α =

∫
x∈X

µα(x)/x =

∫
x∈X

[ ∫
u∈jx

fx(u)/u

]
/x,
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where µα(x) =
∫
x∈jx

fx(u)/u is the grade of the membership, fx is named as

a secondary membership function and the value of fx(u) is named as secondary
grade or secondary membership. In addition, u is an argument of the secondary
membership function and jx is named as the primary membership function of x.

Definition 2.2. (Interval type-2) [7] An interval type-2 fuzzy set is one in which
the membership grade of every domain point is a crisp set whose domain is some
interval contained in [0,1].

Definition 2.3. (Footprint of uncertainty) [7] Uncertainty in the primary member-
ships of a type-2 fuzzy set consists of boundary region that we call the “footprint of
the uncertainty” (FOU). Mathematically, it is the union of all primary membership
functions, i.e. FOU(α) = ∪x∈Xjx.

2.2. Triangular interval type-2 fuzzy set [8]. The operations on the T2FSs
are very complex and hence cannot be applied in a real-life situations. For it,
the interval type-2 fuzzy sets [8] are usually taken in some simplified formations
in applications in which the upper membership function (UMF) and the lower
membership function (LMF) are represented by the triangular fuzzy numbers.

Definition 2.4. Let α = ⟨[a, b], c, [d, e]⟩ be a triangular interval type-2 fuzzy set
(TIT2FS) defined on X shown in Fig. 1, where a, b, c, d, e are reference points of
the set, satisfying 0 ≤ a ≤ b ≤ c ≤ d ≤ e ≤ 1. The footprint of uncertainty (FOU)
of the membership function of α is depicted as a shaded portion in Fig. 1. If X is
a set consists of all real numbers, then a TIT2FS in X is called triangular interval
type-2 fuzzy number (TIT2FN).

Figure 1. Representation of TIT2FS

2.3. Frank t-norms. The t-norms (T ) and t-conorms (S) defined by T, S : [0, 1]2 →
[0, 1], related by S(x, y) = 1 − T (1 − x, 1 − y),∀x, y ∈ [0, 1]. Among the various
existing t-norm and t-conorms, Frank norm operations [10] which are an interesting
generalizations of probabilistic and Lukasiewicz t-norm and t-conorm, is a general
and flexible family of continuous triangular norms. Frank operations include the
Frank product(⊗F ) and Frank sum (⊕F ) which are defined in the following ways:

x⊕F y = 1− logλ

(
1 +

(λ1−x − 1)(λ1−y − 1)

λ− 1

)
, λ > 1 ∀(x, y) ∈ [0, 1]2

x⊗F y = logλ

(
1 +

(λx − 1)(λy − 1)

λ− 1

)
, λ > 1 ∀(x, y) ∈ [0, 1]2
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Further, it can be easily verified that the Frank sum and product satisfy the fol-
lowing properties, i.e.,

•
(
x⊕F y

)
+
(
x⊗F y

)
= x+ y

• ∂(x⊕F y)
∂x + ∂(x⊗F y)

∂x = ∂(x⊕F y)
∂y + ∂(x⊗F y)

∂y = 1

In addition, Frank t-norm and t-conorm have also two special cases given as follows.

(i) When λ → 1, we have x ⊕F y = x + y − xy and x ⊗F y = xy which are the
algebraic t-norm and the algebraic t-conorm, respectively.

(ii) When λ → +∞, we have x⊕F y = min(x+ y, 1), x⊗F y = max(0, x+ y− 1),
which are the Lukasiewicz t-norm and Lukasiewicz t-conorm, respectively.

3. Type-2 intuitionistic fuzzy set and its operational laws

3.1. Type-2 intuitionistic fuzzy set. In this section, we have extended the
T2FSs to the T2IFSs and hence presented some basic concepts of it.

Definition 3.1. A type-2 intuitionistic fuzzy set (T2IFS) α is characterized by
a type-2 membership function fx(u1) and type-2 non-membership function gx(u2)
and is represented as [32,40]

α =
{
⟨(x, u1, u2), µα(x, u1), να(x, u2)⟩ | x ∈ X,u1 ∈ j1x, u2 ∈ j2x

}
where the element of the domain (x, u1, u2) called as primary membership functions
(u1) and non-membership functions (u2) of x ∈ X while µα(x, u1) and να(x, u2)
be the membership of the primary membership functions called as the secondary
membership and non-membership functions respectively where u1 ∈ j1x ⊆ [0, 1],
u2 ∈ j2x ⊆ [0, 1]. In addition, u1 and u2 are arguments of the secondary membership
and non-membership functions and j1x, j

2
x are named as the primary membership

and the non-membership functions of x.

Definition 3.2. Let α be a T2IFS in X represented by µα(x, u1) and να(x, u2). If
all µα(x, u1) = 1 and να(x, u1) = 0 then α is called an interval type-2 intuitionistic
fuzzy set (IT2IFS). An IT2IFS can be regarded as a special case of the T2IFS.

3.2. Triangular interval type-2 Intuitionistic fuzzy sets. Since due to the
high complexities of T2IFS, it is difficult to apply in the real situation. For this,
an interval type-2 intuitionistic fuzzy set (IT2IFS) has been considered in which
the upper and lower membership and non-membership functions are represented
by the triangular fuzzy numbers.

Definition 3.3. Let α = ⟨[a, b], c, [d, e]; [A,B], C, [D,E]⟩ be a triangular IT2IFS
(TIT2IFS) defined on X, shown in Fig. 2, where 0 ≤ a ≤ b ≤ c ≤ d ≤ e ≤ 1 and
0 ≤ E ≤ D ≤ C ≤ B ≤ A ≤ 1 such that e + E ≤ 1, a + A ≤ 1 is characterized
by a linear upper and lower membership and non-membership functions, which are
defined as follows:

UMFµ(x) =


x−a
c−a ; a ≤ x < c

1 ; x = c
e−x
e−c ; c ≤ x < e

; LMFµ(x) =


x−b
c−b ; b ≤ x < c

1 ; x = c
d−x
d−c ; c ≤ x < d
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and

UMFν(x) =


C−x
C−E ; E ≤ x < C

0 ; x = C
x−C
A−C ; C ≤ x < A

; LMFν(x) =


C−x
C−D ; D ≤ x < C

0 ; x = C
x−C
B−C ; C ≤ x < B

The FOU of the membership and non-membership functions are depicted as a
shaded portion in Fig. 2. If X is a set consists of all real numbers, then a TIT2IFS
in X is called triangular interval type-2 intuitionistic fuzzy number (TIT2IFN).

Figure 2. Representation of TIT2IFS

Definition 3.4. A compliment of TIT2IFN α = ⟨[a, b], c, [d, e]; [A,B], C, [D,E]⟩
is given by αc = ⟨[A,B], C, [D,E]; [a, b], c, [d, e]⟩.

Definition 3.5. In the process of applying these sets to practical problems, it is
necessary to rank these numbers. For this, we have defined the ranking value for a
TIT2IFN α = ⟨[a, b], c, [d, e]; [A,B], C, [D,E]⟩ as follows:

Rank(α) =

(
(a−A) + (e− E)

2
+ 1

)(
(a−A) + (b−B) + 4(c− C) + (d−D) + (e− E)

8

)
(1)

The larger the Rank(α), the greater the TIT2IFN.

Definition 3.6. For any two TIT2IFNs α and β, the ordering can be defined as
α ≺ β if Rank(α) < Rank(β) and α = β if Rank(α) = Rank(β).

Example 3.7. Let α = ⟨[0.3, 0.4], 0.5, [0.6, 0.7]; [0.6, 0.5], 0.3, [0.2, 0.1]⟩ and β =
⟨[0.4, 0.45], 0.50, [0.60, 0.70]; [0.6, 0.4], 0.35, [0.25, 0.15]⟩ be two TIT2IFNs. Then, by
using Eq. (1), we get Rank(α) = 0.1725 and Rank(β) = 0.1982. Since Rank(α) <
Rank(β) and thus, we have β ≻ α.

Definition 3.8. Let α1 = ⟨[a1, b1], c1, [d1, e1]; [A1, B1], C1, [D1, E1]⟩ and α2 =
⟨[a2, b2], c2, [d2, e2]; [A2, B2], C2, [D2, E2]⟩ be two TIT2IFNs, we denote the partial
order as α1 ≽P α2 if and only if a1 ≥ a2, b1 ≥ b2, . . . , e1 ≥ e2 and A1 ≤ A2, B1 ≤
B2, . . . , E1 ≤ E2. Especially, α1 = α2 if and only if a1 = a2, b2 = b2, . . . , e1 = e2
and A1 = A2, . . . , E1 = E2.
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From the above definition, it has been observed that if α1 ≽P α2 which indicate
that Rank(α1) ≥ Rank(α2). If Rank(α1) > Rank(α2) then α1 ≻ α2; if Rank(α1) =
Rank(α2) and since a1 ≥ a2, . . . , e1 ≥ e2 and A1 ≤ A2, . . . , E1 ≤ E2 then a1 =
a2, . . . , e1 = e2, A1 = A2, . . . , E1 = E2, which indicates that α1 = α2. Thus, we
can say if α1 ≽P α2 then, we have α1 ≽ α2.

