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Abstract. In this paper, we examine the group structure of single valued neutrosophic sets. We introduce an approach to neu-
trosophic subgroup and establish some of its basic properties and characterizations. Then we give the homomorphic image and
preimage of a neutrosophic (normal) subgroup.
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1. Introduction

In many practical situations and in many complex
systems like biological, behavioral and chemical etc.,
different types of uncertainties are encountered. The
concept of fuzzy set was introduced by Zadeh [14]
to handle uncertainties in many real applications. The
traditional fuzzy set is characterized by the membership
value or the grade of membership value. Sometimes it
may be difficult to assign the membership value for a
fuzzy set. Consequently the concept of interval valued
fuzzy set [11] was proposed to capture the uncertainty
of grade of membership value. In some real life prob-
lems in expert system, belief system, information fusion
and so on, we must consider the truth-membership
as well as the falsity-membership for proper descrip-
tion of an object in uncertain, ambiguous environment.
Intuitionistic fuzzy set introduced by Atanassov [2]
is appropriate for such a situation. Neutrosophy was
introduced by Smarandache [10] in 1999 to handle the
indeterminate information and inconsistent information
which exist commonly in real situations. "It is a branch
of philosophy which studies the origin, nature and scope
of neutralities, as well as their interactions with differ-
ent ideational spectra" [10]. In the neutrosophic set, a
truth-membership, an indeterminacy-membership, and
a falsity-membership are represented independently.
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Neutrosophic set generalizes the above mentioned sets
from philosophical point of view. From scientific and
engineering point of view, the definition of neutrosophic
set was specified by Wang et al. [12] which is called
single valued neutrosophic set. The single valued neu-
trosophic set is a generalization of classical set, fuzzy
set, intuitionistic fuzzy set and paraconsistent set etc.
Neutrosophic set is applied to algebraic and topologi-
cal directions (see [1, 3–5, 8, 9]). Rosenfeld [7] initiated
the concept of fuzzy subgroups in 1971 and then so
many contributions were made on these main direction.
In [13], Xiaoping studied intuitionistic fuzzy normal
subgroup. Palaniappan et al. [6] gave the definition of
intuitionistic L-fuzzy subgroup and studied some of its
properties. In this work, we give an approach to group
structure of single valued neutrosophic sets. We define
neutrosophic normal subgroup and give some prop-
erties of these structures. Moreover, we define image
and preimage of a (single valued) neutrosophic set and
examine homomorphic image and preimage of a neu-
trosophic (normal) subgroup. By this way, we obtain
the generalized form of the fuzzy subgroup and intu-
itionistic fuzzy subgroup of a classical group.

2. Preliminaries

In this chapter, we give some preliminaries about sin-
gle valued neutrosophic sets and set operations, which
will be called neutrosophic sets, for simplicity.
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Definition 2.1. [10] A neutrosophic set A on the uni-
verse of X is defined as

A = {< x, tA(x), iA(x), fA(x) >, x ∈ X}
where tA, iA, fA : X →]−0, 1+[ and

−0 ≤ tA(x) + iA(x) + fA(x) ≤ 3+.

From philosophical point of view, the neutrosophic
set takes the value from real standard or non stan-
dard subsets of ]−0, 1+[. But in real life applications
in scientific and engineering problems it is difficult to
use neutrosophic set with value from real standard or
non-standard subset of ]−0, 1+[. Hence throughout this
work, the following specified definition of a neutro-
sophic set known as single valued neutrosophic set is
considered.

Definition 2.2. [12] Let X be a space of points
(objects), with a generic element in X denoted by
x. A single valued neutrosophic set (SVNS) A on
X is characterized by truth-membership function tA,

indeterminacy-membership function iA and falsity-
membership function fA. For each point x in X, tA(x),
iA(x), fA(x) ∈ [0, 1].

A neutrosophic set A can be written as

A =
n∑

i=1

< t(xi), i(xi), f (xi) > /xi, xi ∈ X.

