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Abstract: Molodtsov originated soft set theory that was provided a general mathematical framework
for handling with uncertainties in which we meet the data by affix parameterized factor during the
information analysis as differentiated to fuzzy as well as neutrosophic set theory. The main object
of this paper is to lay a foundation for providing a new approach of single-valued neutrosophic
soft tool which is considering many problems that contain uncertainties. In present study, a new
aggregation operators of single-valued neutrosophic soft numbers have so far not yet been applied
for ranking of the alternatives in decision-making problems. To this propose work, single-valued
neutrosophic soft weighted arithmetic averaging (SVNSWA) operator, single-valued neutrosophic soft
weighted geometric averaging (SVNSWGA) operator have been used to compare two single-valued
neutrosophic soft numbers (SVNSNs) for aggregating different single-valued neutrosophic soft input
arguments in neutrosophic soft environment. Then, its related properties have been investigated.
Finally, a practical example for Medical diagnosis problems provided to test the feasibility and
applicability of the proposed work.

Keywords: single-valued neutrosophic soft number and its operations; SVN soft weighted arithmetic
averaging operator; SVN soft weighted geometric averaging operator; decision-making

1. Introduction

Multi-criteria decision-making (MCDM) problems seek great attention in modern decision science.
The method is addressed to select the best alternative among the finite set of alternatives as claimed by
decision makers under the preference values of the alternatives. MCDM problems extensively applied
with quantitative or qualitative attribute values and have a board application in medical diagnosis [1,2],
ecology [3], sensor network [4] management science and engineering [5,6], economic [7], market
prediction and engineering technology [8], transport service problem [9] etc. As our modern society
move forward with the decision-making process, so it always faces imprecise, vague and uncertain
facts to take a decision in solving decision-making problems. In order to solve imprecise and uncertain
data, [10] initiated the idea of intuitionistic fuzzy set (IFS), a powerful extension of fuzzy set (FS) [11].
Even though (FS) and (IFS) are very powerful set to model decision problems containing uncertainties,
in some cases these sets are not sufficient to overcome indeterminate and inconsistent statistics
experience in real world problems. As SVNS [12] have strong acceptance for modeling of problems
including the incomplete, indeterminate and inconsistent data. The aggregated information for the
execution of the criteria for alternatives, weighted and order weighted aggregation operators [13–22]
takes a significant role during the combination of the information process. The above aggregation
operators based decision-making problems are not enough for the solution of real-world problems
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because they have insufficient of parameterizations. In real life problems involve different parameters.
Most of MCDM problems, researchers can not consider parameterizations factor when they aggregate
the information of the alternatives. Therefore, there are lack of information of the alternatives about
the involves parameter. Motivated by the aforementioned limitations, this research developed a
novel fuzzy-based MCDM approach for the evaluation of medical diagnosis problems. Initially, we
introduced the SVSNs to quantify evaluation information on criteria and alternatives. We combined
the SVNNs with the concept of soft set. Subsequently, this study proposed single-valued neutrosophic
soft weighted averaging (SVNSWA) operator and single-valued neutrosophic soft weighted geometric
(SVNSWG) operator to aggregate criteria by considering their parameterizations factors. We haved
studied idempotency, boundedness, shift-invariance and Homogeneity property of these two kinds of
soft weighted aggregation operators. The main advantage of these operators is that they are able to
make smooth description of the real-world problems by the use of parameterizations factor. In order
to rank the alternatives, aggregation operators lead to aggregate the over all information of the objects
for the preferences of the decision maker into a collective one and hence find to a desirable according
to its score values. To the best of our knowledge, the research developed on FSS and SVNSS is only
about their basic theory and its applications, but, there have been no research done on single-valued
neutrosophic soft aggregation numbers. So, it is a new issue and have a scope for future development in
decision science. Therefore, decision-making problems in single-valued neutrosophic soft environment
under proposed aggregation operators which makes us enough motivation to develop the propose
problems. The main object of this article is to exhibit some aggregation operators under SVN data
called as single-valued neutrosophic soft aggregation for collect the distinct priorities of the choices of
this technique.

The remainder of this paper is organized as: In next Section, briefly survey some essential ideas of
the FSS and SVNSS. In Section 3, we define some operational principles of single-valued neutrosophic
soft numbers and then define single-valued neutrosophic soft weighted averaging (SVNSWA) operator,
single-valued neutrosophic soft weighted geometric (SVNSWGA) operator and established its related
properties. In next Section, we utilize those operators to create single-valued neutrosophic soft
multi-criteria group decision-making problems. An interpretative case is specified for the selection
of most illness patient in Section 5. In Section 6, a comparative analysis has been made between the
existing works and the proposed study. Finally, in Section 7, follows a remark.

2. Literature Review

Neutrosophic set (NS) a tremendous branch of philosophy was proposed by Smarandache [23,24].
This proposed approach is characterized by three functions called (truth-, indeterminacy-,falsity)-
membership functions. Therefore, (NS) has strong acceptance to develop models carrying indeterminate
and inconsistent data. However, since codomain of membership functions of a (NS) is real standard or
nonstandard subsets of ]−0, 1+[, in some applications areas engineering and real scientific fields
they have some difficulties in modeling of problems. To overcome difficulties in these areas,
Wang et al. [12] defined the view of single-valued neutrosophic set (SVNs). As (SVNs) have strong
acceptance for modeling of problems including the incomplete, indeterminate and inconsistent
data. So, scholars have been investigating on how to find a proper one alternative and have
obtained some achievements. Ye utilized [25] arithmetic and geometric aggregation functions
under simplified neutrosophic numbers to develop MCDM problems. Garg and Nancy [26] have
followed to the study of linguistic SVN prioritized aggregation function to propose a MADM problem.
Wan et al. [27] introduced Frank Choquet Bonferroni mean operators and utilized this operator
develop MCDM problems in single-valued bipolar neutrosophic environment. Shi and Ye [28]
introduced Dombi aggregation operator to originate neutrosophic cubic Dombi (NCD) aggregation
functions to study a decision-making problems. Wei and Zhang [29] utilized combination of power
averaging and Bonferroni mean operator to developed SVN Bonferroni power aggregation operators
to develop a MADM problem. Ulucay et al. [30] developed a decision-making problem using
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similarity measure method under bipolar neutrosophic environment. Abdel-Basset et al. [31] studied
MCGDM based on neutrosophic hierarchy method. Abdel-Basset et al. [32] proposed strategic
planning and decision-making based on neutrosophic AHP-SWOT analysis. Dalapati et al. [33]
proposed cross entropy based MAGDM based on interval neutrosophic information. In [34], Bausys
and Zavadskas provided VIKOR method based MCDM problems using interval neutrosophic
numbers. Biswas et al. [35] utilized TOPSIS method for MCDM problems under SVN environment.
Broumi et al. [36] introduced an algorithm to solve a neutrosophic shortest problems from source node
to destination node. Sahin and Liu [37] derived correlation coefficient between two SVN hesitant fuzzy
numbers. Jana et al. [38] studied trapezoidal neutrosophic aggregation functions and utilized these
operators develop MADM problems. Recently, researchers have drawn attention to model interval
rough sets with their application problems [39].

But the technique of the above papers are not enough for the solution of real-world problems
because they have insufficient of parameterizations. In that context, soft set theory plays an important
role to overcome such barrier and effectively applied to solve the conditions. Maji et al. [40,41]
provided with the bridge connection between FS and IFS with soft sets theory [42]. Some hybrid
models together with soft set theory have been develop in various uncertain environments such
as on fuzzy soft set theory with parameterizations [43,44], fuzzy soft expert sets [45], generalized
intuitionsitic fuzzy soft sets [46], IVIF soft sets [47,48] and its applications, bipolar intuitionistic
fuzzy soft sets and decision-making [49], Hesitant fuzzy soft sets [50]. Jana and pal [51,52] have
studied soft intersection BCK/BCI-algebras, and soft intersection group structure based on (α, β)-soft
intersectional sets. Selvachandran and Peng [53] has found a modified TOPSIS method using vauge
parameterized vegue soft set and gave its application in decision making. Recently, Arora and
Garg [54] provided a new approach of aggregation operator using parameterized factor in intuitionistic
fuzzy soft environment. In the same time, a tool combination of neutrosophic set and soft set have
gave a momentum to the solution of real life problems in many directions. Karaaslan [55] used
possibility theory to develop PNS-decision-making method using neutrosophic soft OR-product and
AND-product. Broumi and Samarandache [56] proposed single-valued neutrosophic soft expert set
and its application in decision-making. Ali et al. [57] gave an application of bipolar neutrosophic soft
sets in decision making in the environment of bipolar neutrosophic set. Deli et al. [58] motivated to
develop a decision-making method called ivnpivn-soft sets using neutrosophic information. In [59],
Khalid and Abbas used soft set theory in distance measure.

