
 Neutrosophic Sets and Systems, Vol. 28, 2019
University of New Mexico

S. Broumi, S. Topal, A. Bakali, M. Talea And F. Smarandache, A Python Tool for Implementations on Bipolar

Neutrosophic Matrices

A Python Tool for Implementations on Bipolar Neutrosophic
Matrices

Selçuk Topal1, Said Broumi2*, Assia Bakali3, Mohamed Talea2, Florentin Smarandache4

1
Bitlis Eren University, Faculty of Science and Arts, Department of Mathematics, Bitlis, Turkey, s.topal@beu.edu.tr.

2
Laboratory of Information Processing, Faculty of Science Ben M’Sik, University Hassan II, B.P 7955, Sidi Othman,

Casablanca, Morocco, broumisaid78@gmail.com, s.broumi@flbenmsik.ma, taleamohamed@yahoo.fr

3
Ecole Royale Navale, Boulevard Sour Jdid, B.P 16303 Casablanca, Morocco, assiabakali@yahoo.fr

4
Department of Mathematics, University of New Mexico, 705 Gurley Avenue, Gallup, NM 87301, USA, smarand@unm.edu

*Correspondence: Said Broumi ; broumisaid78@gmail.com; Tel.: 2126611416232

Abstract: Bipolar neutrosophic matrices (BNM) are obtained by bipolar neutrosophic sets. Each

bipolar neutrosophic number represents an element of the matrix. The matrices are representable

multi-dimensional arrays (3D arrays). The arrays have nested list data type. Some operations,

especially the composition is a challenging algorithm in terms of coding because there are so many

nested lists to manipulate. This paper presents a Python tool for bipolar neutrosophic matrices. The

advantage of this work, is that the proposed Python tool can be used also for fuzzy matrices, bipolar

fuzzy matrices, intuitionistic fuzzy matrices, bipolar intuitionistic fuzzy matrices and single valued

neutrosophic matrices.

Keywords: Python; Neutrosophic sets; bipolar neutrosophic sets; matrix; composition operation

1. Introduction

Smarandache [1] gave the concept of neutrosophic set (NS) by considering the triplets

independent components whose values belong to real standard or nonstandard unit interval] - 0, 1+[.

Later on, Smarandache [1] gave single valued neutrosophic set (SVNS) to apply into the various

engineering applications. The various properties of SVNS is being studied by Wang et al. [2]. Further,

Zhang et al. [3] presented a concept of interval-valued NS (IVNS) where the different membership

degrees are represented by interval. In [4] Deli et al. introduced the concept of bipolar neutrosophic

sets and their applications based on multicriteria decision making problems. The same author [5]

proposed the bipolar neutrosophic refined sets and their applications in medical diagnosis for more

details about the applications and its sets, we refer to [6]. Since the existence of NS, various scholars

have presented the approaches related to SVNS and bipolar neutrosophic sets into the different fields.

For instance, Mumtaz et al. [7] developed the concept of bipolar neutrosophic soft sets that combines

soft sets and bipolar neutrosophic sets. In [8, 9] Broumi et al. introduced the notion of bipolar single

valued neutrosophic graph theory and its shortest path problem. Dey et al. [10] considered TOPSIS

method for solving the decision making problem under bipolar neutrosophic environment. Akram

et al. [11] described bipolar neutrosophic TOPSIS method and bipolar neutrosophic ELECTRE-I

mailto:1broumisaid78@gmail.com
mailto:taleamohamed@yahoo.fr
mailto:assiabakali@yahoo.fr

Neutrosophic Sets and Systems, Vol. 28, 2019 139

S. Broumi, S. Topal, A. Bakali, M. Talea And F. Smarandache, A Python Tool for Implementations on Bipolar

Neutrosophic Matrices

method. Akram and Sarwar [12] studied the novel multiple criteria decision making methods based

on bipolar neutrosophic sets and bipolar neutrosophic graphs. Akram and Sitara [13] introduced the

concept of bipolar single-valued neutrosophic graph structures and discussed certain notions of

bipolar single-valued neutrosophic graph structures with examples. Singh [14] introduced bipolar

neutrosophic graph representation of concept lattice and it’s processing using granular computing.

Mullai and Broumi [15] presented shortest path problem by minimal spanning tree algorithm using

bipolar neutrosophic numbers. Uluçay et al. [16] defined similarity measures of bipolar neutrosophic

sets and their application to multiple criteria decision making. Based on literal neutrosophic numbers,

Mamouni et al. [17] defined the addition and multiplication of two neutrosophic fuzzy matrices. in

the light of Fuzzy Neutrosophic soft sets, Arockiarani [18] present a new technique for handling

decision making problems and proposed some new notions on matrix representation. Karaaslan and

Hayat [19] introduced some novel operations on neutrosophic matrices. Uma et al. [20] introduced

two types of fuzzy neutrosophic soft Matrices. The same authors in [21] decomposed fuzzy

neutrosophic soft matrix by means of its section of fuzzy neutrosophic soft matrix of Type-I. Hassan

et al. [22] defined some special types of bipolar single valued neutrosophic graphs. Akram and

Siddique [23] discussed certain types of edge irregular bipolar neutrosophic graphs. Pramanik [24]

developed cross entropy measures of bipolar neutrosophic sets and interval bipolar neutrosophic

sets. Wang et al. [25] defined Frank operations of bipolar neutrosophic numbers (BNNs) and

proposed Frank bipolar neutrosophic Choquet Bonferroni mean operators by combining Choquet

integral operators and Bonferroni mean operators based on Frank operations of BNNs. In the same

study, Akram and Nasir [26] introduced the concept of p-competition bipolar neutrosophic graphs.

then they defined generalization of bipolar neutrosophic competition graphs called m-step bipolar

neutrosophic competition graphs. AKRAM and SHUM [27] defined Bipolar Neutrosophic Planar

Graphs. Hashim et al. [28] provide an application of neutrosophic bipolar fuzzy sets in daily life’s

problem related with HOPE foundation that is planning to build a children hospital. Akram, and

Luqman [29] generalized the concept of bipolar neutrosophic sets to hypergraphs. Das et al. [30]

proposes an algorithmic approach for group decision making (GDM) problems using neutrosophic

soft matrix (NSM) and relative weights of experts.

Broumi et al. [31-34] applied the concept of IVNS on graph theory and studied some interesting

results. Broumi et al. [35] developed a Matlab toolbox for computing operational matrices under the

SVNS environments. Pramanik et al [36] developed a hybrid structure termed “rough bipolar

neutrosophic set”. In [37] Pramanik et al. presented Bipolar neutrosophic projection based models for

solving multi-attribute decision making problems. Broumi et al [38] developed the concept of

bipolar complex neutrosophic sets and its application in decision making problem. Akram, et al.[39]

applied the concept of bipolar neutrosophic sets to incidence graphs and studied some properties.

For more details on the application of neutrosophic set theory, we refer the readers to [46-52].

Among all the above, matrices play a vital job in the expansion region of science and engineering.

However, the classical matrix theory neglects the role of uncertainties during the analysis. Therefore,

the decision process may contain a lot of uncertainties. Thus, the role of the fuzzy matrices and their

extension including triangular fuzzy matrices, type-2 triangular fuzzy matrices, interval valued fuzzy

matrices, intuitionistic fuzzy matrices, interval valued intuitionistic fuzzy matrices are studied deeply

by several scholars. In [40] Zahariev, developed a Matlab software package to the fuzzy algebras. In

http://fs.unm.edu/NSS/ApplicationofBipolarNeutrosophicsetstoIncidence.pdf

Neutrosophic Sets and Systems, Vol. 28, 2019 140

S. Broumi, S. Topal, A. Bakali, M. Talea And F. Smarandache, A Python Tool for Implementations on Bipolar

Neutrosophic Matrices

[41], authors solved intuitionistic fuzzy relational rational calculus problems using a fuzzy toolbox.

Later on, in [42] Karunambigai and Kalaivani proposed some computing procedures in Matlab for

intuitionistic fuzzy operational matrices with suitable examples. Uma et al. [43] studied determinant

theory for fuzzy neutrosophic soft square matrices. Also, in [44] Uma et al. introduced the

determinant and adjoint of a square Fuzzy Neutrosophic Soft Matrices (FNSMs) a defined the circular

FNSM and study some relations on square FNSM such as reflexivity, transitivity and circularity.

 Recently few researchers [45] developed a Python programs for computing operations on

neutrosophic numbers, but all these programs cannot deal with neutrosophic matrices, to do best of

our knowledge, there is no work conducted on developing python codes to compute the operations

on single valued neutrosophic matrices and bipolar neutrosophic matrices. Thus, there is a need to

develop the work in that direction. For it, the presented paper discusses various operations of bipolar

neutrosophic sets and their corresponding Python code for different metrics. To achieve it, rest of the

manuscript is summarized as. In section 2, some concepts related to SVNS, BNS are presented.

Section 3 deals with the generations of Python programs for bipolar neutrosophic matrices with a

numerical example and lastly, conclusion is summarized in section 4.

2.BACKGROUND AND BIPOLAR NEUTROSOPHIC SETS

In this section, some basic concepts on SVNS, BNS are briefly presented over the universal set 𝜉 [1,

2, 4].

Definition 2.1 [1] A set A is said to be A neutrosophic set ‘A’ consists of three components namely

truth, indeterminate and falsity denoted by 𝑇𝐴 , 𝐼𝐴(x) and 𝐹𝐴(x) such that

𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈] −0, 1+[and −0 ≤ sup 𝑇𝐴(𝑥)+ sup 𝐼𝐴(𝑥) + sup FA (x) ≤ 3+ (1)

Definition 2.2 [2] A SVNS ‘A’ on X is given as

A = {< 𝑥: TA(x),IA(𝑥), FA(𝑥) > 𝑥 ∈ 𝜉} (2)

where the functions TA(x), IA(x), FA(x) ∈ [0. 1] are named “degree of truth, indeterminacy and

falsity membership of x in A”, such that

0 ≤ 𝑇𝐴 (x) +𝐼𝐴 (x) +𝐹𝐴 (x)≤ 3 (3)

Definition 2.3[4]. A bipolar neutrosophic set A in 𝜉 is defined as an object of the form

A={<x, (𝑇𝐴
𝑃(𝑥),𝐼𝐴

𝑃(𝑥),𝐹𝐴
𝑃(𝑥),𝑇𝐴

𝑁(𝑥),𝐼𝐴
𝑁(𝑥),𝐹𝐴

𝑁(𝑥))>: x 𝜉 }, where 𝑇𝐴
𝑃(𝑥),𝐼𝐴

𝑃(𝑥),𝐹𝐴
𝑃(𝑥): 𝜉 [1, 0] and

𝑇𝐴
𝑁(𝑥),𝐼𝐴

𝑁(𝑥),𝐹𝐴
𝑁(𝑥): 𝜉 [-1, 0]. The positive membership degree 𝑇𝐴

𝑃(𝑥),𝐼𝐴
𝑃(𝑥),𝐹𝐴

𝑃(𝑥)enotes the truth

membership, indeterminate membership and false membership of an element 𝜉 corresponding to

a bipolar neutrosophic set whereas the negative membership degree 𝑇𝐴
𝑁(𝑥),𝐼𝐴

𝑁(𝑥),𝐹𝐴
𝑁(𝑥)denotes the

truth membership, indeterminate membership and false membership of an element 𝑥 𝜉 to some

implicit counter-property corresponding to a bipolar neutrosophic set A. For convenience a bipolar

neutrosophic number is represented by

A= <(𝑇𝐴
𝑃,𝐼𝐴

𝑃,𝐹𝐴
𝑃,𝑇𝐴

𝑁,𝐼𝐴
−,𝐹𝐴

−> (4)

Definition 2.4 [4]. In order to make a comparison between two BNN. The score function is applied

to compare the grades of BNS. This function shows that greater is the value, the greater is the bipolar

neutrosophic sets and by using this concept paths can be ranked. Suppose

Neutrosophic Sets and Systems, Vol. 28, 2019 141

S. Broumi, S. Topal, A. Bakali, M. Talea And F. Smarandache, A Python Tool for Implementations on Bipolar

Neutrosophic Matrices

, I ,F , , I ,FP P P N N NA T T be a bipolar neutrosophic number. Then, the score function ()s A ,

accuracy function ()a A and certainty function ()c A of a BNN are defined as follows:

(i)
1

() 1 1 1
6

P P P N N Ns A T I F T I F

 (5)

(ii) () P P N Na A T F T F (6)

(iii) () P Nc A T F (7)

Comparison of bipolar neutrosophic numbers

Let 1 1 1 11 1 1, I ,F , , I ,F
p p p n n nA T T and 2 2 2 22 2 2, I ,F , , I ,F

p p p n n nA T T be two bipolar neutrosophic

numbers then

i. If 1 2() ()s A s A , then 1A is greater than 2A , that is, 1A is superior to 2A , denoted by 1 2A A .

ii. If 1 2() ()s A s A , and 1 2() ()a A a A then 1A is greater than 2A , that is, 1A is superior to 2A ,

denoted by 1 2A A .

iii. If 1 2() ()s A s A , 1 2() ()a A a A , and 1 2c() ()A c A then 1A is greater than 2A , that is, 1A

is superior to 2A , denoted by 1 2A A .

iv. If 1 2() ()s A s A , 1 2() ()a A a A , and 1 2c() ()A c A then 1A is equal to 2A , that is, 1A is

indifferent to 2A , denoted by 1 2A A .