Example 2.3.[12] Assume that X = {x1, x2, x3}, x1 is
capability, x2 is trustworthiness and x3 is price. The
values of x1, x2 and x3 are in [0, 1]. They are obtained
from the questionnaire of some domain experts, their
option could be a degree of "good service", a degree
of indeterminacy and a degree of "poor service". A is a
single valued neutrosophic set of X defined by

A =< 0.3, 0.4, 0.5 > /x1+ < 0.5, 0.2, 0.3 >

/x2+ < 0.7, 0.2, 0.2 > /x3.

Since the membership functions tA, iA, fA are
defined fromX into the unit interval [0, 1] as tA, iA, fA :
X → [0, 1], a (single valued) neutrosophic set A will
be denoted by a mapping defined as A : X → [0, 1] ×
[0, 1] × [0, 1] and A(x) = (tA(x), iA(x), fA(x)), for
simplicity.

Definition 2.4. [8, 12] Let A and B be two neutrosophic
sets on X. Then

(1) A is contained in B, denoted as A ⊆ B, if and
only if A(x) ≤ B(x). This means that tA(x) ≤
tB(x), iA(x) ≤ iB(x) and fA(x) ≥ fB(x). Two
setsA andB is called equal, i.e.,A = B iffA ⊆ B

and B ⊆ A.

(2) the union of A and B is denoted by C = A ∪ B

and defined as C(x) = A(x) ∨ B(x) where A(x)
∨ B(x) = (tA(x) ∨ tB(x), iA(x) ∨ iB(x), fA(x) ∧
fB(x)), for each x ∈ X. This means that

tC(x) = max{tA(x), tB(x)},
iC(x) = max{iA(x), iB(x)} and

fC(x) = min{fA(x), fB(x)}.
(3) the intersection of A and B is denoted by

C = A ∩ B and defined as C(x) = A(x) ∧ B(x)
where A(x) ∧ B(x) = (tA(x) ∧ tB(x), iA(x) ∧
iB(x), fA(x) ∨ fB(x)), for each x ∈ X. This
means that

tC(x) = min{tA(x), tB(x)},
iC(x) = min{iA(x), iB(x)} and

fC(x) = max{fA(x), fB(x)}.
(4) the complement of A is denoted by Ac and

defined as Ac(x) = (fA(x), 1 − iA(x), tA(x)), for
each x ∈ X. Here (Ac)c = A.

Proposition 2.5. [12] Let A, B and C be the neu-
trosophic sets on the common universe X. Then the
following properties are valid.

(1) A ∪ B = B ∪ A, A ∩ B = B ∩ A.

(2) A ∪ (B ∪ C) = (A ∪ B) ∪ C, A ∩ (B ∩ C) =
(A ∩ B) ∩ C.

(3) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C),
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

(4) A ∩ ∅ = ∅, A ∪ ∅ = A, A ∪ X = X, A ∩ X =
A, where t∅ = i∅ = 0, f∅ = 1 and tX = iX = 1,

fX = 0.

(5) (A ∪ B)c = Ac ∩ Bc, (A ∩ B)c = Ac ∪ Bc.

Definition 2.6. Let g : X1 → X2 be a function and A, B

be the neutrosophic sets of X1 and X2, respectively.
Then the image of a neutrosophic set A is a neutrosophic
set of X2 and it is defined as follows:

g(A)(y) = (tg(A)(y), ig(A)(y), fg(A)(y))

= (g(tA)(y), g(iA)(y), g(fA)(y)),

for all y ∈ X2 where

g(tA)(y) =
{∨

tA(x), if x ∈ g−1(y);

0, otherwise
,

g(iA)(y) =
{∨

iA(x), if x ∈ g−1(y);

0, otherwise
,
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g(fA)(y) =
{∧

fA(x), if x ∈ g−1(y);

1, otherwise.
And the preimage of a neutrosophic set B is a neu-

trosophic set of X1 and it is defined as follows: for all
x ∈ X1

g−1(B)(x) = (tg−1(B)(x), ig−1(B)(x), fg−1(B)(x))

= (tB(g(x)), iB(g(x)), fB(g(x)))

= B(g(x))

3. Neutrosophic subgroup

Definition 3.1. Let (X, ·) be a classical group and A

be a neutrosophic set on X. A is called a neutrosophic
subgroup of X if the following conditions are satisfied:
for each x, y ∈ X,