3.3. Frank Operational laws of TIT2IFNs. Let α = ⟨[a, b], c, [d, e]; [A,B],
C, [D,E]⟩, α1 = ⟨[a1, b1], c1, [d1, e1]; [A1, B1], C1, [D1, E1]⟩ and α2 = ⟨[a2, b2], c2,
[d2, e2]; [A2, B2], C2, [D2, E2]⟩ be three TIT2IFNs and k > 0, λ > 1 be two real
numbers. Then, the operational laws on these numbers based on the Frank t-norm
and t-conorm are defined as below:
(i) Addition operations: α1 ⊕F α2

=

⟨[
1 − logλ

(
1 +

(λ1−a1 − 1)(λ1−a2 − 1)

λ − 1

)
, 1 − logλ

(
1 +

(λ1−b1 − 1)(λ1−b2 − 1)

λ − 1

)]
,

1 − logλ

(
1 +

(λ1−c1 − 1)(λ1−c2 − 1)

λ − 1

)
,

[
1 − logλ

(
1 +

(λ1−d1 − 1)(λ1−d2 − 1)

λ − 1

)
,

1 − logλ

(
1 +

(λ1−e1 − 1)(λ1−e2 − 1)

λ − 1

)]
;

[
logλ

(
1 +

(λA1 − 1)(λA2 − 1)

λ − 1

)
,

logλ

(
1 +

(λB1 − 1)(λB2 − 1)

λ − 1

)]
, logλ

(
1 +

(λC1 − 1)(λC2 − 1)

λ − 1

)
,

[
logλ

(
1 +

(λD1 − 1)(λD2 − 1)

λ − 1

)
, logλ

(
1 +

(λE1 − 1)(λE2 − 1)

λ − 1

)]⟩

(ii) Multiplication operations: α1 ⊗F α2

=

⟨[
logλ

(
1 +

(λa1 − 1)(λa2 − 1)

λ − 1

)
, logλ

(
1 +

(λb1 − 1)(λb2 − 1)

λ − 1

)]
,

logλ

(
1 +

(λc1 − 1)(λc2 − 1)

λ − 1

)
,

[
logλ

(
1 +

(λd1 − 1)(λd2 − 1)

λ − 1

)
,

logλ

(
1 +

(λe1 − 1)(λe2 − 1)

λ − 1

)]
;

[
1 − logλ

(
1 +

(λ1−A1 − 1)(λ1−A2 − 1)

λ − 1

)
,

1 − logλ

(
1 +

(λ1−B1 − 1)(λ1−B2 − 1)

λ − 1

)]
, 1 − logλ

(
1 +

(λ1−C1 − 1)(λ1−C2 − 1)

λ − 1

)
,

[
1 − logλ

(
1 +

(λ1−D1 − 1)(λ1−D2 − 1)

λ − 1

)
, 1 − logλ

(
1 +

(λ1−E1 − 1)(λ1−E2 − 1)

λ − 1

)]⟩

(iii) Multiplication by ordinary number: k ·F α

=

⟨[
1 − logλ

(
1 +

(λ1−a − 1)k

(λ − 1)k−1

)
, 1 − logλ

(
1 +

(λ1−b − 1)k

(λ − 1)k−1

)]
,

1 − logλ

(
1 +

(λ1−c − 1)k

(λ − 1)k−1

)
,

[
1 − logλ

(
1 +

(λ1−d − 1)k

(λ − 1)k−1

)
, 1 − logλ

(
1 +

(λ1−e − 1)k

(λ − 1)k−1

)]
;

[
logλ

(
1 +

(λA − 1)k

(λ − 1)k−1

)
, logλ

(
1 +

(λB − 1)k

(λ − 1)k−1

)]
, logλ

(
1 +

(λC − 1)k

(λ − 1)k−1

)
,

[
logλ

(
1 +

(λD − 1)k

(λ − 1)k−1

)
, logλ

(
1 +

(λE − 1)k

(λ − 1)k−1

)]⟩
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(iv) Power operation: αk

=

⟨[
logλ

(
1 +

(λa − 1)k

(λ − 1)k−1

)
, logλ

(
1 +

(λb − 1)k

(λ − 1)k−1

)]
, logλ

(
1 +

(λc − 1)k

(λ − 1)k−1

)
,

[
logλ

(
1 +

(λd − 1)k

(λ − 1)k−1

)
, logλ

(
1 +

(λe − 1)k

(λ − 1)k−1

)]
;

[
1 − logλ

(
1 +

(λ1−A − 1)k

(λ − 1)k−1

)
,

1 − logλ

(
1 +

(λ1−B − 1)k

(λ − 1)k−1

)]
, 1 − logλ

(
1 +

(λ1−C − 1)k

(λ − 1)k−1

)
,

[
1 − logλ

(
1 +

(λ1−D − 1)k

(λ − 1)k−1

)
, 1 − logλ

(
1 +

(λ1−E − 1)k

(λ − 1)k−1

)]⟩

Theorem 3.9. If α, α1 and α2 be three TIT2IFNs; then, α3 = α1 ⊕F α2, α4 =
α1 ⊗F α2, α5 = k ·F α and α6 = αk, k > 0 are also TIT2IFNs.

Proof. Consider α3 = α1 ⊕ α2 = ⟨[a3, b3], c3, [d3, e3]; [A3, B3], C3, [D3, E3]⟩ where

a3 = 1 − logλ

(
1 +

(λ1−a1 − 1)(λ1−a2 − 1)

λ − 1

)
; b3 = 1 − logλ

(
1 +

(λ1−b1 − 1)(λ1−b2 − 1)

λ − 1

)

c3 = 1 − logλ

(
1 +

(λ1−c1 − 1)(λ1−c2 − 1)

λ − 1

)
; d3 = 1 − logλ

(
1 +

(λ1−d1 − 1)(λ1−d2 − 1)

λ − 1

)

e3 = 1 − logλ

(
1 +

(λ1−e1 − 1)(λ1−e2 − 1)

λ − 1

)
; A3 = logλ

(
1 +

(λA1 − 1)(λA2 − 1)

λ − 1

)

B3 = logλ

(
1 +

(λB1 − 1)(λB2 − 1)

λ − 1

)
; C3 = logλ

(
1 +

(λC1 − 1)(λC2 − 1)

λ − 1

)

D3 = logλ

(
1 +

(λD1 − 1)(λD2 − 1)

λ − 1

)
; E3 = logλ

(
1 +

(λE1 − 1)(λE2 − 1)

λ − 1

)

Then, in order to show α3 be TIT2IFN we have to show that 0 ≤ a3 ≤ b3 ≤ c3 ≤
d3 ≤ e3 ≤ 1, 1 ≥ A3 ≥ B3 ≥ C3 ≥ D3 ≥ E3 ≥ 0 and e3+E3 ≤ 1, a3+A3 ≤ 1. Since
αj , (j = 1, 2) be TIT2IFNs which implies that 0 ≤ aj ≤ bj ≤ cj ≤ dj ≤ ej ≤ 1;
1 ≥ Aj ≥ Bj ≥ Cj ≥ Dj ≥ Ej ≥ 0, aj +Aj ≤ 1 and ej +Ej ≤ 1 for j = 1, 2, then,
for λ > 1 be a real number, we have

(λ1−e1 − 1)(λ1−e2 − 1)

λ− 1
≤

(λ1−d1 − 1)(λ1−d2 − 1)

λ− 1
≤

(λ1−c1 − 1)(λ1−c2 − 1)

λ− 1

≤
(λ1−b1 − 1)(λ1−b2 − 1)

λ− 1
≤

(λ1−a1 − 1)(λ1−a2 − 1)

λ− 1

⇔ 0 ≤ logλ

(
1 +

(λ1−e1 − 1)(λ1−e2 − 1)

λ− 1

)
≤ logλ

(
1 +

(λ1−d1 − 1)(λ1−d2 − 1)

λ− 1

)
≤ logλ

(
1 +

(λ1−c1 − 1)(λ1−c2 − 1)

λ− 1

)
≤ logλ

(
1 +

(λ1−b1 − 1)(λ1−b2 − 1)

λ− 1

)
≤ logλ

(
1 +

(λ1−a1 − 1)(λ1−a2 − 1)

λ− 1

)
≤ 1

⇔ 0 ≤ a3 ≤ b3 ≤ c3 ≤ d3 ≤ e3 ≤ 1
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and

(λA1 − 1)(λA2 − 1)

λ− 1
≥

(λB1 − 1)(λB2 − 1)

λ− 1
≥

(λC1 − 1)(λC2 − 1)

λ− 1

≥
(λD1 − 1)(λD2 − 1)

λ− 1
≥

(λE1 − 1)(λE2 − 1)

λ− 1

⇔ 1 ≥ logλ

(
1 +

(λA1 − 1)(λA2 − 1)

λ− 1

)
≥ logλ

(
1 +

(λB1 − 1)(λB2 − 1)

λ− 1

)
≥ logλ

(
1 +

(λC1 − 1)(λC2 − 1)

λ− 1

)
≥ logλ

(
1 +

(λD1 − 1)(λD2 − 1)

λ− 1

)
≥ logλ

(
1 +

(λE1 − 1)(λE2 − 1)

λ− 1

)
≥ 0

⇔ 1 ≥ A3 ≥ B3 ≥ C3 ≥ D3 ≥ E3 ≥ 0

Finally, e3 +E3 = 1− logλ

(
1+ (λ1−e1−1)(λ1−e2−1)

λ−1

)
+ logλ

(
1+ (λE1−1)(λE2−1)

λ−1

)
≤

1−logλ

(
1+ (λE1−1)(λE2−1)

λ−1

)
+logλ

(
1+ (λE1−1)(λE2−1)

λ−1

)
≤ 1. Similarly, a3+A3 ≤ 1

which indicates that α3 = α1 ⊕F α2 is TIT2IFN. Similarly, for others. �

Theorem 3.10. Let α, α1 and α2 be three TIT2IFNs and k, k1, k2 be three positive
real numbers then, we have

(i) α1 ⊕F α2 = α2 ⊕F α1

(ii) α1 ⊗F α2 = α2 ⊗F α1

(iii) k ·F (α1 ⊕F α2) = k ·F α1 ⊕F k ·F α2

(iv) (α1 ⊗F α2)
k = αk

1 ⊗F αk
2

(v) (k1 ·F α)⊕F (k2 ·F α) = (k1 + k2) ·F α
(vi) αk1 ⊗F αk2 = αk1+k2

Proof. We prove the parts (i), (iii) and (v) and hence similar for others.

