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Abstract: In this manuscript, we extend the traditional multi-attributive border approximation area
comparison (MABAC) method for the multiple-criteria group decision-making (MCGDM) with
triangular fuzzy neutrosophic numbers (TFNNs) to propose the TFNNs-MABAC method. In the
proposed method, we utilize the TFNNs to express the values of criteria for each alternative in MCGDM
problems. First, we briefly acquaint the basic concept of TFNNs and describe its corresponding some
operation laws, the functions of score and accuracy, and the normalized hamming distance. We then
review two aggregation operators of TFNNs. Afterward, we combine the traditional MABAC method
with the triangular fuzzy neutrosophic evaluation and provide a sequence of calculation procedures
of the TFNNs-MABAC method. After comparing it with some TFNNs aggregation operators and
another method, the results showed that our extended MABAC method can not only effectively handle
the conflicting attributes, but also practically deal with incomplete and indeterminate information
in the MCGDM problem. Therefore, the extended MABAC method is more effective, conformable,
and reasonable. Finally, an investment selection problem is demonstrated as a practice to verify the
reasonability of our MABAC method.

Keywords: triangular fuzzy neutrosophic sets (TFNSs); MABAC method; MCGDM problems;
TFNNs-MABAC method; invested technology enterprise

1. Introduction

The MABAC (multi-attributive border approximation area comparison) approach has been widely
utilized to investigate multiple-criteria group decision-making (MCGDM) problems and has been
extensively applied in various case studies by many fabulous researchers. In many existing prestigious
pieces of literature, many original MCGDM approaches have been continually discussed, such as the
TODIM model [1–3], the PROMETHEE model [4–6], the TOPSIS model [7–9], SAW model [10,11],
the ELECTRE model [12,13], the VIKOR model [14], and the EDAS model [15].

In reality, many real-life MCGDM problems cannot easily interpret the criteria and linguistic
values with appropriate values as a consequence of the complexity and fuzziness of the alternatives.
These values should be described in the form of fuzzy to be more useful, rational, and feasible.
The theory of the fuzzy set (FS), initially apprised by Zadeh in [16], has been frequently utilized as
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a worthy instrument for MCGDM [17,18] problems. This theory can capture objects into members
of the set through a degree of membership that can be presented by arbitrary values within the
real-number interval from 0 to 1. Atanassov [19] then introduced the intuitionistic fuzzy set (IFS) that
characterizes each element of an object not only in the form of a membership degree but also in the term
of non-membership. Thus, it can describe the fuzzy information more definitively and specifically than
the FS. However, it can only manage uncertainty and incomplete information but not the inconsistent
and indeterminacy information that occurs usually in practice. Therefore, Smarandache [20] initiated
the neutrosophic, a branch of philosophy, to propose the theory of neutrosophic sets (NSs). To be
more helpful for applying the NSs in real-case studies, Wang et al. [21] defined a sub-class of NSs,
the single-valued neutrosophic sets (SVNSs), in which each element of an object is depicted by the
degrees of truth-membership, indeterminacy-membership, and falsity-membership spreading over
in the real-number interval. Ye [22] introduced the simplified neutrosophic sets (SNSs) to solve a
multicriteria decision-making (MCDM) problem. Afterward, Ye [23] offered the idea of a single-valued
neutrosophic linguistic set (SVNLS) combined with the TOPSIS method. Ye also explored two
aggregation operators of SVNLS to an environment of SVNLS. Deli and Braumi [24] exposed the
neutrosophic soft matrix (NSM) and investigated their operators to store NSs in computer memory.
Deli et al. [25] first developed the concept of NSs by introducing bipolar NSs for MCDM problems.
Based on the bipolar NSs, the functions of a score of accuracy can evaluate the values of alternatives and
select the best one. Stanujkic et al. [26] proposed a novel MCDM approach based on bipolar NSs and
the Hamming distance for assessing the quality of the websites. Stanujkic et al. [27] utilized SVNSs to
extend the MULTIMOORA method for handling complex problems through prediction and judgment.
Biswas et al. [28] innovated the idea of a triangular fuzzy neutrosophic number (TFNN) by combining
the concepts of NS and triangular fuzzy number (TFN). Deli and Şubaş [29] integrated the TFN and
triangular intuitionistic fuzzy numbers (TIFN) for reviewing several MCDM problems. Aal et al. [30]
explored two ranking means through information system quality under the TFN information. Liu [31]
studied the operators of SVNs weighted averaging and SVNs weighted geometric to implement a
decision-making problem.