(N1)A(x · y) ≥ A(x) ∧ A(y), i.e.,
tA(x · y) ≥ tA(x) ∧ tA(y), iA(x · y) ≥ iA(x) ∧ iA(y)

and fA(x · y) ≤ fA(x) ∨ fA(y).
(N2) A(x−1) ≥ A(x), i.e.,
tA(x−1) ≥ tA(x), iA(x−1) ≥ iA(x) and fA(x−1) ≤

fA(x).
The collection of all neutrosophic subgroups of X is

denoted by NS(X).

Example 3.2. Let us take into consideration the
classical group X = {1, −1, i, −i} with the natural mul-
tiplication. Define the neutosophic set A on X as
follows:

A = {< 0.6, 0.3, 0.5 > /1+ < 0.7, 0.4, 0.3 > /

−1+ < 0.8, 0.4, 0.2 > /i+ < 0.8, 0.4, 0.2 > / − i}.
It is clear that the neutrosophic set A is a neutrosophic

subgroup of X.

Theorem 3.3. Let X be a classical group and A be a
neutrosophic subgroup of X. Then the following prop-
erties are satisfied:

(1) A(e) ≥ A(x), for all x ∈ X, where e is the unit
element of X.

(2) A(x−1) = A(x), for each x ∈ X.

Proof. (1) Let e be the unit element of X and x ∈ X be
arbitrary, then by (N1), (N2) of Definition 3.1,

tA(e) = tA(x · x−1)

≥ tA(x) ∧ tA(x−1)

≥ tA(x) ∧ tA(x) = tA(x).

fA(e) = fA(x · x−1)

≤ fA(x) ∨ fA(x−1)

≤ fA(x) ∨ fA(x) = fA(x).

From the similar idea, it is easily shown that iA(e) ≥
iA(x). Hence, the desired inequality A(e) ≥ A(x) is sat-
isfied, for all x ∈ X.

(2) Let x ∈ X be given. Since A is a neutrosophic sub-
group of X, A(x−1) ≥ A(x) is clear from (N2). Again
by applying (N2) and using group structure of X, the
other side of the inequality is proved as follows:

tA(x) = tA((x−1)−1) ≥ tA(x−1),

iA(x) = iA((x−1)−1) ≥ iA(x−1) and

fA(x) = fA((x−1)−1) ≤ fA(x−1). So,

A(x−1) = (tA(x−1), iA(x−1), fA(x−1))

= (tA(x), iA(x), fA(x)) = A(x).

Theorem 3.4. Let X be a classical group and A be a
neutrosophic set on X. Then A ∈ NS(X) if and only if
A(x · y−1) ≥ A(x) ∧ A(y), for each x, y ∈ X.

Proof. Let A be a neutrosophic subgroup of X and
x, y ∈ X. So, it is clear that

tA(x · y−1) ≥ tA(x) ∧ tA(y−1) = tA(x) ∧ tA(y).

According to the similar discussion, the following
inequalities are also true:

iA(x · y−1) ≥ iA(x) ∧ iA(y) and

fA(x · y−1) ≤ fA(x) ∨ fA(y). Hence,

A(x · y−1) = (tA(x · y−1), iA(x · y−1), fA(x · y−1))

≥ (tA(x) ∧ tA(y), iA(x) ∧ iA(y), fA(x) ∨ fA(y))

= (tA(x), iA(x), fA(x)) ∧ (tA(y), iA(y), fA(y))

= A(x) ∧ A(y).

Conversely, let e be the unit of X. Since X is a clas-
sical group,

tA(x−1) = tA(e · x−1)

≥ tA(e) ∧ tA(x)

= tA(x · x−1) ∧ tA(x)

≥ tA(x) ∧ tA(x) ∧ tA(x) = tA(x).

Similarly, iA(x−1) ≥ iA(x) and fA(x−1) ≤ fA(x).
So, the condition (N2) of Definition 3.1 is satisfied.
Now let us show the condition (N1),
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fA(x · y) = fA(x · (y−1)−1)

≤ fA(x) ∨ fA(y−1)

≤ fA(x) ∨ fA(y).