(i) It is trivial.
(iii) Since α1 and α2 be two TIT2IFNs and then by addition operations, we get

α1 ⊕F α2

=

⟨[
1 − logλ

(
1 +

(λ1−a1 − 1)(λ1−a2 − 1)

λ − 1

)
, 1 − logλ

(
1 +

(λ1−b1 − 1)(λ1−b2 − 1)

λ − 1

)]
,

1 − logλ

(
1 +

(λ1−c1 − 1)(λ1−c2 − 1)

λ − 1

)
,

[
1 − logλ

(
1 +

(λ1−d1 − 1)(λ1−d2 − 1)

λ − 1

)
,

1 − logλ

(
1 +

(λ1−e1 − 1)(λ1−e2 − 1)

λ − 1

)]
;

[
logλ

(
1 +

(λA1 − 1)(λA2 − 1)

λ − 1

)
,

logλ

(
1 +

(λB1 − 1)(λB2 − 1)

λ − 1

)]
, logλ

(
1 +

(λC1 − 1)(λC2 − 1)

λ − 1

)
,

[
logλ

(
1 +

(λD1 − 1)(λD2 − 1)

λ − 1

)
, logλ

(
1 +

(λE1 − 1)(λE2 − 1)

λ − 1

)]⟩
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Thus,

k ·F (α1 ⊕F α2)

=

⟨[
1 − logλ

(
1 +

(λ1−a1 − 1)k(λ1−a2 − 1)k

(λ − 1)2k−1

)
, 1 − logλ

(
1 +

(λ1−b1 − 1)k(λ1−b2 − 1)k

(λ − 1)2k−1

)]
,

1 − logλ

(
1 +

(λ1−c1 − 1)k(λ1−c2 − 1)k

(λ − 1)2k−1

)
,

[
1 − logλ

(
1 +

(λ1−d1 − 1)k(λ1−d2 − 1)k

(λ − 1)2k−1

)
,

1 − logλ

(
1 +

(λ1−e1 − 1)k(λ1−e2 − 1)k

(λ − 1)2k−1

)]
;

[
logλ

(
1 +

(λA1 − 1)k(λA2 − 1)k

(λ − 1)2k−1

)
,

logλ

(
1 +

(λB1 − 1)k(λB2 − 1)k

(λ − 1)2k−1

)]
, logλ

(
1 +

(λC1 − 1)k(λC2 − 1)k

(λ − 1)2k−1

)
,

[
logλ

(
1 +

(λD1 − 1)k(λD2 − 1)k

(λ − 1)2k−1

)
, logλ

(
1 +

(λE1 − 1)k(λE2 − 1)k

(λ − 1)2k−1

)]⟩

=

⟨[
1 − logλ

(
1 +

(λ1−a1 − 1)k

(λ − 1)k−1

)
, 1 − logλ

(
1 +

(λ1−b1 − 1)k

(λ − 1)k−1

)]
,

1 − logλ

(
1 +

(λ1−c1 − 1)k

(λ − 1)k−1

)
,

[
1 − logλ

(
1 +

(λ1−d1 − 1)k

(λ − 1)k−1

)
,

1 − logλ

(
1 +

(λ1−e1 − 1)k

(λ − 1)k−1

)]
;

[
logλ

(
1 +

(λA1 − 1)k

(λ − 1)k−1

)
, logλ

(
1 +

(λB1 − 1)k

(λ − 1)k−1

)]
,

logλ

(
1 +

(λC1 − 1)k

(λ − 1)k−1

)
,

[
logλ

(
1 +

(λD1 − 1)k

(λ − 1)k−1

)
, logλ

(
1 +

(λE1 − 1)k

(λ − 1)k−1

)]⟩

⊕F

⟨[
1 − logλ

(
1 +

(λ1−a2 − 1)k

(λ − 1)k−1

)
, 1 − logλ

(
1 +

(λ1−b2 − 1)k

(λ − 1)k−1

)]
,

1 − logλ

(
1 +

(λ1−c2 − 1)k

(λ − 1)k−1

)
,

[
1 − logλ

(
1 +

(λ1−d2 − 1)k

(λ − 1)k−1

)
,

1 − logλ

(
1 +

(λ1−e2 − 1)k

(λ − 1)k−1

)]
;

[
logλ

(
1 +

(λA2 − 1)k

(λ − 1)k−1

)
, logλ

(
1 +

(λB2 − 1)k

(λ − 1)k−1

)]
,

logλ

(
1 +

(λC2 − 1)k

(λ − 1)k−1

)
,

[
logλ

(
1 +

(λD2 − 1)k

(λ − 1)k−1

)
, logλ

(
1 +

(λE2 − 1)k

(λ − 1)k−1

)]⟩
= k ·F α1 ⊕F k ·F α2

Hence, k ·F (α1 ⊕F α2) = k ·F α1 ⊕F k ·F α2.

(v) For ki > 0, for i = 1, 2, we have

ki ·F α =

⟨[
1 − logλ

(
1 +

(λ1−a − 1)ki

(λ − 1)ki−1

)
, 1 − logλ

(
1 +

(λ1−b − 1)ki

(λ − 1)ki−1

)]
,

1 − logλ

(
1 +

(λ1−c − 1)ki

(λ − 1)ki−1

)
,

[
1 − logλ

(
1 +

(λ1−d − 1)ki

(λ − 1)ki−1

)
,

1 − logλ

(
1 +

(λ1−e − 1)ki

(λ − 1)ki−1

)]
;

[
logλ

(
1 +

(λA − 1)ki

(λ − 1)ki−1

)
,

logλ

(
1 +

(λB − 1)ki

(λ − 1)ki−1

)]
, logλ

(
1 +

(λC − 1)ki

(λ − 1)ki−1

)
,

[
logλ

(
1 +

(λD − 1)ki

(λ − 1)ki−1

)
, logλ

(
1 +

(λE − 1)ki

(λ − 1)ki−1

)]⟩
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Thus, k1 ·F α⊕F k2 ·F α

=

⟨1 − logλ

1 +

(λ1−a−1)k1

(λ−1)k1−1
(λ1−a−1)k2

(λ−1)k2−1

(λ − 1)

 , 1 − logλ

1 +

(λ1−b−1)k1

(λ−1)k1−1
(λ1−b−1)k2

(λ−1)k2−1

(λ − 1)


 ,

1 − logλ

1 +

(λ1−c−1)k1

(λ−1)k1−1
(λ1−c−1)k2

(λ−1)k2−1

(λ − 1)

 ,

1 − logλ

1 +

(λ1−d−1)k1

(λ−1)k1−1
(λ1−d−1)k2

(λ−1)k2−1

(λ − 1)

 ,

1 − logλ

1 +

(λ1−e−1)k1

(λ−1)k1−1
(λ1−e−1)k2

(λ−1)k2−1

(λ − 1)


 ;

logλ

1 +

(λA−1)k1

(λ−1)k1−1
(λA−1)k2

(λ−1)k2−1

λ − 1

 ,

logλ

1 +

(λB−1)k1

(λ−1)k1−1
(λB−1)k2

(λ−1)k2−1

λ − 1


 , logλ

1 +

(λC−1)k1

(λ−1)k1−1
(λC−1)k2

(λ−1)k2−1

λ − 1

 ,

logλ

1 +

(λD−1)k1

(λ−1)k1−1
(λD−1)k2

(λ−1)k2−1

λ − 1

 , logλ

1 +

(λE−1)k1

(λ−1)k1−1
(λE−1)k2

(λ−1)k2−1

λ − 1


⟩

=

⟨[
1 − logλ

(
1 +

(λ1−a − 1)k1+k2

(λ − 1)k1+k2−1

)
, 1 − logλ

(
1 +

(λ1−b − 1)k1+k2

(λ − 1)k1+k2−1

)]
,

1 − logλ

(
1 +

(λ1−c − 1)k1+k2

(λ − 1)k1+k2−1

)
,

[
1 − logλ

(
1 +

(λ1−d − 1)k1+k2

(λ − 1)k1+k2−1

)
,

1 − logλ

(
1 +

(λ1−e − 1)k1+k2

(λ − 1)k1+k2−1

)]
;

[
logλ

(
1 +

(λA − 1)k1+k2

(λ − 1)k1+k2−1

)
,

logλ

(
1 +

(λB − 1)k1+k2

(λ − 1)k1+k2−1

)]
, logλ

(
1 +

(λC − 1)k1+k2

(λ − 1)k1+k2−1

)
,

[
logλ

(
1 +

(λD − 1)k1+k2

(λ − 1)k1+k2−1

)
, logλ

(
1 +

(λE − 1)k1+k2

(λ − 1)k1+k2−1

)]⟩
= (k1 + k2) ·F α

Hence k1 ·F α⊕F k2 ·F α = (k1 + k2) ·F α. �
Theorem 3.11. Let α1 and α2 be two TIT2IFNs then,

(i) αc
1 ⊕F αc

2 = (α1 ⊗F α2)
c

(ii) αc
1 ⊗F αc

2 = (α1 ⊕F α2)
c

Proof. The proof is trivial, so it is omitted here. �

4. Aggregation Operators for TIT2IFNs

In this section, some series of weighted aggregation operators for TIT2IFNs have
been proposed based on above defined Frank t-norm operations.

4.1. Weighted averaging Operator.

Definition 4.1. Let αj , j = 1, 2, . . . , n be a collection of TIT2IFNs and if

TIT2IFWA(α1, α2, . . . , αn) = ω1 ·F α1 ⊕F ω2 ·F α2 ⊕F . . .⊕F ωn ·F αn

where ω = (ω1, ω2, . . . , ωn)
T be the weight vector of αj such that ωj > 0,

n∑
j=1

ωj = 1

then, TIT2IFWA is called a TIT2IF weighted averaging operator.
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Theorem 4.2. The aggregated value by using TIT2IFWA operator for a collection
of TIT2IFNs αj = ⟨[aj , bj ], cj , [dj , ej ]; [Aj , Bj ], Cj , [Dj , Ej ]⟩, j = 1, 2, . . . , n is still
TIT2IFN and is given by

TIT2IFWA(α1, α2, . . . , αn) =

⟨1 − logλ

1 +

n∏
j=1

(λ
1−aj − 1)

ωj

 ,

1 − logλ

1 +

n∏
j=1

(λ
1−bj − 1)

ωj

 , 1 − logλ

1 +

n∏
j=1

(λ
1−cj − 1)

ωj

 ,

1 − logλ

1 +

n∏
j=1

(λ
1−dj − 1)

ωj

 , 1 − logλ

1 +

n∏
j=1

(λ
1−ej − 1)

ωj

 ;

logλ

1 +

n∏
j=1

(λ
Aj − 1)

ωj

 , logλ

1 +

n∏
j=1

(λ
Bj − 1)

ωj

 , logλ

1 +

n∏
j=1

(λ
Cj − 1)

ωj

 ,

logλ

1 +

n∏
j=1

(λ
Dj − 1)

ωj

 , logλ

1 +

n∏
j=1

(λ
Ej − 1)

ωj

⟩ (2)

Proof. We will prove the Eq. (2) by mathematical induction on n. Since for each
j, αj is a TIT2IFN. Then, the following steps of the mathematical induction have
been followed:

Step 1: For n = 2, we have TIT2IFWA(α1, α2) = ω1 ·F α1 ⊕F ω2 ·F α2. Thus, by
the operation of TIT2IFNs for i = 1, 2, we get

ωi ·F αi =

⟨[
1− logλ

(
1 +

(λ1−ai − 1)ωi

(λ− 1)ωi−1

)
, 1− logλ

(
1 +

(λ1−bi − 1)ωi

(λ− 1)ωi−1

)]
,

1− logλ

(
1 +

(λ1−ci − 1)ωi

(λ− 1)ωi−1

)
,

[
1− logλ

(
1 +

(λ1−di − 1)ωi

(λ− 1)ωi−1

)
,

1− logλ

(
1 +

(λ1−ei − 1)ωi

(λ− 1)ωi−1

)]
;