In this study, multi-criteria decision-making approach is characterized by single-valued
neutrosophic soft numbers (SVNSNs). The SVNSWA and SVNSWG aggregation operators are
presented. Then, a medical diagnosis problems is solved by using these proposed operators.

3. Basic Concepts of FSS and SVNSS

In what follows, U, E and P(U) respectively denote universal set, parameter set and power set of
U. Also, A ⊆ E.

Definition 1 ([11]). Let X be a non-empty set. A fuzzy set µ of X is defined as a mapping µ : X → [0, 1],
where [0, 1] is the usual interval of real numbers. We take F(X) as the set of all fuzzy subsets of X.

Definition 2 ([42]). A pair (F , E) is called a soft set over U if F is a mapping given by F : E → P(U).
In other words, a soft over the universe U is a parameterized family of subsets of the universal set U. For ε ∈ A,
F (ε) may be considered as the set of ε-elements of the soft (F , A), or as the set of ε-approximate elements of the
soft set.

The following example illustrate the above idea.
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Example 1. Let (X, τ) be a topological space, i.e. τ is a family of subsets of the set X called the open sets of X.
Then, the family of open neighborhood N(x) of point x, where N(x) = {V ∈ τ|x ∈ V}, may be consider as the
soft set (N(x), τ).

Definition 3 ([40]). Let U be the universe set and E be the set of parameters. Let P(U) be the power set of U
and A ⊆ E, and P(U) is the collection of all fuzzy subsets of U, then (F , A) is called fuzzy soft set, where
F : A→ P(U).

Example 2. Let U = {M1, M2, M3, M4} be the set of four mobiles under consideration and E =

{beauti f ul(e1), costly(e2), batterybackup(e3) and apps(e4)} be a set of parameters then FSS for describing
“attractiveness of the mobiles"
is (F , A) = {Fe1 ,Fe2 ,Fe3}, where A = {e1, e2, e3} ⊆ E and (F, A) can be defined as:
Fe1 = {(M1, 0.6), (M2, 0.4), (M3, 0.5), (M4, 0.3)},
Fe2 = {(M1, 0.7), (M2, 0.6), (M3, 0.5), (M4, 0.4)} and
Fe3 = {(M1, 0.9), (M2, 0.5), (M3, 0.3), (M4, 0.6)}.

Definition 4 ([23]). Let X be finite, with a generic element in X denoted by x. A NS c̃ in X is defined by

C̃ =
{
〈TC(x), IC(x), FC(x)〉|x ∈ X

}
,

where its truth-function TC is presented by TC : X →]0−, 1+[ , indeterminacy-function IC presented IC :
X →]0−, 1+[, and falsity- function F̂C interpreted as FC : X →]0−, 1+[. Also, TC, IC and FC are real
standard or non-standard subsets of ]0−, 1+[. There is no restriction on the sum of TC, IC and FC, and so
0− ≤ TC + IC + FC ≤ 3+.

For real applications of NS, Wang et al. [12] introduced SVNs in the following definition.

Definition 5 ([12]). Let X be a finite set, with a generic element in X denoted by x. A SVNS is defined as:

C̃ =
{
〈TC(x), IC(x), FC(x)〉|x ∈ X

}
,

where TC : X → [0, 1] indicated the truth, IC : X → [0, 1] is the indeterminacy and FC : X → [0, 1] is the
falsity function of x to C with the condition 0 ≤ TC + IC + FC ≤ 3.

Definition 6. Let U be universal set and E be the parameter set. For N ⊂ E. Let P(U) called the subsets of
single-valued neutrosophic sets of U. The term (FC, C) is called single-valued neutrosophic soft sets of U, where
FC is a function follows as, FC : N → P(U).

Example 3. Let U = {O1, O2, O3, O4} be the set of four mobiles under consideration and
E = {beauti f ul(e1), costly(e2), batterybackup(e3) and apps(e4)} be a set of parameters under SVNSS for
describing “attractiveness of the mobiles" is (C, N) = {Fe1 ,Fe2 ,Fe3}, where A = {e1, e2, e3} ⊆ E and (C̃, N)

can be defined as:
C̃e1 = {(O1, 0.6, 0.4, 0.2), (O2, 0.4, 0.5, 0.1), (O3, 0.5, 0.2, 0.3), (O4, 0.3, 0.6, 0.1)},
C̃e2 = {(O1, 0.7, 0.1, 0.2), (O2, 0.6, 0.3, 0.1), (O3, 0.5, 0.3, 0.3), (O4, 0.4, 0.4, 0.1)} and
C̃e3 = {(O1, 0.9, 0.1, 0.3), (O2, 0.5, 0.2, 0.2), (O3, 0.3, 0.5, 0.1), (O4, 0.6, 0.4, 0.4)}.

For the sake of simplicity, we denote the pair of C̃et(xc) = {〈Tc(x), Ic(x), Fc(x)〉|xs ∈ U}, i.e.,
C̃est = 〈Tst, Ist, Fst〉 is called as single-valued neutrosophic soft (SVNSN) numbers. For the application
purpose, it is necessary to define score function for ranking it. For this, a score function of C̃est is
defined as
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Ψ(C̃est) = Tst − Fst (1)

where, Ψ(C̃est) ∈ [0, 1]. By this definition, it is clear that the larger the Ψ(C̃est), the larger is SVNSN C̃est .

Example 4. Let C̃e11 = 〈0.6, 0.2, 0.2〉 and C̃e12 = 〈0.3, 0.5, 0.5〉 be two SVNSNs, then by Equation (2), we get
Ψ(C̃e11) = 0.4 and Ψ(C̃e12) = −0.2. Since Ψ(C̃e11) > Ψ(C̃e12) which imply C̃e11 > C̃e12 .

However, there are some situation, where above function can not be used to compare SVNSNs. For example,
let C̃e11 = 〈0.6, 0.2, 0.2〉 and C̃e12 = 〈0.5, 0.1, 0.1〉, then it is not possible to compare SVNSNs, which one of
them is bigger as Ψ(C̃e11) = Ψ(C̃e12). To overcome this situation, we define accuracy function of C̃est as follows:

H(C̃est) = Tst + Ist + Fst (2)

where, H(C̃est) ∈ [0, 1]. Based on score function Ψ and accuracy function H, defined order relation on two
SVNSNs P̃est and Q̃est as follows:

(i) If Ψ(P̃est) < Ψ(Q̃est), then P̃est ≺ Q̃est

(ii) If Ψ(P̃est) > Ψ(Q̃est), then P̃est � Q̃est

(iii) If Ψ(P̃est) = Ψ(Q̃est), then

(1) IfH(P̃est) < H(Q̃est), then P̃est ≺ Q̃est .
(2) IfH(P̃est) > H(Q̃est), then P̃est � Q̃est .
(3) IfH(P̃est) = H(Q̃est), then P̃est ∼ Q̃est .

4. Single-Valued Neutrosophic Soft Weighted Arithmetic Averaging (SVNSWAA) Operator

In this Section, an aggregation operators namely single-valued neutrosophic soft weighted
averaging (SVNSWA) operator and single-valued neutrosophic soft weighted geometric averaging
(BFSWGA) operator for neutrosophic soft numbers (SVNSNs) are proposed.

4.1. Operational Law for SVNSNs

Definition 7. Let C̃e = 〈T, I, F〉 and C̃e11 = 〈T11, I11, F11〉) and C̃e12 = 〈T12, I12, F12〉) be the three SVNSNs
over the universe X, then following operations are defined as follows:

(i) C̃e11 ⊕ C̃e12 =
(〈

T11 + T12 − T11T12, I11 I12, F11F12
〉)

(ii) C̃e11 ⊗ C̃e12 =
(〈

T11T12, I11 + I12 − I11 I12, F11 + F12 − F11F12
〉)

(iii) λC̃e =
(
1− (1− T)λ, Iλ, Fλ

)
(iv) C̃λ

e =
(
Tλ, 1− (1− I)λ, 1− (1− F)λ

)
.

