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Abstract: Bipolar neutrosophic matrices (BNM) are obtained by bipolar neutrosophic sets. Each 

bipolar neutrosophic number represents an element of the matrix. The matrices are representable 

multi-dimensional arrays (3D arrays). The arrays have nested list data type. Some operations, 

especially the composition is a challenging algorithm in terms of coding because there are so many 

nested lists to manipulate. This paper presents a Python tool for bipolar neutrosophic matrices. The 

advantage of this work, is that the proposed Python tool can be used also for fuzzy matrices, bipolar 

fuzzy matrices, intuitionistic fuzzy matrices, bipolar intuitionistic fuzzy matrices and single valued 

neutrosophic matrices. 
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1. Introduction  

Smarandache [1] gave the concept of neutrosophic set (NS) by considering the triplets 

independent components whose values belong to real standard or nonstandard unit interval] - 0, 1+[. 

Later on, Smarandache [1] gave single valued neutrosophic set (SVNS) to apply into the various 

engineering applications. The various properties of SVNS is being studied by Wang et al. [2]. Further, 

Zhang et al. [3] presented a concept of interval-valued NS (IVNS) where the different membership 

degrees are represented by interval. In [4] Deli et al. introduced the concept of bipolar neutrosophic 

sets and their applications based on multicriteria decision making problems. The same author [5] 

proposed the bipolar neutrosophic refined sets and their applications in medical diagnosis for more 

details about the applications and its sets, we refer to [6]. Since the existence of NS, various scholars 

have presented the approaches related to SVNS and bipolar neutrosophic sets into the different fields. 

For instance, Mumtaz et al. [7] developed the concept of bipolar neutrosophic soft sets that combines 

soft sets and bipolar neutrosophic sets. In [8, 9] Broumi et al. introduced the notion of bipolar single 

valued neutrosophic graph theory and its shortest path problem. Dey et al. [10] considered TOPSIS 

method for solving the decision making problem under bipolar neutrosophic environment. Akram 

et al. [11] described bipolar neutrosophic TOPSIS method and bipolar neutrosophic ELECTRE-I 
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method. Akram and Sarwar [12] studied the novel multiple criteria decision making methods based 

on bipolar neutrosophic sets and bipolar neutrosophic graphs. Akram and Sitara [13] introduced the 

concept of bipolar single-valued neutrosophic graph structures and discussed certain notions of 

bipolar single-valued neutrosophic graph structures with examples. Singh [14] introduced bipolar 

neutrosophic graph representation of concept lattice and it’s processing using granular computing. 

Mullai and Broumi [15] presented shortest path problem by minimal spanning tree algorithm using 

bipolar neutrosophic numbers. Uluçay et al. [16] defined similarity measures of bipolar neutrosophic 

sets and their application to multiple criteria decision making. Based on literal neutrosophic numbers, 

Mamouni et al. [17] defined the addition and multiplication of two neutrosophic fuzzy matrices. in 

the light of Fuzzy Neutrosophic soft sets, Arockiarani [18] present a new technique for handling 

decision making problems and proposed some new notions on matrix representation. Karaaslan and 

Hayat [19] introduced some novel operations on neutrosophic matrices. Uma et al. [20] introduced 

two types of fuzzy neutrosophic soft Matrices. The same authors in [21] decomposed fuzzy 

neutrosophic soft matrix by means of its section of fuzzy neutrosophic soft matrix of Type-I. Hassan 

et al. [22] defined some special types of bipolar single valued neutrosophic graphs. Akram and 

Siddique [23] discussed certain types of edge irregular bipolar neutrosophic graphs. Pramanik [24] 

developed cross entropy measures of bipolar neutrosophic sets and interval bipolar neutrosophic 

sets. Wang et al. [25] defined Frank operations of bipolar neutrosophic numbers (BNNs) and 

proposed Frank bipolar neutrosophic Choquet Bonferroni mean operators by combining Choquet 

integral operators and Bonferroni mean operators based on Frank operations of BNNs. In the same 

study, Akram and Nasir [26] introduced the concept of p-competition bipolar neutrosophic graphs. 

then they defined generalization of bipolar neutrosophic competition graphs called m-step bipolar 

neutrosophic competition graphs. AKRAM and SHUM [27] defined Bipolar Neutrosophic Planar 

Graphs. Hashim et al. [28] provide an application of neutrosophic bipolar fuzzy sets in daily life’s 

problem related with HOPE foundation that is planning to build a children hospital. Akram, and 

Luqman [29] generalized the concept of bipolar neutrosophic sets to hypergraphs. Das et al. [30] 

proposes an algorithmic approach for group decision making (GDM) problems using neutrosophic 

soft matrix (NSM) and relative weights of experts. 

Broumi et al. [31-34] applied the concept of IVNS on graph theory and studied some interesting 

results. Broumi et al. [35] developed a Matlab toolbox for computing operational matrices under the 

SVNS environments. Pramanik et al [36] developed a hybrid structure termed “rough bipolar 

neutrosophic set”. In [37] Pramanik et al. presented Bipolar neutrosophic projection based models for 

solving multi-attribute decision making problems.  Broumi et al [38] developed the concept of 

bipolar complex neutrosophic sets and its application in decision making problem. Akram, et al.[39] 

applied the concept of  bipolar neutrosophic sets to incidence graphs and studied some properties. 

For more details on the application of neutrosophic set theory, we refer the readers to [46-52]. 

Among all the above, matrices play a vital job in the expansion region of science and engineering. 

However, the classical matrix theory neglects the role of uncertainties during the analysis. Therefore, 

the decision process may contain a lot of uncertainties. Thus, the role of the fuzzy matrices and their 

extension including triangular fuzzy matrices, type-2 triangular fuzzy matrices, interval valued fuzzy 

matrices, intuitionistic fuzzy matrices, interval valued intuitionistic fuzzy matrices are studied deeply 

by several scholars. In [40] Zahariev, developed a Matlab software package to the fuzzy algebras. In 

http://fs.unm.edu/NSS/ApplicationofBipolarNeutrosophicsetstoIncidence.pdf


Neutrosophic Sets and Systems, Vol. 28, 2019     140 

 

 

S. Broumi, S. Topal, A. Bakali, M. Talea And  F. Smarandache, A Python Tool for Implementations on Bipolar 

Neutrosophic Matrices 

[41], authors solved intuitionistic fuzzy relational rational calculus problems using a fuzzy toolbox. 

Later on, in [42] Karunambigai and Kalaivani proposed some computing procedures in Matlab for 

intuitionistic fuzzy operational matrices with suitable examples. Uma et al. [43] studied determinant 

theory for fuzzy neutrosophic soft square matrices. Also, in [44] Uma et al. introduced the 

determinant and adjoint of a square Fuzzy Neutrosophic Soft Matrices (FNSMs) a defined the circular 

FNSM and study some relations on square FNSM such as reflexivity, transitivity and circularity.  

 Recently few researchers [45] developed a Python programs for computing operations on 

neutrosophic numbers, but all these programs cannot deal with neutrosophic matrices, to do best of 

our knowledge, there is no work conducted on developing python codes to compute the operations 

on single valued neutrosophic matrices and bipolar neutrosophic matrices. Thus, there is a need to 

develop the work in that direction. For it, the presented paper discusses various operations of bipolar 

neutrosophic sets and their corresponding Python code for different metrics. To achieve it, rest of the 

manuscript is summarized as. In section 2, some concepts related to SVNS, BNS are presented. 

Section 3 deals with the generations of Python programs for bipolar neutrosophic matrices with a 

numerical example and lastly, conclusion is summarized in section 4.  

2.BACKGROUND AND BIPOLAR NEUTROSOPHIC SETS 

In this section, some basic concepts on SVNS, BNS are briefly presented over the universal set 𝜉 [1, 

2, 4]. 

Definition 2.1 [1] A set A is said to be A neutrosophic set ‘A’ consists of three components namely 

truth, indeterminate and falsity denoted by 𝑇𝐴 , 𝐼𝐴(x) and 𝐹𝐴(x) such that 

𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈] −0, 1+[  and  −0 ≤  sup 𝑇𝐴(𝑥)+ sup 𝐼𝐴(𝑥)  + sup FA (x) ≤  3+  (1) 

Definition 2.2 [2] A SVNS ‘A’ on X is given as  

A = {< 𝑥: TA(x),IA(𝑥), FA(𝑥) > 𝑥 ∈ 𝜉}                    (2) 

where the functions TA(x), IA(x), FA(x) ∈  [0. 1] are named “degree of truth, indeterminacy and 

falsity membership of x in A”, such that 

0  ≤ 𝑇𝐴  (x) +𝐼𝐴 (x) +𝐹𝐴 (x)≤ 3                         (3) 

Definition 2.3[4]. A bipolar neutrosophic set A in 𝜉 is defined as an object of the form 

A={<x, (𝑇𝐴
𝑃(𝑥),𝐼𝐴

𝑃(𝑥),𝐹𝐴
𝑃(𝑥),𝑇𝐴

𝑁(𝑥),𝐼𝐴
𝑁(𝑥),𝐹𝐴

𝑁(𝑥))>: x  𝜉 }, where 𝑇𝐴
𝑃(𝑥),𝐼𝐴

𝑃(𝑥),𝐹𝐴
𝑃(𝑥): 𝜉   [1, 0] and 

𝑇𝐴
𝑁(𝑥),𝐼𝐴

𝑁(𝑥),𝐹𝐴
𝑁(𝑥): 𝜉   [-1, 0]. The positive membership degree 𝑇𝐴

𝑃(𝑥),𝐼𝐴
𝑃(𝑥),𝐹𝐴

𝑃(𝑥)enotes the truth 

membership, indeterminate membership and false membership of an element  𝜉 corresponding to 

a bipolar neutrosophic set whereas the negative membership degree 𝑇𝐴
𝑁(𝑥),𝐼𝐴

𝑁(𝑥),𝐹𝐴
𝑁(𝑥)denotes the 

truth membership, indeterminate membership and false membership of an element 𝑥 𝜉 to some 

implicit counter-property corresponding to a bipolar neutrosophic set A. For convenience a bipolar 

neutrosophic number is represented by  

A= <(𝑇𝐴
𝑃,𝐼𝐴

𝑃,𝐹𝐴
𝑃,𝑇𝐴

𝑁,𝐼𝐴
−,𝐹𝐴

−>                            (4)  

Definition 2.4 [4]. In order to make a comparison between two BNN. The score function is applied 

to compare the grades of BNS. This function shows that greater is the value, the greater is the bipolar 

neutrosophic sets and by using this concept paths can be ranked. Suppose  
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, I ,F , , I ,FP P P N N NA T T   be a bipolar neutrosophic number. Then, the score function ( )s A , 

accuracy function ( )a A and certainty function ( )c A of a BNN are defined as follows: 

(i) 
1

( ) 1 1 1
6

P P P N N Ns A T I F T I F
                

                                 (5) 

(ii) ( ) P P N Na A T F T F                        (6)                                                          

(iii) ( ) P Nc A T F                        (7)                                                                         

Comparison of bipolar neutrosophic numbers 

Let 1 1 1 11 1 1, I ,F , , I ,F
p p p n n nA T T   and 2 2 2 22 2 2, I ,F , , I ,F

p p p n n nA T T  be two bipolar neutrosophic 

numbers then 

i. If 1 2( ) ( )s A s A , then 1A  is greater than 2A , that is, 1A is superior to 2A , denoted by 1 2A A . 

ii. If 1 2( ) ( )s A s A , and  1 2( ) ( )a A a A then 1A  is greater than 2A , that is, 1A is superior to 2A , 

denoted by 1 2A A . 

iii. If 1 2( ) ( )s A s A , 1 2( ) ( )a A a A , and 1 2c( ) ( )A c A  then 1A  is greater than 2A , that is, 1A

is superior to 2A , denoted by 1 2A A . 

iv. If  1 2( ) ( )s A s A , 1 2( ) ( )a A a A , and 1 2c( ) ( )A c A  then 1A  is equal to 2A , that is, 1A is 

indifferent to 2A , denoted by 1 2A A . 