Also, the inequalities tA(x · y) ≥ tA(x) ∧ tA(y) and
iA(x · y) ≥ iA(x) ∧ iA(y) are clear. Therefore, (N1) of
Definition 3.1 is also satisfied.

Theorem 3.5. Let X be a classical group and A, B be
two neutrosophic sets on X. If A, B are neutrosophic
subgroups of X, then the intersection A ∩ B so is.

Proof. Let x, y ∈ X be arbitrary. By Theorem 3.4, it is
enough to show that

(A ∩ B)(x · y−1) ≥ (A ∩ B)(x) ∧ (A ∩ B)(y), i.e.,

tA∩B(x · y−1) ≥ tA∩B(x) ∧ tA∩B(y),

iA∩B(x · y−1) ≥ iA∩B(x) ∧ iA∩B(y)

and fA∩B(x · y−1) ≤ fA∩B(x) ∨ fA∩B(y).

First consider the truth-membership degree of the
intersection,

tA∩B(x · y−1) = tA(x · y−1) ∧ tB(x · y−1)

≥ (tA(x) ∧ tA(y)) ∧ (tB(x) ∧ tB(y))

= (tA(x) ∧ tB(x)) ∧ (tA(y) ∧ tB(y))

= tA∩B(x) ∧ tA∩B(y).

The other inequalities are similarly proved. There-
fore, A ∩ B ∈ NS(X).

Let A be a neutrosophic set on X and α ∈ [0, 1].
Define the α-level sets of A as follows:

(tA)α = {x ∈ X | tA(x) ≥ α},
(iA)α = {x ∈ X | iA(x) ≥ α}, and

(fA)α = {x ∈ X | fA(x) ≤ α}.
It is easy to verify that

(1) If A ⊆ B and α ∈ [0, 1], then

(tA)α ⊆ (tB)α, (iA)α ⊆ (iB)α, and (fA)α ⊇ (fB)α.

(2) α ≤ β implies (tA)α ⊇ (tA)β, (iA)α ⊇ (iA)β, and
(fA)α ⊆ (fA)β.

Proposition 3.6.A is a neutrosophic subgroup of a clas-
sical group X if and only if for all α ∈ [0, 1], α-level sets
of A, (tA)α, (iA)α and (fA)α are classical subgroups
of X.

Proof. Let A be a neutrosophic subgroup of X, α ∈
[0, 1] and x, y ∈ (tA)α( similarly x, y ∈ (iA)α, (fA)α).
By the assumption,

tA(x · y−1) ≥ tA(x) ∧ tA(y) ≥ α ∧ α = α (and sim-
ilarly, iA(x · y−1) ≥ α and fA(x · y−1) ≤ α). Hence
x · y−1 ∈ (tA)α, (and similarly x · y−1 ∈ (iA)α, (fA)α)
for each α ∈ [0, 1]. This means that (tA)α (and simi-
larly (iA)α, (fA)α) is a classical subgroup of X for each
α ∈ [0, 1].

Conversely, let (tA)α be a classical subgroup of X,
for each α ∈ [0, 1]. Let x, y ∈ X, α = tA(x) ∧ tA(y)
and β = tA(x). Since (tA)α and (tA)β are classi-
cal subgroups of X, x · y ∈ (tA)α and x−1 ∈ (tA)β.

Thus, tA(x · y) ≥ α = tA(x) ∧ tA(y) and tA(x−1) ≥
β = tA(x). Similarly, iA(x · y−1) ≥ iA(x) ∧ iA(y) and
fA(x · y−1) ≤ fA(x) ∨ fA(y). Hence the conditions of
Definition 3.1 are satisfied.

Theorem 3.7. Let X1, X2 be the classical groups and
g : X1 → X2 be a group homomorphism. If A is a neu-
trosophic subgroup of X1, then the image of A, g(A) is
a neutrosophic subgroup of X2.