Definition 2.5 [4]: A bipolar neutrosophic matrix (BNM) of order m× n is defined as

𝐴BNM=[< 𝑎𝑖𝑗 , 𝑎𝑖𝑗𝑇

𝑃 , 𝑎𝑖𝑗𝐼

𝑃 , 𝑎𝑖𝑗𝐹

𝑃 , 𝑎𝑖𝑗𝑇

𝑁 , 𝑎𝑖𝑗𝐼

𝑁 , 𝑎𝑖𝑗𝐹

𝑁 >]
m× n

 where

𝑎𝑖𝑗𝑇

𝑃 is the positive membership value of element 𝑎𝑖𝑗 in A.

𝑎𝑖𝑗𝑇

𝑁 is the negative membership value of element 𝑎𝑖𝑗 in A.

𝑎𝑖𝑗𝑇

𝑃 is the positive indeterminate-membership value of element 𝑎𝑖𝑗 in A.

𝑎𝑖𝑗𝑇

𝑁 is the negative indeterminate-membership value of element 𝑎𝑖𝑗 in A.

𝑎𝑖𝑗𝑇

𝑃 is the positive non- membership value of element 𝑎𝑖𝑗 in A.

𝑎𝑖𝑗𝑇

𝑁 is the negative non-membership value of element 𝑎𝑖𝑗 in A.

For simplicity, we write A as 𝐴BNM= [< 𝑎𝑖𝑗𝑇

𝑃 , 𝑎𝑖𝑗𝐼

𝑃 , 𝑎𝑖𝑗𝐹

𝑃 , 𝑎𝑖𝑗𝑇

𝑁 , 𝑎𝑖𝑗𝐼

𝑁 , 𝑎𝑖𝑗𝐹

𝑁 >]
m× n

.

Neutrosophic Sets and Systems, Vol. 28, 2019 142

S. Broumi, S. Topal, A. Bakali, M. Talea And F. Smarandache, A Python Tool for Implementations on Bipolar

Neutrosophic Matrices

3.COMPUTING THE BIPOLAR NEUTROSOPHIC MATRIX OPERATIONS USING PYTHON LANGUAGE

To generate the Python program for inputting the single valued neutrosophic matrices. The

procedure is described as follows:

3.1 Checking the matrix is BNM or not

To generate the Python program for deciding for a given the matrix is bipolar neutrosophic matrix

or, simple call of the function BNMChecking () is defined as follow:

BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for

BNM Checking

#A1.shape and A2.shape returns (3, 3, 6) the dimension of A. (row, column, numbers of element

(Bipolar Neutrosophic Number, 6 elements))

A.shape[0] = 3 rows

A.shape[1] = 3 columns

A.shape[2] = Each bipolar neutrosophic number has 6 tuple as usual

#One can use any matrices having arbitrary dimension

import numpy as np

#A1 is a BNM

A1= np.array([[[0.000, 0.001, 0.002, -0.003, -0.004, -0.005], [0.010, 0.011, 0.012, -0.013, -0.014, -

0.015] , [0.020, 0.021, 0.022, -0.023, -0.024, -0.025]],

[[0.100,0.101,0.102,-0.103,-0.104, -0.105], [0.110,0.111,0.112,-0.113,-0.114,-0.115], [0.120,0.121,0.122,-

0.123,-0.124,-0.125]],

 [[0.200,0.201,0.202,-0.203,-0.204,-0.205], [0.210, 0.211,0.212,-0.213,-0.214,-0.215], [0.220,0.221,0.222,-

0.223,-0.224,-0.225]]])

#A2 is not BNM

A2= np.array([[[0.000, 0.001, 0.002, -0.003, -0.004, -0.005], [0.010, 0.011, 0.012, -0.013, -0.014, -

0.015] , [0.020, 0.021, 0.022, -0.023, -0.024, -0.025]],

[[0.100,0.101,0.102,-0.103,-0.104, -0.105], [0.110,0.111,0.112,-0.113,-0.114,-0.115],

[0.120,0.121,0.122,-0.123,-0.124,-0.125]],

[[0.200,0.201,0.202,-0.203, 0.204,-0.205], [0.210, 0.211,0.212,-0.213,-0.214,-0.215],

[0.220,0.221,0.222,-0.223,-0.224,-0.225]]])

def BNMChecking (A):

 dimA=A.shape

 control=0

 counter = 0

 for i in range (0,dimA[0]):

 if counter == 1:

 break

 for j in range (0,dimA[0]):

 if counter == 1:

 break

 for d in range (0, dimA[2]):

 if counter ==0:

Neutrosophic Sets and Systems, Vol. 28, 2019 143

S. Broumi, S. Topal, A. Bakali, M. Talea And F. Smarandache, A Python Tool for Implementations on Bipolar

Neutrosophic Matrices

 if (d==0 or d==1 or d==2) :

 if not (0 <= A[i][j][d] <= 1):

 counter=1

 print (A[i][j], ' is not a bipolar neutrosophic number, so the matrix

is not a BNM')

 control=1

 break

 if (d==3 or d==4 or d==5) :

 if not (-1 <= A[i][j][d] <= 0) :

 counter=1

 print (A[i][j], ' is not a bipolar neutrosophic number, so the matrix

is not a BNM')

 control=1

 break

 else:

 print (A[i][j], ' is not a bipolar neutrosophic number, so the matrix is not a

BNM')

 break

 if control==0:

 print ('The matrix is a BNM')

Example 1. In this example we evaluate the checking the matrix C is BNM or not of order 4X4:

C=

(

< .5, .7, .2, −.7, − .3, −.6 > < .4, .4, .5, −.7, − .8, −.4 > < .7, .7, .5, −.8, − .7, −.6 > < .1, .5, .7, −.5, − .2, −.8 >
< .9, .7, .5, −.7, − .7, −.1 > < .7, .6, .8, −.7, − .5, −.1 > < .9, .4, .6, −.1, − .7, −.5 > < .5, .2, .7, −.5, − .1, −.9 >
< .9, .4, .2, −.6, − .3, −.7 > < .2, .2, .2, −.4, − .7, −.4 > < .9, .5, .5, −.6, − .5, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .7, .2, −.8, − .6, −.1 > < .3, .5, .2, −.5, − .5, −.2 > < .5, .4, .5, −.1, − .7, −.2 > < .2, .4, .8, −.5, − .5, −.6 >

)

The bipolar neutrosophic matrix C can be inputted in Python environment like this:

3.2. Determining complement of bipolar neutrosophic matrix

For a given BNM A= [< 𝑇𝑖𝑗
𝑃, 𝐼𝑖𝑗

𝑃 , 𝐹𝑖𝑗
𝑃, 𝑇𝑖𝑗

𝑁, 𝐼𝑖𝑗
𝑁 , 𝐹𝑖𝑗

𝑁 >]
m× n

, the complement of A is defined as follow:

𝐴𝑐= [< {1} − 𝑇𝑖𝑗
𝑃, {1} − 𝐼𝑖𝑗

𝑃 , {−1} − 𝐹𝑖𝑗
𝑃, {1} − 𝑇𝑖𝑗

𝑁, {−1} − 𝐼𝑖𝑗
𝑁 , {−1} − 𝐹𝑖𝑗

𝑁 >]
m× n

 (8)

𝐴𝑐= [< 𝐹𝑖𝑗
𝑃, {1} − 𝐼𝑖𝑗

𝑃 , 𝑇𝑖𝑗
𝑃, 𝐹𝑖𝑗

𝑁, {−1} − 𝐼𝑖𝑗
𝑁 , 𝑇𝑖𝑗

𝑁 >]
m× n

 (9)

To generate the Python program for finding complement of bipolar neutrosophic matrix, simple call

of the function BNMCompelementOf() is defined as follow:

Neutrosophic Sets and Systems, Vol. 28, 2019 144

S. Broumi, S. Topal, A. Bakali, M. Talea And F. Smarandache, A Python Tool for Implementations on Bipolar

Neutrosophic Matrices

BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for

(8)

import numpy as np

A= np.array([[[0.3,0.6,1,-0.2,-0.54,-0.4], [0.1,0.2,0.8,-0.5,-0.34,-0.7]],

 [[0.1,0.12,0,-0.27,-0.44,-0.92], [0.5,0.33,0.58,-0.33,-0.24,-0.22]],

 [[0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32]]

])

#A.shape gives (3, 2, 6) the dimension of A. (row, column, numbers of element (Bipolar

Neutrosophic Number, 6 elements))

A.shape[0] = 3 rows

A.shape[1] = 2 columns

A.shape[2] = each bipolar neutrosophic number with 6 tuple as usual

def BNMCompelementOf(A):

 global Ac

 dimA=A.shape # Dimension of the matrix

 Ac= [] # Empty matrix with dimension of A to create complement of A

 for i in range (0,dimA[0]): # for rows, here 3

 H=[]

 for j in range (0,dimA[1]): # for columns, here 2

 H.extend([[1-A[i][j][0], 1-A[i][j][1], 1-A[i][j][2], -1-(-A[i][j][3]), -1-(-A[i][j][4]), -1-(-

A[i][j][5])]])

 Ac.append(H)

 print ('A= ', A)

 print ('***')

 print('Ac= ', np.array(Ac))

The function BNMCompelementOf (A) the below returns the complement matrix of a given bipolar

neutrosophic matrix A for (9).

BNM is representable by 3D Numpy Array ====> row, column and bipolar neutrosophic

numbers having 6 tuples for (9)

import numpy as np

A= np.array([[[0.3,0.6,1,-0.2,-0.54,-0.4], [0.1,0.2,0.8,-0.5,-0.34,-0.7]],

 [[0.1,0.12,0,-0.27,-0.44,-0.92], [0.5,0.33,0.58,-0.33,-0.24,-0.22]],

 [[0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32]]])

#A.shape gives (3, 2, 6) the dimension of A. (row, column, numbers of element (Bipolar

Neutrosophic Number, 6 elements))

A.shape[0] = 3 rows

A.shape[1] = 2 columns

A.shape[2] = Each bipolar neutrosophic number with 6 tuple as usual

def BNMCompelementOf(A):

 global Ac

 dimA=A.shape # Dimension of the matrix

 Ac= []

Neutrosophic Sets and Systems, Vol. 28, 2019 145

S. Broumi, S. Topal, A. Bakali, M. Talea And F. Smarandache, A Python Tool for Implementations on Bipolar

Neutrosophic Matrices

 for i in range (0,dimA[0]): # for rows, here 3

 H=[]

 for j in range (0,dimA[1]): # for columns, here 2

 H.extend([[A[i][j][2], 1-A[i][j][1], A[i][j][0], A[i][j][5], -1-(-A[i][j][4]), A[i][j][3]]])

 Ac.append(H)

 print ('A= ', A)

 print ('***')

 print ('***')

 print('Ac= ', np.array(Ac))

The bipolar neutrosophic matrix A is a simple example, one can create his/her BNM and try it into

the function BNMCompelementOf ():

3.3. Determining the score, accuracy and certainty matrices of bipolar neutrosophic matrix

To generate the python program for obtaining the score matrix, accuracy of bipolar neutrosophic

matrix, simple call of the functions ScoreMatrix(), AccuracyMatrix() and CertaintyMatrix() are

defined as follow:

BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for (5,

6 and 7)

import numpy as np

A= np.array([[[0.3,0.6,1,-0.2,-0.54,-0.4], [0.1,0.2,0.8,-0.5,-0.34,-0.7]],

 [[0.1,0.12,0,-0.27,-0.44,-0.92], [0.5,0.33,0.58,-0.33,-0.24,-0.22]],

 [[0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32]]])

def ScoreMatrix(A):

 score=[]

 dimA=A.shape # Dimension of the matrix

 for i in range (0,dimA[0]): # for rows, here 3

 H=[]

 for j in range (0,dimA[1]): # for columns, here 2

 H.extend([[(A[i][j][0] + 1 - A[i][j][1] + 1 - A[i][j][2] + 1 + A[i][j][3] - A[i][j][4] -

A[i][j][5])/6]])

 score.append(H)

 print('Score Matrix= ', np.array(score))

def AccuracyMatrix (A):

 accuracy=[]

 dimA=A.shape # Dimension of the matrix

 for i in range (0,dimA[0]): # for rows, here 3

 H=[]

 for j in range (0,dimA[1]): # for columns, here 2

 H.extend([[A[i][j][0] - A[i][j][2] + A[i][j][3] - A[i][j][5]]])

 accuracy.append(H)

 print('Accuracy Matrix= ', np.array(accuracy))