Definition 2.5 [4]: A bipolar neutrosophic matrix (BNM) of order m× n is defined as  

𝐴BNM=[< 𝑎𝑖𝑗 , 𝑎𝑖𝑗𝑇

𝑃 , 𝑎𝑖𝑗𝐼

𝑃 , 𝑎𝑖𝑗𝐹

𝑃 , 𝑎𝑖𝑗𝑇

𝑁 , 𝑎𝑖𝑗𝐼

𝑁 , 𝑎𝑖𝑗𝐹

𝑁 >]
m× n

 where  

𝑎𝑖𝑗𝑇

𝑃  is the positive membership value of element 𝑎𝑖𝑗  in A.  

𝑎𝑖𝑗𝑇

𝑁  is the negative membership value of element 𝑎𝑖𝑗  in A.  

𝑎𝑖𝑗𝑇

𝑃  is the positive indeterminate-membership value of element 𝑎𝑖𝑗  in A.  

𝑎𝑖𝑗𝑇

𝑁  is the negative indeterminate-membership value of element 𝑎𝑖𝑗  in A.  

𝑎𝑖𝑗𝑇

𝑃  is the positive non- membership value of element 𝑎𝑖𝑗  in A.  

𝑎𝑖𝑗𝑇

𝑁  is the negative non-membership value of element 𝑎𝑖𝑗  in A.  

 

For simplicity, we write A as 𝐴BNM= [< 𝑎𝑖𝑗𝑇

𝑃 , 𝑎𝑖𝑗𝐼

𝑃 , 𝑎𝑖𝑗𝐹

𝑃 , 𝑎𝑖𝑗𝑇

𝑁 , 𝑎𝑖𝑗𝐼

𝑁 , 𝑎𝑖𝑗𝐹

𝑁 >]
m× n

. 
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3.COMPUTING THE BIPOLAR NEUTROSOPHIC MATRIX OPERATIONS USING PYTHON LANGUAGE 

To generate the Python program for inputting the single valued neutrosophic matrices. The 

procedure is described as follows: 

3.1 Checking the matrix is BNM or not  

To generate the Python program for deciding for a given the matrix is bipolar neutrosophic matrix 

or, simple call of the function BNMChecking ( ) is defined as follow: 

# BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for 

BNM Checking 

#A1.shape and A2.shape returns (3, 3, 6) the dimension of A. (row, column, numbers of element 

(Bipolar Neutrosophic Number, 6 elements) ) 

# A.shape[0] = 3 rows 

# A.shape[1] = 3 columns 

# A.shape[2] = Each bipolar neutrosophic number has 6 tuple as usual 

#One can use any matrices having arbitrary dimension 

import numpy as np 

#A1 is a BNM 

A1= np.array([   [[0.000, 0.001, 0.002, -0.003, -0.004, -0.005],  [0.010, 0.011, 0.012, -0.013, -0.014, -

0.015] , [0.020, 0.021, 0.022, -0.023, -0.024, -0.025]  ], 

[[0.100,0.101,0.102,-0.103,-0.104, -0.105], [0.110,0.111,0.112,-0.113,-0.114,-0.115], [0.120,0.121,0.122,-

0.123,-0.124,-0.125]   ], 

 [[0.200,0.201,0.202,-0.203,-0.204,-0.205], [0.210, 0.211,0.212,-0.213,-0.214,-0.215], [0.220,0.221,0.222,-

0.223,-0.224,-0.225]   ] ]) 

#A2 is not BNM 

A2= np.array([   [[0.000, 0.001, 0.002, -0.003, -0.004, -0.005],  [0.010, 0.011, 0.012, -0.013, -0.014, -

0.015] , [0.020, 0.021, 0.022, -0.023, -0.024, -0.025]  ], 

[[0.100,0.101,0.102,-0.103,-0.104, -0.105],    [0.110,0.111,0.112,-0.113,-0.114,-0.115],  

[0.120,0.121,0.122,-0.123,-0.124,-0.125]   ],  

[[0.200,0.201,0.202,-0.203, 0.204,-0.205],     [0.210, 0.211,0.212,-0.213,-0.214,-0.215],  

[0.220,0.221,0.222,-0.223,-0.224,-0.225]   ] ]) 

def BNMChecking (A): 

    dimA=A.shape 

    control=0 

    counter = 0 

    for i in range (0,dimA[0]):           

        if counter == 1: 

            break                                 

        for j in range (0,dimA[0]): 

            if counter == 1: 

                break                              

            for  d in range (0, dimA[2]):                

                if  counter ==0:                 
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                    if (d==0 or d==1 or d==2) : 

                        if  not (0 <=  A[i][j][d] <= 1):                          

                            counter=1 

                            print (A[i][j], ' is not a bipolar neutrosophic number, so the matrix 

is not a BNM') 

                            control=1 

                            break 

                    if  (d==3 or d==4 or d==5) : 

                        if not (-1 <=  A[i][j][d] <= 0) : 

                            counter=1 

                            print (A[i][j], ' is not a bipolar neutrosophic number, so the matrix 

is not a BNM') 

                            control=1 

                            break 

                else: 

                    print (A[i][j], ' is not a bipolar neutrosophic number, so the matrix is not a 

BNM') 

                    break 

    if control==0: 

        print ('The matrix is a BNM') 

Example 1. In this example we evaluate the checking the matrix C is BNM or not of order 4X4: 

C= 

(

< .5, .7, .2, −.7, − .3, −.6 > < .4, .4, .5, −.7, − .8, −.4 > < .7, .7, .5, −.8, − .7, −.6 > < .1, .5, .7, −.5, − .2, −.8 >
< .9, .7, .5, −.7, − .7, −.1 > < .7, .6, .8, −.7, − .5, −.1 > < .9, .4, .6, −.1, − .7, −.5 > < .5, .2, .7, −.5, − .1, −.9 >
< .9, .4, .2, −.6, − .3, −.7 > < .2, .2, .2, −.4, − .7, −.4 > < .9, .5, .5, −.6, − .5, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .7, .2, −.8, − .6, −.1 > < .3, .5, .2, −.5, − .5, −.2 > < .5, .4, .5, −.1, − .7, −.2 > < .2, .4, .8, −.5, − .5, −.6 >

) 

The bipolar neutrosophic matrix C can be inputted in Python environment like this: 

3.2. Determining complement of bipolar neutrosophic matrix  

For a given BNM A= [< 𝑇𝑖𝑗
𝑃, 𝐼𝑖𝑗

𝑃 , 𝐹𝑖𝑗
𝑃, 𝑇𝑖𝑗

𝑁, 𝐼𝑖𝑗
𝑁 , 𝐹𝑖𝑗

𝑁 >]
m× n

, the complement of A is defined as follow: 

𝐴𝑐= [< {1} − 𝑇𝑖𝑗
𝑃, {1} − 𝐼𝑖𝑗

𝑃 , {−1} − 𝐹𝑖𝑗
𝑃, {1} − 𝑇𝑖𝑗

𝑁, {−1} − 𝐼𝑖𝑗
𝑁 , {−1} − 𝐹𝑖𝑗

𝑁 >]
m× n

                (8) 

𝐴𝑐= [< 𝐹𝑖𝑗
𝑃, {1} − 𝐼𝑖𝑗

𝑃 , 𝑇𝑖𝑗
𝑃, 𝐹𝑖𝑗

𝑁, {−1} − 𝐼𝑖𝑗
𝑁 , 𝑇𝑖𝑗

𝑁 >]
m× n

    (9)                                                        

To generate the Python program for finding complement of bipolar neutrosophic matrix, simple call 

of the function BNMCompelementOf() is defined as follow: 
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# BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for 

(8) 

import numpy as np 

A= np.array([  [ [0.3,0.6,1,-0.2,-0.54,-0.4],  [0.1,0.2,0.8,-0.5,-0.34,-0.7]], 

             [ [0.1,0.12,0,-0.27,-0.44,-0.92], [0.5,0.33,0.58,-0.33,-0.24,-0.22]], 

             [ [0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32] ] 

             ]) 

#A.shape gives (3, 2, 6) the dimension of A. (row, column, numbers of element (Bipolar 

Neutrosophic Number, 6 elements) ) 

# A.shape[0] = 3 rows 

# A.shape[1] = 2 columns 

# A.shape[2] = each bipolar neutrosophic number with 6 tuple as usual           

def BNMCompelementOf( A ): 

    global Ac 

    dimA=A.shape                              # Dimension of the matrix 

    Ac= []    # Empty matrix with dimension of A to create complement of A 

        for i in range (0,dimA[0]):      # for rows, here 3 

        H=[] 

        for j in range (0,dimA[1]):  # for columns, here 2 

            H.extend([ [ 1-A[i][j][0], 1-A[i][j][1], 1-A[i][j][2], -1-(-A[i][j][3]), -1-(-A[i][j][4]), -1-(-

A[i][j][5]) ] ]) 

            Ac.append(H) 

    print  ('A= ', A) 

    print ('*********************************************************************') 

    print('Ac= ', np.array(Ac)) 

The function BNMCompelementOf (A) the below returns the complement matrix of a given bipolar 

neutrosophic matrix A for (9). 