Definition 8. Let C̃est = (Tst, Ist, Fst) (s = 1, 2, . . . , m; t = 1, 2, . . . , n) be a number of SVNSNs and φt, θs

are the are weight vectors for the parameter et’s and expert ys’s respectively, satisfying φt ≥ 0, θs ≥ 0 such that
n
∑

t=1
φt = 1 and

m
∑

s=1
θs = 1. Then single-valued neutrosophic soft weighted averaging (SVNSWA) operator is

function SVNSWA : C̃n → C̃ such that

SVNSWA(C̃e11 , C̃e12 , . . . , C̃emn) =
n⊕

t=1

φt

( m⊕
s=1

θsC̃est

)
. (3)

We get the following theorem that follows on SVNSWA operator.
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Theorem 1. C̃est = (Tst, Ist, Fst) (s = 1, 2, . . . , m; t = 1, 2, . . . , n) be a number of (SVNSNs), then aggregated
value of them using the SVNSWA operator is also a SVNSNs, and SVNSWA(C̃e11 , C̃e12 , . . . , C̃emn)

=
〈

1−
n

∏
t=1

( m

∏
s=1

(1− Tst)
θs
)φt

,
n

∏
t=1

( m

∏
s=1

(
Ist

)θs)φt
,

n

∏
t=1

( m

∏
s=1

(
Fst

)θs)φt〉
. (4)

Theorem 1 can be proved by the method of mathematical induction as follows:

Proof. For m = 1, we get θ1 = 1. Then by Definition 7 of operational law,

SVNSWA(C̃e11 , C̃e12 , . . . , C̃emn ) =
n⊕

t=1
φt

(
C̃e1t

)
=

〈
1−

n

∏
t=1

(
1− T1t

)φt
,

n

∏
t=1

(I1t)
φt ,

n

∏
t=1

(F1t)
φt
〉

=
〈

1−
n

∏
t=1

( 1

∏
s=1

(1− Fst)
θs
)φt

,
n

∏
t=1

( 1

∏
s=1

(Ist)
θs
)φt

,
n

∏
t=1

( 1

∏
s=1

(Fst)
θs
)φt〉

.

Again, for n = 1 and φ1 = 1 and hence,

SVNSWA(C̃e11 , C̃e12 , . . . , C̃emn ) =
( m⊕

s=1
θs1C̃e1t

)
=

〈
1−

m

∏
t=1

(
1− Ts1

)θs
,

m

∏
s=1

(Is1)
θs ,

m

∏
s=1

(Fs1)
θs
〉

=
〈

1−
1

∏
t=1

( m

∏
s=1

(1− Tst)
θs
)φt

,
1

∏
t=1

( m

∏
s=1

(Ist)
θs
)φt

,
1

∏
t=1

( m

∏
s=1

(Fst)
θs
)φt〉

.

Thus, (5) is true for m = 1 and n = 1. Assume that (5) is true for n = p1 + 1, m = p2 and n = p1,
m = p2 + 1, then it follows that

p1+1⊕
t=1

φt

( p2⊕
s=1

θsC̃est

)
=
〈

1−
p1+1

∏
t=1

( p2

∏
s=1

(1− Tst)
θs
)φt

,
p1+1

∏
t=1

( p2

∏
s=1

(Ist)
θs
)φt

,
p1+1

∏
t=1

( p2

∏
s=1

(Fst)
θs
)φt〉

.

Also,

p1⊕
t=1

φt

( p2+1⊕
s=1

θsC̃est

)
=
〈

1−
p1

∏
t=1

( p2+1

∏
s=1

(1− Tst)
θs
)φt

,
p1

∏
t=1

( p2+1

∏
s=1

(Ist)
θs
)φt

,
p1

∏
t=1

( p2+1

∏
s=1

(Fst)
θs
)φt〉

.

Now for n = p1 + 1 and m = p2 + 1, we obtained

p1+1⊕
t=1

φt

( p2+1⊕
s=1

θsC̃est

)
=

p1+1⊕
t=1

φt

( p2⊕
s=1

θsC̃est ⊕ θp2+1C̃e(p2+1)t

)

=
p1+1⊕
t=1

p2⊕
s=1

φtθsC̃est

p1+1⊕
t=1

φtθp2+1C̃e(p2+1)t

)
=
〈

1−
p1+1

∏
t=1

( p2

∏
s=1

(1− Tst)
θs
)φt
⊕ 1−

p1+1

∏
t=1

(
(1− T(p2+1)t)

θp2+1
)φt

,

p1+1

∏
t=1

( p2

∏
s=1

(Ist)
θs
)φt
⊕

p1+1

∏
t=1

(
(I(p2+1)t)

θp2+1
)φt

,
p1+1

∏
t=1

( p2

∏
s=1

(Fst)
θs
)φt
⊕

p1+1

∏
t=1

(
(F(p2+1)t)

θp2+1
)φt〉

=
〈

1−
p1+1

∏
t=1

( p2+1

∏
s=1

(1− Tst)
θs
)φt

,
p1+1

∏
t=1

( p2+1

∏
s=1

(Ist)
θs
)φt

,
p1+1

∏
t=1

( p2+1

∏
s=1

(Fst)
θs
)φt〉

.
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Thus, (5) is true for n = p1 + 1, m = p2 + 1, therefore by induction the results is hold for all
m, n ≥ 1.

Since, 0 ≤ Tst ≤ 1 ⇔ 0 ≤
m
∏

s=1
(1− Tst)θs ≤ 1 and hence, 0 ≤ 1−

n
∏

t=1
(

m
∏

s=1
(1− Tst)θs)φt ≤ 1. Also,

0 ≤ Ist ≤ 1⇔ 0 ≤
m
∏

s=1
(Ist)θs ≤ 1⇔ 0 ≤

n
∏

t=1
(

m
∏

s=1
(Ist)θs)φt ≤ 1, and 0 ≤ Fst ≤ 1⇔ 0 ≤

m
∏

s=1
(Fst)θs ≤ 1⇔

0 ≤
n
∏

t=1
(

m
∏

s=1
(Fst)θs)φt ≤ 1. Thus, 0 ≤ 1−

n
∏

t=1
(

m
∏

s=1
(1− Tst)θs)φt +

n
∏

t=1
(

m
∏

s=1
(Ist)θs)φt +

n
∏

t=1
(

m
∏

s=1
(Fst)θs)φt ≤ 3.

Hence, aggregated value obtained by SVNSWA is again a SVNSN.

Corollary 1 ([60]). For only one parameter e1, i.e., n = 1, then SVNSWA operator reduces to SVNWA.

SVNSWA(C̃e11 , C̃e21 , . . . , C̃em1) =
〈

1−
m

∏
s=1

(1− Ts)
θs ,

m

∏
s=1

(Is)
θs ,

m

∏
s=1

(Fs)
θs
〉

. (5)

Therefore, it is justified that aggregation operator defined under SVNS environment is taken as a special
case of the proposed operator.

Example 5. Let Y = {y1, y2, y3, y4} be the set of experts which are going to narrate the “attractiveness of
two-wheeler bikes" under the set of parameters E = {e1 = stylish, e2 = weight, e3 = milage, e4 = price}.
The rating value of the experts is assumed to be given in the form of SVNSNs(C, E) = (Tst, Ist, Fst)4×3 for each
parameters which are given in the following table (Table 1).

Table 1. Neutrosophic soft numbers.