[
logλ

(
1 +

(λAi − 1)ωi

(λ− 1)ωi−1

)
,

logλ

(
1 +

(λBi − 1)ωi

(λ− 1)ωi−1

)]
, logλ

(
1 +

(λCi − 1)ωi

(λ− 1)ωi−1

)
,[

logλ

(
1 +

(λDi − 1)ωi

(λ− 1)ωi−1

)
, logλ

(
1 +

(λEi − 1)ωi

(λ− 1)ωi−1

)]⟩

Thus, by addition law of TIT2IFNs, we get

TIT2IFWA(α1, α2)

=

⟨[
1− logλ

(
(λ1−a1 − 1)ω1 (λ1−a2 − 1)ω2

)
, 1− logλ

(
(λ1−b1 − 1)ω1 (λ1−b2 − 1)ω2

)]
,

1− logλ
(
(λ1−c1 − 1)ω1 (λ1−c2 − 1)ω2

)
,
[
1− logλ

(
(λ1−d1 − 1)ω1 (λ1−d2 − 1)ω2

)
,

1− logλ
(
(λ1−e1 − 1)ω1 (λ1−e2 − 1)ω2

)]
;
[
logλ

(
(λA1 − 1)ω1 (λA2 − 1)ω2

)
,

logλ

(
(λB1 − 1)ω1 (λB2 − 1)ω2

)]
, logλ

(
(λC1 − 1)ω1 (λC2 − 1)ω2

)
,[

logλ

(
(λD1 − 1)ω1 (λD2 − 1)ω2

)
, logλ

(
(λE1 − 1)ω1 (λE2 − 1)ω2

)]⟩

Thus, result hold for n = 2.
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Step 2: If Eq. (2) holds for n = k, then for n = k + 1, we have

TIT2IFWA(α1, α2, . . . , αk+1) = TIT2IFWA(α1, α2, . . . , αk)⊕F ωk+1 ·F αk+1

=

⟨1− logλ

1 +
k∏

j=1

(λ1−aj − 1)ωj

 , 1− logλ

1 +
k∏

j=1

(λ1−bj − 1)ωj

 ,

1− logλ

1 +
k∏

j=1

(λ1−cj − 1)ωj

 ,

1− logλ

1 +
k∏

j=1

(λ1−dj − 1)ωj

 ,

1− logλ

1 +
k∏

j=1

(λ1−ej − 1)ωj

 ;

logλ
1 +

k∏
j=1

(λAj − 1)ωj

 ,

logλ

1 +
k∏

j=1

(λBj − 1)ωj

 , logλ

1 +
k∏

j=1

(λCj − 1)ωj

 ,

logλ
1 +

k∏
j=1

(λDj − 1)ωj

 , logλ

1 +
k∏

j=1

(λEj − 1)ωj

⟩

⊕
F

⟨[
1− logλ

(
1 +

(λ1−ak+1 − 1)ωk+1

(λ− 1)ωk+1−1

)
, 1− logλ

(
1 +

(λ1−bk+1 − 1)ωk+1

(λ− 1)ωk+1−1

)]
,

1− logλ

(
1 +

(λ1−ck+1 − 1)ωk+1

(λ− 1)ωk+1−1

)
,

[
1− logλ

(
1 +

(λ1−dk+1 − 1)ωk+1

(λ− 1)ωk+1−1

)
,

1− logλ

(
1 +

(λ1−ek+1 − 1)ωk+1

(λ− 1)ωk+1−1

)]
;

[
logλ

(
1 +

(λAk+1 − 1)ωk+1

(λ− 1)ωk+1−1

)
,

logλ

(
1 +

(λBk+1 − 1)ωk+1

(λ− 1)ωk+1−1

)]
, logλ

(
1 +

(λCk+1 − 1)ωk+1

(λ− 1)ωk+1−1

)
,[

logλ

(
1 +

(λDk+1 − 1)ωk+1

(λ− 1)ωk+1−1

)
, logλ

(
1 +

(λEk+1 − 1)ωk+1

(λ− 1)ωk+1−1

)]⟩

=

⟨1− logλ

1 +

k+1∏
j=1

(λ1−aj − 1)ωj

(λ− 1)

k+1∑
j=1

ωj−1

 , 1− logλ

1 +

k+1∏
j=1

(λ1−bj − 1)ωj

(λ− 1)

k+1∑
j=1

ωj−1


 ,

1− logλ

1 +

k+1∏
j=1

(λ1−cj − 1)ωj

(λ− 1)

k+1∑
j=1

ωj−1

 ,

1− logλ

1 +

k+1∏
j=1

(λ1−dj − 1)ωj

(λ− 1)

k+1∑
j=1

ωj−1

 ,

1− logλ

1 +

k+1∏
j=1

(λ1−ej − 1)ωj

(λ− 1)

k+1∑
j=1

ωj−1


 ;

logλ
1 +

k+1∏
j=1

(λAj − 1)ωj

(λ− 1)

k+1∑
j=1

ωj−1

 ,

logλ

1 +

k+1∏
j=1

(λBj − 1)ωj

(λ− 1)

k+1∑
j=1

ωj−1


 , logλ

1 +

k+1∏
j=1

(λCj − 1)ωj

(λ− 1)

k+1∑
j=1

ωj−1

 ,

logλ
1 +

k+1∏
j=1

(λDj − 1)ωj

(λ− 1)

k+1∑
j=1

ωj−1

 , logλ

1 +

k+1∏
j=1

(λEj − 1)ωj

(λ− 1)

k+1∑
j=1

ωj−1



⟩
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=

⟨1− logλ

(
1 +

k+1∏
j=1

(λ1−aj − 1)ωj

)
, 1− logλ

(
1 +

k+1∏
j=1

(λ1−bj − 1)ωj

) ,

1− logλ

(
1 +

k+1∏
j=1

(λ1−cj − 1)ωj

)
,

1− logλ

(
1 +

k+1∏
j=1

(λ1−dj − 1)ωj

)
,

1− logλ

(
1 +

k+1∏
j=1

(λ1−ej − 1)ωj

) ;

logλ (1 +

k+1∏
j=1

(λAj − 1)ωj

)
,

logλ

(
1 +

k+1∏
j=1

(λBj − 1)ωj

) , logλ

(
1 +

k+1∏
j=1

(λCj − 1)ωj

)
,

logλ (1 +

k+1∏
j=1

(λDj − 1)ωj

)
, logλ

(
1 +

k+1∏
j=1

(λEj − 1)ωj

)⟩

Thus, results holds for n = k + 1 and hence, by the principle of mathematical
induction, result given in Eq. (2) holds for all positive integer n. �

It has been observed from the TIT2IFWA operator that it satisfies the cer-
tain properties such as boundedness, idempotent and monotonicity, invariance etc.,
which can be demonstrated as follows:

Theorem 4.3. (Idempotency:) If αj = α0 for all j, then

TIT2IFWA(α1, α2, . . . , αn) = α0

The proof of Theorem 4.3 is provided in Appendix.

Theorem 4.4. (Boundedness:) Let α− =
⟨
[min

j
{aj},min

j
{bj}],min

j
{cj}, [min

j
{dj},

min
j

{ej}]; [max
j

{Aj}, max
j

{Bj}], max
j

{Cj}, [max
j

{Dj},max
j

{Ej}]
⟩
and α+ =

⟨
[max

j

{aj}, max
j

{bj}], max
j

{cj}, [max
j

{dj}, max
j

{ej}]; [min
j

{Aj}, min
j

{Bj}], min
j

{Cj},

[min
j

{Dj},min
j

{Ej}]
⟩
then

α− ≤ TIT2IFWA(α1, α2, . . . , αn) ≤ α+

The proof of Theorem 4.4 is provided in Appendix.

Theorem 4.5. (Monotonicity:) If αj and βj be collections of two TIT2IFNs such
that αj ≤ βj then

TIT2IFWA(α1, α2, . . . , αn) ≤ TIT2IFWA(β1, β2, . . . , βn)

Theorem 4.6. (Shift-invariance:) If β be another TIT2IFN, then

TIT2IFWA(α1 ⊕F β, α2 ⊕F β, . . . , αn ⊕F β) = TIT2IFWA(α1, α2 . . . , αn)⊕F β

Theorem 4.7. (Homogeneity:) If β > 0 be a real number, then

TIT2IFWA(β ·F α1, β ·F α2, . . . , β ·F αn) = β ·F TIT2IFWA(α1, α2 . . . , αn)

Proof. The proof of these Theorems can be easily derived from the Frank opera-
tional laws of TIT2IFNs; thus, it is omitted here due to the space limitations. �
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4.2. Ordered weighted averaging Operator.

Definition 4.8. Suppose Ω be a family of TIT2IFNs αj for j = 1, 2, . . . , n and
TIT2IFOWA : Ωn −→ Ω, if

TIT2IFOWA(α1, . . . , αn) = ω1 ·F αδ(1) ⊕F ω2 ·F αδ(2) ⊕F . . .⊕F ωn ·F αδ(n)

where ω = (ω1, ω2 . . . , ωn)
T is the weight vector of αj , (δ(1), δ(2), . . . , δ(n)) is a

permutation of (1, 2, 3, . . . , n) such that αδ(j−1) ≥ αδ(j) for j = 2, 3, . . . , n then,
TIT2IFOWA is called triangular interval type-2 intuitionistic fuzzy ordered weighted
averaging operator

Theorem 4.9. The aggregated value by using TIT2IFOWA operator for a collection
of TIT2IFNs αj, (j = 1, 2, . . . n) is again TIT2IFN, and is given by

TIT2IFOWA(α1, α2, . . . , αn) =

⟨1 − logλ

1 +

n∏
j=1

(λ
1−aδ(j) − 1)

ωj

 ,

1 − logλ

1 +

n∏
j=1

(λ
1−bδ(j) − 1)

ωj

 , 1 − logλ

1 +

n∏
j=1

(λ
1−cδ(j) − 1)

ωj

 ,

1 − logλ

1 +
n∏

j=1

(λ
1−dδ(j) − 1)

ωj

 , 1 − logλ

1 +
n∏

j=1

(λ
1−eδ(j) − 1)

ωj

 ;

logλ

1 +
n∏

j=1

(λ
Aδ(j) − 1)