# BNM is representable by 3D Numpy Array ====> row, column and bipolar neutrosophic 

numbers having 6 tuples for (9) 

import numpy as np 

A= np.array([  [ [0.3,0.6,1,-0.2,-0.54,-0.4], [0.1,0.2,0.8,-0.5,-0.34,-0.7]  ], 

             [ [0.1,0.12,0,-0.27,-0.44,-0.92], [0.5,0.33,0.58,-0.33,-0.24,-0.22] ], 

             [ [0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32]   ]]) 

#A.shape gives (3, 2, 6) the dimension of A. (row, column, numbers of element (Bipolar 

Neutrosophic Number, 6 elements) ) 

# A.shape[0] = 3 rows 

# A.shape[1] = 2 columns 

# A.shape[2] = Each bipolar neutrosophic number with 6 tuple as usual 

def BNMCompelementOf( A ): 

    global Ac 

    dimA=A.shape                              # Dimension of the matrix 

    Ac= []    
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    for i in range (0,dimA[0]):      # for rows, here 3 

        H=[] 

        for j in range (0,dimA[1]):  # for columns, here 2 

            H.extend([[ A[i][j][2], 1-A[i][j][1], A[i][j][0], A[i][j][5], -1-(-A[i][j][4]), A[i][j][3] ] ]) 

        Ac.append(H) 

   print  ('A= ', A) 

   print ('*********************************************************************') 

   print ('*********************************************************************') 

   print('Ac= ', np.array(Ac)) 

The bipolar neutrosophic matrix A is a simple example, one can create his/her BNM and try it into 

the function BNMCompelementOf ( ): 

 

3.3. Determining the score, accuracy and certainty matrices of bipolar neutrosophic matrix  

To generate the python program for obtaining the score matrix, accuracy of bipolar neutrosophic 

matrix, simple call of the functions ScoreMatrix( ), AccuracyMatrix( ) and CertaintyMatrix( ) are 

defined as follow:  

# BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for (5, 

6 and 7) 

import numpy as np 

A= np.array([    [      [0.3,0.6,1,-0.2,-0.54,-0.4], [0.1,0.2,0.8,-0.5,-0.34,-0.7]              ], 

               [      [0.1,0.12,0,-0.27,-0.44,-0.92], [0.5,0.33,0.58,-0.33,-0.24,-0.22]       ], 

               [       [0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32]   ]]) 

def ScoreMatrix( A ): 

    score=[] 

    dimA=A.shape                          # Dimension of the matrix  

    for i in range (0,dimA[0]):           # for rows, here 3 

        H=[] 

        for j in range (0,dimA[1]):       # for columns, here 2 

            H.extend([ [ ( A[i][j][0] + 1 - A[i][j][1] + 1 - A[i][j][2] + 1 + A[i][j][3] - A[i][j][4] - 

A[i][j][5] )/6 ] ]) 

        score.append(H) 

    print('Score Matrix= ', np.array(score)) 

def AccuracyMatrix ( A ): 

    accuracy=[] 

    dimA=A.shape                          # Dimension of the matrix  

    for i in range (0,dimA[0]):           # for rows, here 3 

        H=[] 

        for j in range (0,dimA[1]):       # for columns, here 2 

            H.extend([ [  A[i][j][0] - A[i][j][2] + A[i][j][3] - A[i][j][5]  ] ]) 

        accuracy.append(H) 

    print('Accuracy Matrix= ', np.array(accuracy)) 
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def CertaintyMatrix ( A ): 

    certainty = [] 

    dimA=A.shape                          # Dimension of the matrix  

    for i in range (0,dimA[0]):           # for rows, here 3 

        H=[] 

        for j in range (0,dimA[1]):       # for columns, here 2 

            H.extend([ [  A[i][j][0] - A[i][j][5]  ] ]) 

        certainty.append(H) 

    print('Certainty Matrix= ', np.array(certainty)) 

 

3.4. Computing union of two bipolar neutrosophic matrices  

The union of two bipolar neutrosophic matrices A and B is defined as follow: 

 𝐴 ∪ 𝐵 = 𝐶 = [< 𝑐𝑖𝑗𝑇

𝑃 , 𝑐𝑖𝑗𝐼

𝑃 , 𝑐𝑖𝑗𝐹

𝑃 , 𝑐𝑖𝑗𝑇

𝑁 , 𝑐𝑖𝑗𝐼

𝑁 , 𝑐𝑖𝑗𝐹

𝑁 >]
m× n

                                                                                                       (10) 

where 

𝑐𝑖𝑗𝑇

𝑃 = 𝑎𝑖𝑗𝑇

𝑃 ∨ 𝑏𝑖𝑗𝑇

𝑃 ,  𝑐𝑖𝑗𝑇

𝑁 = 𝑎𝑖𝑗𝑇

𝑁 ∧ 𝑏𝑖𝑗𝑇

𝑁  

𝑐𝑖𝑗𝐼

𝑃 = 𝑎𝑖𝑗𝐼

𝑃 ∧ 𝑏𝑖𝑗𝐼

𝑃 ,  𝑐𝑖𝑗𝐼

𝑁 = 𝑎𝑖𝑗𝐼

𝑁 ∨ 𝑏𝑖𝑗𝐼

𝑁  

𝑐𝑖𝑗𝐹

𝑃 = 𝑎𝑖𝑗𝐹

𝑃 ∧ 𝑏𝑖𝑗𝐹

𝑃 ,  𝑐𝑖𝑗𝐹

𝑁 = 𝑎𝑖𝑗𝐹

𝑁 ∨ 𝑏𝑖𝑗𝐹

𝑁  

To generate the python program for finding the union of two bipolar neutrosophic matrices, 

simple call of the following function Union( A, B ) is defined as follow: 

# BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for 

(10) 

import numpy as np 

A= np.array([  [    [0.3,0.6,1,-0.2,-0.54,-0.4], [0.1,0.2,0.8,-0.5,-0.34,-0.7]  ], 

               [      [0.1,0.12,0,-0.27,-0.44,-0.92], [0.5,0.33,0.58,-0.33,-0.24,-0.22] ], 

               [  [0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32]] ]) 

B= np.array([  [      [0.32,0.4,0.1,-0.25,-0.54,-0.4], [0.13,0.2,0.11,-0.55,-0.35,-0.72]   ], 

               [[0.17,0.19,0.66,-0.87,-0.64,-0.92], [0.25,0.36,0.88,-0.33,-0.54,-0.22] ], 

               [ [0.15,0.28,0.67,-0.39,-0.27,-0.55],[0.24,0.73,0.28,-0.26,-0.53,-0.52] ] 

               ]) 

#A.shape gives (3, 2, 6) the dimension of A. (row, column, numbers of element (Bipolar 

Neutrosophic Number, 6 elements) ) 

# A.shape[0] = 3 rows 

# A.shape[1] = 2 columns 

# A.shape[2] = each bipolar neutrosophic number with 6 tuple as usual 

union=[]               

def Union( A, B ): 

    if A.shape == B.shape: 

        dimA=A.shape 

        for i in range (0,dimA[0]):      # for rows, here 3 

            H=[] 

            for j in range (0,dimA[1]):  # for columns, here 2 
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                H.extend([[ max(A[i][j][0],B[i][j][0]) , min(A[i][j][1], B[i][j][1]), min(A[i][j][2], 

B[i][j][2]), max(A[i][j][3],B[i][j][3]), min(A[i][j][4], B[i][j][4]), min(A[i][j][5], B[i][j][5]) ] ])  

               union.append(H) 

    print('union= ', np.array(union) 

Example 2. In this example we Evaluate the union of the two bipolar neutrosophic matrices C and 

D of order 4X4: 

C= 

(

< .5, .7, .2, −.7, − .3, −.6 > < .4, .4, .5, −.7, − .8, −.4 > < .7, .7, .5, −.8, − .7, −.6 > < .1, .5, .7, −.5, − .2, −.8 >
< .9, .7, .5, −.7, − .7, −.1 > < .7, .6, .8, −.7, − .5, −.1 > < .9, .4, .6, −.1, − .7, −.5 > < .5, .2, .7, −.5, − .1, −.9 >
< .9, .4, .2, −.6, − .3, −.7 > < .2, .2, .2, −.4, − .7, −.4 > < .9, .5, .5, −.6, − .5, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .7, .2, −.8, − .6, −.1 > < .3, .5, .2, −.5, − .5, −.2 > < .5, .4, .5, −.1, − .7, −.2 > < .2, .4, .8, −.5, − .5, −.6 >

) 

The bipolar neutrosophic matrix C can be inputted in Python code like this: 

C= np.array([ [ [0.5,0.7,0.2,-0.7,-0.3,-0.6], [0.4,0.4,0.5,-0.7,-0.8,-0.4], [0.7,0.7,0.5,-0.8,-0.7,-0.6], [0.1,0.5,0.7,-0.5,-0.2,-

0.8]],[[0.9,0.7,0.5,-0.7,-0.7,-0.1], [0.7,0.6,0.8,-0.7,-0.5,-0.1], [0.9,0.4,0.6,-0.1,-0.7,-0.5], [0.5,0.2,0.7,-0.5,-0.1,-0.9]], 

[[0.9,0.4,0.2,-0.6,-0.3,-0.7], [0.2,0.2,0.2,-0.4,-0.7,-0.4], [0.9,0.5,0.5,-0.6,-0.5,-0.2], [0.7,0.5,0.3,-0.4,-0.2,-0.2]], 

[[0.9,0.7,0.2,-0.8,-0.6,-0.1], [0.3,0.5,0.2,-0.5,-0.5,-0.2], [0.5,0.4,0.5,-0.1,-0.7,-0.2], [0.2,0.4,0.8,-0.5,-0.5,-0.6]] ])  

D= 

(

< .3, .4, .3, −.5, − .4, −.2 > < .1, .2, .7, −.5, − .2, −.3 > < .3, .2, .6, −.4, − .8, −.7 > < .2, .1, .3, −.2, − .4, −.4 >
< .2, .2, .7, −.3, − .3, −.5 > < .3, .5, .6, −.6, − .7, −.4 > < .6, .5, .4, −.3, − .6, −.8 > < .3, .4, .4, −.3, − .5, −.3 >
< .5, .3, .1, −.4, − .2, −.4 > < .5, .4, .3, −.3, − .8, −.2 > < .5, .8, .6, −.2, − .2, −.4 > < .4, .6, .5, −.1, − .6, −.5 >
< .6, .1, .7, −.7, − .4, −.8 > < .4, .6, .4, −.4, − .2, −.5 > < .4, .9, .3, −.5, − .5, −.3 > < .4, .5, .4, −.3, − .7, −.4 >

) 

The bipolar neutrosophic matrix D can be inputted in Python code like this: 

D= np.array([[[0.3,0.4, 0.3,-0.5,-0.4,-0.2], [0.1,0.2,0.7,-0.5,-0.2,-0.3], [0.3,0.2,0.6,-0.4,-0.8,-0.7], [0.2,0.1,0.3,-0.2,-0.4,-

0.4]], [[0.2,0.2,0.7,-0.3,-0.3,-0.5], [0.3,0.5,0.6,-0.6,-0.7,-0.4], [0.6,0.5,0.4,-0.3,-0.6,-0.8], [0.3,0.4,0.4,-0.3,-0.5,-0.3]], 

[[0.5,0.3,0.1,-0.4,-0.2,-0.4], [0.5,0.4,0.3,-0.3,-0.8,-0.2], [0.5,0.8,0.6,-0.2,-0.2,-0.4], [0.4,0.6,0.5,-0.1,-0.6,-0.5]], 