Experts e1 e2 e3

y1 〈0.6, 0.2, 0.3〉 〈0.5, 0.5, 0.2〉 〈0.6, 0.3, 0.5〉
y2 〈0.5, 0.4, 0.4〉 〈0.3, 0.2, 0.1〉 〈0.5, 0.4, 0.5〉
y3 〈0.7, 0.1, 0.4〉 〈0.4, 0.3, 0.6〉 〈0.3, 0.1, 0.6〉
y4 〈0.4, 0.5, 0.2〉 〈0.7, 0.2, 0.1〉 〈0.2, 0.6, 0.3〉

Let φ = (0.3, 0.2, 0.5)T and θ = (0.2, 0.1, 0.3, 0.4)T be the weight vectors for the parameters and experts
respectively. Then, we get by using Theorem 1 as:

SVNSWA(B̃e11 , B̃e12 , . . . , B̃e43)

=
〈

1−
3

∏
t=1

( 4

∏
s=1

(1− Tst)
θs
)φt

,
3

∏
t=1

( 4

∏
s=1

(Ist)
θs
)φt

,
3

∏
t=1

( 4

∏
s=1

(Ist)
θs
)φt〉

〈
1 −

({
(1 − 0.6)0.2(1 − 0.5)0.1(1 − 0.7)0.3(1 − 0.4)0.4

}0.3 {
(1 − 0.5)0.2(1 − 0.3)0.1(1 − 0.4)0.3(1 −

0.7)0.4
}0.2 {

(1− 0.6)0.2(1− 0.5)0.1(1− 0.3)0.3(1− 0.2)0.4
}0.5)

,
{
(0.2)0.2 (0.4)0.1 (0.1)0.3 (0.5)0.4

}0.3

{
(0.5)0.2 (0.2)0.1 (0.3)0.3 (0.2)0.4

}0.2

{
(0.3)0.2 (0.4)0.1 (0.1)0.3 (0.6)0.4

}0.5
,
{
(0.3)0.2 (0.4)0.1 (0.4)0.3 (0.2)0.4

}0.3

{
(0.2)0.2 (0.1)0.1 (0.6)0.3 (0.1)0.4

}0.2

{
(0.5)0.2 (0.5)0.1 (0.6)0.3 (0.3)0.4

}0.5〉
=
〈
(0.5317, 0.2755, 0.3256)

〉
.

We prove easily the following properties by using the operator SVNSWA.
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Theorem 2 (Idempotency Property). Let C̃est = (Tst, Ist, Fst) (s = 1, 2, . . . , m; t = 1, 2, . . . , n) be a number
of SVNSNs are all equal, i.e., C̃es t = C̃e for all s, t, then

SVNSWA(C̃e11 , C̃e12 , . . . , C̃emn) = C̃e. (6)

Proof. Since C̃est = C̃e = 〈T, I, F〉 for all s, t. Then,

SVNSWA(C̃e11 , C̃e12 , . . . , C̃emn) =
〈

1−
n

∏
t=1

( m

∏
s=1

(1− T)θs
)φt

,
n

∏
t=1

( m

∏
s=1

(I)θs
)φt n

∏
t=1

( m

∏
s=1

(F)θs
)φt〉

=
〈

1−
(
(1− T)

m
∑

s=1
θs) n

∑
t=1

φt
,
(
(I)

m
∑

s=1
θs) n

∑
t=1

φt(
(F)

m
∑

s=1
θs) n

∑
t=1

φt〉
=

〈
1− (1− T), I, F

〉
=

〈
T, I, F

〉
.

The proof is completed.

Theorem 3 (Boundedness Property). Let C̃est = (Tst, Ist, Fst) (s = 1, 2, . . . , m; t = 1, 2, . . . , n) be a
collection of SVNSNs. Let C̃−est = 〈min

t
min

s
{Tst}, max

t
max

s
{Ist}, max

t
max

s
{Fst}〉

and C̃+
est = 〈max

t
max

s
{Tst}, min

t
min

s
{Ist}, min

t
min

s
{Fst}〉. Then,

C̃−est ≤ SVNSWA(C̃e11 , C̃e12 , . . . , C̃emn) ≤ C̃+
est .

Proof. Since, C̃est = (Tst, Ist, Fst) be a SVNSNs then min
t

min
s
{Tst} ≤ Tst ≤ max

t
max

s
{Tst} which

implies that 1 − max
t

max
s
{Tst} ≤ 1 − Tst ≤ 1 − min

t
min

s
{Tst} ⇔ (1 − max

t
max

s
{Tst})θs ≤

(1 − Tst ≤ (1 − min
t

min
s
{Tst)θs ⇔ 1 − max

t
max

s
{Tst} ≤

m
∏

s=1
(1 − Tst)θs ≤ 1 − min

t
min

s
{Tst} ⇔

(1−max
t

max
s
{Tst})

n
∑

t=1
φt
≤

n
∏

t=1
(

m
∏

s=1
(1− Tst)θs)

n
∑

t=1
φt
≤ (1−min

t
min

s
{Tst})

n
∑

t=1
φt
⇔ 1−max

t
max

s
{Tst} ≤

n
∏

t=1
(

m
∏

s=1
(1− Tst)θs)

n
∑

t=1
φt
≤ 1−min

t
min

s
{Tst}. Therefore,

max
t

max
s
{Tst} ≤ 1−

n

∏
t=1

( m

∏
s=1

(1− Tst)
θs
) n

∑
t=1

φt
≤ min

t
min

s
{Tst}. (7)

Again,
min

t
min

s
{Ist} ≤ Ist ≤ max

t
max

s
{Ist}

which finds (min
t

min
s
{Ist})

m
∑

s=1
θs
≤

m
∏

s=1
(Ist)θs ≤ (max

t
max

s
{Ist})

m
∑

s=1
θs
⇔ min

t
min

s
{Ist} ≤

m
∏

s=1
(Ist)θs ≤

max
t

max
s
{Ist} ⇔ (min

t
min

s
{Ist})φt ≤ (

m
∏

s=1
(Ist)θs)φt ≤ (max

t
max

s
{Ist})φt ⇔ (min

t
min

s
{Ist})

n
∑

t=1
φt
≤

n
∏

t=1
(

m
∏

s=1
(Ist)θs)φt ≤ (max

t
max

s
{Ist})

n
∑

t=1
φt

, hence we get,

min
t

min
s
{Ist} ≤

n

∏
t=1

(
m

∏
s=1

(Ist)
θs)φt ≤ max

t
max

s
{Ist}. (8)
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and,
min

t
min

s
{Fst} ≤ Fst ≤ max

t
max

s
{Fst}

which follows (min
t

min
s
{Fst})

m
∑

s=1
θs
≤

m
∏

s=1
(Fst)θs ≤ (max

t
max

s
{Fst})

m
∑

s=1
θs
⇔ min

t
min

s
{Fst} ≤

m
∏

s=1
(Fst)θs ≤ max

t
max

s
{Fst} ⇔ (min

t
min

s
{Fst})φt ≤ (

m
∏

s=1
(Fst)θs)φt ≤ (max

t
max

s
{Fst})φt ⇔

(min
t

min
s
{Fst})

n
∑

t=1
φt
≤

n
∏

t=1
(

m
∏

s=1
(Fst)θs)φt ≤ (max

t
max

s
{Fst})

n
∑

t=1
φt

, hence we get,

min
t

min
s
{Fst} ≤

n

∏
t=1

(
m

∏
s=1

(Fst)
θs)φt ≤ max

t
max

s
{Fst}. (9)

Let β ≡ SVNSWA(C̃e11 , C̃e12 , . . . , C̃emn) = 〈Tβ, Iβ, Fβ〉, then from Equations (7)–(9),
min

t
min

s
{Tst} ≤ Tβ ≤ max

t
max

s
{Tst} and min

t
min

s
{Ist} ≤ Iβ ≤ max

t
max

s
{Ist}, and min

t
min

s
{Fst} ≤

Fβ ≤ max
t

max
s
{Fst}. Then by definition of score function

Ψ(β) = Tβ − Fβ ≤ max
t

max
s
{Tst} −min

t
min

s
{Fst} = Ψ(C̃+

est)

Ψ(β) = Tβ − Fβ ≥ min
t

min
s
{Tst} −max

t
max

s
{Fst} = Ψ(C̃−est).

Now, there are three cases arises:

Case 1. If Ψ(C̃est) < Ψ(C̃+
est) and Ψ(C̃est) > Ψ(C̃−est), then by comparison of two SVNSNs, we have

C̃−est ≤ SVNSWA(C̃e11 , C̃e12 , . . . , C̃emn) ≤ C̃+
est .