Additionally, many recent MCGDM problems have actively involved a group of decision-makers
(DMs) in the process of decision-making to minimize the subjectivity of the DMs’ judgment. They tend
to have their own different opinions to assess alternatives and criteria and usually give their evaluation
opinions using the linguistic variables term. To deal with this, there are some studies of hesitant fuzzy
linguistic term sets (HFLTSs) [32] in MCGDM. Zhang et al. [33] introduced three novel algorithms
for solving MCGDM problems with multi granular unbalanced hesitant fuzzy linguistic information.
The first algorithm was utilized to express a linguistic distribution assessment (LDA) using a hesitant
linguistic distribution (HLD). Two others were used to modify an unbalanced HFLTS into a balanced
LDA and to modify a balanced LDA into an unbalanced LDA. Yu et al. [34] proposed a novel consensus
reaching model in MCGDM with multi-granular HFLTSs. This optimization model was established
to minimize the overall adjustment amount of DMs’ preference and to be very simpler than the use
of HFLTSs.

Many researchers have extensively developed applications of SVNs in MCGDM
problem. However, in uncertain and complex situations, the degrees of truth-membership,
indeterminacy-membership, and falsity-membership of SVNs cannot be used to delineate an element
with precise real-numbers. Meanwhile, TFN can effectively manage fuzzy information rather than the
real-number interval. Therefore, the combination of TFN with SVNs, or TFNNs, will be a suitable tool
to handle incomplete, indeterminacy, and uncertain information occurring in MCGDM problems.

The MABAC approach was first conveyed by Pamučar and Ćirović [35] in solving a selection
problem of transportation and resource distribution at a logistic center. The basic concept of this
approach is to look at many ideal attributes respond to criteria located at the border approximation area
(BAA). It can consider the conflicting attributes. Consequently, the MABAC takes the advantages of BAA
in concerning the inconsistency of decision maker and uncertainty conditions, whereas other traditional
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decision-making approaches cannot conduct it. Additionally, this approach has an uncomplicated
computation procedure and can reveal the decision theory in logical and systematic ways. Later on,
Pamučar et al. [36] improved the MABAC by utilizing interval-valued fuzzy-rough numbers (IVFRNs).
Pamučar et al. [37] integrated AHP (Analytical Hierarchy Process) and MABAC in developing a
software to assess some official university websites. Jia et al. [38] have utilized analytically the concept
of FS to develop a new MABAC model for MCGDM based on rough numbers (RNs). Alluding the
advantages of interval type-2 fuzzy set (IT2FS), Dorfeshan and Mousavi in [39] developed a novel
MABAC to determine the attribute path of beneficial projects under MCGDM process in a case study of
aircraft maintenance industries. Yu et al. [40] proposed a MABAC based on an improvement of type-1
fuzzy sets (T1FSs), interval type-2 fuzzy sets (IT2FSs) to handle intrinsic and extrinsic uncertainties.
Zhang et al. [41] extended MABAC for MCGDM cases with picture 2-tuple linguistic in evaluating the
project of renewable energy power. Mishra et al. [42] utilized interval valued intuitionistic fuzzy sets
(IVIFSs) to develop an extension of MABAC method for a programming language assessment.

In recent years, there are several MCGDM methods which can enhance the methods’ adaptability.
As far as we know, there have been no studies regarding the MABAC approach under TFNNs
environment for MCGDM problems. Therefore, we emphasize our attention to enlarging the MABAC
method to support the TFNN environment and implement it for evaluating an investment selection
problem. Later on, we summarize some contributions and motivations of this study as follows:

1. There are at least two motivations for using TFNNs. Firstly, TFNNs which are adopted by
TFN with NSs can effectively support uncertain information. In real practical cases, the same
judgment in the form of the linguistic variable may express different meanings for various people.
TFNNs provide DMs freedom decisions in defining the membership function and it can better
explain and handle inaccurate information. Secondly, TFNNs are a proper instrument to deal
with incomplete and indeterminacy information in MCGDM problems.