Proof. Let A ∈ NS(X1) and y1, y2 ∈ X2. If g−1(y1) =
∅ or g−1(y2) = ∅, then it is obvious that g(A) ∈
NS(X2). Let us assume that there exist x1, x2 ∈ X1
such that g(x1) = y1 and g(x2) = y2. Since g is a group
homomorphism,

g(tA)(y1 · y−1
2 ) =

∨
y1·y−1

2 =g(x)

tA(x) ≥ tA(x1 · x−1
2 ),

g(iA)(y1 · y−1
2 ) =

∨
y1·y−1

2 =g(x)

iA(x) ≥ iA(x1 · x−1
2 ),

g(fA)(y1 · y−1
2 ) =

∧
y1·y−1

2 =g(x)

fA(x) ≤ fA(x1 · x−1
2 ).

By using the above inequalities let us prove that
g(A)(y1 · y−1

2 ) ≥ g(A)(y1) ∧ g(A)(y2).

g(A)(y1 · y−1
2 )

= (g(tA)(y1 · y−1
2 ), g(iA)(y1 · y−1

2 ),

g(fA)(y1 · y−1
2 ))

=
( ∨

y1·y−1
2 =g(x)

tA(x),
∨

y1·y−1
2 =g(x)

iA(x),

∧
y1·y−1

2 =g(x)

fA(x)

)
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≥ (tA(x1 · x−1
2 ), iA(x1 · x−1

2 ), fA(x1 · x−1
2 ))

≥ (tA(x1) ∧ tA(x2), iA(x1) ∧ iA(x2),

fA(x1) ∨ fA(x2))

= (tA(x1), iA(x1), fA(x1)) ∧ (tA(x2), iA(x2), fA(x2)).

This is satisfied for each x1, x2 ∈ X1 with g(x1) = y1
and g(x2) = y2, then it is obvious that

g(A)(y1 · y−1
2 )

≥
( ∨

y1=g(x1)

tA(x1),
∨

y1=g(x1)

iA(x1),
∧

y1=g(x1)

fA(x1)

)

∧
( ∨

y2=g(x2)

tA(x2),
∨

y2=g(x2)

iA(x2),
∧

y2=g(x2)

fA(x2)

)

= (g(tA)(y1), g(iA)(y1), g(fA)(y1))

∧ (g(tA)(y2), g(iA)(y2), g(fA)(y2))

= g(A)(y1) ∧ g(A)(y2).

Hence the image of a neutrosophic subgroup is also
a neutrosophic subgroup.

Theorem 3.8. Let X1, X2 be the classical groups and
g : X1 → X2 be a group homomorphism. If B is a neu-
trosophic subgroup of X2, then the preimage g−1(B) is
a neutrosophic subgroup of X1.

Proof. Let B ∈ NS(X2) and x1, x2 ∈ X1. Since g is
a group homomorphism, the following inequality is
obtained.

g−1(B)(x1 · x−1
2 )

= (tB(g(x1 · x−1
2 )), iB(g(x1 · x−1

2 )),

fB(g(x1 · x−1
2 )))

= (tB(g(x1) · g(x2)−1), iB(g(x1) · g(x2)−1),

fB(g(x1) · g(x2)−1))

≥ (tB(g(x1)) ∧ tB(g(x2)), iB(g(x1)) ∧ iB(g(x2)),

fB(g(x1)) ∨ fB(g(x2)))

= (tB(g(x1)), iB(g(x1)), fB(g(x1)))

∧ (tB(g(x2)), iB(g(x2)), fB(g(x2)))

= g−1(B)(x1) ∧ g−1(B)(x2).

Therefore, g−1(B) ∈ NS(X1).

Theorem 3.9. Let g : X1 → X2 be a homomorphism of
groups, A ∈ NS(X1) and define A−1 : X1 → [0, 1] ×

[0, 1] × [0, 1] as A−1(x) = A(x−1) for arbitrary x ∈
X1. Then the following properties are valid.

(1) A−1 ∈ NS(X1).
(2) (g(A))−1 = g(A−1).

Proof. It is obvious by the definitions.

Corollary 3.10. Let g : X1 → X2 be an isomorphism
of groups, A ∈ NS(X1), then g−1(g(A)) = A.