[[0.6,0.1,0.7,-0.7,-0.4,-0.8], [0.4,0.6,0.4,-0.4,-0.2,-0.5], [0.4,0.9,0.3,-0.5,-0.5,-0.3], [0.4,0.5,0.4,-0.3,-0.7,-0.4]]]) 

So, the union matrix of two bipolar neutrosophic matrices is portrayed as follow 

𝐶𝐵𝑁𝑆 ∪ 𝐷𝐵𝑁𝑆

= (

< .5, .4, .2, −.7, − .3, −.2 > < .4, .2, .5, −.7, − .2, −.3 > < .7, .2, .5, −.8, − .7, −.6 > < .2, .1, .3, −.5, − .2, −.4 >
< .9, .2, .5, −.7, − .3, −.1 > < .7, .5, .6, −.7, − .5, −.1 > < .9, .4, .4, −.3, − .6, −.5 > < .5, .2, .4, −.5, − .1, −.3 >
< .9, .3, .1, −.6, − .2, −.4 > < .5, .2, .2, −.4, − .7, −.2 > < .9, .5, .5, −.6, − .2, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .1, .2, −.8, − .4, −.1 > < .4, .5, .2, −.5, − .2, −.2 > < .5, .4, .3, −.5, − .5, −.2 > < .4, .4, .4, −.5, − .5, −.4 >

) 

The result of union matrix of two bipolar neutrosophic matrices C and D can be obtained by the call 

of the command Union (C, D): 

>>> Union(C, D) 

Union =   

 [[[ 0.5  0.4  0.2 -0.7 -0.3 -0.2]  [ 0.4  0.2  0.5 -0.7 -0.2 -0.3] [ 0.7  0.2  0.5 -0.8 -0.7 -0.6]   [ 0.2  0.1  0.3 -0.5 -0.2 -0.4]] 

 [[ 0.9  0.2  0.5 -0.7 -0.3 -0.1]  [ 0.7  0.5  0.6 -0.7 -0.5 -0.1]   [ 0.9  0.4  0.4 -0.3 -0.6 -0.5]   [ 0.5  0.2  0.4 -0.5 -0.1 -0.3]] 

 [[ 0.9  0.3  0.1 -0.6 -0.2 -0.4]   [ 0.5  0.2  0.2 -0.4 -0.7 -0.2]   [ 0.9  0.5  0.5 -0.6 -0.2 -0.2]   [ 0.7  0.5  0.3 -0.4 -0.2 -0.2]] 

 [[ 0.9  0.1  0.2 -0.8 -0.4 -0.1]   [ 0.4  0.5  0.2 -0.5 -0.2 -0.2]   [ 0.5  0.4  0.3 -0.5 -0.5 -0.2]   [ 0.4  0.4  0.4 -0.5 -0.5 -0.4]]] 

 

3.5. Computing intersection of two bipolar neutrosophic matrices 
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The union of two bipolar neutrosophic matrices A and B is defined as follow: 

𝐴 ∩ 𝐵 = 𝐷 = [< 𝑑𝑖𝑗𝑇

𝑃 , 𝑑𝑖𝑗𝐼

𝑃 , 𝑑𝑖𝑗𝐹

𝑃 , 𝑑𝑖𝑗𝑇

𝑁 , 𝑑𝑖𝑗𝐼

𝑁 , 𝑑𝑖𝑗𝐹

𝑁 >]
m× n

                                              (11)    

Where 

𝑑𝑖𝑗𝑇

𝑃 = 𝑎𝑖𝑗𝑇

𝑃 ∧ 𝑏𝑖𝑗𝑇

𝑃 ,  𝑑𝑖𝑗𝑇

𝑁 = 𝑎𝑖𝑗𝑇

𝑁 ∨ 𝑏𝑖𝑗𝑇

𝑁  

𝑑𝑖𝑗𝐼

𝑃 = 𝑎𝑖𝑗𝐼

𝑃 ∨ 𝑏𝑖𝑗𝐼

𝑃 ,  𝑑𝑖𝑗𝐼

𝑁 = 𝑎𝑖𝑗𝐼

𝑁 ∧ 𝑏𝑖𝑗𝐼

𝑁  

𝑑𝑖𝑗𝐹

𝑃 = 𝑎𝑖𝑗𝐹

𝑃 ∨ 𝑏𝑖𝑗𝐹

𝑃 ,  𝑑𝑖𝑗𝐹

𝑁 = 𝑎𝑖𝑗𝐹

𝑁 ∧ 𝑏𝑖𝑗𝐹

𝑁  

To generate the python program for finding the intersection of two bipolar neutrosophic matrices, 

simple call of the function Intersection ( A, B ) is defined as follow: 

# BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for 

(11) 

import numpy as np 

A= np.array([  [      [0.3,0.6,1,-0.2,-0.54,-0.4], [0.1,0.2,0.8,-0.5,-0.34,-0.7]              ], 

               [      [0.1,0.12,0,-0.27,-0.44,-0.92], [0.5,0.33,0.58,-0.33,-0.24,-0.22]       ], 

               [       [0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32]   ] 

               ]) 

B= np.array([  [      [0.32,0.4,0.1,-0.25,-0.54,-0.4], [0.13,0.2,0.11,-0.55,-0.35,-0.72]       ], 

               [      [0.17,0.19,0.66,-0.87,-0.64,-0.92], [0.25,0.36,0.88,-0.33,-0.54,-0.22]   ], 

               [       [0.15,0.28,0.67,-0.39,-0.27,-0.55],[0.24,0.73,0.28,-0.26,-0.53,-0.52]   ]]) 

#A.shape gives (3, 2, 6) the dimension of A. (row, column, numbers of element (Bipolar 

Neutrosophic Number, 6 elements) ) 

# A.shape[0] = 3 rows 

# A.shape[1] = 2 columns 

# A.shape[2] = each bipolar neutrosophic number with 6 tuple as usual 

intersection=[]             

def Intersection( A, B ): 

    if A.shape == B.shape: 

        dimA=A.shape 

        for i in range (0,dimA[0]):      # for rows, here 3 

            H=[] 

            for j in range (0,dimA[1]):  # for columns, here 2 

                H.extend([[ min(A[i][j][0],B[i][j][0]) , max(A[i][j][1], B[i][j][1]), max(A[i][j][2], 

B[i][j][2]), min(A[i][j][3],B[i][j][3]), max(A[i][j][4], B[i][j][4]), max(A[i][j][5], B[i][j][5]) ] ])  

                intersection.append(H) 

    print('Intersection= ', np.array(intersection)) 

Example 3. In this example we evaluate the intersection of the two bipolar neutrosophic matrices C 

and D of order 4X4: 

C= 

(

< .5, .7, .2, −.7, − .3, −.6 > < .4, .4, .5, −.7, − .8, −.4 > < .7, .7, .5, −.8, − .7, −.6 > < .1, .5, .7, −.5, − .2, −.8 >
< .9, .7, .5, −.7, − .7, −.1 > < .7, .6, .8, −.7, − .5, −.1 > < .9, .4, .6, −.1, − .7, −.5 > < .5, .2, .7, −.5, − .1, −.9 >
< .9, .4, .2, −.6, − .3, −.7 > < .2, .2, .2, −.4, − .7, −.4 > < .9, .5, .5, −.6, − .5, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .7, .2, −.8, − .6, −.1 > < .3, .5, .2, −.5, − .5, −.2 > < .5, .4, .5, −.1, − .7, −.2 > < .2, .4, .8, −.5, − .5, −.6 >

) 

The bipolar neutrosophic matrix C can be inputted in Python code like this: 



Neutrosophic Sets and Systems, Vol. 28, 2019     149 

 

 

S. Broumi, S. Topal, A. Bakali, M. Talea And  F. Smarandache, A Python Tool for Implementations on Bipolar 

Neutrosophic Matrices 

C= np.array([ [ [0.5,0.7,0.2,-0.7,-0.3,-0.6], [0.4,0.4,0.5,-0.7,-0.8,-0.4], [0.7,0.7,0.5,-0.8,-0.7,-0.6], [0.1,0.5,0.7,-0.5,-0.2,-

0.8]], [[0.9,0.7,0.5,-0.7,-0.7,-0.1], [0.7,0.6,0.8,-0.7,-0.5,-0.1], [0.9,0.4,0.6,-0.1,-0.7,-0.5], [0.5,0.2,0.7,-0.5,-0.1,-0.9]], 

[[0.9,0.4,0.2,-0.6,-0.3,-0.7], [0.2,0.2,0.2,-0.4,-0.7,-0.4], [0.9,0.5,0.5,-0.6,-0.5,-0.2], [0.7,0.5,0.3,-0.4,-0.2,-0.2]], 

[[0.9,0.7,0.2,-0.8,-0.6,-0.1], [0.3,0.5,0.2,-0.5,-0.5,-0.2], [0.5,0.4,0.5,-0.1,-0.7,-0.2], [0.2,0.4,0.8,-0.5,-0.5,-0.6] ])  

D= 

(

< .3, .4, .3, −.5, − .4, −.2 > < .1, .2, .7, −.5, − .2, −.3 > < .3, .2, .6, −.4, − .8, −.7 > < .2, .1, .3, −.2, − .4, −.4 >
< .2, .2, .7, −.3, − .3, −.5 > < .3, .5, .6, −.6, − .7, −.4 > < .6, .5, .4, −.3, − .6, −.8 > < .3, .4, .4, −.3, − .5, −.3 >
< .5, .3, .1, −.4, − .2, −.4 > < .5, .4, .3, −.3, − .8, −.2 > < .5, .8, .6, −.2, − .2, −.4 > < .4, .6, .5, −.1, − .6, −.5 >
< .6, .1, .7, −.7, − .4, −.8 > < .4, .6, .4, −.4, − .2, −.5 > < .4, .9, .3, −.5, − .5, −.3 > < .4, .5, .4, −.3, − .7, −.4 >

) 

The bipolar neutrosophic matrix D can be inputted in Python code like this: 

D= np.array([[[0.3, 0.4, 0.3,-0.5,-0.4,-0.2], [0.1,0.2,0.7,-0.5,-0.2,-0.3], [0.3,0.2,0.6,-0.4,-0.8,-0.7], [0.2,0.1,0.3,-0.2,-0.4,-

0.4]], [[0.2,0.2,0.7,-0.3,-0.3,-0.5], [0.3,0.5,0.6,-0.6,-0.7,-0.4], [0.6,0.5,0.4,-0.3,-0.6,-0.8], [0.3,0.4,0.4,-0.3,-0.5,-0.3]], 

 [[0.5,0.3,0.1,-0.4,-0.2,-0.4], [0.5,0.4,0.3,-0.3,-0.8,-0.2], [0.5,0.8,0.6,-0.2,-0.2,-0.4], [0.4,0.6,0.5,-0.1,-0.6,-0.5]], 

 [[0.6,0.1,0.7,-0.7,-0.4,-0.8], [0.4,0.6,0.4,-0.4,-0.2,-0.5], [0.4,0.9,0.3,-0.5,-0.5,-0.3], [0.4,0.5,0.4,-0.3,-0.7,-0.4]]]) 