2. Because the computational complexity of TFNN, especially the loop performance in using some
aggregation operators of TFNNs, is relatively a bit slow, we require a simple and uncomplicated
method to determine decisions. Compared with some other methods, the MABAC has not only
abilities to effectively handle the conflicting attributes, but also logically reveal the decision-making
theory with uncomplicated and systematic computation procedures.

The remaining of our paper is managed systematically as follows: Section 2 discusses things
related to TFNNs, such as the definition of TFNNs, some operation laws, the functions of score and
accuracy, and the normalized hamming distance between two TFNNs. Later on, in Section 2, we also
depict the operators of triangular fuzzy neutrosophic number weighted averaging (TFNNWA) and
triangular fuzzy neutrosophic number weighted geometric (TFNNWG). Section 3 modifies the original
MABAC method to triangular fuzzy neutrosophic environment and shows a sequence of calculation
procedures of TFNN-MABAC model. Section 4 demonstrates an illustrative-example to select a
possible invested technology enterprise to investigate the proposed MABAC method and performs a
comparative analysis between our proposed MABAC and some other aggregation operators. Section 5
recapitulates our paper conclusions and discuses all possible future studies and researches.

2. Preliminaries

In this section, we re-discuss the definition of TFNNs, operation laws of TFNNs, the functions of
score and accuracy of TFNNs, and the normalized hamming distance between two arbitrary TFNNs.
We also recall the definition of TFNNWA and TFNNWG operators.

2.1. Triangular Fuzzy Number Neutrosophic Sets

Based on the concepts of single-valued neutrosophic sets and triangular fuzzy number intuitionistic
fuzzy sets (TFNIFSs), Biswas et al. [28] first developed the triangular fuzzy number neutrosophic
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(TFNNSs) by presenting the truth-membership degree (TMD), the indeterminacy-membership degree
(IMD), and the falsity-membership degree (FMD) in the form of triangular-fuzzy numbers.

Definition 1 ([28]). Let X be the universal set, the TFNNSs µ can be represented as:
µ =

{(
x,αµ(x), βµ(x),γµ(x)|x ∈ X

)}
where αµ(x), βµ(x),γµ(x) ∈ [0, 1] describe the truth-membership

degree, the indeterminacy-membership degree, and the falsity-membership degree respectively that
can be formulated by TFNs as follows.

αµ(x) =
(
αL
µ(x),α

M
µ (x),α

U
µ (x)

)
, 0 ≤ αL

µ(x) ≤ α
M
µ (x) ≤ α

U
µ (x) ≤ 1 (1)

βµ(x) =
(
βL
µ(x), β

M
µ (x), β

U
µ (x)

)
, 0 ≤ βL

µ(x) ≤ β
M
µ (x) ≤ β

U
µ (x) ≤ 1 (2)

γµ(x) =
(
γL
µ(x),γ

M
µ (x),γ

U
µ (x)

)
, 0 ≤ γL

µ(x) ≤ γ
M
µ (x) ≤ γ

U
µ (x) ≤ 1 (3)

For notational convenience, we assume that µ =((
αL
µ(x),αM

µ (x),αU
µ (x)

)
,
(
βL
µ(x), βM

µ (x), βU
µ (x)

)
,
(
γL
µ(x),γM

µ (x),γU
µ (x)

))
is a TFNN, it has to satisfy the

condition 0 ≤ αU
µ (x) + βU

µ (x) + γU
µ (x) ≤ 3.

Definition 2 ([28]). Let µ1 =
((
αL
µ1
(x),αM

µ1
(x),αU

µ1
(x)

)
,
(
βL
µ1
(x), βM

µ1
(x), βU

µ1
(x)

)
,
(
γL
µ1
(x),γM

µ1
(x),γU

µ1
(x)

))
,

µ2 =
((
αL
µ2
(x),αM

µ2
(x),αU

µ2
(x)

)
,
(
βL
µ2
(x), βM

µ2
(x), βU

µ2
(x)

)
,
(
γL
µ2
(x),γM

µ2
(x),γU

µ2
(x)

))
, and µ3 =((

αL
µ3
(x),αM

µ3
(x),αU

µ3
(x)

)
,
(
βL
µ3
(x), βM

µ3
(x), βU

µ3
(x)