ωj

 , logλ

1 +
n∏

j=1

(λ
Bδ(j) − 1)

ωj

 , logλ

1 +
n∏

j=1

(λ
Cδ(j) − 1)

ωj

 ,

logλ

1 +

n∏
j=1

(λ
Dδ(j) − 1)

ωj

 , logλ

1 +

n∏
j=1

(λ
Eδ(j) − 1)

ωj

⟩

Proof. Proof of this result is similar to Theorem 4.2, so we omit here. �

Example 4.10. Let α1 = ⟨[0.4, 0.5], 0.5, [0.6, 0.7]; [0.5, 0.4], 0.3, [0.2, 0.1]⟩, α2 =
⟨[0.2, 0.3], 0.4, [0.4, 0.5]; [0.7, 0.6], 0.5, [0.3, 0.2]⟩, α3 = ⟨[0.3, 0.5], 0.5, [0.6, 0.7]; [0.6,
0.4], 0.4, [0.3, 0.2]⟩ be three TIT2IFNs and ω = (0.3, 0.4, 0.3)T be their correspond-
ing weight vector. Now, based on the ranking formula, we have α1 ≥ α3 ≥ α2 thus,
we have αδ(1) = α1, αδ(2) = α3 and αδ(3) = α2. If we take λ = 2 for simplification,

then we have, 1−logλ
(
1+

3∏
j=1

(λ1−aδ(j)−1)ωj
)
= 0.3034, logλ

(
1+

3∏
j=1

(λAδ(j)−1)ωj
)
=

0.5959, 1−logλ
(
1+

3∏
j=1

(λ1−bδ(j)−1)ωj
)
= 0.4456, 1−logλ

(
1+

3∏
j=1

(λ1−cδ(j)−1)ωj
)
=

0.4716, 1−logλ
(
1+

3∏
j=1

(λ1−dδ(j)−1)ωj
)
= 0.5470, 1−logλ

(
1+

3∏
j=1

(λ1−eδ(j)−1)ωj
)
=

0.6491, logλ
(
1+

3∏
j=1

(λBδ(j) − 1)ωj
)
= 0.4530, logλ

(
1+

3∏
j=1

(λCδ(j) − 1)ωj
)
= 0.3933,

logλ
(
1 +

3∏
j=1

(λDδ(j) − 1)ωj
)
= 0.2660, logλ

(
1 +

3∏
j=1

(λEδ(j) − 1)ωj
)
= 0.1629. Thus,

TIT2IFOWA(α1, α2, α3) =
⟨
[0.3034, 0.4456], 0.4716, [0.5470, 0.6491]; [0.5959, 0.4530],

0.3933, [0.2660, 0.1629]
⟩
.
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As similar to those of TIT2IFWA operator, the TIT2IFOWA operator also fol-
lows the boundedness, idempotency and monotonicity properties. Besides the afore-
mentioned properties, the TIT2IFOWA operator has the following desirable results.

Theorem 4.11. For a collection of TIT2IFNs αj(j = 1, 2, . . . , n), we have the
following:

(i) If ω = (1, 0, . . . , 0)T then TIT2IFOWA(α1, α2, . . . , αn) = max{α1, α2, . . . , αn}
(ii) If ω = (0, 0, . . . , 1)T then TIT2IFOWA(α1, α2, . . . , αn) = min{α1, α2, . . . , αn}
(iii) If ωj = 1 and ωi = 0(i ̸= j), then TIT2IFOWA(α1, α2, . . . , αn) = αδ(j) where

αδ(j) is the jth largest of αj, (j = 1, 2, . . . , n).

4.3. Hybrid Averaging Operator. Since TIT2IFWA operator weights only the
TIT2IFNs while TIT2IFOWA operator weights the ordered positions of TIT2IFNs.
However, in order to combine these two aspects in one, we now introduce hybrid
aggregation operator, which weight both the given TIT2IFNs and their ordered
positions.

Definition 4.12. A triangular interval type-2 intuitionistic fuzzy hybrid averaging
(TIT2IFHA) operator is a mapping TIT2IFHA : Ωn −→ Ω, such that

TIT2IFHA(α1, α2, . . . , αn) = ϕ1 ·F α̇δ(1) ⊕F ϕ2 ·F α̇δ(2) ⊕F . . .⊕F ϕn ·F α̇δ(n)

where Ω is the set of all TIT2IFNs, and ϕ = (ϕ1, ϕ2, . . . , ϕn)
T is the weighted

vector associated with TIT2IFHA, such that ϕj > 0 and
n∑

j=1

ϕj = 1; α̇j = (nωj) ·F

αj , j = 1, 2, . . . , n, α̇δ(j) is the jth largest of the weighted TIT2IFNs α̇j and ω =

(ω1, ω2, . . . , ωn)
T is the weight vector of αj with ωj > 0,

n∑
j=1

ωj = 1.

Theorem 4.13. For a collection of TIT2IFNs, αj(j = 1, 2, . . . , n), the aggregated
value based on the TIT2IFHA operator is also TIT2IFN and can be expressed as

TIT2IFHA(α1, α2, . . . , αn) =

⟨[
1 − logλ

(
1 +

n∏
j=1

(λ
1−aδ(j) − 1)

ϕj

)
,

1 − logλ

(
1 +

n∏
j=1

(λ
1−bδ(j) − 1)

ϕj

)]
, 1 − logλ

(
1 +

n∏
j=1

(λ
1−cδ(j) − 1)

ϕj

)
,

[
1 − logλ

(
1 +

n∏
j=1

(λ
1−dδ(j) − 1)

ϕj

)
, 1 − logλ

(
1 +

n∏
j=1

(λ
1−eδ(j) − 1)

ϕj

)]
;

[
logλ

(
1 +

n∏
j=1

(λ
Aδ(j) − 1)

ϕj

)
, logλ

(
1 +

n∏
j=1

(λ
Bδ(j) − 1)

ϕj

)]
, logλ

(
1 +

n∏
j=1

(λ
Cδ(j) − 1)

ϕj

)
,

[
logλ

(
1 +

n∏
j=1

(λ
Dδ(j) − 1)

ϕj

)
, logλ

(
1 +

n∏
j=1

(λ
Eδ(j) − 1)

ϕj

)]⟩

Proof. The proof is similar to Theorem 4.2, so it is omitted here. �
Similar to those of TIT2IFWA and TIT2IFOWA operators, the TIT2IFHA op-

erator has also follows the same properties.

Theorem 4.14. The TIT2IFWA operator as defined in Theorem 4.2 is a special
case of the TIT2IFHA operator.
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Proof. Let ϕ = (1/n, 1/n, . . . , 1/n)T then, TIT2IFHA(α1, α2, . . . , αn) =
1
n (α̇δ(1)⊕F

α̇δ(2)⊕F . . .⊕F α̇δ(n)) = ω1·Fα1⊕F . . .⊕Fωn·Fαn = TIT2IFWA(α1, α2, . . . , αn). �

Theorem 4.15. The TIT2IFOWA operator as defined in Theorem 4.9 is a special
case of the TIT2IFHA operator.

Proof. Let ω = (1/n, 1/n, . . . , 1/n)T then, α̇j = (nωj) ·F αj = αj , for all j. Thus,
TIT2IFHA(α1, α2, . . . , αn) = ϕ1 ·F α̇δ(1) ⊕F ϕ2 ·F α̇δ(2) ⊕F . . . ⊕F ϕn ·F α̇δ(n) =
ϕ1 ·F αδ(1) ⊕F ϕ2 ·F αδ(2) ⊕F . . .⊕F ϕn ·F αδ(n) = TIT2IFOWA(α1, α2, . . . , αn). �

5. Decision-making approach based on proposed operators

In this section, a decision-making method by using above defined aggregation
operators has been presented followed by an illustrative example for demonstrating
the approach.

5.1. Decision-making approach. Let A = {A1, A2, . . . , Am} be the set of alter-
natives and G = {G1, G2, . . . , Gn} be a set of criteria with the associated weight
ω = (ω1, ω2, . . . , ωn)

T satisfying ωj > 0 and
∑n

j=1 ωj = 1. The characteris-

tics of each alternative Ai(i = 1, 2, . . . ,m) with respect to each criteria Gj(j =
1, 2, . . . , n) is characterized in terms of TIT2IFNs αij =

⟨
[aij , bij ], cij , [dij , eij ];

[Aij , Bij ], Cij , [Dij , Eij ]
⟩
where aij ≤ bij ≤ cij ≤ dij ≤ eij and Aij ≥ Bij ≥ Cij ≥

Dij ≥ Eij such that eij + Eij ≤ 1 and aij + Aij ≤ 1. Then, in the following, we
develop an approach based on the proposed operator to solve the decision-making
problems with TIT2IF information, which involves the following steps.

Step 1: Collect the information as decision matrix D = (αij)m×n.
Step 2: If all the attributes are of same type, then there is no need of normal-

ization. But, if there are different types of criterion say profit (B) and cost
(C), then we convert profit into cost by the following normalized formula:

rij =

{
αij ; j ∈ B

αc
ij ; j ∈ C

where αc
ij is the complement of αij . Hence, we obtain the normalized

TIT2IFN decision matrix R = (rij)m×n.
Step 3: Aggregate the TIT2IFNs rij(j = 1, 2, . . . , n) for each alternative

Ai(i = 1, 2, . . . ,m) into the overall preference value ri either by using the
proposed TIT2IFWA, TIT2IFOWA or TIT2IFHA operators.

Step 4: Determine the ranking value of each aggregated value ri, (i = 1, 2,
. . . ,m) by using Eq. (1) and hence select the best one(s).

Step 5: Do the sensitivity analysis on the parameter λ according to decision
makers’ preferences.

5.2. Numerical Example. The above decision-making procedure has been illus-
trated with the case study that a person wants to invest a money in the market.
For this, they have chosen the four multinational companies namely A1: Infosys,
A2: Wipro, A3: Dell and A4: Apple. In order to assess these alternatives, the
investors have brought a panel with three experts e1, e2 and e3 whose weight vector
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is 0.35, 0.35 and 0.30. These three experts have evaluated the each alternative Ai,
i = 1, 2, 3, 4 with respect to the four attributes namely G1 : growth analysis, G2 :
development of society, G3 : technical support and G4 : quality whose weight vector
is ω = (0.3, 0.2, 0.1, 0.4)T . Then, the following steps have been performed based on
the proposed decision-making approach to find the most desirable alternative(s).