So, the intersection matrix of two bipolar neutrosophic matrices is portrayed as follow 

𝐶𝐵𝑁𝑆 ∩ 𝐷𝐵𝑁𝑆

= (

< .3, .7, .3, −.5, − .4, −.6 > < .1, .4, .7, −.5, − .8, −.4 > < .3, .7, .6, −.4, − .8, −.7 > < .1, .5, .7, −.2, − .4, −.8 >
< .2, .7, .7, −.3, − .7, −.5 > < .3, .6, .8, −.6, − .7, −.4 > < .6, .5, .6, −.1, − .7, −.8 > < .3, .4, .7, −.3, − .5, −.9 >
< .5, .4, .2, −.4, − .3, −.7 > < .2, .4, .3, −.3, − .7, −.4 > < .5, .8, .6, −.2, − .5, −.4 > < .4, .6, .5, −.1, − .6, −.5 >
< .6, .7, .7, −.7, − .6, −.8 > < .3, .6, .4, −.4, − .5, −.5 > < .4, .9, .5, −.1, − .7, −.3 > < .2, .5, .8, −.3, − .7, −.6 >

) 

The result of intersection matrix of two bipolar neutrosophic matrices C and D can be obtained by 

the call of the command Intersection (C, D): 

>>> Intersection (C, D) 

Intersection =  

[[[ 0.3  0.7  0.3 -0.5 -0.4 -0.6]   [ 0.1  0.4  0.7 -0.5 -0.8 -0.4]   [ 0.3  0.7  0.6 -0.4 -0.8 -0.7]   [ 0.1  0.5  0.7 -0.2 -0.4 -0.8]] 

 [[ 0.2  0.7  0.7 -0.3 -0.7 -0.5]   [ 0.3  0.6  0.8 -0.6 -0.7 -0.4]   [ 0.6  0.5  0.6 -0.1 -0.7 -0.8]   [ 0.3  0.4  0.7 -0.3 -0.5 -0.9]] 

 [[ 0.5  0.4  0.2 -0.4 -0.3 -0.7]   [ 0.2  0.4  0.3 -0.3 -0.8 -0.4]   [ 0.5  0.8  0.6 -0.2 -0.5 -0.4]   [ 0.4  0.6  0.5 -0.1 -0.6 -0.5]] 

 [[ 0.6  0.7  0.7 -0.7 -0.6 -0.8]   [ 0.3  0.6  0.4 -0.4 -0.5 -0.5]   [ 0.4  0.9  0.5 -0.1 -0.7 -0.3]   [ 0.2  0.5  0.8 -0.3 -0.7 -0.6]]] 

 

3.6. Computing addition operation of two bipolar neutrosophic matrices.  

The addition of two bipolar neutrosophic matrices A and B is defined as follow: 

𝐴 ⊕ 𝐵 = 𝑆 = [< 𝑠𝑖𝑗𝑇

𝑃 , 𝑠𝑖𝑗𝐼

𝑃 , 𝑠𝑖𝑗𝐹

𝑃 , 𝑠𝑖𝑗𝑇

𝑁 , 𝑠𝑖𝑗𝐼

𝑁 , 𝑠𝑖𝑗𝐹

𝑁 >]
m× n

                            (12)    

Where 

𝑠𝑖𝑗𝑇

𝑃 = 𝑎𝑖𝑗𝑇

𝑃 + 𝑏𝑖𝑗𝑇

𝑃 − 𝑎𝑖𝑗𝑇

𝑃 . 𝑏𝑖𝑗𝑇

𝑃 ,         𝑠𝑖𝑗𝑇

𝑁 = −(𝑎𝑖𝑗𝑇

𝑁 . 𝑏𝑖𝑗𝑇

𝑁 ) 

𝑠𝑖𝑗𝐼

𝑃 = 𝑎𝑖𝑗𝐼

𝑃 . 𝑏𝑖𝑗𝐼

𝑃 ,                     𝑠𝑖𝑗𝐼

𝑁 = −(−𝑎𝑖𝑗𝐼

𝑁 − 𝑏𝑖𝑗𝐼

𝑁 − 𝑎𝑖𝑗𝐼

𝑁 . 𝑏𝑖𝑗𝐼

𝑁 ) 

𝑠𝑖𝑗𝐹

𝑃 = 𝑎𝑖𝑗𝐹

𝑃 . 𝑏𝑖𝑗𝐹

𝑃 ,                    𝑠𝑖𝑗𝐹

𝑁 = −(−𝑎𝑖𝑗𝐹

𝑁 − 𝑏𝑖𝑗𝐹

𝑁 − 𝑎𝑖𝑗𝐹

𝑁 . 𝑏𝑖𝑗𝐹

𝑁 ) 

To generate the python program for obtaining the addition of two bipolar neutrosophic matrices, 

simple call of the function Addition (A, B) is defined as follow: 

# BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for 

(12) 
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import numpy as np 

A= np.array([  [[0.3,0.6,1,-0.2,-0.54,-0.4], [0.1,0.2,0.8,-0.5,-0.34,-0.7] ], 

               [[0.1,0.12,0,-0.27,-0.44,-0.92], [0.5,0.33,0.58,-0.33,-0.24,-0.22]], 

               [ [0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32] ]]) 

B= np.array([  [[0.32,0.4,0.1,-0.25,-0.54,-0.4], [0.13,0.2,0.11,-0.55,-0.35,-0.72] ], 

               [[0.17,0.19,0.66,-0.87,-0.64,-0.92], [0.25,0.36,0.88,-0.33,-0.54,-0.22] ], 

               [[0.15,0.28,0.67,-0.39,-0.27,-0.55],[0.24,0.73,0.28,-0.26,-0.53,-0.52]   ]]) 

#A.shape gives (3, 2, 6) the dimension of A. (row, column, numbers of element (Bipolar 

Neutrosophic Number, 6 elements) ) 

# A.shape[0] = 3 rows 

# A.shape[1] = 2 columns 

# A.shape[2] = each bipolar neutrosophic number with 6 tuples as usual 

addition=[]      

def Addition( A, B ): 

    if A.shape == B.shape:    

        dimA=A.shape 

        for i in range (0,dimA[0]):      # for rows, here 3 

            H=[] 

            for j in range (0,dimA[1]):  # for columns, here 2 

                H.extend([[A[i][j][0]+B[i][j][0]-A[i][j][0]*B[i][j][0],   A[i][j][1]* B[i][j][1],   

A[i][j][2]* B[i][j][2] -(-A[i][j][3]*B[i][j][3]), -(-A[i][j][4]-B[i][j][4] -A[i][j][4]*B[i][j][4] ), -(-A[i][j][5]-

B[i][j][5]-A[i][j][5]*B[i][j][5]) ]]) 

             addition.append(H) 

    print('Addition= ', np.array(addition)) 

Example 4. In this example we evaluate the addition of the two bipolar neutrosophic matrices C 

and D of order 4X4: 

C= 

(

< .5, .7, .2, −.7, − .3, −.6 > < .4, .4, .5, −.7, − .8, −.4 > < .7, .7, .5, −.8, − .7, −.6 > < .1, .5, .7, −.5, − .2, −.8 >
< .9, .7, .5, −.7, − .7, −.1 > < .7, .6, .8, −.7, − .5, −.1 > < .9, .4, .6, −.1, − .7, −.5 > < .5, .2, .7, −.5, − .1, −.9 >
< .9, .4, .2, −.6, − .3, −.7 > < .2, .2, .2, −.4, − .7, −.4 > < .9, .5, .5, −.6, − .5, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .7, .2, −.8, − .6, −.1 > < .3, .5, .2, −.5, − .5, −.2 > < .5, .4, .5, −.1, − .7, −.2 > < .2, .4, .8, −.5, − .5, −.6 >

) 

The bipolar neutrosophic matrix C can be inputted in Python code like this: 

C= np.array([ [ [0.5,0.7,0.2,-0.7,-0.3,-0.6], [0.4,0.4,0.5,-0.7,-0.8,-0.4], [0.7,0.7,0.5,-0.8,-0.7,-0.6], [0.1,0.5,0.7,-0.5,-0.2,-

0.8]],[[0.9,0.7,0.5,-0.7,-0.7,-0.1], [0.7,0.6,0.8,-0.7,-0.5,-0.1], [0.9,0.4,0.6,-0.1,-0.7,-0.5], [0.5,0.2,0.7,-0.5,-0.1,-0.9]], 

[[0.9,0.4,0.2,-0.6,-0.3,-0.7], [0.2,0.2,0.2,-0.4,-0.7,-0.4], [0.9,0.5,0.5,-0.6,-0.5,-0.2], [0.7,0.5,0.3,-0.4,-0.2,-0.2]], 

[[0.9,0.7,0.2,-0.8,-0.6,-0.1], [0.3,0.5,0.2,-0.5,-0.5,-0.2], [0.5,0.4,0.5,-0.1,-0.7,-0.2], [0.2,0.4,0.8,-0.5,-0.5,-0.6]]])  

D=

(

< .3, .4, .3, −.5, − .4, −.2 > < .1, .2, .7, −.5, − .2, −.3 > < .3, .2, .6, −.4, − .8, −.7 > < .2, .1, .3, −.2, − .4, −.4 >
< .2, .2, .7, −.3, − .3, −.5 > < .3, .5, .6, −.6, − .7, −.4 > < .6, .5, .4, −.3, − .6, −.8 > < .3, .4, .4, −.3, − .5, −.3 >
< .5, .3, .1, −.4, − .2, −.4 > < .5, .4, .3, −.3, − .8, −.2 > < .5, .8, .6, −.2, − .2, −.4 > < .4, .6, .5, −.1, − .6, −.5 >
< .6, .1, .7, −.7, − .4, −.8 > < .4, .6, .4, −.4, − .2, −.5 > < .4, .9, .3, −.5, − .5, −.3 > < .4, .5, .4, −.3, − .7, −.4 >

) 
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The bipolar neutrosophic matrix D can be inputted in Python code like this: 

D= np.array([[[0.3,0.4,0.3,-0.5,-0.4,-0.2], [0.1,0.2,0.7,-0.5,-0.2,-0.3], [0.3,0.2,0.6,-0.4,-0.8,-0.7], [0.2,0.1,0.3,-0.2,-0.4,-

0.4]], [[0.2,0.2,0.7,-0.3,-0.3,-0.5], [0.3,0.5,0.6,-0.6,-0.7,-0.4], [0.6,0.5,0.4,-0.3,-0.6,-0.8], [0.3,0.4,0.4,-0.3,-0.5,-0.3]], 

[[0.5,0.3,0.1,-0.4,-0.2,-0.4], [0.5,0.4,0.3,-0.3,-0.8,-0.2], [0.5,0.8,0.6,-0.2,-0.2,-0.4], [0.4,0.6,0.5,-0.1,-0.6,-0.5]], 