)
,
(
γL
µ3
(x),γM

µ3
(x),γU

µ3
(x)

))
be three TFNNs, the following

mathematical operation laws are satisfied as:

µ1 ⊕ µ2 =


(
αL
µ1
(x) + αL

µ2
(x) − αL

µ1
(x)αL

µ2
(x),αM

µ1
(x) + αM

µ2
(x) − αM

µ1
(x)αM

µ2
(x),αU

µ1
(x) + αU

µ2
(x) − αU

µ1
(x)αU

µ2
(x)

)
,(

βL
µ1
(x)βL

µ2
(x), βM

µ1
(x)βM

µ2
(x), βU

µ1
(x)βU

µ2
(x)

)
,(

γL
µ1
(x)γL

µ2
(x), γM

µ1
(x)γM

µ2
(x), γU

µ1
(x)γU

µ2
(x)

)
 (4)

µ1 ⊗ µ2 =


(
αL
µ1
(x)αL

µ2
(x), αM

µ1
(x)αM

µ2
(x), αU

µ1
(x)αU

µ2
(x)

)
,(

βL
µ1
(x) + βL

µ2
(x) − βL

µ1
(x)βL

µ2
(x), βM

µ1
(x) + βM

µ2
(x) − βM

µ1
(x)βM

µ2
(x), βU

µ1
(x) + βU

µ2
(x) − βU

µ1
(x)βU

µ2
(x)

)
,(

γL
µ1
(x) + γL

µ2
(x) − γL

µ1
(x)γL

µ2
(x),γM

µ1
(x) + γM

µ2
(x) − γM

µ1
(x)γM

µ2
(x),γU

µ1
(x) + γU

µ2
(x) − γU

µ1
(x)γU

µ2
(x)

)
 (5)

λµ3 =



(
1−

(
1− αL

µ3
(x)

)λ
, 1−

(
1− αM

µ3
(x)

)λ
, 1−

(
1− αU

µ3
(x)

)λ)
,( (

βL
µ3
(x)

)λ
,

(
βM
µ3
(x)

)λ
,
(
βU
µ3
(x)

)λ)
,( (

γL
µ3
(x)

)λ
,

(
γM
µ3
(x)

)λ
,
(
γU
µ3
(x)

)λ)
, forλ > 0 (6)

µ3
λ =



( (
αL
µ3
(x)

)λ
,

(
αM
µ3
(x)

)λ
,
(
αU
µ3
(x)

)λ)
,(

1−
(
1− βL

µ3
(x)

)λ
, 1−

(
1− βM

µ3
(x)

)λ
, 1−

(
1− βU

µ3
(x)

)λ)
,(

1−
(
1− γL

µ3
(x)

)λ
, 1−

(
1− γM

µ3
(x)

)λ
, 1−

(
1− γU

µ3
(x)

)λ)
, forλ > 0 (7)

According to the properties of the real-number system, the operators mentioned in Definition 2 has
satisfied clearly as all TFNN properties follows.

µ1 ⊕ µ2 = µ2 ⊕ µ1, µ1 ⊗ µ2 = µ2 ⊗ µ1; (8)

λ(µ1 ⊕ µ2) = λµ2 ⊕ λµ1, (µ1 ⊗ µ2)
λ = (µ1)

λ
⊗ (µ2)

λ, f or λ > 0 (9)

λ1µ1 ⊕ λ2µ1 = (λ1 + λ2)µ1, µ1
λ1 ⊕ µ1

λ2 = µ1
(λ1+λ2), f or λ1,λ2 > 0. (10)



Axioms 2020, 9, 104 5 of 18

Definition 3 ([28]). Let µ1 =
((
αL
µ1
(x),αM

µ1
(x),αU

µ1
(x)

)
,
(
βL
µ1
(x), βM

µ1
(x), βU

µ1
(x)

)
,
(
γL
µ1
(x),γM

µ1
(x),γU

µ1
(x)

))
be a TFNN, the functions of score S(µ1) and accuracy A(µ1) can be respectively calculated by:

S(µ1) =
1
12

[
8 +

(
αL
µ1
(x) + 2αM

µ1
(x) + αU

µ1
(x)

)
−

(
βL
µ1
(x) + 2βM

µ1
(x) + βU

µ1
(x)