Neutrosophic Sets and Systems, Vol. 28, 2019 146

S. Broumi, S. Topal, A. Bakali, M. Talea And F. Smarandache, A Python Tool for Implementations on Bipolar

Neutrosophic Matrices

def CertaintyMatrix (A):

 certainty = []

 dimA=A.shape # Dimension of the matrix

 for i in range (0,dimA[0]): # for rows, here 3

 H=[]

 for j in range (0,dimA[1]): # for columns, here 2

 H.extend([[A[i][j][0] - A[i][j][5]]])

 certainty.append(H)

 print('Certainty Matrix= ', np.array(certainty))

3.4. Computing union of two bipolar neutrosophic matrices

The union of two bipolar neutrosophic matrices A and B is defined as follow:

 𝐴 ∪ 𝐵 = 𝐶 = [< 𝑐𝑖𝑗𝑇

𝑃 , 𝑐𝑖𝑗𝐼

𝑃 , 𝑐𝑖𝑗𝐹

𝑃 , 𝑐𝑖𝑗𝑇

𝑁 , 𝑐𝑖𝑗𝐼

𝑁 , 𝑐𝑖𝑗𝐹

𝑁 >]
m× n

 (10)

where

𝑐𝑖𝑗𝑇

𝑃 = 𝑎𝑖𝑗𝑇

𝑃 ∨ 𝑏𝑖𝑗𝑇

𝑃 , 𝑐𝑖𝑗𝑇

𝑁 = 𝑎𝑖𝑗𝑇

𝑁 ∧ 𝑏𝑖𝑗𝑇

𝑁

𝑐𝑖𝑗𝐼

𝑃 = 𝑎𝑖𝑗𝐼

𝑃 ∧ 𝑏𝑖𝑗𝐼

𝑃 , 𝑐𝑖𝑗𝐼

𝑁 = 𝑎𝑖𝑗𝐼

𝑁 ∨ 𝑏𝑖𝑗𝐼

𝑁

𝑐𝑖𝑗𝐹

𝑃 = 𝑎𝑖𝑗𝐹

𝑃 ∧ 𝑏𝑖𝑗𝐹

𝑃 , 𝑐𝑖𝑗𝐹

𝑁 = 𝑎𝑖𝑗𝐹

𝑁 ∨ 𝑏𝑖𝑗𝐹

𝑁

To generate the python program for finding the union of two bipolar neutrosophic matrices,

simple call of the following function Union(A, B) is defined as follow:

BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for

(10)

import numpy as np

A= np.array([[[0.3,0.6,1,-0.2,-0.54,-0.4], [0.1,0.2,0.8,-0.5,-0.34,-0.7]],

 [[0.1,0.12,0,-0.27,-0.44,-0.92], [0.5,0.33,0.58,-0.33,-0.24,-0.22]],

 [[0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32]]])

B= np.array([[[0.32,0.4,0.1,-0.25,-0.54,-0.4], [0.13,0.2,0.11,-0.55,-0.35,-0.72]],

 [[0.17,0.19,0.66,-0.87,-0.64,-0.92], [0.25,0.36,0.88,-0.33,-0.54,-0.22]],

 [[0.15,0.28,0.67,-0.39,-0.27,-0.55],[0.24,0.73,0.28,-0.26,-0.53,-0.52]]

])

#A.shape gives (3, 2, 6) the dimension of A. (row, column, numbers of element (Bipolar

Neutrosophic Number, 6 elements))

A.shape[0] = 3 rows

A.shape[1] = 2 columns

A.shape[2] = each bipolar neutrosophic number with 6 tuple as usual

union=[]

def Union(A, B):

 if A.shape == B.shape:

 dimA=A.shape

 for i in range (0,dimA[0]): # for rows, here 3

 H=[]

 for j in range (0,dimA[1]): # for columns, here 2

Neutrosophic Sets and Systems, Vol. 28, 2019 147

S. Broumi, S. Topal, A. Bakali, M. Talea And F. Smarandache, A Python Tool for Implementations on Bipolar

Neutrosophic Matrices

 H.extend([[max(A[i][j][0],B[i][j][0]) , min(A[i][j][1], B[i][j][1]), min(A[i][j][2],

B[i][j][2]), max(A[i][j][3],B[i][j][3]), min(A[i][j][4], B[i][j][4]), min(A[i][j][5], B[i][j][5])]])

 union.append(H)

 print('union= ', np.array(union)

Example 2. In this example we Evaluate the union of the two bipolar neutrosophic matrices C and

D of order 4X4:

C=

(

< .5, .7, .2, −.7, − .3, −.6 > < .4, .4, .5, −.7, − .8, −.4 > < .7, .7, .5, −.8, − .7, −.6 > < .1, .5, .7, −.5, − .2, −.8 >
< .9, .7, .5, −.7, − .7, −.1 > < .7, .6, .8, −.7, − .5, −.1 > < .9, .4, .6, −.1, − .7, −.5 > < .5, .2, .7, −.5, − .1, −.9 >
< .9, .4, .2, −.6, − .3, −.7 > < .2, .2, .2, −.4, − .7, −.4 > < .9, .5, .5, −.6, − .5, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .7, .2, −.8, − .6, −.1 > < .3, .5, .2, −.5, − .5, −.2 > < .5, .4, .5, −.1, − .7, −.2 > < .2, .4, .8, −.5, − .5, −.6 >

)

The bipolar neutrosophic matrix C can be inputted in Python code like this:

C= np.array([[[0.5,0.7,0.2,-0.7,-0.3,-0.6], [0.4,0.4,0.5,-0.7,-0.8,-0.4], [0.7,0.7,0.5,-0.8,-0.7,-0.6], [0.1,0.5,0.7,-0.5,-0.2,-

0.8]],[[0.9,0.7,0.5,-0.7,-0.7,-0.1], [0.7,0.6,0.8,-0.7,-0.5,-0.1], [0.9,0.4,0.6,-0.1,-0.7,-0.5], [0.5,0.2,0.7,-0.5,-0.1,-0.9]],

[[0.9,0.4,0.2,-0.6,-0.3,-0.7], [0.2,0.2,0.2,-0.4,-0.7,-0.4], [0.9,0.5,0.5,-0.6,-0.5,-0.2], [0.7,0.5,0.3,-0.4,-0.2,-0.2]],

[[0.9,0.7,0.2,-0.8,-0.6,-0.1], [0.3,0.5,0.2,-0.5,-0.5,-0.2], [0.5,0.4,0.5,-0.1,-0.7,-0.2], [0.2,0.4,0.8,-0.5,-0.5,-0.6]]])

D=

(

< .3, .4, .3, −.5, − .4, −.2 > < .1, .2, .7, −.5, − .2, −.3 > < .3, .2, .6, −.4, − .8, −.7 > < .2, .1, .3, −.2, − .4, −.4 >
< .2, .2, .7, −.3, − .3, −.5 > < .3, .5, .6, −.6, − .7, −.4 > < .6, .5, .4, −.3, − .6, −.8 > < .3, .4, .4, −.3, − .5, −.3 >
< .5, .3, .1, −.4, − .2, −.4 > < .5, .4, .3, −.3, − .8, −.2 > < .5, .8, .6, −.2, − .2, −.4 > < .4, .6, .5, −.1, − .6, −.5 >
< .6, .1, .7, −.7, − .4, −.8 > < .4, .6, .4, −.4, − .2, −.5 > < .4, .9, .3, −.5, − .5, −.3 > < .4, .5, .4, −.3, − .7, −.4 >

)

The bipolar neutrosophic matrix D can be inputted in Python code like this:

D= np.array([[[0.3,0.4, 0.3,-0.5,-0.4,-0.2], [0.1,0.2,0.7,-0.5,-0.2,-0.3], [0.3,0.2,0.6,-0.4,-0.8,-0.7], [0.2,0.1,0.3,-0.2,-0.4,-

0.4]], [[0.2,0.2,0.7,-0.3,-0.3,-0.5], [0.3,0.5,0.6,-0.6,-0.7,-0.4], [0.6,0.5,0.4,-0.3,-0.6,-0.8], [0.3,0.4,0.4,-0.3,-0.5,-0.3]],

[[0.5,0.3,0.1,-0.4,-0.2,-0.4], [0.5,0.4,0.3,-0.3,-0.8,-0.2], [0.5,0.8,0.6,-0.2,-0.2,-0.4], [0.4,0.6,0.5,-0.1,-0.6,-0.5]],

[[0.6,0.1,0.7,-0.7,-0.4,-0.8], [0.4,0.6,0.4,-0.4,-0.2,-0.5], [0.4,0.9,0.3,-0.5,-0.5,-0.3], [0.4,0.5,0.4,-0.3,-0.7,-0.4]]])

So, the union matrix of two bipolar neutrosophic matrices is portrayed as follow

𝐶𝐵𝑁𝑆 ∪ 𝐷𝐵𝑁𝑆

= (

< .5, .4, .2, −.7, − .3, −.2 > < .4, .2, .5, −.7, − .2, −.3 > < .7, .2, .5, −.8, − .7, −.6 > < .2, .1, .3, −.5, − .2, −.4 >
< .9, .2, .5, −.7, − .3, −.1 > < .7, .5, .6, −.7, − .5, −.1 > < .9, .4, .4, −.3, − .6, −.5 > < .5, .2, .4, −.5, − .1, −.3 >
< .9, .3, .1, −.6, − .2, −.4 > < .5, .2, .2, −.4, − .7, −.2 > < .9, .5, .5, −.6, − .2, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .1, .2, −.8, − .4, −.1 > < .4, .5, .2, −.5, − .2, −.2 > < .5, .4, .3, −.5, − .5, −.2 > < .4, .4, .4, −.5, − .5, −.4 >

)

The result of union matrix of two bipolar neutrosophic matrices C and D can be obtained by the call

of the command Union (C, D):

>>> Union(C, D)

Union =

 [[[0.5 0.4 0.2 -0.7 -0.3 -0.2] [0.4 0.2 0.5 -0.7 -0.2 -0.3] [0.7 0.2 0.5 -0.8 -0.7 -0.6] [0.2 0.1 0.3 -0.5 -0.2 -0.4]]

 [[0.9 0.2 0.5 -0.7 -0.3 -0.1] [0.7 0.5 0.6 -0.7 -0.5 -0.1] [0.9 0.4 0.4 -0.3 -0.6 -0.5] [0.5 0.2 0.4 -0.5 -0.1 -0.3]]

 [[0.9 0.3 0.1 -0.6 -0.2 -0.4] [0.5 0.2 0.2 -0.4 -0.7 -0.2] [0.9 0.5 0.5 -0.6 -0.2 -0.2] [0.7 0.5 0.3 -0.4 -0.2 -0.2]]

 [[0.9 0.1 0.2 -0.8 -0.4 -0.1] [0.4 0.5 0.2 -0.5 -0.2 -0.2] [0.5 0.4 0.3 -0.5 -0.5 -0.2] [0.4 0.4 0.4 -0.5 -0.5 -0.4]]]

3.5. Computing intersection of two bipolar neutrosophic matrices

Neutrosophic Sets and Systems, Vol. 28, 2019 148

S. Broumi, S. Topal, A. Bakali, M. Talea And F. Smarandache, A Python Tool for Implementations on Bipolar

Neutrosophic Matrices

The union of two bipolar neutrosophic matrices A and B is defined as follow:

𝐴 ∩ 𝐵 = 𝐷 = [< 𝑑𝑖𝑗𝑇

𝑃 , 𝑑𝑖𝑗𝐼

𝑃 , 𝑑𝑖𝑗𝐹

𝑃 , 𝑑𝑖𝑗𝑇

𝑁 , 𝑑𝑖𝑗𝐼

𝑁 , 𝑑𝑖𝑗𝐹

𝑁 >]
m× n

 (11)

Where

𝑑𝑖𝑗𝑇

𝑃 = 𝑎𝑖𝑗𝑇

𝑃 ∧ 𝑏𝑖𝑗𝑇

𝑃 , 𝑑𝑖𝑗𝑇

𝑁 = 𝑎𝑖𝑗𝑇

𝑁 ∨ 𝑏𝑖𝑗𝑇

𝑁

𝑑𝑖𝑗𝐼

𝑃 = 𝑎𝑖𝑗𝐼

𝑃 ∨ 𝑏𝑖𝑗𝐼

𝑃 , 𝑑𝑖𝑗𝐼

𝑁 = 𝑎𝑖𝑗𝐼

𝑁 ∧ 𝑏𝑖𝑗𝐼

𝑁

𝑑𝑖𝑗𝐹

𝑃 = 𝑎𝑖𝑗𝐹

𝑃 ∨ 𝑏𝑖𝑗𝐹

𝑃 , 𝑑𝑖𝑗𝐹

𝑁 = 𝑎𝑖𝑗𝐹

𝑁 ∧ 𝑏𝑖𝑗𝐹

𝑁

To generate the python program for finding the intersection of two bipolar neutrosophic matrices,

simple call of the function Intersection (A, B) is defined as follow:

BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for

(11)

import numpy as np

A= np.array([[[0.3,0.6,1,-0.2,-0.54,-0.4], [0.1,0.2,0.8,-0.5,-0.34,-0.7]],

 [[0.1,0.12,0,-0.27,-0.44,-0.92], [0.5,0.33,0.58,-0.33,-0.24,-0.22]],

 [[0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32]]

])

B= np.array([[[0.32,0.4,0.1,-0.25,-0.54,-0.4], [0.13,0.2,0.11,-0.55,-0.35,-0.72]],

 [[0.17,0.19,0.66,-0.87,-0.64,-0.92], [0.25,0.36,0.88,-0.33,-0.54,-0.22]],

 [[0.15,0.28,0.67,-0.39,-0.27,-0.55],[0.24,0.73,0.28,-0.26,-0.53,-0.52]]])

#A.shape gives (3, 2, 6) the dimension of A. (row, column, numbers of element (Bipolar

Neutrosophic Number, 6 elements))

A.shape[0] = 3 rows

A.shape[1] = 2 columns

A.shape[2] = each bipolar neutrosophic number with 6 tuple as usual

intersection=[]

def Intersection(A, B):

 if A.shape == B.shape:

 dimA=A.shape

 for i in range (0,dimA[0]): # for rows, here 3

 H=[]

 for j in range (0,dimA[1]): # for columns, here 2

 H.extend([[min(A[i][j][0],B[i][j][0]) , max(A[i][j][1], B[i][j][1]), max(A[i][j][2],

B[i][j][2]), min(A[i][j][3],B[i][j][3]), max(A[i][j][4], B[i][j][4]), max(A[i][j][5], B[i][j][5])]])

 intersection.append(H)

 print('Intersection= ', np.array(intersection))

Example 3. In this example we evaluate the intersection of the two bipolar neutrosophic matrices C

and D of order 4X4:

C=

(

< .5, .7, .2, −.7, − .3, −.6 > < .4, .4, .5, −.7, − .8, −.4 > < .7, .7, .5, −.8, − .7, −.6 > < .1, .5, .7, −.5, − .2, −.8 >
< .9, .7, .5, −.7, − .7, −.1 > < .7, .6, .8, −.7, − .5, −.1 > < .9, .4, .6, −.1, − .7, −.5 > < .5, .2, .7, −.5, − .1, −.9 >
< .9, .4, .2, −.6, − .3, −.7 > < .2, .2, .2, −.4, − .7, −.4 > < .9, .5, .5, −.6, − .5, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .7, .2, −.8, − .6, −.1 > < .3, .5, .2, −.5, − .5, −.2 > < .5, .4, .5, −.1, − .7, −.2 > < .2, .4, .8, −.5, − .5, −.6 >

)

The bipolar neutrosophic matrix C can be inputted in Python code like this:

Neutrosophic Sets and Systems, Vol. 28, 2019 149

S. Broumi, S. Topal, A. Bakali, M. Talea And F. Smarandache, A Python Tool for Implementations on Bipolar

Neutrosophic Matrices

C= np.array([[[0.5,0.7,0.2,-0.7,-0.3,-0.6], [0.4,0.4,0.5,-0.7,-0.8,-0.4], [0.7,0.7,0.5,-0.8,-0.7,-0.6], [0.1,0.5,0.7,-0.5,-0.2,-

0.8]], [[0.9,0.7,0.5,-0.7,-0.7,-0.1], [0.7,0.6,0.8,-0.7,-0.5,-0.1], [0.9,0.4,0.6,-0.1,-0.7,-0.5], [0.5,0.2,0.7,-0.5,-0.1,-0.9]],

[[0.9,0.4,0.2,-0.6,-0.3,-0.7], [0.2,0.2,0.2,-0.4,-0.7,-0.4], [0.9,0.5,0.5,-0.6,-0.5,-0.2], [0.7,0.5,0.3,-0.4,-0.2,-0.2]],

[[0.9,0.7,0.2,-0.8,-0.6,-0.1], [0.3,0.5,0.2,-0.5,-0.5,-0.2], [0.5,0.4,0.5,-0.1,-0.7,-0.2], [0.2,0.4,0.8,-0.5,-0.5,-0.6]])

D=

(

< .3, .4, .3, −.5, − .4, −.2 > < .1, .2, .7, −.5, − .2, −.3 > < .3, .2, .6, −.4, − .8, −.7 > < .2, .1, .3, −.2, − .4, −.4 >
< .2, .2, .7, −.3, − .3, −.5 > < .3, .5, .6, −.6, − .7, −.4 > < .6, .5, .4, −.3, − .6, −.8 > < .3, .4, .4, −.3, − .5, −.3 >
< .5, .3, .1, −.4, − .2, −.4 > < .5, .4, .3, −.3, − .8, −.2 > < .5, .8, .6, −.2, − .2, −.4 > < .4, .6, .5, −.1, − .6, −.5 >
< .6, .1, .7, −.7, − .4, −.8 > < .4, .6, .4, −.4, − .2, −.5 > < .4, .9, .3, −.5, − .5, −.3 > < .4, .5, .4, −.3, − .7, −.4 >

)

The bipolar neutrosophic matrix D can be inputted in Python code like this:

D= np.array([[[0.3, 0.4, 0.3,-0.5,-0.4,-0.2], [0.1,0.2,0.7,-0.5,-0.2,-0.3], [0.3,0.2,0.6,-0.4,-0.8,-0.7], [0.2,0.1,0.3,-0.2,-0.4,-

0.4]], [[0.2,0.2,0.7,-0.3,-0.3,-0.5], [0.3,0.5,0.6,-0.6,-0.7,-0.4], [0.6,0.5,0.4,-0.3,-0.6,-0.8], [0.3,0.4,0.4,-0.3,-0.5,-0.3]],

 [[0.5,0.3,0.1,-0.4,-0.2,-0.4], [0.5,0.4,0.3,-0.3,-0.8,-0.2], [0.5,0.8,0.6,-0.2,-0.2,-0.4], [0.4,0.6,0.5,-0.1,-0.6,-0.5]],

 [[0.6,0.1,0.7,-0.7,-0.4,-0.8], [0.4,0.6,0.4,-0.4,-0.2,-0.5], [0.4,0.9,0.3,-0.5,-0.5,-0.3], [0.4,0.5,0.4,-0.3,-0.7,-0.4]]])

So, the intersection matrix of two bipolar neutrosophic matrices is portrayed as follow

𝐶𝐵𝑁𝑆 ∩ 𝐷𝐵𝑁𝑆

= (

< .3, .7, .3, −.5, − .4, −.6 > < .1, .4, .7, −.5, − .8, −.4 > < .3, .7, .6, −.4, − .8, −.7 > < .1, .5, .7, −.2, − .4, −.8 >
< .2, .7, .7, −.3, − .7, −.5 > < .3, .6, .8, −.6, − .7, −.4 > < .6, .5, .6, −.1, − .7, −.8 > < .3, .4, .7, −.3, − .5, −.9 >
< .5, .4, .2, −.4, − .3, −.7 > < .2, .4, .3, −.3, − .7, −.4 > < .5, .8, .6, −.2, − .5, −.4 > < .4, .6, .5, −.1, − .6, −.5 >
< .6, .7, .7, −.7, − .6, −.8 > < .3, .6, .4, −.4, − .5, −.5 > < .4, .9, .5, −.1, − .7, −.3 > < .2, .5, .8, −.3, − .7, −.6 >

)

The result of intersection matrix of two bipolar neutrosophic matrices C and D can be obtained by

the call of the command Intersection (C, D):

>>> Intersection (C, D)

Intersection =

[[[0.3 0.7 0.3 -0.5 -0.4 -0.6] [0.1 0.4 0.7 -0.5 -0.8 -0.4] [0.3 0.7 0.6 -0.4 -0.8 -0.7] [0.1 0.5 0.7 -0.2 -0.4 -0.8]]

 [[0.2 0.7 0.7 -0.3 -0.7 -0.5] [0.3 0.6 0.8 -0.6 -0.7 -0.4] [0.6 0.5 0.6 -0.1 -0.7 -0.8] [0.3 0.4 0.7 -0.3 -0.5 -0.9]]

 [[0.5 0.4 0.2 -0.4 -0.3 -0.7] [0.2 0.4 0.3 -0.3 -0.8 -0.4] [0.5 0.8 0.6 -0.2 -0.5 -0.4] [0.4 0.6 0.5 -0.1 -0.6 -0.5]]

 [[0.6 0.7 0.7 -0.7 -0.6 -0.8] [0.3 0.6 0.4 -0.4 -0.5 -0.5] [0.4 0.9 0.5 -0.1 -0.7 -0.3] [0.2 0.5 0.8 -0.3 -0.7 -0.6]]]

3.6. Computing addition operation of two bipolar neutrosophic matrices.

The addition of two bipolar neutrosophic matrices A and B is defined as follow:

𝐴 ⊕ 𝐵 = 𝑆 = [< 𝑠𝑖𝑗𝑇

𝑃 , 𝑠𝑖𝑗𝐼

𝑃 , 𝑠𝑖𝑗𝐹

𝑃 , 𝑠𝑖𝑗𝑇

𝑁 , 𝑠𝑖𝑗𝐼

𝑁 , 𝑠𝑖𝑗𝐹

𝑁 >]
m× n

 (12)

Where

𝑠𝑖𝑗𝑇

𝑃 = 𝑎𝑖𝑗𝑇

𝑃 + 𝑏𝑖𝑗𝑇

𝑃 − 𝑎𝑖𝑗𝑇

𝑃 . 𝑏𝑖𝑗𝑇

𝑃 , 𝑠𝑖𝑗𝑇

𝑁 = −(𝑎𝑖𝑗𝑇

𝑁 . 𝑏𝑖𝑗𝑇

𝑁)

𝑠𝑖𝑗𝐼

𝑃 = 𝑎𝑖𝑗𝐼

𝑃 . 𝑏𝑖𝑗𝐼

𝑃 , 𝑠𝑖𝑗𝐼

𝑁 = −(−𝑎𝑖𝑗𝐼

𝑁 − 𝑏𝑖𝑗𝐼

𝑁 − 𝑎𝑖𝑗𝐼

𝑁 . 𝑏𝑖𝑗𝐼

𝑁)

𝑠𝑖𝑗𝐹

𝑃 = 𝑎𝑖𝑗𝐹

𝑃 . 𝑏𝑖𝑗𝐹

𝑃 , 𝑠𝑖𝑗𝐹

𝑁 = −(−𝑎𝑖𝑗𝐹

𝑁 − 𝑏𝑖𝑗𝐹

𝑁 − 𝑎𝑖𝑗𝐹

𝑁 . 𝑏𝑖𝑗𝐹

𝑁)

To generate the python program for obtaining the addition of two bipolar neutrosophic matrices,

simple call of the function Addition (A, B) is defined as follow:

BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for

(12)

Neutrosophic Sets and Systems, Vol. 28, 2019 150

S. Broumi, S. Topal, A. Bakali, M. Talea And F. Smarandache, A Python Tool for Implementations on Bipolar

Neutrosophic Matrices

import numpy as np

A= np.array([[[0.3,0.6,1,-0.2,-0.54,-0.4], [0.1,0.2,0.8,-0.5,-0.34,-0.7]],

 [[0.1,0.12,0,-0.27,-0.44,-0.92], [0.5,0.33,0.58,-0.33,-0.24,-0.22]],

 [[0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32]]])

B= np.array([[[0.32,0.4,0.1,-0.25,-0.54,-0.4], [0.13,0.2,0.11,-0.55,-0.35,-0.72]],

 [[0.17,0.19,0.66,-0.87,-0.64,-0.92], [0.25,0.36,0.88,-0.33,-0.54,-0.22]],

 [[0.15,0.28,0.67,-0.39,-0.27,-0.55],[0.24,0.73,0.28,-0.26,-0.53,-0.52]]])

#A.shape gives (3, 2, 6) the dimension of A. (row, column, numbers of element (Bipolar

Neutrosophic Number, 6 elements))

A.shape[0] = 3 rows

A.shape[1] = 2 columns

A.shape[2] = each bipolar neutrosophic number with 6 tuples as usual

addition=[]

def Addition(A, B):

 if A.shape == B.shape:

 dimA=A.shape

 for i in range (0,dimA[0]): # for rows, here 3

 H=[]

 for j in range (0,dimA[1]): # for columns, here 2

 H.extend([[A[i][j][0]+B[i][j][0]-A[i][j][0]*B[i][j][0], A[i][j][1]* B[i][j][1],

A[i][j][2]* B[i][j][2] -(-A[i][j][3]*B[i][j][3]), -(-A[i][j][4]-B[i][j][4] -A[i][j][4]*B[i][j][4]), -(-A[i][j][5]-