Case 2. If Ψ(C̃est) = Ψ(C̃+
est), i.e., Tβ + Fβ + Fst = max

t
max

s
{Tst}+ min

t
min

s
{Ist}+ min

t
min

s
{Fst}, then

by above inequalities Tβ = max
t

max
s
{Tst} and Iβ = min

t
min

s
{Ist}, and Fβ = min

t
min

s
{Fst}

Therefore,

H = Tβ + Iβ + Fβ = max
t

max
s
{Tst}+ min

t
min

s
{Ist}+ min

t
min

s
{Fst} = H(C̃+

est),

then by comparison of two SVNSNs, we have

SVNSWA(C̃e11 , C̃e12 , . . . , C̃emn) = C+
est .

Case 3. If Ψ(C̃est) = Ψ(C̃−est), i.e., Tβ + Iβ + Fβ = min
t

min
s
{Tst}+ max

t
max

s
{Ist}+ max

t
max

s
{Fst}, then

by above inequalities Tβ = min
t

min
s
{Tst}, Iβ = max

t
max

s
{Ist}, and Fβ = max

t
max

s
{Fst}.

Hence,

H = Tβ + Iβ + Fst = min
t

min
s
{Tst}+ max

t
max

s
{Ist}+ max

t
max

s
{Fst} = H(C̃−est),

then by comparison of two SVNSNs, we have

SVNSWA(C̃e11 , C̃e12 , . . . , C̃emn) = C−est .

Thus, proof is completed.

Theorem 4 (Shift-invariance property). If C̃e = 〈T, I, F〉 be another SVNSN, then

SVNSWA(C̃e11 ⊕ C̃e, C̃e12 ⊕ C̃e, . . . , C̃emn ⊕ C̃e) = SVNSWA(C̃e11 , C̃e12 , . . . , C̃emn)⊕ C̃e



Symmetry 2019, 11, 110 10 of 19

Proof. Since C̃e and C̃est are SVNSNs. Then, we have C̃e ⊕ C̃est =
〈

1− (1− T)(1− Tst), I Ist, FFst

〉
.

Hence, SVNSWA(C̃e11 ⊕ C̃e, C̃e12 ⊕ C̃e, . . . , C̃emn ⊕ C̃e)

=
n⊕

t=1

φt

( m⊕
s=1

θt(C̃est ⊕ C̃e)
)

=
〈

1−
n

∏
t=1

( m

∏
s=1

(1− Tst)
θs(1− T)θs

)φt
,

n

∏
t=1

( m

∏
s=1

(Ist)
θs(I)θs

)φt
,

n

∏
t=1

( m

∏
s=1

(Fst)
θs(F)θs

)φt〉
=

〈
1− (1− I)

n

∏
t=1

( m

∏
s=1

(1− Tst)
θs
)φt

, I
n

∏
t=1

( m

∏
s=1

(Ist)
θs
)φt

, F
n

∏
t=1

( m

∏
s=1

(Fst)
θs
)φt〉

=
〈

1−
n

∏
t=1

( m

∏
s=1

(1− Tst)
θs
)φt

,
n

∏
t=1

( m

∏
s=1

(Ist)
θs
)φt

,
n

∏
t=1

( m

∏
s=1

(Fst)
θs
)φt〉

⊕
〈

T, I, F
〉

= SVNSWA(C̃e11 , C̃e12 , . . . , C̃emn)⊕ C̃e.

Hence the result.

Theorem 5 (Homogeneity property). For any real number λ > 0, we have

SVNSWA(λC̃e11 , λC̃e12 , . . . , λC̃emn) = λSVNSWA(C̃e11 , C̃e12 , . . . , C̃emn).

Proof. Let C̃est = (Tst, Ist, Fst) (s = 1, 2, . . . , m; t = 1, 2, . . . , n) be a number of SVNSNs and λ > 0 be

any real number. Then, λC̃est =
〈

1− (1− Tst)λ, (Ist)λ, (Fst)λ〉. Thus,

SVNSWA(λC̃e11 , λC̃e12 , . . . , λC̃emn ) =
〈

1−
n

∏
t=1

( m

∏
s=1

(1− Tst)
λθs
)φt

,
n

∏
t=1

( m

∏
s=1

(Ist)
λθs
)φt

,
n

∏
t=1

( m

∏
s=1

(Fst)
λθs
)φt〉

=
〈

1−
( n

∏
t=1

( m

∏
s=1

(1− Tst)
θs
)φt)λ

,
( n

∏
t=1

( m

∏
s=1

(Ist)
θs
)φt)λ

,

( n

∏
t=1

( m

∏
s=1

(Fst)
θs
)φt)λ〉

= λ SVNSWA(C̃e11 , C̃e12 , . . . , C̃emn ).

Hence the proof is completed.

4.2. Single-Valued Neutrosophic Soft Weighted Geometric Averaging (SVNSWGA) Operator

In this Section, we defined single-valued neutrosophic soft weighted geometric averaging
(SVNSWGA) operator and studied

Definition 9. Let C̃est = (Tst, Ist, Fst) (s = 1, 2, . . . , m; t = 1, 2, . . . , n) be a number of SVNSNs and φt, θs

are the are weight vectors for the parameter et’s and expert ys’s respectively, satisfying φt ≥ 0, θs ≥ 0 such that
m
∑

t=1
φt = 1 and

n
∑

s=1
θs = 1. Then single-valued neutrosophic soft weighted geometric (SVNSWGA) operator is a

function SVNSWGA : C̃n → C̃ such that

SVNSWGA(C̃e11 , C̃e12 , . . . , C̃emn) =
n⊗

t=1

( m⊗
s=1

C̃θs
est

)φt
.

Theorem 6. Then single-valued neutrosophic soft weighted geometric (SVNSWGA) operator is a function
SVNSWGA : C̃n → C̃ such that

SVNSWA(C̃e11 , C̃e12 , . . . , C̃e1n ) =
〈 n

∏
t=1

( m

∏
s=1

(Tst)
θs
)φt

, 1−
n

∏
t=1

( m

∏
s=1

(1− Ist)
θs
)φt

, 1−
n

∏
t=1

( m

∏
s=1

(1− Fst)
θs
)φt〉

. (10)



Symmetry 2019, 11, 110 11 of 19

Proof. For m = 1 and θ1 = 1 then by Definition 7, we have

SVNSWGA(C̃e11 , C̃e12 , . . . , C̃e1n ) =
n⊗

t=1

C̃φt
est

=
〈 n

∏
t=1

(T1t)
φt , 1−

n

∏
t=1

(1− I1t)
φt , 1−

n

∏
t=1

(1− F1t)
φt
〉

=
〈 n

∏
t=1

( 1

∏
s=1

(Tst)
θs
)φt

, 1−
n

∏
t=1

( 1

∏
s=1

(1− Ist)
θs
)φt

, 1−
n

∏
t=1

( 1

∏
s=1

(1− Fst)
θs
)φt〉

.

For n = 1 and φ1 = 1, then by Definition 9, we get

SVNSWGA(C̃e11 , C̃e21 , . . . , C̃em1 ) =
n⊗

t=1

C̃θs
est

=
〈 m

∏
s=1

(Ts1)
θs , 1−

m

∏
s=1

(1− Is1)
θs , 1−

m

∏
s=1

(1− Fs1)
θs
〉

=
〈 1

∏
t=1

( m

∏
s=1

(Tst)
θs
)φt

, 1−
1

∏
t=1

( m

∏
s=1

(1− Ist)
θs
)φt

, 1−
1

∏
t=1

( m

∏
s=1

(1− Fst)
θs
)φt〉

.

Assume that (10) is true for n = p1 + 1, m = p2 and n = p1, m = p2 + 1, then it follows that

p1+1⊗
t=1

( p2⊗
s=1

C̃θs
est

)φt
=
〈 p1+1

∏
t=1

( p2

∏
s=1

(Tst)
θs
)φt

, 1−
p1+1

∏
t=1

( p2

∏
s=1

(1− Ist)
θs
)φt

, 1−
p1+1

∏
t=1

( p2

∏
s=1

(1− Fst)
θs
)φt〉

.