Corollary 3.11. Let g : X → X be an isomorphism on
a classical group X, A ∈ NS(X), then g(A) = A if and
only if g−1(A) = A.

4. Neutrosophic normal subgroup

Definition 4.1. Let X be a classical group and A be a
neutrosophic subgroup of X, then A is called a neutro-
sophic normal subgroup of X, if A(x · y · x−1) ≥ A(y)
for all x, y ∈ X. This means that

tA(x · y · x−1) ≥ tA(y), iA(x · y · x−1) ≥ iA(y)

and fA(x · y · x−1) ≤ fA(y), for all x, y ∈ X.

The collection all of the neutrosophic normal sub-
groups of X is denoted by NNS(X).

Theorem 4.2. Let X be a classical group and A, B ∈
NNS(X), then A ∩ B ∈ NNS(X).

Proof. Since A, B are neutrosophic normal subgroups
of X, then

tA(x · y · x−1) ≥ tA(y) and tB(x · y · x−1) ≥ tB(y).

So by the definition of the intersection,

tA∩B(x · y · x−1) = tA(x · y · x−1)

∧ tB(x · y · x−1)

≥ tA(y) ∧ tB(y)

= tA∩B(y).

By the similar observation,

iA∩B(x · y · x−1) ≥ iA∩B(y) and

fA∩B(x · y · x−1) ≤ fA∩B(y)

are satisfied. Therefore, the intersection of two neutro-
sophic normal subgroup is also a neutrosophic normal
subgroup.
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Proposition 4.3. Let X be a classical group and A be
a neutrosophic subgroup of X. Then the followings are
equivalent.

(1) A ∈ NNS(X).
(2) A(x · y · x−1) = A(y), for all x, y ∈ X.

(3) A(x · y) = A(y · x), for all x, y ∈ X.

Proof. (1) ⇒ (2): Let A be a neutrosophic normal sub-
group of X. Take x, y ∈ X, then by Definition 4.1,

tA(x · y · x−1) ≥ tA(y), iA(x · y · x−1) ≥ iA(y)

and fA(x · y · x−1) ≤ fA(y).

Thus, taking the advantage of the arbitrary property
of x, the following is got for the falsity-membership
of A,

fA(x−1 · y · x) = fA(x−1 · y · (x−1)−1) ≤ fA(y).

Therefore,

fA(y) = fA(x−1 · (x · y · x−1) · x)

≤ fA(x · y · x−1)

≤ fA(y),

i.e., fA(x · y · x−1) = fA(y).
Similarly, it is proved that iA(x · y · x−1) = iA(y) and

tA(x · y · x−1) = tA(y).
(2) ⇒ (3): Substituting y for y · x in (2), the condition

(3) is shown easily.
(3) ⇒ (1): According to A(y · x) = A(x · y), the

equality A(x · y · x−1) = A(y · x · x−1) = A(y) ≥
A(y) is satisfied.

Theorem 4.4. Let X be a classical group and A ∈
NS(X). Then A ∈ NNS(X) if and only if for arbi-
trary α ∈ [0, 1], if α-level sets of A are nonempty, then
(tA)α, (iA)α and (fA)α are all classical normal sub-
groups of X.

Proof. Similar to the proof of Theorem 3.6, therefore
omitted.

Theorem 4.5. Let X be a classical group and A ∈
NNS(X). Let XA = {x ∈ X | A(x) = A(e)}, where e is
the unit of X. Then the classical subset XA of X is a
normal subgroup of X.

Proof. Let A ∈ NNS(X). First it is necessary to show
that the classical set XA is a subgroup of X. Let us take
x, y ∈ XA, then by Theorem 3.4

A(x · y−1) ≥ A(x) ∧ A(y) = A(e) ∧ A(e) = A(e)

and always A(e) ≥ A(x · y−1). Hence x · y−1 ∈ XA,

i.e., XA is a subgroup of X.

Now it will be shown that XA is normal. Take arbi-
trary x ∈ XA and y ∈ X. Therefore, A(x) = A(e). Since
A ∈ NNS(X), the following is obtained

A(y · x · y−1) = A(y−1 · y · x) = A(x) = A(e).