B[i][j][5]-A[i][j][5]*B[i][j][5])]])

 addition.append(H)

 print('Addition= ', np.array(addition))

Example 4. In this example we evaluate the addition of the two bipolar neutrosophic matrices C

and D of order 4X4:

C=

(

< .5, .7, .2, −.7, − .3, −.6 > < .4, .4, .5, −.7, − .8, −.4 > < .7, .7, .5, −.8, − .7, −.6 > < .1, .5, .7, −.5, − .2, −.8 >
< .9, .7, .5, −.7, − .7, −.1 > < .7, .6, .8, −.7, − .5, −.1 > < .9, .4, .6, −.1, − .7, −.5 > < .5, .2, .7, −.5, − .1, −.9 >
< .9, .4, .2, −.6, − .3, −.7 > < .2, .2, .2, −.4, − .7, −.4 > < .9, .5, .5, −.6, − .5, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .7, .2, −.8, − .6, −.1 > < .3, .5, .2, −.5, − .5, −.2 > < .5, .4, .5, −.1, − .7, −.2 > < .2, .4, .8, −.5, − .5, −.6 >

)

The bipolar neutrosophic matrix C can be inputted in Python code like this:

C= np.array([[[0.5,0.7,0.2,-0.7,-0.3,-0.6], [0.4,0.4,0.5,-0.7,-0.8,-0.4], [0.7,0.7,0.5,-0.8,-0.7,-0.6], [0.1,0.5,0.7,-0.5,-0.2,-

0.8]],[[0.9,0.7,0.5,-0.7,-0.7,-0.1], [0.7,0.6,0.8,-0.7,-0.5,-0.1], [0.9,0.4,0.6,-0.1,-0.7,-0.5], [0.5,0.2,0.7,-0.5,-0.1,-0.9]],

[[0.9,0.4,0.2,-0.6,-0.3,-0.7], [0.2,0.2,0.2,-0.4,-0.7,-0.4], [0.9,0.5,0.5,-0.6,-0.5,-0.2], [0.7,0.5,0.3,-0.4,-0.2,-0.2]],

[[0.9,0.7,0.2,-0.8,-0.6,-0.1], [0.3,0.5,0.2,-0.5,-0.5,-0.2], [0.5,0.4,0.5,-0.1,-0.7,-0.2], [0.2,0.4,0.8,-0.5,-0.5,-0.6]]])

D=

(

< .3, .4, .3, −.5, − .4, −.2 > < .1, .2, .7, −.5, − .2, −.3 > < .3, .2, .6, −.4, − .8, −.7 > < .2, .1, .3, −.2, − .4, −.4 >
< .2, .2, .7, −.3, − .3, −.5 > < .3, .5, .6, −.6, − .7, −.4 > < .6, .5, .4, −.3, − .6, −.8 > < .3, .4, .4, −.3, − .5, −.3 >
< .5, .3, .1, −.4, − .2, −.4 > < .5, .4, .3, −.3, − .8, −.2 > < .5, .8, .6, −.2, − .2, −.4 > < .4, .6, .5, −.1, − .6, −.5 >
< .6, .1, .7, −.7, − .4, −.8 > < .4, .6, .4, −.4, − .2, −.5 > < .4, .9, .3, −.5, − .5, −.3 > < .4, .5, .4, −.3, − .7, −.4 >

)

Neutrosophic Sets and Systems, Vol. 28, 2019 151

S. Broumi, S. Topal, A. Bakali, M. Talea And F. Smarandache, A Python Tool for Implementations on Bipolar

Neutrosophic Matrices

The bipolar neutrosophic matrix D can be inputted in Python code like this:

D= np.array([[[0.3,0.4,0.3,-0.5,-0.4,-0.2], [0.1,0.2,0.7,-0.5,-0.2,-0.3], [0.3,0.2,0.6,-0.4,-0.8,-0.7], [0.2,0.1,0.3,-0.2,-0.4,-

0.4]], [[0.2,0.2,0.7,-0.3,-0.3,-0.5], [0.3,0.5,0.6,-0.6,-0.7,-0.4], [0.6,0.5,0.4,-0.3,-0.6,-0.8], [0.3,0.4,0.4,-0.3,-0.5,-0.3]],

[[0.5,0.3,0.1,-0.4,-0.2,-0.4], [0.5,0.4,0.3,-0.3,-0.8,-0.2], [0.5,0.8,0.6,-0.2,-0.2,-0.4], [0.4,0.6,0.5,-0.1,-0.6,-0.5]],

[[0.6,0.1,0.7,-0.7,-0.4,-0.8], [0.4,0.6,0.4,-0.4,-0.2,-0.5], [0.4,0.9,0.3,-0.5,-0.5,-0.3], [0.4,0.5,0.4,-0.3,-0.7,-0.4]]])

So, the addition matrix of two bipolar neutrosophic matrices is portrayed as follow

𝐶𝐵𝑁𝑆 ⊕ 𝐷𝐵𝑁𝑆 =

(

< .65, .28, .06, −.35, − .58, −.68 > < .46, .08, .35, −.35, − .84, −.58 > < .79, .14, .30, −.32, − .94, −.88 > < .28, .05, .21, −.10, − .52, −.88 >
< .92, .14, .35, −.21, − .79, −.55 > < .79, .30, .48, −.42, − .85, −.46 > < .96, .20, .24, −.03, − .88, −.90 > < .65, .08, .28, −.15, − .55, −.93 >
< .65, .12, .02, −.24, − .44, −.82 > < .60, .08, .06, −.12, − .94, −.52 > < .95, .40, .30, −.12, − .60, −.52 > < .82, .30, .15, −.04, − .68, −.60 >
< .96, .07, .14, −.56, − .76, −.82 > < .58, .30, .08, −.20, − .60, −.60 > < .70, .36, .15, −.05, − .85, −.44 > < .52, .20, .32, −.15, − .85, −.76 >

)

The result of addition matrix of two bipolar neutrosophic matrices C and D can be obtained by the

call of the command addition (C, D):

>>> Addition(C, D)

Addition=

[[[0.65 0.28 0.06 0.35 -0.58 -0.68] [0.46 0.08 0.35 0.35 -0.84 -0.58] [0.79 0.14 0.3 0.32 -0.94 -0.88] [

0.28 0.05 0.21 0.1 -0.52 -0.88]]

[[0.92 0.14 0.35 0.21 -0.79 -0.55] [0.79 0.3 0.48 0.42 -0.85 -0.46] [0.96 0.2 0.24 0.03 -0.88 -

0.9] [0.65 0.08 0.28 0.15 -0.55 -0.93]]

 [[0.95 0.12 0.02 0.24 -0.44 -0.82] [0.6 0.08 0.06 0.12 -0.94 -0.52] [0.95 0.4 0.3 0.12 -0.6 -

0.52] [0.82 0.3 0.15 0.04 -0.68 -0.6]]

 [[0.96 0.07 0.14 0.56 -0.76 -0.82] [0.58 0.3 0.08 0.2 -0.6 -0.6] [0.7 0.36 0.15 0.05 -0.85 -

0.44] [0.52 0.2 0.32 0.15 -0.85 -0.76]]]

3.7. Computing product of two bipolar neutrosophic matrices

The product of two bipolar neutrosophic matrices A and B is defined as follow:

𝐴⨀𝐵 = 𝑅 = [< 𝑟𝑖𝑗𝑇

𝑃 , 𝑟𝑖𝑗𝐼

𝑃 , 𝑟𝑖𝑗𝐹

𝑃 , 𝑟𝑖𝑗𝑇

𝑁 , 𝑟𝑖𝑗𝐼

𝑁 , 𝑟𝑖𝑗𝐹

𝑁 >]
m× n

 (13)

Where

𝑟𝑖𝑗𝑇

𝑃 = 𝑎𝑖𝑗𝑇

𝑃 . 𝑏𝑖𝑗𝑇

𝑃 , 𝑟𝑖𝑗𝑇

𝑁 = −(−𝑎𝑖𝑗𝑇

𝑁 − 𝑏𝑖𝑗𝑇

𝑁 − 𝑎𝑖𝑗𝑇

𝑁 . 𝑏𝑖𝑗𝑇

𝑁)

𝑟𝑖𝑗𝐼

𝑃 = 𝑎𝑖𝑗𝐼

𝑃 + 𝑏𝑖𝑗𝐼

𝑃 − 𝑎𝑖𝑗𝐼

𝑃 . 𝑏𝑖𝑗𝐼

𝑃 , 𝑟𝑖𝑗𝐼

𝑁 = −(𝑎𝑖𝑗𝐼

𝑁 . 𝑏𝑖𝑗𝐼

𝑁)

𝑟𝑖𝑗𝐹

𝑃 = 𝑎𝑖𝑗𝐹

𝑃 + 𝑏𝑖𝑗𝐹

𝑃 − 𝑎𝑖𝑗𝐹

𝑃 . 𝑏𝑖𝑗𝐹

𝑃 , 𝑟𝑖𝑗𝐹

𝑁 = −(𝑎𝑖𝑗𝐹

𝑁 . 𝑏𝑖𝑗𝐹

𝑁)

To generate the python program for finding the product operation of two bipolar neutrosophic

matrices, simple call of the function Product (A, B) is defined as follow:

BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for

(13)

import numpy as np

A= np.array([[[0.3,0.6,1,-0.2,-0.54,-0.4], [0.1,0.2,0.8,-0.5,-0.34,-0.7]],

 [[0.1,0.12,0,-0.27,-0.44,-0.92], [0.5,0.33,0.58,-0.33,-0.24,-0.22]],

 [[0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32]]])

B= np.array([[[0.32,0.4,0.1,-0.25,-0.54,-0.4], [0.13,0.2,0.11,-0.55,-0.35,-0.72]],

Neutrosophic Sets and Systems, Vol. 28, 2019 152

S. Broumi, S. Topal, A. Bakali, M. Talea And F. Smarandache, A Python Tool for Implementations on Bipolar

Neutrosophic Matrices

 [[0.17,0.19,0.66,-0.87,-0.64,-0.92], [0.25,0.36,0.88,-0.33,-0.54,-0.22]],

 [[0.15,0.28,0.67,-0.39,-0.27,-0.55],[0.24,0.73,0.28,-0.26,-0.53,-0.52]]])

#A.shape gives (3, 2, 6) the dimension of A. (row, column, numbers of element (Bipolar

Neutrosophic Number, 6 elements))

A.shape[0] = 3 rows

A.shape[1] = 2 columns

A.shape[2] = each bipolar neutrosophic number with 6 tuple as usual

product=[]

def Product(A, B):

 if A.shape == B.shape:

 dimA=A.shape

 for i in range (0,dimA[0]): # for rows, here 3

 H=[]

 for j in range (0,dimA[1]): # for columns, here 2

 H.extend([[A[i][j][0]*B[i][j][0]) , A[i][j][1]+ B[i][j][1]- (A[i][j][1]*B[i][j][1]),

A[i][j][2]+ B[i][j][2]- (A[i][j][2]*B[i][j][2]), -(-A[i][j][3]-B[i][j][3]-A[i][j][3]*B[i][j][3]), -(A[i][j][4]*

B[i][j][4]), -(A[i][j][5]* B[i][j][5])]])

 product.append(H)

 print(' Product = ', np.array(product))

Example 5. In this example we evaluate the product of the two bipolar neutrosophic matrices C and

D of order 4X4:

C=

(

< .5, .7, .2, −.7, − .3, −.6 > < .4, .4, .5, −.7, − .8, −.4 > < .7, .7, .5, −.8, − .7, −.6 > < .1, .5, .7, −.5, − .2, −.8 >
< .9, .7, .5, −.7, − .7, −.1 > < .7, .6, .8, −.7, − .5, −.1 > < .9, .4, .6, −.1, − .7, −.5 > < .5, .2, .7, −.5, − .1, −.9 >
< .9, .4, .2, −.6, − .3, −.7 > < .2, .2, .2, −.4, − .7, −.4 > < .9, .5, .5, −.6, − .5, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .7, .2, −.8, − .6, −.1 > < .3, .5, .2, −.5, − .5, −.2 > < .5, .4, .5, −.1, − .7, −.2 > < .2, .4, .8, −.5, − .5, −.6 >

)

The bipolar neutrosophic matrix C can be inputted in Python code like this:

C= np.array([[[0.5,0.7,0.2,-0.7,-0.3,-0.6], [0.4,0.4,0.5,-0.7,-0.8,-0.4], [0.7,0.7,0.5,-0.8,-0.7,-0.6], [0.1,0.5,0.7,-0.5,-0.2,-