Also,

p1⊗
t=1

( p2+1⊗
s=1

C̃θs
est

)φt
=
〈 p1

∏
t=1

( p2+1

∏
s=1

(Tst)
θs
)φt

, 1−
p1

∏
t=1

( p2+1

∏
s=1

(1− Ist)
θs
)φt

, 1−
p1

∏
t=1

( p2+1

∏
s=1

(1− Fst)
θs
)φt〉

.

Now for n = p1 + 1 and m = p2 + 1, we obtained

p1+1⊗
t=1

( p2+1⊗
s=1

C̃θs
est

)φt
=

p1+1⊗
t=1

( p2⊗
s=1

C̃θs
est
⊗ C̃

θp2+1
e(p2+1)t

)φt

=
p1+1⊗
t=1

( p2⊗
s=1

C̃θs
est

)φt
p1+1⊗
t=1

(
C̃

θp2+1
e(p2+1)t

)φt)

=
〈 p1+1

∏
t=1

( p2

∏
s=1

(Tst)
θs
)φt
⊗

p1+1

∏
t=1

(
(T(p2+1)t)

θp2+1
)φt

,

1−
p1+1

∏
t=1

( p2

∏
s=1

(1− Ist)
θs
)φt
⊗ 1−

p1+1

∏
t=1

(
(1− I(p2+1)t)

θp2+1
)φt

,

1−
p1+1

∏
t=1

( p2

∏
s=1

(1− Fst)
θs
)φt
⊗ 1−

p1+1

∏
t=1

(
(1− F(p2+1)t)

θp2+1
)φt〉

=
〈 p1+1

∏
t=1

( p2+1

∏
s=1

(Tst)
θs
)φt

, 1−
p1+1

∏
t=1

( p2+1

∏
s=1

(1− Ist)
θs
)φt

,

1−
p1+1

∏
t=1

( p2+1

∏
s=1

(1− Fst)
θs
)φt〉

.

Thus, (10) is true for n = p1 + 1, m = p2 + 1, therefore by induction the results is hold for all
m, n ≥ 1.

Since, 0 ≤ Ist ≤ 1 ⇔ 0 ≤
m
∏

s=1
(1 − Ist)θs ≤ 1 ⇔ 0 ≤

n
∏

t=1

( m
∏

s=1
(1 − Ist)θs

)φt
≤

1 ⇔ 0 ≤ 1 −
n
∏

t=1

( m
∏

s=1
(1 − Ist)θs

)φt
≤ 1, and 0 ≤ Fst ≤ 1 ⇔ 0 ≤

m
∏

s=1
(1 − Fst)θs ≤



Symmetry 2019, 11, 110 12 of 19

1 ⇔ 0 ≤
n
∏

t=1

( m
∏

s=1
(1 − Fst)θs

)φt
≤ 1 ⇔ 0 ≤ 1 −

n
∏

t=1

( m
∏

s=1
(1 − Fst)θs

)φt
≤ 1 On the other

hand, 0 ≤ Tst ≤ 1 ⇔ 0 ≤
m
∏

s=1
(Tst)θs ≤ 1 ⇔ 0 ≤

n
∏

t=1

( m
∏

s=1
(Tst)θs

)φt
≤ 1. Therefore,

0 ≤ 1−
n
∏

t=1

( m
∏

s=1
(1− Ist)θs

)φt
+ 1−

n
∏

t=1

( m
∏

s=1
(1− Fst)θs

)φt
+

n
∏

t=1

( m
∏

s=1
(Tst)θs

)φt
≤ 3.

Thus, aggregated value obtained by SVNSWG operator is again a SVNSN.

Example 6. Let Y = {y1, y2, y3, y4} be the set of experts which are going to narrate the “attractiveness of
two-wheeler bikes" under the set of parameters E = {e1 = stylish, e2 = weight, e3 = milage, e4 = price}.
The rating value of the experts is assumed to be given in the form of SVNSNs(B, E) = (Tst, Ist, Fst)4×3 for each
parameters which are given in the following table (Table 2).

Table 2. Neutrosophic soft numbers.

Experts e1 e2 e3

y1 〈0.6, 0.3, 0.3〉 〈0.7, 0.2, 0.5〉 〈0.4, 0.2, 0.2〉
y2 〈0.5, 0.4, 0.2〉 〈0.5, 0.3, 0.2〉 〈0.8, 0.1, 0.1〉
y3 〈0.4, 0.1, 0.2〉 〈0.7, 0.1, 0.5〉 〈0.5, 0.2, 0.3〉
y4 〈0.6, 0.2, 0.4〉 〈0.6, 0.3, 0.4〉 〈0.6, 0.3, 0.3〉

Let φ = (0.3, 0.2, 0.5)T and θ = (0.2, 0.1, 0.3, 0.4)T be the weight vectors for the parameters and experts
respectively. Then, we get by using Theorem 6 as:

SVNSWGA(C̃e11 , C̃e12 , . . . , C̃e43)

=
〈 3

∏
t=1

( 4

∏
s=1

(Tst)
θs
)φt

, 1−
3

∏
t=1

( 4

∏
s=1

(1− Ist)
θs
)φt

, 1−
3

∏
t=1

( 4

∏
s=1

(1− Fst)
θs
)φt〉

〈({
(0.6)0.2(0.5)0.1(0.4)0.3(0.6)0.4

}0.3 {
(0.7)0.2(0.5)0.1(0.7)0.3(0.6)0.4

}0.2

{
(0.4)0.2(0.8)0.1(0.5)0.3(0.6)0.4

}0.5)
,

1−
{
(1− 0.3)0.2 (1− 0.4)0.1 (1− 0.1)0.3 (1− 0.2)0.4

}0.3

{
(1− 0.2)0.2 (1− 0.3)0.1 (1− 0.1)0.3 (1− 0.3)0.4

}0.2

{
(1−0.2)0.2 (1−0.1)0.1 (1−0.2)0.3 (1−0.3)0.4

)0.5
, 1−

{
(1−0.3)0.2 (1−0.2)0.1 (1−0.2)0.3 (1−0.4)0.4

}0.3

{
(1− 0.5)0.2 (1− 0.2)0.1 (1− 0.5)0.3 (1− 0.4)0.4

}0.2

{
(1− 0.2)0.2 (1− 0.1)0.1 (1− 0.3)0.3 (1− 0.3)0.4

)0.5〉
=
〈
(0.5518, 0.2261, 0.3138)

〉
.

SVNSWGA operator satisfies the following properties as similar as SVNSWA operator

• (Idempotency Property) If C̃est = C̃e = 〈T, I, F〉 for all s, t, then

SVNSWGA(C̃e11 , C̃e12 , . . . , C̃emn) = C̃e.

• (Boundedness Property) If C̃−est = 〈min
t

min
s
{Tst}, max

t
max

s
{Ist}, max

t
max

s
{Fst}〉 and if

C̃+
est = 〈max

t
max

s
{Tst}, min

t
min

s
{Ist}, min

t
min

s
{Fst}〉,
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then
C̃−est ≤ SVNSWGA(C̃e11 , C̃e12 , . . . , C̃emn) ≤ C̃+

est .

• (Shift-invariance Property) Let C̃e = 〈T, I, F〉 be another SVNSN then

SVNSWGA(C̃e11 ⊗ C̃e, C̃e12 ⊗ C̃e, . . . , C̃emn ⊗ C̃e) = SVNSWGA(C̃e11 , C̃e12 , . . . , C̃emn)⊗ C̃e.

• (Homogeneity Property) For any real number λ > 0, we have

SVNSWGA(C̃λ
e11

, C̃λ
e12

, . . . , C̃λ
emn) =

(
SVNSWGA(C̃e11 , C̃e12 , . . . , C̃emn)

)λ
.

5. Model for MCDM Method Using Single-Valued Soft Information

In this Section, we shall present multi-criteria decision making (MCDM) method using
single-valued neutrosophic soft weighted averaging operator (SVNSWA) and single-valued
neutrosophic soft weighted geometric (SVNSWGA) operator in the environment of single-valued
neutrosophic soft numbers.