Step 1: The three experts have evaluated the given alternatives Ai, i = 1, 2, 3, 4
with respect to attributes Gj , j = 1, 2, 3, 4 in the form of TIT2IFNs which are
represented in Tables 1-3 respectively.

G1 G2 G3 G4

A1

⟨
[0.4, 0.5], 0.6, [0.7, 0.8];

⟨
[0.5, 0.6], 0.7, [0.8, 0.9];

⟨
[0.6, 0.7], 0.8, [0.9, 0.95];

⟨
[0.6, 0.7], 0.8, [0.8, 0.9];

[0.5, 0.4], 0.3, [0.2, 0.1]
⟩

[0.4, 0.3], 0.3, [0.2, 0.1]
⟩

[0.3, 0.25], 0.2, [0.1, 0.05]
⟩

[0.3, 0.25], 0.2, [0.2, 0.1]
⟩

A2

⟨
[0.5, 0.6], 0.7, [0.8, 0.9];

⟨
[0.5, 0.6], 0.7, [0.8, 0.9];

⟨
[0.4, 0.5], 0.6, [0.7, 0.8];

⟨
[0.6, 0.7], 0.8, [0.8, 0.9];

[0.4, 0.3], 0.3, [0.2, 0.1]
⟩

[0.4, 0.3], 0.3, [0.2, 0.1]
⟩

[0.5, 0.4], 0.4, [0.3, 0.2]
⟩

[0.4, 0.2], 0.2, [0.2, 0.1]
⟩

A3

⟨
[0.3, 0.4], 0.5, [0.6, 0.7];

⟨
[0.4, 0.5], 0.6, [0.7, 0.8];

⟨
[0.2, 0.3], 0.4, [0.5, 0.6];

⟨
[0.3, 0.4], 0.5, [0.6, 0.7];

[0.6, 0.5], 0.4, [0.3, 0.2]
⟩

[0.45, 0.4], 0.3, [0.2, 0.1]
⟩

[0.6, 0.5], 0.4.[0.3, 0.2]
⟩

[0.7, 0.5], 0.4, [0.3, 0.2]
⟩

A4

⟨
[0.2, 0.3], 0.4, [0.5, 0.6];

⟨
[0.6, 0.7], 0.8, [0.85, 0.9];

⟨
[0.3, 0.4], 0.5, [0.6, 0.7];

⟨
[0.4, 0.5], 0.6, [0.7, 0.8];

[0.7, 0.6], 0.5, [0.4, 0.3]
⟩

[0.4, 0.2], 0.2, [0.15, 0.05]
⟩

[0.6, 0.5], 0.4, [0.3, 0.2]
⟩

[0.5, 0.4], 0.3, [0.2, 0.1]
⟩

Table 1. TIT2 Intuitionistic fuzzy decision matrix given by Ex-
pert e1, (D

1)

G1 G2 G3 G4

A1

⟨
[0.2, 0.3], 0.35, [0.4, 0.5];

⟨
[0.3, 0.35], 0.4, [0.4, 0.5];

⟨
[0.3, 0.5], 0.6, [0.6, 0.7];

⟨
[0.3, 0.4], 0.5, [0.5, 0.6];

[0.7, 0.6], 0.50, [0.4, 0.3]
⟩

[0.6, 0.5], 0.5, [0.4, 0.3]
⟩

[0.6, 0.4], 0.4, [0.3, 0.2]
⟩ ⟨

[0.6, 0.3], 0.3, [0.2, 0.1]
⟩

A2

⟨
[0.25, 0.30], 0.45, [0.35, 0.40];

⟨
[0.3, 0.4], 0.4, [0.5, 0.6];

⟨
[0.3, 0.5], 0.55, [0.6, 0.7];

⟨
[0.2, 0.4], 0.45, [0.5, 0.6];

[0.65, 0.55], 0.45, [0.35, 0.25]
⟩

[0.6, 0.5], 0.4, [0.4, 0.3]
⟩

[0.7, 0.6], 0.4, [0.4, 0.2]
⟩

[0.7, 0.5], 0.45, [0.4, 0.3]
⟩

A3

⟨
[0.45, 0.50], 0.50, [0.6, 0.7];

⟨
[0.5, 0.6], 0.6, [0.7, 0.8];

⟨
[0.4, 0.6], 0.7, [0.8, 0.9];

⟨
[0.3, 0.4], 0.55, [0.6, 0.7];

[0.4, 0.3], 0.3, [0.2, 0.1]
⟩

[0.5, 0.4], 0.3, [0.2, 0.1]
⟩

[0.5, 0.4], 0.35, [0.2, 0.1]
⟩

[0.6, 0.5], 0.4, [0.3, 0.2]
⟩

A4

⟨
[0.5, 0.55], 0.55, [0.6, 0.75];

⟨
[0.6, 0.7], 0.8, [0.85, 0.9];

⟨
[0.4, 0.5], 0.6, [0.7, 0.8];

⟨
[0.5, 0.6], 0.65, [0.7, 0.8];

[0.4, 0.3], 0.2, [0.2, 0.1]
⟩

[0.4, 0.35], 0.2, [0.1, 0.05]
⟩

[0.5, 0.4], 0.3, [0.2, 0.1]
⟩

[0.4, 0.3], 0.35, [0.3, 0.2]
⟩

Table 2. TIT2 Intuitionistic fuzzy decision matrix given by Ex-
pert e2, (D

2)

G1 G2 G3 G4

A1

⟨
[0.4, 0.5], 0.6, [0.7, 0.8];

⟨
[0.5, 0.6], 0.7, [0.8, 0.9];

⟨
[0.4, 0.5], 0.6, [0.7, 0.8];

⟨
[0.5, 0.6], 0.7, [0.8, 0.9];

[0.5, 0.4], 0.3, [0.2, 0.1]
⟩

[0.45, 0.4], 0.25, [0.15, 0.1]
⟩

[0.45, 0.35], 0.3, [0.3, 0.25]
⟩

[0.4, 0.3], 0.3, [0.2, 0.1]
⟩

A2

⟨
[0.3, 0.4], 0.5, [0.6, 0.7];

⟨
[0.6, 0.7], 0.8, [0.8, 0.9];

⟨
[0.4, 0.5], 0.6, [0.7, 0.8];

⟨
[0.6, 0.7], 0.8, [0.8, 0.9];

[0.6, 0.5], 0.4, [0.3, 0.2]
⟩

[0.35, 0.3], 0.2, [0.15, 0.1]
⟩

[0.45, 0.40], 0.3, [0.2, 0.1]
⟩

[0.3, 0.2], 0.2, [0.15, 0.05]
⟩

A3

⟨
[0.1, 0.2], 0.3, [0.4, 0.5];

⟨
[0.6, 0.7], 0.8, [0.9, 0.9];

⟨
[0.3, 0.4], 0.5, [0.6, 0.7];

⟨
[0.4, 0.5], 0.6, [0.7, 0.8];

[0.6, 0.5], 0.4, [0.3, 0.2]
⟩

[0.3, 0.2], 0.2, [0.2, 0.1]
⟩

[0.55, 0.45], 0.4, [0.3, 0.2]
⟩

[0.5, 0.4], 0.35, [0.3, 0.2]
⟩

A4

⟨
[0.2, 0.3], 0.4, [0.5, 0.6];

⟨
[0.2, 0.3], 0.4, [0.5, 0.6];

⟨
[0.1, 0.2], 0.3, [0.4, 0.5];

⟨
[0.3, 0.4], 0.5, [0.6, 0.7];

[0.7, 0.6], 0.5, [0.4, 0.3]
⟩

[0.6, 0.5], 0.4, [0.3, 0.2]
⟩

[0.5, 0.4], 0.3, [0.2, 0.1]
⟩

[0.6, 0.5], 0.4, [0.4, 0.3]
⟩

Table 3. TIT2 Intuitionistic fuzzy decision matrix given by Ex-
pert e3, (D

3)

Step 2: Since all the attributes are of same types, so there is no need of the
normalization.

Step 3: Let ϕ = (0.35, 0.25, 0.25, 0.15)T be the weight vector associated with
TIT2IFHA operator. Without loss of generality, here we utilize TIT2IFHA and
TIT2IFWA operators to aggregate the given data by taking λ = 2. For this, firstly
we compute α̇k

ij = 4ωjα
k
ij ; k = 1, 2, 3 and hence the corresponding values for each

decision makers ek, k = 1, 2, 3 are summarized in Tables 4-6 respectively.
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G1 G2 G3 G4

A1

⟨
[0.7845, 0.8678], 0.9332, [0.9332, 0.9788];

⟨
[0.4622, 0.5700], 0.6731, [0.7705, 0.8604];

⟨
[0.4208, 0.5131], 0.6106, [0.7158, 0.8345];

⟨
[0.2920, 0.3616], 0.4475, [0.5685, 0.6638];

[0.1322, 0.0972], 0.0668, [0.0668, 0.0212]
⟩

[0.4300, 0.3269], 0.2295, [0.1396, 0.0599]
⟩

[0.4869, 0.3894], 0.3894, [0.2842, 0.1655]
⟩

[0.6384, 0.5982], 0.5525, [0.4315, 0.3362]
⟩

A2

⟨
[0.7845, 0.8678], 0.9332, [0.9332, 0.9788];

⟨
[0.5700, 0.6731], 0.7705, [0.8604, 0.9401]; ⟨[0.4208, 0.5131], 0.6106, [0.7158, 0.8345]; ⟨[0.1785, 0.2320], 0.2920, [0.3616, 0.4475];

[0.2155, 0.0668], 0.0668, [0.0668, 0.0212]
⟩

[0.3269, 0.2295], 0.2295, [0.1396, 0.0599]
⟩

[0.4869, 0.3894], 0.3894, [0.2842, 0.1655]
⟩

[0.7680, 0.7080], 0.7080, [0.6384, 0.5525]
⟩

A3

⟨
[0.4434, 0.5707], 0.6849, [0.7845, 0.8678]; ⟨[0.3507, 0.4622], 0.5700, [0.6731, 0.7705];

⟨
[0.3321, 0.4208], 0.5131, [0.6106, 0.7158]; ⟨[0.0839, 0.1295], 0.1785, [0.2320, 0.2920];

[0.5566, 0.3151], 0.2155, [0.1322, 0.0668]
⟩

[0.5378, 0.4300], 0.3269, [0.2295, 0.1396]
⟩

[0.5336, 0.4869], 0.3894, [0.2842, 0.1655]
⟩

[0.8215, 0.7680], 0.7080, [0.6384, 0.5525]
⟩

A4

⟨
[0.5707, 0.6849], 0.7845, [0.8678, 0.9332];