[[0.6,0.1,0.7,-0.7,-0.4,-0.8], [0.4,0.6,0.4,-0.4,-0.2,-0.5], [0.4,0.9,0.3,-0.5,-0.5,-0.3], [0.4,0.5,0.4,-0.3,-0.7,-0.4]]]) 

So, the addition matrix of two bipolar neutrosophic matrices is portrayed as follow 

𝐶𝐵𝑁𝑆 ⊕ 𝐷𝐵𝑁𝑆 = 

(

< .65, .28, .06, −.35, − .58, −.68 > < .46, .08, .35, −.35, − .84, −.58 > < .79, .14, .30, −.32, − .94, −.88 > < .28, .05, .21, −.10, − .52, −.88 >
< .92, .14, .35, −.21, − .79, −.55 > < .79, .30, .48, −.42, − .85, −.46 > < .96, .20, .24, −.03, − .88, −.90 > < .65, .08, .28, −.15, − .55, −.93 >
< .65, .12, .02, −.24, − .44, −.82 > < .60, .08, .06, −.12, − .94, −.52 > < .95, .40, .30, −.12, − .60, −.52 > < .82, .30, .15, −.04, − .68, −.60 >
< .96, .07, .14, −.56, − .76, −.82 > < .58, .30, .08, −.20, − .60, −.60 > < .70, .36, .15, −.05, − .85, −.44 > < .52, .20, .32, −.15, − .85, −.76 >

) 

The result of addition matrix of two bipolar neutrosophic matrices C and D can be obtained by the 

call of the command addition (C, D): 

>>> Addition(C, D) 

Addition=   

[[[ 0.65  0.28  0.06  0.35 -0.58 -0.68] [ 0.46  0.08  0.35  0.35 -0.84 -0.58] [ 0.79  0.14  0.3   0.32 -0.94 -0.88] [ 

0.28  0.05  0.21  0.1  -0.52 -0.88]] 

[[ 0.92  0.14  0.35  0.21 -0.79 -0.55]   [ 0.79  0.3   0.48  0.42 -0.85 -0.46]   [ 0.96  0.2   0.24  0.03 -0.88 -

0.9 ]   [ 0.65  0.08  0.28  0.15 -0.55 -0.93]] 

 [[ 0.95  0.12  0.02  0.24 -0.44 -0.82]   [ 0.6   0.08  0.06  0.12 -0.94 -0.52]   [ 0.95  0.4   0.3   0.12 -0.6  -

0.52]   [ 0.82  0.3  0.15  0.04 -0.68 -0.6 ]] 

 [[ 0.96  0.07  0.14  0.56 -0.76 -0.82]   [ 0.58  0.3   0.08  0.2  -0.6  -0.6 ]   [ 0.7   0.36  0.15  0.05 -0.85 -

0.44]   [ 0.52  0.2   0.32  0.15 -0.85 -0.76]]] 

3.7. Computing product of two bipolar neutrosophic matrices  

The product of two bipolar neutrosophic matrices A and B is defined as follow: 

𝐴⨀𝐵 = 𝑅 = [< 𝑟𝑖𝑗𝑇

𝑃 , 𝑟𝑖𝑗𝐼

𝑃 , 𝑟𝑖𝑗𝐹

𝑃 , 𝑟𝑖𝑗𝑇

𝑁 , 𝑟𝑖𝑗𝐼

𝑁 , 𝑟𝑖𝑗𝐹

𝑁 >]
m× n

                                       (13)    

Where  

𝑟𝑖𝑗𝑇

𝑃 = 𝑎𝑖𝑗𝑇

𝑃 . 𝑏𝑖𝑗𝑇

𝑃 ,  𝑟𝑖𝑗𝑇

𝑁 = −(−𝑎𝑖𝑗𝑇

𝑁 − 𝑏𝑖𝑗𝑇

𝑁 − 𝑎𝑖𝑗𝑇

𝑁 . 𝑏𝑖𝑗𝑇

𝑁 ) 

𝑟𝑖𝑗𝐼

𝑃 = 𝑎𝑖𝑗𝐼

𝑃 + 𝑏𝑖𝑗𝐼

𝑃 − 𝑎𝑖𝑗𝐼

𝑃 . 𝑏𝑖𝑗𝐼

𝑃 ,  𝑟𝑖𝑗𝐼

𝑁 = −(𝑎𝑖𝑗𝐼

𝑁 . 𝑏𝑖𝑗𝐼

𝑁 ) 

𝑟𝑖𝑗𝐹

𝑃 = 𝑎𝑖𝑗𝐹

𝑃 + 𝑏𝑖𝑗𝐹

𝑃 − 𝑎𝑖𝑗𝐹

𝑃 . 𝑏𝑖𝑗𝐹

𝑃 ,  𝑟𝑖𝑗𝐹

𝑁 = −(𝑎𝑖𝑗𝐹

𝑁 . 𝑏𝑖𝑗𝐹

𝑁 ) 

 

To generate the python program for finding the product operation of two bipolar neutrosophic 

matrices, simple call of the function Product (A, B) is defined as follow: 

# BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for 

(13) 

import numpy as np 

A= np.array([  [      [0.3,0.6,1,-0.2,-0.54,-0.4], [0.1,0.2,0.8,-0.5,-0.34,-0.7]              ], 

               [      [0.1,0.12,0,-0.27,-0.44,-0.92], [0.5,0.33,0.58,-0.33,-0.24,-0.22]       ], 

               [       [0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32]   ]]) 

B= np.array([  [      [0.32,0.4,0.1,-0.25,-0.54,-0.4], [0.13,0.2,0.11,-0.55,-0.35,-0.72]              ], 
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               [      [0.17,0.19,0.66,-0.87,-0.64,-0.92], [0.25,0.36,0.88,-0.33,-0.54,-0.22]       ], 

               [       [0.15,0.28,0.67,-0.39,-0.27,-0.55],[0.24,0.73,0.28,-0.26,-0.53,-0.52]   ]]) 

#A.shape gives (3, 2, 6) the dimension of A. (row, column, numbers of element (Bipolar 

Neutrosophic Number, 6 elements) ) 

# A.shape[0] = 3 rows 

# A.shape[1] = 2 columns 

# A.shape[2] = each bipolar neutrosophic number with 6 tuple as usual 

product=[]          

def Product( A, B ): 

    if A.shape == B.shape:   

        dimA=A.shape 

        for i in range (0,dimA[0]):      # for rows, here 3 

            H=[] 

            for j in range (0,dimA[1]):  # for columns, here 2 

                H.extend([[ A[i][j][0]*B[i][j][0]) , A[i][j][1]+ B[i][j][1]- (A[i][j][1]*B[i][j][1]), 

A[i][j][2]+ B[i][j][2]- (A[i][j][2]*B[i][j][2]), -(-A[i][j][3]-B[i][j][3]-A[i][j][3]*B[i][j][3]), -(A[i][j][4]* 

B[i][j][4]), -(A[i][j][5]* B[i][j][5]) ] ]) 

            product.append(H) 

    print(' Product = ', np.array(product)) 

 

Example 5. In this example we evaluate the product of the two bipolar neutrosophic matrices C and 

D of order 4X4: 

C= 

(

< .5, .7, .2, −.7, − .3, −.6 > < .4, .4, .5, −.7, − .8, −.4 > < .7, .7, .5, −.8, − .7, −.6 > < .1, .5, .7, −.5, − .2, −.8 >
< .9, .7, .5, −.7, − .7, −.1 > < .7, .6, .8, −.7, − .5, −.1 > < .9, .4, .6, −.1, − .7, −.5 > < .5, .2, .7, −.5, − .1, −.9 >
< .9, .4, .2, −.6, − .3, −.7 > < .2, .2, .2, −.4, − .7, −.4 > < .9, .5, .5, −.6, − .5, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .7, .2, −.8, − .6, −.1 > < .3, .5, .2, −.5, − .5, −.2 > < .5, .4, .5, −.1, − .7, −.2 > < .2, .4, .8, −.5, − .5, −.6 >

) 

The bipolar neutrosophic matrix C can be inputted in Python code like this: 

C= np.array([ [ [0.5,0.7,0.2,-0.7,-0.3,-0.6], [0.4,0.4,0.5,-0.7,-0.8,-0.4], [0.7,0.7,0.5,-0.8,-0.7,-0.6], [0.1,0.5,0.7,-0.5,-0.2,-

0.8]], [[0.9,0.7,0.5,-0.7,-0.7,-0.1], [0.7,0.6,0.8,-0.7,-0.5,-0.1], [0.9,0.4,0.6,-0.1,-0.7,-0.5], [0.5,0.2,0.7,-0.5,-0.1,-0.9]], 

[[0.9,0.4,0.2,-0.6,-0.3,-0.7], [0.2,0.2,0.2,-0.4,-0.7,-0.4], [0.9,0.5,0.5,-0.6,-0.5,-0.2], [0.7,0.5,0.3,-0.4,-0.2,-0.2]], 

[[0.9,0.7,0.2,-0.8,-0.6,-0.1], [0.3,0.5,0.2,-0.5,-0.5,-0.2], [0.5,0.4,0.5,-0.1,-0.7,-0.2], [0.2,0.4,0.8,-0.5,-0.5,-0.6]] ])  

D=(

< .3, .4, .3, −.5, − .4, −.2 > < .1, .2, .7, −.5, − .2, −.3 > < .3, .2, .6, −.4, − .8, −.7 > < .2, .1, .3, −.2, − .4, −.4 >
< .2, .2, .7, −.3, − .3, −.5 > < .3, .5, .6, −.6, − .7, −.4 > < .6, .5, .4, −.3, − .6, −.8 > < .3, .4, .4, −.3, − .5, −.3 >
< .5, .3, .1, −.4, − .2, −.4 > < .5, .4, .3, −.3, − .8, −.2 > < .5, .8, .6, −.2, − .2, −.4 > < .4, .6, .5, −.1, − .6, −.5 >
< .6, .1, .7, −.7, − .4, −.8 > < .4, .6, .4, −.4, − .2, −.5 > < .4, .9, .3, −.5, − .5, −.3 > < .4, .5, .4, −.3, − .7, −.4 >

) 

The bipolar neutrosophic matrix D can be inputted in Python code like this: 

D= np.array([[[0.3,0.4,0.3,-0.5,-0.4,-0.2], [0.1,0.2,0.7,-0.5,-0.2,-0.3], [0.3,0.2,0.6,-0.4,-0.8,-0.7], [0.2,0.1,0.3,-0.2,-0.4,-

0.4]], [[0.2,0.2,0.7,-0.3,-0.3,-0.5], [0.3,0.5,0.6,-0.6,-0.7,-0.4], [0.6,0.5,0.4,-0.3,-0.6,-0.8], [0.3,0.4,0.4,-0.3,-0.5,-0.3]], 

 [[0.5,0.3,0.1,-0.4,-0.2,-0.4], [0.5,0.4,0.3,-0.3,-0.8,-0.2], [0.5,0.8,0.6,-0.2,-0.2,-0.4], [0.4,0.6,0.5,-0.1,-0.6,-0.5]], 