An Approach Based on Proposed Operators

Let Ỹ = {Ỹ1, Ỹ2, . . . , Ỹl} be the discrete set of alternatives is evaluated by the set of m experts
{y1, y2, . . . , ym} under the constraints of n parameters E = {e1, e2, . . . , en}. Let θ = (θ1, θ2, . . . , θm)T and
φ = (φ1, φ2, . . . , φn)T are respectively denote the weight vectors of the m experts x′ss and n parameters

e′ts that θs > 0, θ ∈ [0, 1] such that
m
∑

s=1
θs = 1 and φt > 0, φ ∈ [0, 1] such that

n
∑

t=1
φs = 1. In order to choice

the best l alternates by the preference of n experts in the form of SVNSNs C̃est = 〈Tst, Ist, Fst〉 where
0 ≤ Tst + Ist + Fst ≤ 3 and collective over all decision matrix is expressed as M̃ = (C̃est)m×n. By these
preference values of the experts, the aggregated SVNSN C̃ek for the alternatives p̃k (k = 1, 2, . . . , l) is
C̃ek = 〈Tk, Ik, Fk〉 by applying weighted averaging or geometric averaging operators which is given in
Equations (5) and (8). Ranking order of the alternatives is determine based on the score function of the
aggregated values of SVNSNs C̃ek (k = 1, 2, . . . , l).

In the following algorithm we propose to solve MCDM problem with single-valued neutrosophic
soft information using SVNSWA and SVNSWGA operators.

Step 1. Collect all the information in the form of single-valued neutrosophic soft matrix C =

〈Tst, Ist, Fst〉 (s = 1, 2, . . . , m; t = 1, 2, . . . , n) related to each alternatives under different
parameters ek (k = 1, 2, . . . , l) as

C̃m×n = M =


(T11, I11, Fst) (T12, I12, F12) . . . (T1n, I1n, F1n)

(T21, I21, F21) (T22, I22, F22) . . . (T2n, I2n, F2n)
...

...
. . .

...
(Tm1, Im1, Fm1) (Tm2, Im2, Fm2) . . . (Tmn, Imn, Fmn)


Step 2. To normalize the aggregated decision matrix by transforming values of benefit type (B) into

cost (C) type by using the formula depicted in [61].

gij =

{
C̃c

est , ifet ∈ B̃
C̃est , ifet ∈ C̃

where C̃c
est = 〈1− Fst, Ist, Tst〉 is the complement of C̃est = 〈Tst, Ist, Fst〉.

Step 3. Aggregate the SVNSNs C̃est (s = 1, 2, . . . , m; t = 1, 2, . . . , n) for each alternatives Yk (k =

1, 2, . . . , l) into collective decision matrix Ψk using SVNSWA or (SVNSWGA) operators.
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Step 4. Using Equation (1) we get the score value of Ψk (k = 1, 2, . . . , l) for each alternatives Ak
(k = 1, 2, . . . , l).

Step 5. Rank all the alternative Ak (k = 1, 2, . . . , l) in order to choice the best one(s) in accordance
with Ψk (k = 1, 2, . . . , l).

Step 6. End.

6. Numerical Example

In the above described decision-making method has been demonstrated with a practical example
about the Medical diagnosis. The experts of five doctors m1, m2, m3, m4, m5 whose weight vector
is θ = (0.2, 0.15, 0.2, 0.3, 0.15)T , will give their judgement based on the diagnosis of four patients
Y1, Y2, Y3, Y4 under the parameters

E = {Temparature(e1), Headache(e2), Stomachpain(e3), Cough(e4), Chestpain(e5)}

with weight vector φ = (0.2, 0.1, 0.3, 0.15, 0.25)T . Then, we utilize the developed method to get most
desirable candidate(s).

6.1. By SVNSWA Operator

The steps of the proposed approach performed and their corresponding details are reviewed
as follows:

Step 1. The given patients are being evaluated by five experts doctors to give their grades in terms of
SVNSNs and are found in Tables 3–6 respectively for each candidate.

Step 2. All the parameters are of same type, so, there is no required for normalization.

Table 3. Single-valued neutrosophic soft matrix for the patient Y1.

Experts e1 e2 e3 e4 e5

m1 〈0.6, 0.2, 0.3〉 〈0.5, 0.5, 0.5〉 〈0.6, 0.3, 0.2〉 〈0.3, 0.5, 0.7〉 〈0.3, 0.4, 0.4〉
m2 〈0.6, 0.4, 0.5〉 〈0.3, 0.2, 0.4〉 〈0.5, 0.4, 0.5〉 〈0.4, 0.6, 0.4〉 〈0.4, 0.1, 0.2〉
m3 〈0.7, 0.1, 0.4〉 〈0.4, 0.3, 0.4〉 〈0.3, 0.1, 0.4〉 〈0.7, 0.3, 0.2〉 〈0.6, 0.2, 0.6〉
m4 〈0.4, 0.5, 0.3〉 〈0.7, 0.2, 0.1〉 〈0.2, 0.6, 0.4〉 〈0.6, 0.1, 0.5〉 〈0.5, 0.1, 0.5〉
m5 〈0.5, 0.2, 0.2〉 〈0.6, 0.1, 0.6〉 〈0.6, 0.2, 0.2〉 〈0.4, 0.1, 0.1〉 〈0.4, 0.2, 0.3〉

Table 4. Single-valued neutrosophic soft matrix for the patient Y2.

Experts e1 e2 e3 e4 e5

m1 〈0.3, 0.4, 0.4〉 〈0.8, 0.1, 0.1〉 〈0.7, 0.1, 0.1〉 〈0.4, 0.1, 0.3〉 〈0.2, 0.3, 0.4〉
m2 〈0.5, 0.1, 0.3〉 〈0.5, 0.2, 0.2〉 〈0.4, 0.2, 0.3〉 〈0.6, 0.1, 0.2〉 〈0.2, 0.1, 0.3〉
m3 〈0.2, 0.1, 0.2〉 〈0.4, 0.1, 0.4〉 〈0.5, 0.4, 0.5〉 〈0.4, 0.2, 0.6〉 〈0.5, 0.2, 0.2〉
m4 〈0.7, 0.2, 0.3〉 〈0.5, 0.1, 0.4〉 〈0.6, 0.2, 0.4〉 〈0.4, 0.2, 0.1〉 〈0.7, 0.1, 0.1〉
m5 〈0.5, 0.2, 0.2〉 〈0.5, 0.3, 0.2〉 〈0.4, 0.1, 0.5〉 〈0.3, 0.2, 0.2〉 〈0.6, 0.4, 0.2〉

Table 5. Single-valued neutrosophic soft matrix for the patient Y3.

Experts e1 e2 e3 e4 e5

m1 〈0.4, 0.3, 0.2〉 〈0.8, 0.1, 0.4〉 〈0.5, 0.2, 0.3〉 〈0.6, 0.1, 0.2〉 〈0.2, 0.3, 0.3〉
m2 〈0.5, 0.1, 0.2〉 〈0.4, 0.2, 0.3〉 〈0.3, 0.2, 0.4〉 〈0.4, 0.2, 0.3〉 〈0.5, 0.2, 0.2〉
m3 〈0.2, 0.1, 0.1〉 〈0.4, 0.2, 0.3〉 〈0.4, 0.2, 0.3〉 〈0.5, 0.1, 0.4〉 〈0.5, 0.1, 0.1〉
m4 〈0.7, 0.2, 0.4〉 〈0.5, 0.2, 0.2〉 〈0.2, 0.1, 0.5〉 〈0.6, 0.2, 0.5〉 〈0.6, 0.2, 0.2〉
m5 〈0.5, 0.3, 0.3〉 〈0.5, 0.4, 0.4〉 〈0.4, 0.1, 0.2〉 〈0.4, 0.1, 0.5〉 〈0.7, 0.2, 0.3〉
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Table 6. Single-valued neutrosophic soft matrix for the patient Y4.