0.8]], [[0.9,0.7,0.5,-0.7,-0.7,-0.1], [0.7,0.6,0.8,-0.7,-0.5,-0.1], [0.9,0.4,0.6,-0.1,-0.7,-0.5], [0.5,0.2,0.7,-0.5,-0.1,-0.9]],

[[0.9,0.4,0.2,-0.6,-0.3,-0.7], [0.2,0.2,0.2,-0.4,-0.7,-0.4], [0.9,0.5,0.5,-0.6,-0.5,-0.2], [0.7,0.5,0.3,-0.4,-0.2,-0.2]],

[[0.9,0.7,0.2,-0.8,-0.6,-0.1], [0.3,0.5,0.2,-0.5,-0.5,-0.2], [0.5,0.4,0.5,-0.1,-0.7,-0.2], [0.2,0.4,0.8,-0.5,-0.5,-0.6]]])

D=(

< .3, .4, .3, −.5, − .4, −.2 > < .1, .2, .7, −.5, − .2, −.3 > < .3, .2, .6, −.4, − .8, −.7 > < .2, .1, .3, −.2, − .4, −.4 >
< .2, .2, .7, −.3, − .3, −.5 > < .3, .5, .6, −.6, − .7, −.4 > < .6, .5, .4, −.3, − .6, −.8 > < .3, .4, .4, −.3, − .5, −.3 >
< .5, .3, .1, −.4, − .2, −.4 > < .5, .4, .3, −.3, − .8, −.2 > < .5, .8, .6, −.2, − .2, −.4 > < .4, .6, .5, −.1, − .6, −.5 >
< .6, .1, .7, −.7, − .4, −.8 > < .4, .6, .4, −.4, − .2, −.5 > < .4, .9, .3, −.5, − .5, −.3 > < .4, .5, .4, −.3, − .7, −.4 >

)

The bipolar neutrosophic matrix D can be inputted in Python code like this:

D= np.array([[[0.3,0.4,0.3,-0.5,-0.4,-0.2], [0.1,0.2,0.7,-0.5,-0.2,-0.3], [0.3,0.2,0.6,-0.4,-0.8,-0.7], [0.2,0.1,0.3,-0.2,-0.4,-

0.4]], [[0.2,0.2,0.7,-0.3,-0.3,-0.5], [0.3,0.5,0.6,-0.6,-0.7,-0.4], [0.6,0.5,0.4,-0.3,-0.6,-0.8], [0.3,0.4,0.4,-0.3,-0.5,-0.3]],

 [[0.5,0.3,0.1,-0.4,-0.2,-0.4], [0.5,0.4,0.3,-0.3,-0.8,-0.2], [0.5,0.8,0.6,-0.2,-0.2,-0.4], [0.4,0.6,0.5,-0.1,-0.6,-0.5]],

 [[0.6,0.1,0.7,-0.7,-0.4,-0.8], [0.4,0.6,0.4,-0.4,-0.2,-0.5], [0.4,0.9,0.3,-0.5,-0.5,-0.3], [0.4,0.5,0.4,-0.3,-0.7,-0.4]]])

Neutrosophic Sets and Systems, Vol. 28, 2019 153

S. Broumi, S. Topal, A. Bakali, M. Talea And F. Smarandache, A Python Tool for Implementations on Bipolar

Neutrosophic Matrices

So, the product matrix of two bipolar neutrosophic matrices is portrayed as follow

𝐶𝐵𝑁𝑆⨀𝐷𝐵𝑁𝑆=

(

< .15, .82, .44, −.85, − .12, −.12 > < .04, .52, .85, −.85, − 1.16, −.12 > < .21, .76, .80, −.88, − .56, −.42 > < .02, .55, .79, −.60, − .008, − .32 >
< .18, .76, .85, −.79, − .21, −.05 > < .21, .80, .92, −.88, − .35, −.04 > < .54, .70, .76, −.37, − .42, −0.40 > < .15, .52, .82, −.65, − .05, − .27 >
< .45, .58, .28, −.76, − .06, −.28 > < .10, .52, .44, −.58, − .56, −.08 > < .45, .90, .80, −.68, − .10, −.08 > < .28, .80, .65, −.46, − .12, −.10 >

< .54, .73, .76, −.94, − .24, −.08 > < .12, .80, .52, −.70, − .10, −.10 > < .20, .94, .65, −.55, − .35, −.06 > < .08, .70, .88, −.65, − .35, − .24 >

)

The result of product matrix of two bipolar neutrosophic matrices C and D can be obtained by the

call of the command Product (C, D):

>>> Product(C, D)

Product=

[[[0.15 0.82 0.44 -0.85 -0.12 -0.12] [0.04 0.52 0.85 -0.85 -0.16 -0.12] [0.21 0.76 0.8 -0.88 -

0.56 -0.42] [0.02 0.55 0.79 -0.6 -0.08 -0.32]]

 [[0.18 0.76 0.85 -0.79 -0.21 -0.05] [0.21 0.8 0.92 -0.88 -0.35 -0.04] [0.54 0.7 0.76 -0.37 -

0.42 -0.4] [0.15 0.52 0.82 -0.65 -0.05 -0.27]]

 [[0.45 0.58 0.28 -0.76 -0.06 -0.28] [0.1 0.52 0.44 -0.58 -0.56 -0.08] [0.45 0.9 0.8 -0.68 -

0.1 -0.08] [0.28 0.8 0.65 -0.46 -0.12 -0.1]]

 [[0.54 0.73 0.76 -0.94 -0.24 -0.08] [0.12 0.8 0.52 -0.7 -0.1 -0.1] [0.2 0.94 0.65 -0.55 -0.35 -

0.06] [0.08 0.7 0.88 -0.65 -0.35 -0.24]]]

3.8. Computing transpose of bipolar neutrosophic matrix

To generate the python program for finding the transpose of bipolar neutrosophic matrix, simple

call of the function Transpose (A) is defined as follow:

BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for

transpose

import numpy as np

A=np.array([[[0.3,0.6,1,-0.2,-0.54,-0.4], [0.1,0.2,0.8,-0.5,-0.34,-0.7]],

 [[0.1,0.12,0,-0.27,-0.44,-0.92],[0.5,0.33,0.58,-0.33,-0.24,-0.22]],

 [[0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32]]])

#A.shape gives (3, 2, 6) the dimension of A. (row, column, numbers of element (Bipolar

Neutrosophic Number, 6 elements))

A.shape[0] = 3 rows

A.shape[1] = 2 columns

A.shape[2] = each bipolar neutrosophic number with 6 tuple as usual

def Transpose(A):

 DimA= A. shape

 print (' the matrix ', DimA[0],' x ', DimA[1], ' dimension')

 trA = A.transpose()

 DimtrA= trA. shape

 print ('\n')

 print (' its transpose ', DimtrA[1],' x ', DimtrA[2], ' dimension')

 print ('\n')

 print(' Transpose = ', trA)

Neutrosophic Sets and Systems, Vol. 28, 2019 154

S. Broumi, S. Topal, A. Bakali, M. Talea And F. Smarandache, A Python Tool for Implementations on Bipolar

Neutrosophic Matrices

Example 6. In this example we evaluate the transpose of the bipolar neutrosophic matrix C of order

4X4:

C=

(

< .5, .7, .2, −.7, − .3, −.6 > < .4, .4, .5, −.7, − .8, −.4 > < .7, .7, .5, −.8, − .7, −.6 > < .1, .5, .7, −.5, − .2, −.8 >
< .9, .7, .5, −.7, − .7, −.1 > < .7, .6, .8, −.7, − .5, −.1 > < .9, .4, .6, −.1, − .7, −.5 > < .5, .2, .7, −.5, − .1, −.9 >
< .9, .4, .2, −.6, − .3, −.7 > < .2, .2, .2, −.4, − .7, −.4 > < .9, .5, .5, −.6, − .5, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .7, .2, −.8, − .6, −.1 > < .3, .5, .2, −.5, − .5, −.2 > < .5, .4, .5, −.1, − .7, −.2 > < .2, .4, .8, −.5, − .5, −.6 >

)

The bipolar neutrosophic matrix C can be inputted in Python code like this:

C= np.array([[[0.5,0.7,0.2,-0.7,-0.3,-0.6], [0.4,0.4,0.5,-0.7,-0.8,-0.4], [0.7,0.7,0.5,-0.8,-0.7,-0.6], [0.1,0.5,0.7,-0.5,-0.2,-

0.8]], [[0.9,0.7,0.5,-0.7,-0.7,-0.1], [0.7,0.6,0.8,-0.7,-0.5,-0.1], [0.9,0.4,0.6,-0.1,-0.7,-0.5], [0.5,0.2,0.7,-0.5,-0.1,-0.9]],

[[0.9,0.4,0.2,-0.6,-0.3,-0.7], [0.2,0.2,0.2,-0.4,-0.7,-0.4], [0.9,0.5,0.5,-0.6,-0.5,-0.2], [0.7,0.5,0.3,-0.4,-0.2,-0.2]],

[[0.9,0.7,0.2,-0.8,-0.6,-0.1], [0.3,0.5,0.2,-0.5,-0.5,-0.2], [0.5,0.4,0.5,-0.1,-0.7,-0.2], [0.2,0.4,0.8,-0.5,-0.5,-0.6]]])

So, the transpose matrix of bipolar neutrosophic matrices is portrayed as follow

<0.50, 0.70, 0.20,-0.70, -0.30, -0.60> <0.90, 0.70, 0.50,-0.70, -0.70, -0.10> <0.30, 0.40, 0.20,-0.60, -0.30, -0.70> <0.90, 0.70, 0.20,-0.80, -0.60, -0.10>

<0.40, 0.40, 0.50,-0.70, -0.80, -0.40> <0.70, 0.60, 0.80,-0.70, -0.50, -0.10> <0.20, 0.20, 0.20,-0.40, -0.70, -0.40> <0.30, 0.50, 0.20,-0.50, -0.50, -0.20>

<0.70, 0.70, 0.50,-0.80, -0.70, -0.60> <0.90, 0.40, 0.60,-0.10, -0.70, -0.50> <0.90, 0.50, 0.50,-0.60, -0.50, -0.20> <0.50, 0.40, 0.50,-0.10, -0.70, -0.20>

<0.10, 0.50, 0.70,-0.50, -0.20, -0.80> <0.50, 0.20, 0.70,-0.50, -0.10, -0.90> <0.70, 0.50, 0.30,-0.40, -0.20, -0.20> <0.20, 0.40, 0.80,-0.50, -0.50, -0.60>

>>> Transpose(C)

 The matrix 4 x4 dimension

 Its transpose 4 x 4 dimension

Transpose =

[[[0.5 0.9 0.9 0.9] [0.4 0.7 0.2 0.3] [0.7 0.9 0.9 0.5] [0.1 0.5 0.7 0.2]]

[[0.7 0.7 0.4 0.7] [0.4 0.6 0.2 0.5] [0.7 0.4 0.5 0.4] [0.5 0.2 0.5 0.4]]

[[0.2 0.5 0.2 0.2] [0.5 0.8 0.2 0.2] [0.5 0.6 0.5 0.5] [0.7 0.7 0.3 0.8]]

[[-0.7 -0.7 -0.6 -0.8] [-0.7 -0.7 -0.4 -0.5] [-0.8 -0.1 -0.6 -0.1] [-0.5 -0.5 -0.4 -0.5]]

[[-0.3 -0.7 -0.3 -0.6] [-0.8 -0.5 -0.7 -0.5] [-0.7 -0.7 -0.5 -0.7] [-0.2 -0.1 -0.2 -0.5]]

[[-0.6 -0.1 -0.7 -0.1] [-0.4 -0.1 -0.4 -0.2] [-0.6 -0.5 -0.2 -0.2] [-0.8 -0.9 -0.2 -0.6]]]

3.9 Computing composition of two bipolar neutrosophic matrices

To generate the python program for finding the composition of two bipolar neutrosophic

matrices, simple call of the function Composition () is defined as follow:

BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for

Composition

#A.shape and B.shape returns (3, 3, 6) the dimension of A. (row, column, numbers of element

(Bipolar Neutrosophic Number, 6 elements))

A.shape[0] = 3 rows

A.shape[1] = 3 columns

A.shape[2] = Each bipolar neutrosophic number has 6 tuple as usual

#One can use matrices with any dimensions but dimensions of two matrices must be the same and

nxn

Neutrosophic Sets and Systems, Vol. 28, 2019 155

S. Broumi, S. Topal, A. Bakali, M. Talea And F. Smarandache, A Python Tool for Implementations on Bipolar

Neutrosophic Matrices

import math

import numpy as np

A= np.array([[[0.3, 0.6, 1, -0.2, -0.54, -0.4], [0.1, 0.2, 0.8, -0.5, -0.34, -0.7], [0.020,0.021,0.022,-0.023,-