Hence, y · x · y−1 ∈ XA. So, XA is a normal sub-
group of X.

Theorem 4.6. Let g : X1 → X2 be a group homomor-
phism and B ∈ NNS(X2). Then the preimage g−1(B) ∈
NNS(X1).

Proof. From Theorem 3.8, it is known that g−1(B) ∈
NS(X1). Hence it is sufficient to show that the normal-
ity property of g−1(B). For arbitrary x1, x2 ∈ X1, by
homomorphism of g and by the normality of B,

g−1(B)(x1 · x2) = B(g(x1 · x2))

= B(g(x1) · g(x2))

= B(g(x2) · g(x1))

= B(g(x2 · x1))

= g−1(B)(x2 · x1).

Hence, from Proposition 4.3, g−1(B) ∈ NNS(X1).

Theorem 4.7. Let g : X1 → X2 be a surjective homo-
morphism of classical groups X1 and X2. If A ∈
NNS(X1), then g(A) ∈ NNS(X2).

Proof. Sinceg(A) ∈ NS(X2) is clear from Theorem 3.7,
it is sufficient only to show that the normality condition
by using Proposition 4.3 (3). Take y1, y2 ∈ X2 such that
g−1(y1) /= ∅, g−1(y2) /= ∅ and g−1(y1 · y−1

2 ) /= ∅. So it
is inferred that

g(tA)(y1 · y2 · y−1
1 ) =

∨
z∈g−1(y1·y2·y−1

1 )

tA(z)

and g(tA)(y2) =
∨

z∈g−1(y2)

tA(z).

For all x2 ∈ g−1(y2), x1 ∈ g−1(y1) and x−1
1 ∈

g−1(y−1
1 ), since A is normal,

tA(x1 · x2 · x−1
1 ) ≥ tA(x2),

iA(x1 · x2 · x−1
1 ) ≥ iA(x2) and

fA(x1 · x2 · x−1
1 ) ≤ fA(x2)
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are obtained. Since g is a homomorphism, it follows
that

g(x1 · x2 · x−1
1 ) = g(x1) · g(x2) · g(x1)−1

= y1 · y2 · y−1
1 .

So, x1 · x2 · x−1
1 ∈ g−1(y1 · y2 · y−1

1 ). Hence∨
z∈g−1(y1·y2·y−1

1 )

tA(z)

≥
∨

x1∈g−1(y1),x2∈g−1(y2)

tA(x1 · x2 · x−1
1 )

≥
∨

x2∈g−1(y2)

tA(x2).

This means that

g(tA)(y1 · y2 · y−1
1 ) ≥ g(tA)(y2).

On the other hand, the following inequalities are
obtained in a similar way.

g(iA)(y1 · y2 · y−1
1 ) ≥ g(iA)(y2) and

g(fA)(y1 · y2 · y−1
1 ) ≤ g(fA)(y2).

So the desired inequality,

g(A)(y1 · y2 · y−1
1 )

= (g(tA)(y1 · y2 · y−1
1 ), g(iA)(y1 · y2 · y−1

1 ),

g(fA)(y1 · y2 · y−1
1 ))

≥ (g(tA)(y2), g(iA)(y2), g(fA)(y2))

= (tg(A)(y2), ig(A)(y2), fg(A)(y2)) = g(A)(y2).

is satisfied.

5. Conclusion

The concept of a group is of fundamental importance
in the study of algebra. In order to study effectively an
object with a given algebraic structure, it is necessary
to study as well the functions that preserve the given
algebraic structure (such functions are called homomor-
phisms). Normal subgroups play an important role in
determining both the structure of a group X and the

nature of homomorphisms with domain X. From this
point of view, we decided to propose the definition of
a neutrosophic subgroup and observed its fundamental
properties. Also, we discussed normality of a neutro-
sophic subgroup of a classical group and studied its
image and preimage under a group homomorphism.
For further research one can handle cyclic (respectively,
symmetric, abelian) neutrosophic group structure, and
some of other algebraic structures such as ideal, ring,
field etc. as well the neutrosophic topological structures.
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