 [[0.6,0.1,0.7,-0.7,-0.4,-0.8], [0.4,0.6,0.4,-0.4,-0.2,-0.5], [0.4,0.9,0.3,-0.5,-0.5,-0.3], [0.4,0.5,0.4,-0.3,-0.7,-0.4]]]) 
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So, the product matrix of two bipolar neutrosophic matrices is portrayed as follow 

𝐶𝐵𝑁𝑆⨀𝐷𝐵𝑁𝑆= 

(

< .15, .82, .44, −.85, − .12, −.12 > < .04, .52, .85, −.85, − 1.16, −.12 > < .21, .76, .80, −.88, − .56, −.42 > < .02, .55, .79, −.60, − .008, − .32 >
< .18, .76, .85, −.79, − .21, −.05 > < .21, .80, .92, −.88, − .35, −.04 > < .54, .70, .76, −.37, − .42, −0.40 > < .15, .52, .82, −.65, − .05, − .27 >
< .45, .58, .28, −.76, − .06, −.28 > < .10, .52, .44, −.58, − .56, −.08 > < .45, .90, .80, −.68, − .10, −.08 > < .28, .80, .65, −.46, − .12, −.10 >

< .54, .73, .76, −.94, − .24, −.08 > < .12, .80, .52, −.70, − .10, −.10 > < .20, .94, .65, −.55, − .35, −.06 > < .08, .70, .88, −.65, −  .35, − .24 >

) 

The result of product matrix of two bipolar neutrosophic matrices C and D can be obtained by the 

call of the command Product (C, D): 

>>> Product(C, D) 

Product=   

[[[ 0.15  0.82  0.44 -0.85 -0.12 -0.12]   [ 0.04  0.52  0.85 -0.85 -0.16 -0.12]   [ 0.21  0.76  0.8  -0.88 -

0.56 -0.42] [ 0.02  0.55  0.79 -0.6  -0.08 -0.32]] 

 [[ 0.18  0.76  0.85 -0.79 -0.21 -0.05]   [ 0.21  0.8   0.92 -0.88 -0.35 -0.04]   [ 0.54  0.7   0.76 -0.37 -

0.42 -0.4 ]   [ 0.15  0.52  0.82 -0.65 -0.05 -0.27]]  

 [[ 0.45  0.58  0.28 -0.76 -0.06 -0.28]   [ 0.1   0.52  0.44 -0.58 -0.56 -0.08]   [ 0.45  0.9   0.8  -0.68 -

0.1  -0.08]   [ 0.28  0.8   0.65 -0.46 -0.12 -0.1 ]] 

 [[ 0.54  0.73  0.76 -0.94 -0.24 -0.08] [ 0.12  0.8   0.52 -0.7  -0.1  -0.1 ] [ 0.2   0.94  0.65 -0.55 -0.35 -

0.06] [ 0.08  0.7   0.88 -0.65 -0.35 -0.24]]] 

 

3.8. Computing transpose of bipolar neutrosophic matrix  

To generate the python program for finding the transpose of bipolar neutrosophic matrix, simple 

call of the function Transpose (A) is defined as follow:  

# BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for 

transpose 

import numpy as np 

A=np.array([[ [0.3,0.6,1,-0.2,-0.54,-0.4], [0.1,0.2,0.8,-0.5,-0.34,-0.7]  ], 

            [ [0.1,0.12,0,-0.27,-0.44,-0.92],[0.5,0.33,0.58,-0.33,-0.24,-0.22]], 

           [ [0.11,0.22,0.6,-0.29,-0.24,-0.52],[0.22,0.63,0.88,-0.28,-0.54,-0.32]] ])                                

#A.shape gives (3, 2, 6) the dimension of A. (row, column, numbers of element (Bipolar 

Neutrosophic Number, 6 elements) ) 

# A.shape[0] = 3 rows 

# A.shape[1] = 2 columns 

# A.shape[2] = each bipolar neutrosophic number with 6 tuple as usual               

def Transpose( A ): 

    DimA= A. shape 

    print (' the matrix ', DimA[0],' x ', DimA[1], ' dimension') 

    trA = A.transpose() 

    DimtrA= trA. shape 

    print ('\n')  

    print (' its transpose ', DimtrA[1],' x ', DimtrA[2], ' dimension') 

    print ('\n' ) 

    print(' Transpose = ', trA) 
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Example 6. In this example we evaluate the transpose of the bipolar neutrosophic matrix C of order 

4X4: 

C= 

(

< .5, .7, .2, −.7, − .3, −.6 > < .4, .4, .5, −.7, − .8, −.4 > < .7, .7, .5, −.8, − .7, −.6 > < .1, .5, .7, −.5, − .2, −.8 >
< .9, .7, .5, −.7, − .7, −.1 > < .7, .6, .8, −.7, − .5, −.1 > < .9, .4, .6, −.1, − .7, −.5 > < .5, .2, .7, −.5, − .1, −.9 >
< .9, .4, .2, −.6, − .3, −.7 > < .2, .2, .2, −.4, − .7, −.4 > < .9, .5, .5, −.6, − .5, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .7, .2, −.8, − .6, −.1 > < .3, .5, .2, −.5, − .5, −.2 > < .5, .4, .5, −.1, − .7, −.2 > < .2, .4, .8, −.5, − .5, −.6 >

) 

The bipolar neutrosophic matrix C can be inputted in Python code like this: 

C= np.array([ [ [0.5,0.7,0.2,-0.7,-0.3,-0.6], [0.4,0.4,0.5,-0.7,-0.8,-0.4], [0.7,0.7,0.5,-0.8,-0.7,-0.6], [0.1,0.5,0.7,-0.5,-0.2,-

0.8]], [[0.9,0.7,0.5,-0.7,-0.7,-0.1], [0.7,0.6,0.8,-0.7,-0.5,-0.1], [0.9,0.4,0.6,-0.1,-0.7,-0.5], [0.5,0.2,0.7,-0.5,-0.1,-0.9]], 

[[0.9,0.4,0.2,-0.6,-0.3,-0.7], [0.2,0.2,0.2,-0.4,-0.7,-0.4], [0.9,0.5,0.5,-0.6,-0.5,-0.2], [0.7,0.5,0.3,-0.4,-0.2,-0.2]], 

[[0.9,0.7,0.2,-0.8,-0.6,-0.1], [0.3,0.5,0.2,-0.5,-0.5,-0.2], [0.5,0.4,0.5,-0.1,-0.7,-0.2], [0.2,0.4,0.8,-0.5,-0.5,-0.6]] ])  

So, the transpose matrix of bipolar neutrosophic matrices is portrayed as follow 

<0.50, 0.70, 0.20,-0.70, -0.30, -0.60>   <0.90, 0.70, 0.50,-0.70, -0.70, -0.10>  <0.30, 0.40, 0.20,-0.60, -0.30, -0.70>  <0.90, 0.70, 0.20,-0.80, -0.60, -0.10> 

<0.40, 0.40, 0.50,-0.70, -0.80, -0.40>  <0.70, 0.60, 0.80,-0.70, -0.50, -0.10>  <0.20, 0.20, 0.20,-0.40, -0.70, -0.40>  <0.30, 0.50, 0.20,-0.50, -0.50, -0.20> 

<0.70, 0.70, 0.50,-0.80, -0.70, -0.60>  <0.90, 0.40, 0.60,-0.10, -0.70, -0.50>  <0.90, 0.50, 0.50,-0.60, -0.50, -0.20>  <0.50, 0.40, 0.50,-0.10, -0.70, -0.20> 

<0.10, 0.50, 0.70,-0.50, -0.20, -0.80>  <0.50, 0.20, 0.70,-0.50, -0.10, -0.90>  <0.70, 0.50, 0.30,-0.40, -0.20, -0.20>  <0.20, 0.40, 0.80,-0.50, -0.50, -0.60> 

>>> Transpose(C) 

 The matrix 4 x4 dimension 

 Its transpose 4 x 4 dimension 

Transpose =   

[[[ 0.5  0.9  0.9  0.9] [ 0.4  0.7  0.2  0.3]  [ 0.7  0.9  0.9  0.5] [ 0.1  0.5  0.7  0.2]] 

[[ 0.7  0.7  0.4  0.7] [ 0.4  0.6  0.2  0.5] [ 0.7  0.4  0.5  0.4] [ 0.5  0.2  0.5  0.4]] 

[[ 0.2  0.5  0.2  0.2] [ 0.5  0.8  0.2  0.2] [ 0.5  0.6  0.5  0.5] [ 0.7  0.7  0.3  0.8]] 

[[-0.7 -0.7 -0.6 -0.8]   [-0.7 -0.7 -0.4 -0.5]    [-0.8 -0.1 -0.6 -0.1]    [-0.5 -0.5 -0.4 -0.5]]  

[[-0.3 -0.7 -0.3 -0.6]    [-0.8 -0.5 -0.7 -0.5]    [-0.7 -0.7 -0.5 -0.7]    [-0.2 -0.1 -0.2 -0.5]]  

[[-0.6 -0.1 -0.7 -0.1]   [-0.4 -0.1 -0.4 -0.2]   [-0.6 -0.5 -0.2 -0.2]   [-0.8 -0.9 -0.2 -0.6]]]  

 

3.9 Computing composition of two bipolar neutrosophic matrices  

To generate the python program for finding the composition of two bipolar neutrosophic 

matrices, simple call of the function Composition () is defined as follow:  

# BNM is represented by 3D Numpy Array => row, column and bipolar number with 6 tuples for 

Composition  

#A.shape and B.shape returns (3, 3, 6) the dimension of A. (row, column, numbers of element 

(Bipolar Neutrosophic Number, 6 elements) ) 

# A.shape[0] = 3 rows 

# A.shape[1] = 3 columns 

# A.shape[2] = Each bipolar neutrosophic number has 6 tuple as usual 

#One can use matrices with any dimensions but dimensions of two matrices must be the same and 

nxn  
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import math 

import numpy as np 

A= np.array( [ [ [0.3, 0.6, 1, -0.2, -0.54, -0.4], [0.1, 0.2, 0.8, -0.5, -0.34, -0.7], [0.020,0.021,0.022,-0.023,-

0.024,-0.025]  ], 

[ [0.17,0.19,0.66,-0.87,-0.64,-0.92], [0.25,0.36,0.88,-0.33,-0.54,-0.22], [0.120,0.121,0.122,-0.123,-0.124,-

0.125]  ], 

[ [0.15,0.28,0.67,-0.39,-0.27,-0.55],[0.24,0.73,0.28,-0.26,-0.53,-0.52], [0.220,0.221,0.222,-0.223,-0.224,-

0.225]  ]  ] ) 

B=np.array([ [0.11,0.22,0.6,-0.29,-0.24,-0.52], [0.32,0.4,0.1,-0.25,-0.54,-0.4], [0.13,0.2,0.11,-0.55,-0.35,-