⟨
[0.5131, 0.6106], 0.7158, [0.7729, 0.8345];

⟨
[0.2362, 0.3507], 0.4622, [0.5700, 0.6731];

⟨
[0.1295, 0.1785], 0.2320, [0.2920, 0.3616];

[0.3151, 0.2155], 0.1322, [0.0668, 0.0212]
⟩

[0.4869, 0.2842], 0.2842, [0.2271, 0.0961]
⟩

[0.6493, 0.5378], 0.4300, [0.3269, 0.2295]
⟩

[0.8215, 0.7680], 0.7080, [0.6384, 0.5525]
⟩

Table 4. Decision maker preferences corresponding to Expert e1(D
1)

G1 G2 G3 G4

A1 ⟨[0.4434, 0.5707], 0.6849, [0.6849, 0.7845]; ⟨[0.2362, 0.3507], 0.4069, [0.4622, 0.5700]; ⟨[0.2463, 0.2889], 0.3321, [0.3321, 0.4208]; ⟨[0.1295, 0.2320], 0.2920, [0.2920, 0.3616];

[0.4293, 0.1322], 0.1322, [0.0668, 0.0212]
⟩

[0.6493, 0.5378], 0.4300, [0.3269, 0.2295]
⟩

[0.6679, 0.5792], 0.5792, [0.4869, 0.3894]
⟩

[0.8215, 0.7080], 0.7080, [0.6384, 0.5525]
⟩

A2 ⟨[0.3048, 0.5707], 0.6295, [0.6849, 0.7845];
⟨
[0.2938, 0.3507], 0.5166, [0.4069, 0.4622];

⟨
[0.2463, 0.3321], 0.3321, [0.4208, 0.5131];

⟨
[0.1295, 0.2320], 0.2610, [0.2920, 0.3616];

[0.5566, 0.3151], 0.2634, [0.2155, 0.1322]
⟩

[0.5931, 0.4834], 0.3778, [0.2774, 0.1835]
⟩

[0.6679, 0.5792], 0.4869, [0.4869, 0.3894]
⟩

[0.8705, 0.8215], 0.7080, [0.7080, 0.5525]
⟩

A3

⟨
[0.4434, 0.5707], 0.7366, [0.7845, 0.8678];

⟨
[0.5166, 0.5700], 0.5700, [0.6731, 0.7705]; [

⟨
0.4208, 0.5131], 0.5131, [0.6106, 0.7158];

⟨
[0.1785, 0.2920], 0.3616, [0.4475, 0.5685]

[0.4293, 0.3151], 0.2155, [0.1322, 0.0668]
⟩

[0.3269, 0.2295], 0.2295, [0.1396, 0.0599]
⟩

[0.5792, 0.4869], 0.3894, [0.2842, 0.1655]
⟩

[0.7680, 0.7080], 0.6747, [0.5525, 0.4315]
⟩

A4

⟨
[0.6849, 0.7845], 0.8283, [0.8678, 0.9332]; [0.5700, 0.6222], 0.6222, [0.6731, 0.8165]; [0.5131, 0.6106], 0.7158, [0.7729, 0.8345]; [0.1785, 0.2320], 0.2920, [0.3616, 0.4475];

[0.2155, 0.1322], 0.1717, [0.1322, 0.0668]
⟩

[0.3269, 0.2295], 0.1396, [0.1396, 0.0599]
⟩

[0.4869, 0.4389], 0.2842, [0.1655, 0.0961]
⟩

[0.7680, 0.7080], 0.6384, [0.5525, 0.4315]
⟩

Table 5. Decision maker preferences corresponding to Expert e2(D
2)

G1 G2 G3 G4

A1

⟨
[0.6849, 0.7845], 0.8678, [0.9332, 0.9788];

⟨
[0.4622, 0.5700], 0.6731, [0.7705, 0.8604];

⟨
[0.4208, 0.5131], 0.6106, [0.7158, 0.8345];

⟨
[0.1785, 0.2320], 0.2920, [0.3616, 0.4475];

[0.2155, 0.1322], 0.1322, [0.0668, 0.0212]
⟩

[0.4300, 0.3269], 0.2295, [0.1396, 0.0599]
⟩

[0.5336, 0.4869], 0.3380, [0.2271, 0.1655]
⟩

[0.7390, 0.6747], 0.6384, [0.6384, 0.5982]
⟩

A2

⟨
[0.7845, 0.8678], 0.9332, [0.9332, 0.9788];

⟨
[0.5131, 0.6106], 0.7158, [0.7158, 0.8345];

⟨
[0.3507, 0.4622], 0.5700, [0.6731, 0.7705];

⟨
[0.1785, 0.2320], 0.2920, [0.3616, 0.4475];

[0.1322, 0.0668], 0.0668, [0.0413, 0.0068]
⟩

[0.4389, 0.3894], 0.2842, [0.2271, 0.1655]
⟩

[0.5378, 0.4300], 0.3269, [0.2295, 0.1396]
⟩

[0.7390, 0.7080], 0.6384, [0.5525, 0.4315]
⟩

A3

⟨
[0.5707, 0.6849], 0.7845, [0.8678, 0.9332];

⟨
[0.5131, 0.6106], 0.7158, [0.8345, 0.8345];

⟨
[0.1191, 0.2362], 0.3507, [0.4622, 0.5700];

⟨
[0.1295, 0.1785], 0.2320, [0.2920, 0.3616];

[0.3151, 0.2155], 0.1717, [0.1322, 0.0668]
⟩

[0.3894, 0.2842], 0.2842, [0.2842, 0.1655]
⟩

[0.5378, 0.4300], 0.3269, [0.2295, 0.1396]
⟩

[0.7954, 0.7390], 0.7080, [0.6384, 0.5525]
⟩

A4

⟨
[0.4434, 0.5707], 0.6849, [0.7845, 0.8678];

⟨
[0.2362, 0.3507], 0.4622, [0.5700, 0.6731];

⟨
[0.1626, 0.2463], 0.3321, [0.4208, 0.5131];

⟨
[0.0409, 0.0839], 0.1295, [0.1785, 0.2320];

[0.4293, 0.3151], 0.2155, [0.2155, 0.1322]
⟩

[0.6493, 0.5378], 0.4300, [0.3269, 0.2295]
⟩

[0.6679, 0.5792], 0.4869, [0.3894, 0.2842]
⟩

[0.7680, 0.7080], 0.6384, [0.5525, 0.4315]
⟩

Table 6. Decision maker preferences corresponding to Expert e3(D
3)

Now, aggregate these three expert matrices corresponding to the expert weight
vector 0.35, 0.35 and 0.30 into the collective TIT2IF matrix R = (rij)4×4 by using
TIT2IFWA operator. The result corresponding to these are summarized in Table
7. Utilize the TIT2IFWA operator, corresponding to the weight vector ϕ = (0.35,

G1 G2 G3 G4

A1

⟨
[0.6601, 0.7664], 0.8573, [0.8835, 0.9516];

⟨
[0.3902, 0.5016], 0.5950, [0.6878, 0.7906];

⟨
[0.3638, 0.4424], 0.5271, [0.6122, 0.7387];

⟨
[0.2034, 0.2795], 0.3499, [0.4204, 0.5087];

[0.2336, 0.1188], 0.1043, [0.0668, 0.0212]
⟩

[0.4984, 0.3906], 0.2873, [0.1891, 0.0966]
⟩

[0.5599, 0.4795], 0.4305, [0.3227, 0.2248]
⟩

[0.7295, 0.6582], 0.6300, [0.5583, 0.4778]
⟩

A2

⟨
[0.6688, 0.7978], 0.8762, [0.8835, 0.9516];

⟨
[0.4668, 0.5590], 0.6806, [0.7080, 0.8197];

⟨
[0.3419, 0.4387], 0.5131, [0.6172, 0.7309];

⟨
[0.1615, 0.2320], 0.2813, [0.3379, 0.4186];

[0.2639, 0.1165], 0.1090, [0.0879, 0.0289]
⟩

[0.4419, 0.3511], 0.2920, [0.2060, 0.1208]
⟩

[0.5613, 0.4620], 0.4002, [0.3236, 0.2139]
⟩

[0.7937, 0.7463], 0.6865, [0.6345, 0.5135]
⟩

A3

⟨
[0.4845, 0.6082], 0.7357, [0.8136, 0.8921];

⟨
[0.4619, 0.5480], 0.6194, [0.7324, 0.7918];

⟨
[0.3073, 0.4058], 0.4684, [0.5703, 0.6776];

⟨
[0.1313, 0.2034], 0.2619, [0.3307, 0.4204];

[0.4301, 0.2815], 0.2014, [0.1322, 0.0668]
⟩

[0.4114, 0.3060], 0.2772, [0.2062, 0.1096]
⟩

[0.5505, 0.4692], 0.3696, [0.2666, 0.1573]
⟩

[0.7947, 0.7380], 0.6962, [0.6072, 0.5073]
⟩

A4

⟨
[0.5820, 0.6961], 0.7764, [0.8467, 0.9179];

⟨
[0.4635, 0.5487], 0.6182, [0.6864, 0.7888];

⟨
[0.3254, 0.4282], 0.5366, [0.6204, 0.7069];

⟨
[0.1213, 0.1704], 0.2243, [0.2852, 0.3573];

[0.3039, 0.2045], 0.1680, [0.1211, 0.0551]
⟩

[0.4644, 0.3217], 0.2531, [0.2146, 0.1064]
⟩

[0.5932, 0.5127], 0.3874, [0.2731, 0.1816]
⟩

[0.7864, 0.7286], 0.6621, [0.5814, 0.4710]
⟩

Table 7. Collective information by the Decision maker (R)

0.25, 0.25, 0.15)T , to aggregate all the performance values rij , (j = 1, 2, 3, 4) of the
ith alternative and get the overall performance value ri corresponding to alternative
Ai(i = 1, 2, 3, 4) are r1 = ⟨[0.4726, 0.5792], 0.6807, [0.7398, 0.8464]; [0.4221, 0.2996],
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0.2559, [0.1802, 0.0913]⟩, r2 = ⟨[0.4857, 0.6062], 0.7059, [0.7393, 0.8466]; [0.4326,
0.2930], 0.2596, [0.2066, 0.1074]⟩, r3 = ⟨[0.3910, 0.4960], 0.5939, [0.6918, 0.7817];
[0.4984, 0.3807], 0.3090, [0.2239, 0.1287]⟩ and r4 = ⟨[0.4357, 0.5387], 0.6259, [0.7059,
0.8016]; [0.4649, 0.3535], 0.2852, [0.2193, 0.1225]⟩.