Experts e1 e2 e3 e4 e5

m1 〈0.4, 0.1, 0.2〉 〈0.5, 0.4, 0.4〉 〈0.5, 0.2, 0.1〉 〈0.5, 0.1, 0.3〉 〈0.2, 0.3, 0.7〉
m2 〈0.5, 0.1, 0.3〉 〈0.3, 0.2, 0.2〉 〈0.3, 0.2, 0.3〉 〈0.4, 0.2, 0.2〉 〈0.3, 0.2, 0.2〉
m3 〈0.5, 0.3, 0.4〉 〈0.5, 0.1, 0.5〉 〈0.4, 0.2, 0.2〉 〈0.2, 0.2, 0.4〉 〈0.5, 0.2, 0.4〉
m4 〈0.6, 0.2, 0.3〉 〈0.4, 0.5, 0.2〉 〈0.3, 0.2, 0.4〉 〈0.7, 0.2, 0.1〉 〈0.3, 0.1, 0.1〉
m5 〈0.5, 0.3, 0.1〉 〈0.4, 0.6, 0.1〉 〈0.4, 0.2, 0.3〉 〈0.3, 0.1, 0.4〉 〈0.6, 0.3, 0.3〉

Step 3. The opinion of doctors for each patient Yk (k = 1, 2, 3, 4) are aggregated by using Equation (5)
given as follows: Ω1 = 〈0.4918, 0.2326, 0.3404〉, Ω2 = 〈0.5154, 0.1700, 0.2522〉, Ω3 =

〈0.4800, 0.1656, 0.2753〉 and Ω4 = 〈0.4319, 0.1942, 0.2444〉.
Step 4. The values of score functions are: Ψ(Ω1) = 0.1514, Ψ(Ω2) = 0.2632, Ψ(Ω3) = 0.2047 and

Ψ(Ω4) = 0.1875.
Step 5. Ranking all the patients Yk (k = 1, 2, 3, 4) in accordance with the value of the score Ψ(Ωk)

(k = 1, 2, 3, 4) of the overall single-valued neutrosophic soft numbers as Y2 � Y3 � Y4 � Y1.
Step 6. Therefore, Y2 is the more illness patient than other patients.

6.2. By Using SVNSWGA Operator

If we apply SVNSWGA operator on the proposed problem for the selection of appropriate
candidate(s) that follows the following steps:

Step 3. The aggregated values for each patients Yk (k = 1, 2, 3, 4) using SVNSWGA operator are
as follows from Equation (10): Ω1 = 〈0.4432, 0.3084, 0.3913〉, Ω2 = 〈0.4515, 0.1999, 0.3044〉,
Ω3 = 〈0.4224, 0.1825, 0.3079〉 and Ω4 = 〈0.3960, 0.2204, 0.3030〉.

Step 4. The values of score functions are: Ψ(Ω1) = 0.0519, Ψ(Ω2) = 0.1471, Ψ(Ω3) = 0.1145 and
Ψ(Ω4) = 0.0930.

Step 5. Ranking all the candidates Yk (k = 1, 2, 3, 4) in accordance with the value of the score Ψ(Ωk)

(k = 1, 2, 3, 4) of the overall single-valued neutrosophic soft numbers as Y2 � Y3 � Y4 � Y1.
Step 6. Hence, Y2 is the most illness patient diagnosed by the expert doctors .

From the above analysis, it is clear that although overall rating values of the alternatives are
different by using two operators, but ranking order of the alternatives are similar, the most illness
patient is Y2 among four patients.

7. Comparative Analysis

To compare the proposed work with the existing approach, an analysis has been made based
on aggregation operator (see [25,60,62]). In that reason, the different parameters of single-valued
neutrosophic soft numbers are aggregated by using weighted averaging operator corresponding to the
weighted vector (0.2, 0.1, 0.3, 0.15, 0.25)T and then obtained aggregated single-valued neutrosophic
soft matrix for the different candidates Yk (k = 1, 2, 3, 4) given in Table 7. From this evaluated
matrix, a comparative study has been established with the existing work based on weighted
aggregation operator on simplified neutrosophic numbers, single-valued neutrosophic Domi weighted
aggregation operators and single-valued neutrosophic weighted averaging operators developed by
researchers [25,60,62] for each candidate are shown in Table 8. It also shows that proposed method
is stable with compare the existing methods. From the Table 7, we can see that the candidate Y2 is
most illness person diagnosed by the experts doctors. The characteristic comparison between propose
study with existing methods are given in Table 9. The propose method utilize advance technique to
compare the existing works [56,57] where a decision making method has been develop based on some
soft algebraic operations in neutrosophic soft environment but present paper leads a decision making
method based on aggregating single-valued neutrosophic soft arguments in the environment of SVN
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soft numbers.The advantages of this paper is that they are capable to facilitate the descriptions of the
real-world problems situation with the help of their parameterizations property. Therefore, proposed
method can be utilize to solve decision-making problems instead of other existing operator in the
environment of SVN soft numbers.

Table 7. Aggregated value of single-valued neutrosophic soft matrix for the patients.

Experts C1 C2 C3 C4

m1 〈0.4884, 0.3378, 0.3411〉 〈0.5161, 0.1737, 0.2200〉 〈0.4854, 0.2018, 0.2679〉 〈0.4168, 0.1861, 0.2531〉
m2 〈0.4680, 0.2805, 0.3761〉 〈0.4256, 0.1320, 0.2711〉 〈0.4211, 0.1741, 0.2725〉 〈0.3605, 0.1741, 0.2449〉
m3 〈0.5545, 0.1565, 0.3990〉 〈0.4251, 0.2000, 0.3327〉 〈0.4092, 0.1320, 0.1911〉 〈0.4333, 0.2024, 0.3322〉
m4 〈0.4513, 0.2531, 0.3594〉 〈0.6182, 0.1569, 0.2169〉 〈0.5246, 0.1625, 0.3470〉 〈0.4573, 0.1843, 0.2024〉
m5 〈0.5081, 0.1682, 0.2226〉 〈0.4747, 0.2012, 0.2633〉 〈0.5223, 0.1702, 0.2952〉 〈0.4650, 0.2415, 0.2253〉

Table 8. Comparison analysis with the existing method.

Methods Ψ(Ω1) Ψ(Ω2) Ψ(Ω3) Ψ(Ω4) Ranking Order

Proposed SVNSWA operator 0.1514 0.2632 0.2047 0.1875 Y2 � Y3 � Y4 � Y1
Proposed SVNSWGA operator 0.0519 0.1417 0.1145 0.0930 Y2 � Y3 � Y4 � Y1
Ye [25] by SNWAA operator 0.1440 0.2583 0.1969 0.1822 Y2 � Y3 � Y4 � Y1
Ye [25] by SNWGA operator 0.1487 0.2506 0.1999 0.1852 Y2 � Y3 � Y4 � Y1

Chen and Ye [62] SVNDWA operator 0.1594 0.2732 0.2131 0.1915 Y2 � Y3 � Y4 � Y1
Chen and Ye [62] SVNDWG operator 0.1378 0.2383 0.1875 0.1760 Y2 � Y3 � Y4 � Y1

Sahin [60] SVNWAA operator 0.1515 0.2632 0.2047 0.1869 Y2 � Y3 � Y4 � Y1
Sahin [60] SVNWGA operator 0.1412 0.2445 0.1921 0.1791 Y2 � Y3 � Y4 � Y1

Table 9. Characteristic comparisons of different methods.

Methods Fuzzy Information Easier Weather Aggregate Parameter Information

Ye [25] Yes No
Chen and Ye [62] Yes No

Sahin [60] Yes No
Proposed operators Yes Yes

8. Conclusions

In this article, we have studied multi-criteria group decision-making problem using in the
environment of single-valued neutrosophic soft information. We have introduced two new operators
namely (SVNSWA) operator, (SVNSWGA) operators in SVN soft environment. The different features
of those recommended operators is deliberated. For this purpose, firstly some algebraic structures
of two SVNSNs are given and their operational rules are defined. The two aggregation operators
have been proposed in the environment of SVNS numbers. Some properties of these two kinds
of operators have been established. We justify the propose method with the existing methods
and a characteristic comparison also shown to demonstrate advantage and applicability of the
proposed method. A Medical decision-making problems has been studied based on SVNSWA
and SVNSWGA operators under the environment of SVN soft information. The main advantages
of these operators is that they are able to make smooth description of the real-world problems
by the use of parameterizations factor. Ultimately, a realistic example for the selection of most
illness patient is provided to develop a strategy and in accordance with expounding the utility and
effectiveness of the proposed method. In the future work, the propose model further develop new soft
aggregation operators for simplified neutrosophic sets and apply them to solve practical applications
like engineering [63], group decision-making [64], expert system, information fusion system, fault
diagnosis, robotics design [65] and other domains under different fuzzy soft environments.
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