0.024,-0.025]],

[[0.17,0.19,0.66,-0.87,-0.64,-0.92], [0.25,0.36,0.88,-0.33,-0.54,-0.22], [0.120,0.121,0.122,-0.123,-0.124,-

0.125]],

[[0.15,0.28,0.67,-0.39,-0.27,-0.55],[0.24,0.73,0.28,-0.26,-0.53,-0.52], [0.220,0.221,0.222,-0.223,-0.224,-

0.225]]])

B=np.array([[0.11,0.22,0.6,-0.29,-0.24,-0.52], [0.32,0.4,0.1,-0.25,-0.54,-0.4], [0.13,0.2,0.11,-0.55,-0.35,-

0.72]],

[[0.100,0.101,0.102,-0.103,-0.104,-0.105], [1,0.111,0.112,-0.113,-0.114,-0.115], [0.720,0.821,0.152,-

0.143,-0.194,-0.1]],

[[0,0.73,0.202,-0.203,-0.204,-0.205], [0.22,0.63,0.88,-0.28,-0.54,-0.32], [0.3,0,0.47,-0.223,-0.254,-0.295]

]])

def Composition(A, B):

 global composition

 composition=[]

 dimA = A.shape

 H=[]

 if A.shape == B.shape and dimA[0] == dimA[1]:

 for i in range (0,dimA[0]):

 for j in range (0,dimA[0]):

 counter0=0

 for d in range (0, dimA[0]):

 if counter0 ==0:

 maxtt = [A[i][d][0],B[d][j][0]]

 maxT = min(maxtt)

 minii = [A[i][d][1],B[d][j][1]]

 minI = max(minii)

 minff = [A[i][d][2],B[d][j][2]]

 minF = max(minff)

 minntt= [A[i][d][3],B[d][j][3]]

 minNT = max (minntt)

 maxnii = [A[i][d][4],B[d][j][4]]

 maxNI = min(maxnii)

 maxnff= [A[i][d][5],B[d][j][5]]

 maxNF = min (maxnff)

 counter0 = 1

 else:

 maxT1 = [A[i][d][0],B[d][j][0]]

 maxT11 = min(maxT1)

 maxT112 = [maxT11 , maxT]

Neutrosophic Sets and Systems, Vol. 28, 2019 156

S. Broumi, S. Topal, A. Bakali, M. Talea And F. Smarandache, A Python Tool for Implementations on Bipolar

Neutrosophic Matrices

 maxT = max(maxT112)

 minI1 = [A[i][d][1],B[d][j][1]]

 minI11 = max(minI1)

 minI112 = [minI11, minI]

 minI = min(minI112)

 minF1 = [A[i][d][2],B[d][j][2]]

 minF11 = max(minF1)

 minF112 = [minF11, minF]

 minF = min(minF112)

 minNT1 = [A[i][d][3],B[d][j][3]]

 minNT11 = max(minNT1)

 minNT112 = [minNT11, minNT]

 minNT = min(minNT112)

 maxNI1 = [A[i][d][4],B[d][j][4]]

 maxNI11 = min(maxNI1)

 maxNI112 = [maxNI11, maxNI]

 maxNI = max(maxNI112)

 maxNF1 = [A[i][d][5],B[d][j][5]]

 maxNF11 = min (maxNF1)

 maxNF112 = [maxNF11, maxNF]

 maxNF = max (maxNF112)

 H.append([maxT, minI, minF, minNT, maxNI, maxNF])

 composition.extend(H)

 global nested

 nested = []

 for k in range(int(math.sqrt(len(composition)))):

 nested.append(composition[k:k+int(math.sqrt(len(composition)))])

 print('Composition= ', np.array(nested))

Example 7. In this example we evaluate the composition of the two bipolar neutrosophic matrices C

and D of order 4X4:

C=

(

< .5, .7, .2, −.7, − .3, −.6 > < .4, .4, .5, −.7, − .8, −.4 > < .7, .7, .5, −.8, − .7, −.6 > < .1, .5, .7, −.5, − .2, −.8 >
< .9, .7, .5, −.7, − .7, −.1 > < .7, .6, .8, −.7, − .5, −.1 > < .9, .4, .6, −.1, − .7, −.5 > < .5, .2, .7, −.5, − .1, −.9 >
< .9, .4, .2, −.6, − .3, −.7 > < .2, .2, .2, −.4, − .7, −.4 > < .9, .5, .5, −.6, − .5, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .7, .2, −.8, − .6, −.1 > < .3, .5, .2, −.5, − .5, −.2 > < .5, .4, .5, −.1, − .7, −.2 > < .2, .4, .8, −.5, − .5, −.6 >

)

The bipolar neutrosophic matrix C can be inputted in Python code like this:

C= np.array([[[0.5,0.7,0.2,-0.7,-0.3,-0.6], [0.4,0.4,0.5,-0.7,-0.8,-0.4], [0.7,0.7,0.5,-0.8,-0.7,-0.6], [0.1,0.5,0.7,-0.5,-0.2,-

0.8]], [[0.9,0.7,0.5,-0.7,-0.7,-0.1], [0.7,0.6,0.8,-0.7,-0.5,-0.1], [0.9,0.4,0.6,-0.1,-0.7,-0.5], [0.5,0.2,0.7,-0.5,-0.1,-0.9]],

[[0.9,0.4,0.2,-0.6,-0.3,-0.7], [0.2,0.2,0.2,-0.4,-0.7,-0.4], [0.9,0.5,0.5,-0.6,-0.5,-0.2], [0.7,0.5,0.3,-0.4,-0.2,-0.2]],

[[0.9,0.7,0.2,-0.8,-0.6,-0.1], [0.3,0.5,0.2,-0.5,-0.5,-0.2], [0.5,0.4,0.5,-0.1,-0.7,-0.2], [0.2,0.4,0.8,-0.5,-0.5,-0.6]]])

D=

Neutrosophic Sets and Systems, Vol. 28, 2019 157

S. Broumi, S. Topal, A. Bakali, M. Talea And F. Smarandache, A Python Tool for Implementations on Bipolar

Neutrosophic Matrices

(

< .3, .4, .3, −.5, − .4, −.2 > < .1, .2, .7, −.5, − .2, −.3 > < .3, .2, .6, −.4, − .8, −.7 > < .2, .1, .3, −.2, − .4, −.4 >
< .2, .2, .7, −.3, − .3, −.5 > < .3, .5, .6, −.6, − .7, −.4 > < .6, .5, .4, −.3, − .6, −.8 > < .3, .4, .4, −.3, − .5, −.3 >
< .5, .3, .1, −.4, − .2, −.4 > < .5, .4, .3, −.3, − .8, −.2 > < .5, .8, .6, −.2, − .2, −.4 > < .4, .6, .5, −.1, − .6, −.5 >
< .6, .1, .7, −.7, − .4, −.8 > < .4, .6, .4, −.4, − .2, −.5 > < .4, .9, .3, −.5, − .5, −.3 > < .4, .5, .4, −.3, − .7, −.4 >

)

The bipolar neutrosophic matrix D can be inputted in Python code like this:

D= np.array([[[0.3,0.4,0.3,-0.5,-0.4,-0.2], [0.1,0.2,0.7,-0.5,-0.2,-0.3], [0.3,0.2,0.6,-0.4,-0.8,-0.7], [0.2,0.1,0.3,-0.2,-0.4,-

0.4]], [[0.2,0.2,0.7,-0.3,-0.3,-0.5], [0.3,0.5,0.6,-0.6,-0.7,-0.4], [0.6,0.5,0.4,-0.3,-0.6,-0.8], [0.3,0.4,0.4,-0.3,-0.5,-0.3]],

[[0.5,0.3,0.1,-0.4,-0.2,-0.4], [0.5,0.4,0.3,-0.3,-0.8,-0.2], [0.5,0.8,0.6,-0.2,-0.2,-0.4], [0.4,0.6,0.5,-0.1,-0.6,-0.5]],

[[0.6,0.1,0.7,-0.7,-0.4,-0.8], [0.4,0.6,0.4,-0.4,-0.2,-0.5], [0.4,0.9,0.3,-0.5,-0.5,-0.3], [0.4,0.5,0.4,-0.3,-0.7,-0.4]]])

So, the composition matrix of two bipolar neutrosophic matrices is portrayed as follow

𝐶𝐵𝑁𝑆⨀𝐷𝐵𝑁𝑆=

(

< .5, .4, .3, −.5, − .4, −.5 > < .5, .5, .5, −.6, − .2, −.4 > < .5, .5, .5, −.5, − .5, −.6 > < .4, .4, .3, −.3, − .4, −.4 >
< .5, .5, .5, −.6, − .2, −.4 > < .5, .5 .5, −.5, − .5, −.6 > < .4, .4, .3, −.3, − .4, −.4 > < .5, .2, .5, −.5, − .4, −.2 >
< .5 .5, .5, −.5, − .5, −.6 > < .4, .4, .4, −.3, − .4, −.4 > < .5, .2, .5, −.5, − .4, −.2 > < .5, .4, .6, −.6, − .2, −.3 >

< .4, .4, .3, −.3, − .4, −.1 > < .5, .2, .5, −.5, − .4 − .2 > < .5, .4, .6, −.6, − .2, −.3 > < .6, .6, .6, −.5, − .5, −.5 >

)

The result of composition t matrix of two bipolar neutrosophic matrices C and D can be obtained by the call of

the command Composition (C, D):

>>> Composition(C, D)

Composition=

[[[0.5 0.4 0.3 -0.5 -0.4 -0.5] [0.5 0.5 0.5 -0.6 -0.2 -0.4] [0.5 0.5 0.5 -0.5 -0.5 -0.6] [0.4 0.4 0.3 -0.3 -0.4 -0.4]]

[[0.5 0.5 0.5 -0.6 -0.2 -0.4] [0.5 0.5 0.5 -0.5 -0.5 -0.6] [0.4 0.4 0.3 -0.3 -0.4 -0.4] [0.5 0.2 0.5 -0.5 -0.4 -0.2]]

[[0.5 0.5 0.5 -0.5 -0.5 -0.6] [0.4 0.4 0.3 -0.3 -0.4 -0.4] [0.5 0.2 0.5 -0.5 -0.4 -0.2] [0.5 0.4 0.6 -0.6 -0.2 -0.3]]

[[0.4 0.4 0.3 -0.3 -0.4 -0.4] [0.5 0.2 0.5 -0.5 -0.4 -0.2] [0.5 0.4 0.6 -0.6 -0.2 -0.3] [0.6 0.6 0.6 -0.5 -0.5 -0.5]]]

4. Conclusion

In this paper, we have presented a useful Python tool for the calculations of matrices obtained

by bipolar neutrosophic sets. The matrices have nested list data type, in other words, multi-

dimensional arrays in the Python Programming Language. The importance of this work, is that the

proposed Python tool can be used also for fuzzy matrices, bipolar fuzzy matrices, intuitionistic fuzzy

matrices, bipolar intuitionistic fuzzy matrices and single valued neutrosophic matrices. This work

will be extending with the implementation of Bipolar Complex Neutrosophic Matrices in the future.

We have used Python Numpy module in order to provide convenience for possible users. We hope

that the tool might be useful in data science, physics, scientific computing, decision making,

engineering studies and other fields.

Author Contributions

S.T. implemented codes of the bipolar neutrosophic matrices and their operations and created

the scripts on Python 3.7 by using Numpy module. S.B. offered the project paper and reviewed the

implementations. Conceptualization, S.B. and S.T.; Methodology, S.T.; Validation, S.B., S.T., A.B., M.T

and F.S.; Investigation, S.B. and S.T.; Resources, S.B., S.T., A.B., M.T and F.S; Writing-Original Draft

Neutrosophic Sets and Systems, Vol. 28, 2019 158

S. Broumi, S. Topal, A. Bakali, M. Talea And F. Smarandache, A Python Tool for Implementations on Bipolar

Neutrosophic Matrices

Preparation, S.B..; Writing—Review and Editing, S.B., S.T., A.B., M.T and F.S.; Supervision, S.B. and

F.S.

Acknowledgment

The authors are very grateful to the chief editor and reviewers for their comments and

suggestions, which is helpful in improving the paper.

REFERENCES

1. Smarandache, F., Neutrosophy. Neutrosophic Probability, Set, and Logic. ProQuest Information &

Learning, Ann Arbor, Michigan, USA, 1998,105 p.

2. Wang, H.; Smarandache, F.; Zhang, Y. and Sunderraman, R. Single Valued Neutrosophic Sets. Multispace

and Multistructure 4,2010, pp. 410-413.

3. Zhang H.Y.; Wang J.Q., Chen X.H., Interval neutrosophic sets and their application in multicriteria decision

making problems. The Scientific World Journal 2014 doi:10.1155/2014/645953.