Step 4: The ranking value corresponding to these aggregated numbers are ob-
tained by using Eq. (1) as Rank(r1) = 0.5863, Rank(r2) = 0.5975, Rank(r3) =
0.3608 and Rank(r4) = 0.4446.

Step 5: Therefore, the ranking order of the four alternatives is A2 ≻ A1 ≻ A4 ≻
A3, and found that A2 is the most desirable one while A3 is the least one.

5.3. Effect of λ on the ranking. To analyze the effect of the parameters λ on
the most desirable alternatives of the given attributes, we use the different values
of λ in the proposed approach for describing the changing trend of ranking order
as well as the measuring value corresponding to each alternative. The complete
variation of the ranking value of each alternative with respect to parameter λ is
summarized in Fig. 3, while the ranking value for some parametric values of λ →
1, 2, 2.5, 5, 7.5, 10 are summarized in Table 8. From this table and figure, it has been
seen that with the increase in the value of λ, the ranking value corresponding to
each alternative is also increases but the ranking order of these alternative remain
same i.e., A2 ≻ A1 ≻ A4 ≻ A3 and hence the best alternative is Wipro (A2) for
investing a money in the market.

Alternative λ → 1 λ = 2 λ = 2.5 λ = 5 λ = 7.5 λ = 10
A1 0.5814 0.5863 0.5880 0.5934 0.5966 0.5989
A2 0.5952 0.5975 0.5984 0.6015 0.6034 0.6048
A3 0.3548 0.3608 0.3629 0.3692 0.3728 0.3753
A4 0.4404 0.4446 0.4460 0.4507 0.4535 0.4554

Table 8. Ranking values for the different values of λ for each alternative
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Figure 3. Effect of λ on the ranking order of the alternative
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5.4. Comparative studies. In order to compare the performance of the proposed
methods with some existing methods, a comparative studies has been taken in which
the existing operators based on algebraic averaging operator [36], geometric opera-
tor [37], Einstein based t-norm [33], Hamacher based t-norm operator [24] etc have
been considered. The results corresponding to it has been has been shown in Table
9. From this table, it has been analyzed that the best company for investing the
money in the market is Wipro (A2) than others and this result has been overlapped
with the existing studies results which validates the stability of the approach. Fur-
thermore, the proposed operator involve a certain parameter λ, which makes them
more flexible in the process of information fusion and is more adequate to model
practical decision making problems. Thus, the proposed technique can be suitably
utilized to solve the problem of decision-making problem than the other existing
measures.

Method Parameter Order of alternatives
Xu and Yager [37] None A1 ≻ A2 ≻ A4 ≻ A3

Xu [36] None A2 ≻ A1 ≻ A4 ≻ A3

Wang and Liu [33] None A2 ≻ A1 ≻ A4 ≻ A3

Liu [24] γ = 2 A2 ≻ A1 ≻ A4 ≻ A3

Proposed operator λ = 2 A2 ≻ A1 ≻ A4 ≻ A3

Table 9. Comparative analysis

According to the above comparison analysis, the proposed method for addressing
the decision-making problems has the following merits with respect to the existing
ones.

(i) Compared with IFWA operator (or IFWG operator) proposed by Xu [36] (or
Xu and Yager [37]), the IFWA operator (or IFWG operator) is only a special
case of our proposed operators when parameter λ → 1. So, our methods are
more general. Furthermore, the proposed operators based on Frank t-norms,
are more robust and can capture the relationship between the arguments.
Moreover, when λ → ∞, the proposed operators are reduced to the operators
based on Lukasiewicz product and Lukasiewicz sum. Therefore, the Frank
aggregation operators can contain almost all of the arithmetic aggregation
operators and geometric aggregation operators for TIT2IFNs according to
different values of parameter λ.

(ii) The proposed methods include a parameter, which can adjust the aggregate
value based on the real decision needs, and capture many existing hesitant
fuzzy aggregation operators. Therefore, the benefit is that the proposed op-
erators come with their higher generality and flexibility. In other words, the
decision maker can use the appropriate parameter value based on their risk
preference and actual needs.

6. Conclusion

The objective of the present manuscript is to present triangular interval type
2 intuitionistic fuzzy aggregation operators by considering the Frank operational
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laws. For this, some operational laws based on Frank t-norm and conorm has
been presented under the triangular type 2 intuitionistic fuzzy environment and
then based on its some series of weighted averaging operators such as TIT2IFWA,
TIT2IFOWA and TIT2IFHA have been proposed. Various desirable properties of
its have also been stated and discussed in details. An illustrative example related
to decision making process has been taken for demonstrating the approach. A com-
parative study with some existing operators shows that the proposed operators and
their corresponding techniques provides an alternative ways to solve MCDM prob-
lem in a more effective manner. A sensitivity analysis has also been conducted for
showing the impact of the decision parameters on to the ranking of the alternatives.
In addition, the proposed results corresponding to different values of λ will offer
the various choices for the decision maker for assessing the decisions.

7. Appendix

Proof of Theorem 4.3: Since for all j, αj = α0 = ⟨[a0, b0], c0, [d0, e0]; [A0, B0],

C0, [D0, E0]⟩, and
n∑

j=1

ωj = 1 so by Theorem 4.2, we have

TIT2IFWA(α1, α2, . . . , αn) =

⟨[
1 − logλ

(
1 +

n∏
j=1

(λ
1−a0 − 1)

ωj

)
, 1 − logλ

(
1 +

n∏
j=1

(λ
1−b0 − 1)

ωj

)]
,

1 − logλ

(
1 +

n∏
j=1

(λ
1−c0 − 1)

ωj

)
,

[
1 − logλ

(
1 +

n∏
j=1

(λ
1−d0 − 1)

ωj

)
,

1 − logλ

(
1 +

n∏
j=1

(λ
1−e0 − 1)

ωj

)]
;

[
logλ

(
1 +

n∏
j=1

(λ
A0 − 1)

ωj

)
, logλ

(
1 +

n∏
j=1

(λ
B0 − 1)

ωj

)]
,

logλ

(
1 +

n∏
j=1

(λ
C0 − 1)

ωj

)
,

[
logλ

(
1 +

n∏
j=1

(λ
D0 − 1)

ωj

)
, logλ

(
1 +

n∏
j=1

(λ
E0 − 1)

ωj

)]⟩

=

⟨[
1 − logλ λ

1−a0 , 1 − logλ λ
1−b0

]
, 1 − logλ λ

1−c0 ,

[
1 − logλ λ

1−d0 , 1 − logλ λ
1−e0

]
;

[
logλ λ

A0 , logλ λ
B0

]
, logλ λ

C0 ,

[
logλ λ

D0 , logλ λ
E0

]⟩

=

⟨
[a0, b0], c0, [d0, e0]; [A0, B0], C0, [D0, E0]

⟩
= α0

Thus, proof is completed.

Proof of Theorem 4.4: As for all j, we have min
j

{aj} ≤ aj ≤ max
j

{aj}, this

implies that 1 − max
j

{aj} ≤ 1 − aj ≤ 1 − min
j

{aj}. Hence, for λ > 1, we have

λ
1−max

j
{aj}−1 ≤ λ1−aj −1 ≤ λ

1−min
j

{aj}−1 ⇔ λ
1−max

j
{aj}−1 ≤

n∏
j=1

(λ1−aj −1)ωj ≤

λ
1−min

j
{aj} − 1 ⇔ 1 − max

j
{aj} ≤ logλ

(
1 +

n∏
j=1

(λ1−aj − 1)ωj
)
≤ 1 − min

j
{aj}.
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Therefore,

min
j

{aj} ≤ 1− logλ

1 +
n∏

j=1

(λ1−aj − 1)ωj

 ≤ max
j

{aj}
(3)

Furthermore, for all j, we have min
j

{Aj} ≤ Aj ≤ max
j

{Aj}, this implies λ
min
j

{Aj}−

1 ≤ λAj −1 ≤ λ
max

j
{Aj}−1 ⇔ λ

min
j

{Aj}−1 ≤
n∏

j=1

(λAj −1)ωj ≤ λ
max

j
{Aj}−1. Thus,

min
j

{Aj} ≤ logλ

1 +
n∏

j=1

(λAj − 1)ωj

 ≤ max
j

{Aj}
(4)

Let TIT2IFWA(α1, α2, . . . , αn) = ⟨[a, b], c, [d, e]; [A,B], C, [D,E]⟩. Then from
Eq. (3) and (4) we have, min

j
{aj} ≤ a ≤ max

j
{aj} and min

j
{Aj} ≤ A ≤ max

j
{Aj}.

Similarly, we have min
j

{bj} ≤ b ≤ max
j

{bj},min
j

{cj} ≤ c ≤ max
j

{cj},min
j

{dj} ≤

d ≤ max
j

{dj}, min
j

{ej} ≤ e ≤ max
j

{ej},min
j

{Bj} ≤ B ≤ max
j

{Bj},min
j

{Cj} ≤ C ≤

max
j

{Cj}, min
j

{Dj} ≤ D ≤ max
j

{Dj},min
j

{Ej} ≤ E ≤ max
j

{Ej}. Hence, by using

Eq. (1), we have

Rank (α) =

(
(a − A) + (e − E)

2
+ 1

)(
a − A + b − B + 4(c − C) + d − D + e − E

8

)

≤
(max

j
{aj} − min

j
{Aj} + max

j
{ej} − min

j
{Ej}

2
+ 1

)
×

×



max
j

{aj} − min
j

{Aj} + max
j

{bj} − min
j

{Bj} + 4max
j

{cj}

− 4min
j

{Cj} + max
j

{dj} − min
j

{Dj} + max
j

{ej} − min
j

{Ej}

8


= Rank (α

+
)

and

Rank (α) =

(
(a − A) + (e − E)

2
+ 1

)(
a − A + b − B + 4(c − C) + d − D + e − E

8

)

≥
(min

j
{aj} − max

j
{Aj} + min

j
{ej} − max

j
{Ej}

2
+ 1

)
×

×



min
j

{aj} − max
j

{Aj} + min
j

{bj} − max
j

{Bj} + 4min
j

{cj}

− 4max
j

{Cj} + min
j

{dj} − max
j

{Dj} + min
j

{ej} − max
j

{Ej}

8


= Rank (α

−
)

Therefore, α− ≤ TIT2IFWA(α1, α2, . . . , αn) ≤ α+.
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