0.72] ], 

[ [0.100,0.101,0.102,-0.103,-0.104,-0.105], [1,0.111,0.112,-0.113,-0.114,-0.115], [0.720,0.821,0.152,-

0.143,-0.194,-0.1]  ], 

[ [0,0.73,0.202,-0.203,-0.204,-0.205],  [0.22,0.63,0.88,-0.28,-0.54,-0.32], [0.3,0,0.47,-0.223,-0.254,-0.295]   

] ] ) 

def Composition( A, B ): 

    global composition 

    composition=[] 

    dimA = A.shape 

    H=[ ] 

    if A.shape == B.shape and dimA[0] == dimA[1]: 

        for i in range (0,dimA[0]):   

            for j in range (0,dimA[0]):            

                counter0=0          

                for d in range (0, dimA[0]): 

                    if counter0 ==0:                    

                        maxtt  =    [ A[i][d][0],B[d][j][0] ] 

                        maxT = min(maxtt) 

                        minii =  [A[i][d][1],B[d][j][1] ] 

                        minI =  max(minii)    

                        minff = [ A[i][d][2],B[d][j][2]] 

                        minF = max( minff) 

                        minntt= [   A[i][d][3],B[d][j][3] ] 

                        minNT = max (minntt) 

                        maxnii = [ A[i][d][4],B[d][j][4]  ] 

                        maxNI =  min( maxnii  )         

                        maxnff= [   A[i][d][5],B[d][j][5]  ] 

                        maxNF = min (maxnff) 

                        counter0  = 1                

                    else: 

                        maxT1        = [  A[i][d][0],B[d][j][0]  ]        

                        maxT11      = min(maxT1)                           

                        maxT112    = [  maxT11 ,  maxT  ]            
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                        maxT          =  max(maxT112)         

                        minI1      =  [ A[i][d][1],B[d][j][1]  ] 

                        minI11    =  max(minI1) 

                        minI112  = [ minI11, minI    ] 

                        minI        = min(  minI112) 

                        minF1        =    [ A[i][d][2],B[d][j][2]  ] 

                        minF11      =  max(minF1) 

                        minF112    = [ minF11, minF] 

                        minF          = min(minF112 )                        

                        minNT1      =   [  A[i][d][3],B[d][j][3]      ] 

                        minNT11    =  max( minNT1   ) 

                        minNT112  =   [ minNT11, minNT ] 

                        minNT        =  min( minNT112  ) 

                        maxNI1       = [ A[i][d][4],B[d][j][4] ] 

                        maxNI11     = min(  maxNI1   ) 

                        maxNI112   = [  maxNI11, maxNI  ] 

                        maxNI         = max(maxNI112) 

                        maxNF1     =  [ A[i][d][5],B[d][j][5]  ] 

                        maxNF11   =  min ( maxNF1 ) 

                        maxNF112 =  [ maxNF11, maxNF ] 

                        maxNF       =  max (  maxNF112  )                                              

                H.append( [maxT,  minI, minF, minNT, maxNI, maxNF] ) 

        composition.extend(H) 

    global nested 

    nested = [  ] 

    for k in range( int(math.sqrt(len(composition))) ): 

                   nested.append(composition[k:k+int(math.sqrt(len(composition))) ] )                                 

    print('Composition= ', np.array(nested)) 

 

Example 7. In this example we evaluate the composition of the two bipolar neutrosophic matrices C 

and D of order 4X4: 

C= 

(

< .5, .7, .2, −.7, − .3, −.6 > < .4, .4, .5, −.7, − .8, −.4 > < .7, .7, .5, −.8, − .7, −.6 > < .1, .5, .7, −.5, − .2, −.8 >
< .9, .7, .5, −.7, − .7, −.1 > < .7, .6, .8, −.7, − .5, −.1 > < .9, .4, .6, −.1, − .7, −.5 > < .5, .2, .7, −.5, − .1, −.9 >
< .9, .4, .2, −.6, − .3, −.7 > < .2, .2, .2, −.4, − .7, −.4 > < .9, .5, .5, −.6, − .5, −.2 > < .7, .5, .3, −.4, − .2, −.2 >
< .9, .7, .2, −.8, − .6, −.1 > < .3, .5, .2, −.5, − .5, −.2 > < .5, .4, .5, −.1, − .7, −.2 > < .2, .4, .8, −.5, − .5, −.6 >

) 

The bipolar neutrosophic matrix C can be inputted in Python code like this: 

C= np.array([ [ [0.5,0.7,0.2,-0.7,-0.3,-0.6], [0.4,0.4,0.5,-0.7,-0.8,-0.4], [0.7,0.7,0.5,-0.8,-0.7,-0.6], [0.1,0.5,0.7,-0.5,-0.2,-

0.8]], [[0.9,0.7,0.5,-0.7,-0.7,-0.1], [0.7,0.6,0.8,-0.7,-0.5,-0.1], [0.9,0.4,0.6,-0.1,-0.7,-0.5], [0.5,0.2,0.7,-0.5,-0.1,-0.9]], 

[[0.9,0.4,0.2,-0.6,-0.3,-0.7], [0.2,0.2,0.2,-0.4,-0.7,-0.4], [0.9,0.5,0.5,-0.6,-0.5,-0.2], [0.7,0.5,0.3,-0.4,-0.2,-0.2]], 

[[0.9,0.7,0.2,-0.8,-0.6,-0.1], [0.3,0.5,0.2,-0.5,-0.5,-0.2], [0.5,0.4,0.5,-0.1,-0.7,-0.2], [0.2,0.4,0.8,-0.5,-0.5,-0.6]] ])  

D= 
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(

< .3, .4, .3, −.5, − .4, −.2 > < .1, .2, .7, −.5, − .2, −.3 > < .3, .2, .6, −.4, − .8, −.7 > < .2, .1, .3, −.2, − .4, −.4 >
< .2, .2, .7, −.3, − .3, −.5 > < .3, .5, .6, −.6, − .7, −.4 > < .6, .5, .4, −.3, − .6, −.8 > < .3, .4, .4, −.3, − .5, −.3 >
< .5, .3, .1, −.4, − .2, −.4 > < .5, .4, .3, −.3, − .8, −.2 > < .5, .8, .6, −.2, − .2, −.4 > < .4, .6, .5, −.1, − .6, −.5 >
< .6, .1, .7, −.7, − .4, −.8 > < .4, .6, .4, −.4, − .2, −.5 > < .4, .9, .3, −.5, − .5, −.3 > < .4, .5, .4, −.3, − .7, −.4 >

) 

The bipolar neutrosophic matrix D can be inputted in Python code like this: 

D= np.array([[[0.3,0.4,0.3,-0.5,-0.4,-0.2], [0.1,0.2,0.7,-0.5,-0.2,-0.3], [0.3,0.2,0.6,-0.4,-0.8,-0.7], [0.2,0.1,0.3,-0.2,-0.4,-

0.4]], [[0.2,0.2,0.7,-0.3,-0.3,-0.5], [0.3,0.5,0.6,-0.6,-0.7,-0.4], [0.6,0.5,0.4,-0.3,-0.6,-0.8], [0.3,0.4,0.4,-0.3,-0.5,-0.3]], 

[[0.5,0.3,0.1,-0.4,-0.2,-0.4], [0.5,0.4,0.3,-0.3,-0.8,-0.2], [0.5,0.8,0.6,-0.2,-0.2,-0.4], [0.4,0.6,0.5,-0.1,-0.6,-0.5]], 

[[0.6,0.1,0.7,-0.7,-0.4,-0.8], [0.4,0.6,0.4,-0.4,-0.2,-0.5], [0.4,0.9,0.3,-0.5,-0.5,-0.3], [0.4,0.5,0.4,-0.3,-0.7,-0.4]]]) 

So, the composition matrix of two bipolar neutrosophic matrices is portrayed as follow 

𝐶𝐵𝑁𝑆⨀𝐷𝐵𝑁𝑆= 

(

< .5, .4, .3, −.5, − .4, −.5 > < .5, .5, .5, −.6, − .2, −.4 > < .5, .5, .5, −.5, − .5, −.6 > < .4, .4, .3, −.3, − .4, −.4 >
< .5, .5, .5, −.6, − .2, −.4 > < .5, .5 .5, −.5, − .5, −.6 > < .4, .4, .3, −.3, − .4, −.4 > < .5, .2, .5, −.5, − .4, −.2 >
< .5 .5, .5, −.5, − .5, −.6 > < .4, .4, .4, −.3, − .4, −.4 > < .5, .2, .5, −.5, − .4, −.2 > < .5, .4, .6, −.6, − .2, −.3 >

< .4, .4, .3, −.3, − .4, −.1 > < .5, .2, .5, −.5, − .4 − .2 > < .5, .4, .6, −.6, − .2, −.3 > < .6, .6, .6, −.5, − .5, −.5 >

) 

The result of composition t matrix of two bipolar neutrosophic matrices C and D can be obtained by the call of 

the command Composition (C, D): 

>>> Composition(C, D) 

Composition=   

[[[ 0.5  0.4  0.3 -0.5 -0.4 -0.5] [ 0.5  0.5  0.5 -0.6 -0.2 -0.4] [ 0.5  0.5  0.5 -0.5 -0.5 -0.6] [ 0.4  0.4  0.3 -0.3 -0.4 -0.4]] 

[[ 0.5  0.5  0.5 -0.6 -0.2 -0.4] [ 0.5  0.5  0.5 -0.5 -0.5 -0.6] [ 0.4  0.4  0.3 -0.3 -0.4 -0.4] [ 0.5  0.2  0.5 -0.5 -0.4 -0.2]]  

[[ 0.5  0.5  0.5 -0.5 -0.5 -0.6] [ 0.4  0.4  0.3 -0.3 -0.4 -0.4] [ 0.5  0.2  0.5 -0.5 -0.4 -0.2] [ 0.5  0.4  0.6 -0.6 -0.2 -0.3]] 

[[ 0.4  0.4  0.3 -0.3 -0.4 -0.4] [ 0.5  0.2  0.5 -0.5 -0.4 -0.2] [ 0.5  0.4  0.6 -0.6 -0.2 -0.3] [ 0.6  0.6  0.6 -0.5 -0.5 -0.5]]]  

4. Conclusion 

In this paper, we have presented a useful Python tool for the calculations of matrices obtained 

by bipolar neutrosophic sets. The matrices have nested list data type, in other words, multi-

dimensional arrays in the Python Programming Language. The importance of this work, is that the 

proposed Python tool can be used also for fuzzy matrices, bipolar fuzzy matrices, intuitionistic fuzzy 

matrices, bipolar intuitionistic fuzzy matrices and single valued neutrosophic matrices. This work 

will be extending with the implementation of Bipolar Complex Neutrosophic Matrices in the future. 

We have used Python Numpy module in order to provide convenience for possible users. We hope 

that the tool might be useful in data science, physics, scientific computing, decision making, 

engineering studies and other fields. 
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