4. Deli, I.; Ali, M.; Smarandache, F. Bipolar neutrosophic sets and their applications based on multicriteria

decision making problems. Advanced Mechatronic Systems, (ICAMechs), International Conference,

2015,249-254. doi: 10.1109/ICAMechS.2015.7287068

5. Deli, İ.; Şubaş, Y. Bipolar neutrosophic refined sets and their applications in medical diagnosis. International

Conference on Natural Science and Engineering (ICNASE’16), 2016, 1121-1132.

http://fs.gallup.unm.edu/NSS/.

6. Mumtaz, A.; Le Hoang Son, Deli, I.; and Nguyen Dang Tien. Bipolar neutrosophic soft sets and applications

in decision making. Journal of Intelligent &Fuzzy Systems 33,2017, 4077–4087, DOI:10.3233/JIFS-17999

7. Broumi, S.; Smarandache F.; Talea M.; and Bakali A. An introduction to bipolar single valued neutrosophic

graph theory. Applied Mechanics and Materials 841,2016, 184–191.

8. Broumi, S.; Bakali, A.; Talea, M.; Smarandache, F.; and Ali, M. Shortest path problem under bipolar

neutrosophic setting. Applied Mechanics and Materials 859 (2016), 59–66.

9. Dey, P.P.; Pramanik, S.; Giri, BC. TOPSIS for solving multi-attribute decision making problems under

bipolar neutrosophic environment. In: New trends in neutrosophic theory and applications; Smarandache

F, Pramanik; Publishing House, Pons asbl, Brussels, 2016, pp 55–63

10. Akram, M.; Shumaiza; Smarandache, F. Decision-Making with Bipolar Neutrosophic TOPSIS and Bipolar

Neutrosophic ELECTRE-I. Axioms 2018, 7, 33.

11. Akram, M.; Sarwar M. Novel multiple criteria decision making methods based on bipolar neutrosophic

sets and bipolar neutrosophic graphs, Italian Journal of Pure and Applied Mathematics, 38(2017), 368-389.

12. Akram, M. and Sitara, M. Bipolar neutrosophic graph structures. J. Indones. Math. Soc. Vol. 23, No. 1 (2017),

pp. 55–80

13. Singh P.K, Three-way bipolar neutrosophic concepts and its graphical visualization,

14. Mullai, M.; Broumi S.; Stephen; A. Shortest path problem by minimal spanning tree algorithm using bipolar

neutrosophic numbers. International Journal of Mathematic Trends and Technology, Vol 46, N2, 2017.

pp.80-87

15. Uluçay, V.; Deli, I.; Şahin, M. Similarity measures of bipolar neutrosophic sets and their application to

http://fs.gallup.unm.edu/NSS/
javascript:void(0)

Neutrosophic Sets and Systems, Vol. 28, 2019 159

S. Broumi, S. Topal, A. Bakali, M. Talea And F. Smarandache, A Python Tool for Implementations on Bipolar

Neutrosophic Matrices

multiple criteria decision making. Neural Computing and Applications,2016,

https://doi.org/10.1007/s00521-016-2479-1

16. Dhar, M.; Broumi, S.; Smarandache, F. A Note on Square Neutrosophic Fuzzy Matrices. Neutrosophic Sets

and Systems, Vol. 3, 2014, pp.37-41

17. Arockiarani, I.; Sumathi, I. R. A Fuzzy NEUTROSOPHIC SOFT MATRIX APPROACH IN DECISION

MAKING. Journal of Global Research in Mathematical Archives, Volume 2, No. 2, 2014, pp.14-2

18. Karaaslan, F.; Hayat, K. Some new operations on single-valued neutrosophic matrices and their

applications in multi-criteria group decision making. Applied Intelligence, 2018.

https://doi.org/10.1007/s10489-018-1226-y

19. R. Uma, Murugadas P.; Sriram S. Fuzzy Neutrosophic Soft Matrices of Type-I and Type-II,

20. Uma, R.; Murugadas, P.; and Sriram, S. Section of Fuzzy Neutrosophic Soft Matrix. International Journal of

Pure and Applied Mathematics, Volume 118 No. 23, 2018, 79-87

21. Hassan, A.; Malik, M. A.; Broumi, S.; Bakali, A.; Talea, M.; Smarandache, F. Special types of bipolar single

valued neutrosophic graphs. Annals of Fuzzy Mathematics and Informatics Volume 14, No. 1, 2017, pp. 55-

73.

22. Akram, M; and Siddique, S. Certain Properties of Bipolar Neutrosophic Graphs. Southeast Asian Bulletin of

Mathematics,2018, 42: 463–490

23. Pramanik, S.; Dey, P. P.; Smarandache, F. and Jun Ye, Cross entropy measures of bipolar and interval bipolar

neutrosophic sets and their application for multi-attribute decision making,2018

24. Wang, L.; Zhang, H.; Wang, J. Frank Choquet Bonferroni operators of bipolar neutrosophic sets and their

applications to multi-criteria decision-making problems. Int. J. of Fuzzy Systems. 2017, DOI: 10.1007/s40815-

017-0373-3.

25. Akram, M.; Nasir, M. Certain Bipolar Neutrosophic Competition Graphs. Indones. Math. Soc. Vol. 24, No.

1 (2018), pp. 1-25.

26. Akram, M.; SHUM, K. P. Bipolar Neutrosophic Planar Graphs. Journal of Mathematical Research with

Applications,2017, Vol. 37, No. 6, pp. 631–648

27. Hashim, R.M.; Gulistan, M.; Smarandache, F. Applications of neutrosophic bipolar fuzzy Sets in HOPE

foundation for planning to Build a Children Hospital with Different Types of Similarity Measures,

Symmetry 2018, 10, 331; doi:10.3390/sym10080331

28. Akram, M.; Luqman A. Bipolar neutrosophic hypergraphs with applications. Journal of Intelligent & Fuzzy

Systems, vol. 33, no. 3, pp. 1699-1713, 2017

29. Das S.; Kumar S.; Kar S.; Pal T. Group decision making using neutrosophic soft matrix: An algorithmic

approach. Journal of King Saud University – Computer and Information Sciences xxx (2017) xxx–xxx,

30. Broumi, S.; Talea, M.; Bakali, A.; Smarandache, F. On Bipolar Single Valued Neutrosophic Graphs. Journal

of New Theory, N11, 2016, pp.84-102.

31. Broumi, S.; Bakali, A.; Talea, M.; Smarandache, F.; and Ali, M. Shortest Path Problem under Bipolar

Neutrosophic Setting. Applied Mechanics and Materials, Vol. 859, 2016, pp 59-66.

32. Broumi, S.; Smarandache; F.; Talea, M.; and Bakali, A. An Introduction to Bipolar Single Valued

Neutrosophic Graph Theory. Applied Mechanics and Materials, vol.841,2016, 184-191.

javascript:void(0)
https://doi.org/10.1007/s00521-016-2479-1
https://link.springer.com/journal/10489
https://doi.org/10.1007/s10489-018-1226-y

Neutrosophic Sets and Systems, Vol. 28, 2019 160

S. Broumi, S. Topal, A. Bakali, M. Talea And F. Smarandache, A Python Tool for Implementations on Bipolar

Neutrosophic Matrices

33. Broumi, S.; Bakali, A.; Talea, M.; Smarandache, F.; Verma; R. Computing Minimum Spanning Tree In

Interval Valued Bipolar Neutrosophic Environment, International Journal of Modeling and Optimization,

Vol. 7, No. 5, 2017, pp300-304.

34. Broumi, S.; Son, L.H.; Bakali, A.; Talea, M.; Smarandache, F. and Selvachandran, G. Computing Operational

Matrices in Neutrosophic Environments: A Matlab Toolbox, Neutrosophic Sets and Systems, vol. 18, 2017,

pp. 58-66. http://doi.org/10.5281/zenodo.1175160

35. Pramanik, S. and Mondal, K. Rough Bipolar Neutrosophic Set. Global Journal of Engineering Science and

Research Management, 3(6): June, 2016, pp.71-81

36. Pramanik, S.; Dey, P. P.; Giri, B. C.; Smarandache, F. Bipolar Neutrosophic Projection based Models for

Solving Multi-Attribute Decision Making Problems. Neutrosophic Sets & Systems, 15, 2017, 70-79.

37. Broumi, S.; Talea, M.; Bakali, A.; Smarandache, F.; Khan, M. A Bipolar Single Valued Neutrosophic Isolated

Graphs: Revisited. International Journal of New Computer Architectures and their Applications (IJNCAA)

7(3): ,2017,89-94

38. Akram, M.; Ishfaq, N.; Smarandache, F.; Broumi, S. Application of Bipolar Neutrosophic sets to Incidence

Graphs, Neutrosophic Sets and Systems, vol. 27, 2019, pp. 180-200. DOI: 10.5281/zenodo.3275595

39. Zahariev, Z. Software package and API in MATLAB for working with fuzzy algebras. In G. Venkov, R.

Kovacheva, & V. Pasheva (Eds.), AIP Conference Proceedings, Vol. 1184, No. 1, 2009, pp. 341-348

40. Peeva, K.; Kyosev, Y. Solving problems in intuitionistic fuzzy relational calculus with fuzzy relational

calculus toolbox. In Eight International Conference on IFSs, Varna (pp. 37-43).

41. Karunambigai, M. G.; O. K. Kalaivani, Software development in intuitionistic Fuzzy Relational Calculus.

International Journal of Scientific and research Publication, 6(7), 2016, pp.311-331.

42. Uma, R.; Murugadas, P.; Sriram, S. Determinant Theory for Fuzzy Neutrosophic Soft Matrices. Progress in

Nonlinear Dynamics and Chaos, Vol. 4, No. 2, 2016, 85-102

43. Uma, R.; Murugadas; P.; Sriram, S. The Determinant and Adjoint of Fuzzy Neutrosophic Soft Matrices.

International Journal of Mathematics and its Applications, Volume 5, Issue 4{F ,2017, 821-833.

44. El-Ghareeb, H. A. Novel Open Source Python Neutrosophic Package. Neutrosophic Sets and Systems, vol.

25, 2019, pp. 136-160. DOI: 10.5281/zenodo.2631514

45. Abdel-Basset, M.; Mohamed, R.; Zaied, A. E. N. H.; Smarandache, F. A Hybrid Plithogenic Decision-Making

Approach with Quality Function Deployment for Selecting Supply Chain Sustainability Metrics.

Symmetry, 2019, 11(7), 903.

46. Abdel-Basset, M.; Nabeeh, N. A.; El-Ghareeb, H. A.; Aboelfetouh, A. Utilising neutrosophic theory to solve

transition difficulties of IoT-based enterprises. Enterprise Information Systems, 2019, 1-21.

47. Nabeeh, N. A.; Abdel-Basset, M.; El-Ghareeb, H. A.; Aboelfetouh, A. Neutrosophic multi-criteria decision

making approach for iot-based enterprises. IEEE Access, 2019, 7, 59559-59574.

48. Abdel-Baset, M.; Chang, V.; Gamal, A. Evaluation of the green supply chain management practices: A novel

neutrosophic approach. Computers in Industry, 2019, 108, 210-220.

49. Abdel-Basset, M.; Saleh, M.; Gamal, A.; Smarandache, F. An approach of TOPSIS technique for developing

supplier selection with group decision making under type-2 neutrosophic number. Applied Soft

Computing, 2019, 77, 438-452.

50. Abdel-Baset, M.; Chang, V.; Gamal, A.; Smarandache, F. (2019). An integrated neutrosophic ANP and

http://doi.org/10.5281/zenodo.1175160
http://fs.unm.edu/NSS/ApplicationofBipolarNeutrosophicsetstoIncidence.pdf
http://fs.unm.edu/NSS/ApplicationofBipolarNeutrosophicsetstoIncidence.pdf
https://zenodo.org/record/3275595
http://fs.unm.edu/NSS/NovelOpenSourcePython.pdf
https://zenodo.org/record/2631514#.XKkqwqSxXIU

Neutrosophic Sets and Systems, Vol. 28, 2019 161

S. Broumi, S. Topal, A. Bakali, M. Talea And F. Smarandache, A Python Tool for Implementations on Bipolar

Neutrosophic Matrices

VIKOR method for achieving sustainable supplier selection: A case study in importing field. Computers in

Industry, 106, 94-110.

51. Abdel-Basset, M.; Manogaran, G.; Gamal, A.; Smarandache, F. A group decision making framework based

on neutrosophic TOPSIS approach for smart medical device selection. Journal of medical systems, 2019,

43(2), 38.

52. Broumi S.; Bakali A; Talea M.; Smarandache F.; Singh P.K.; Uluçay V.; Khan M. Bipolar Complex

Neutrosophic Sets and Its Application in Decision Making Problem. In: Kahraman C., Otay İ. (eds) Fuzzy

Multi-Criteria Decision-Making Using Neutrosophic Sets. Studies in Fuzziness and Soft Computing, 2019,

vol 369. Springer, Cham.

Received: 10 April, 2019; Accepted: 24 August, 2019