)
−

(
γL
µ1
(x) + 2γM

µ1
(x) + γU

µ1
(x)

)]
, f or S(µ1) ∈ [0, 1]

(11)

A(µ1) =
1
4

[(
αL
µ1
(x) + 2αM

µ1
(x) + αU

µ1
(x)

)
−

(
γL
µ1
(x) + 2γM

µ1
(x) + γU

µ1
(x)

)]
, f or A(µ1) ∈ [−1, 1] (12)

Consider two TFNNs in the real-number set: µ− = ((0, 0, 0), (1, 1, 1), (1, 1, 1)) and
µ+ = ((1, 1, 1), (0, 0, 0), (0, 0, 0)), then the values of score function µ− and µ+ are S(µ−) = 0 and
S(µ+) = 1, respectively. Moreover, the values of accuracy function A(µ−) is −1 for the TFNN µ− and
A(µ+) is 1 for the TFNN µ+. The accuracy function A(µ1) ∈ [−1, 1] states the discrepancy between
truth and falsity [28]. Larger the discrepancy indicates the most affirmative of the TFNNs.

Assume that there are two TFNNs µ1 and µ1, then, according to Definition 3, the following
conditions reach a true value.

i f S(µ1) < S(µ2), then µ1 < µ2;
i f S(µ1) > S(µ2), then µ1 > µ2;

i f S(µ1) = S(µ2) and A(µ1) < A(µ2), then µ1 < µ2;
i f S(µ1) = S(µ2) and A(µ1) > A(µ2), then µ1 > µ2;
i f S(µ1) = S(µ2) and A(µ1) = A(µ2), then µ1 = µ2;

(13)

Definition 4 ([28]). Let µ j =
((
αL
µ j
(x),αM

µ j
(x),αU

µ j
(x)

)
,
(
βL
µ j
(x), βM

µ j
(x), βU

µ j
(x)

)
,
(
γL
µ j
(x),γM

µ j
(x),γU

µ j
(x)

))
be a TFNNs group and W =

{
w j

}
be a set of the weighted criteria for j = 1, 2, 3, . . . , n in the group

of real-numbers respectively, the operator of TFNNWA notated by TFNNWA(µ1,µ2,µ3, . . . ,µn) is
determined by:

TFNNWA(µ1,µ2,µ3, . . . ,µn) = w1µ1 ⊕w2µ2 ⊕w3µ3 ⊕ . . .⊕wnµn =

n
⊕

j = 1
w jµ j (14)

Theorem 1 ([28]). Let µ j =
((
αL
µ j
(x),αM

µ j
(x),αU

µ j
(x)

)
,
(
βL
µ j
(x), βM

µ j
(x), βU

µ j
(x)

)
,
(
γL
µ j
(x),γM

µ j
(x),γU

µ j
(x)

))
be

a TFNNs group in the real-numbers set, the aggregated value of TFNNWA operator is also a TFNN as
the form as follows.

TFNNWA(µ1,µ2,µ3, . . . ,µn) =

n
⊕

j = 1
w jµ j =



1−
n∏

j=1

(
1−

(
αL

j

)w j
)
, 1−

n∏
j=1

(
1−

(
αM

j

)w j
)
, 1−

n∏
j=1

(
1−

(
αU

j

)w j
) , n∏

j=1

((
βL

j

)w j
)
,

n∏
j=1

((
βM

j

)w j
)
,

n∏
j=1

((
βU

j

)w j
) , n∏

j=1

((
γL

j

)w j
)
,

n∏
j=1

((
γM

j

)w j
)
,

n∏
j=1

((
γU

j

)w j
) 


(15)

Definition 5 ([28]). Let µ j =
((
αL
µ j
(x),αM

µ j
(x),αU

µ j
(x)

)
,
(
βL
µ j
(x), βM

µ j
(x), βU

µ j
(x)

)
,
(
γL
µ j
(x),γM

µ j
(x),γU

µ j
(x)

))
be a TFNNs group and W =

{
w j

}
be a set of the weighted criteria for j = 1, 2, 3, . . . , n in the group
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of real-numbers respectively, the operator of TFNNWG notated by TFNNWG(µ1,µ2,µ3, . . . ,µn) is
presented by:

TFNNWG(µ1,µ2,µ3, . . . ,µn) = µ1
w1 ⊗ µ2

w2 ⊗ µ3
w3 ⊗ . . .⊗ µn

wn =

n
⊗

j = 1
µ j

w j (16)

Theorem 2 ([28]). Let µ j =
((
αL
µ j
(x),αM

µ j
(x),αU

µ j
(x)

)
,
(
βL
µ j
(x), βM

µ j
(x), βU

µ j
(x)

)
,
(
γL
µ j
(x),γM

µ j
(x),γU

µ j
(x)

))
be

a TFNNs group in the real-numbers set, the aggregated value of TFNNWG operator is also a TFNN as
the form as follows:

TFNNWG(µ1,µ2,µ3, . . . ,µn) =

n
⊗

j = 1
µ j

w j =



 n∏
j=1

((
αL

j

)w j
)
,

n∏
j=1

((
αM

j

)w j
)
,

n∏
j=1

((
αU

j

)w j
) ,1−

n∏
j=1

(
1−

(
βL

j

)w j
)
, 1−

n∏
j=1

(
1−

(
βM

j

)w j
)
, 1−

n∏
j=1

(
1−

(
βU

j

)w j
) ,1−

n∏
j=1

(
1−

(
γL

j

)w j
)
, 1−

n∏
j=1

(
1−

(
γM

j

)w j
)
, 1−

n∏
j=1

(
1−

(
γU

j

)w j
) 


(17)

2.2. The Distance of Normalized Hamming between Any Two TFNNs

In many practical and theoretical issues, once we have two fuzzy sets in the same finite universe
of discourse, the way to measure a difference between them can be reflected by a distance. In this
paper, we reconsider the normalized Hamming distance for the fuzzy sets in an TFN circumstance
for MCGDM problem. The normalized Hamming distance of two TFNNs was initially identified by
Wang et al. [43] by adopting the basic concept of Hamming distance for triangular intuitionistic fuzzy
numbers (TIFN) [44].

Definition 6 ([43]). Assume that there are two TFNNs: µ1 =((
αL
µ1
(x),αM

µ1
(x),αU

µ1
(x)

)
,
(
βL
µ1
(x), βM

µ1
(x), βU

µ1
(x)

)
,
(
γL
µ1
(x),γM

µ1
(x),γU

µ1
(x)

))
and µ2 =((

αL
µ2
(x),αM

µ2
(x),αU

µ2
(x)

)
,
(
βL
µ2
(x), βM

µ2
(x), βU

µ2
(x)

)
,
(
γL
µ2
(x),γM

µ2
(x),γU

µ2
(x)

))
; the normalized Hamming

distance H(µ1,µ2) between these two TFNNs can be depicted precisely by:

H(µ1,µ2) =
1
9

[∣∣∣αL
µ1
(x) − αL

µ2
(x)

∣∣∣+ ∣∣∣αM
µ1
(x) − αM

µ2
(x)

∣∣∣+ ∣∣∣αU
µ1
(x) − αU

µ2
(x)

∣∣∣+ ∣∣∣βL
µ1
(x) − βL

µ2
(x)

∣∣∣+ ∣∣∣βM
µ1
(x) − βM

µ2
(x)

∣∣∣
+

∣∣∣βU
µ1
(x) − βU

µ2
(x)

∣∣∣+ ∣∣∣γL
µ1
(x) − γL

µ2
(x)

∣∣∣+ ∣∣∣γM
µ1
(x) − γM

µ2
(x)

∣∣∣+ ∣∣∣γU
µ1
(x) − γU

µ2
(x)

∣∣∣
+

∣∣∣γU
µ1
(x) − γU

µ2
(x)

∣∣∣] (18)

3. The Proposed MABAC Method for MCGDM Problems under TFNNs Environment

In recent MCGDM problems, the MABAC model has become one of the prospective
decision-making approaches, due to its ability to consider conflicting attributes. It makes many
scholars frequently innovate in venturing to utilize it in many fuzzy set circumstances. We also attempt
to blend the MABAC model with the TFNNs environment by revealing the assessment values in the
term of TFNNs. To be more specific, we provide the calculation procedures for our proposed MABAC
method as follows and also show it in Figure 1.
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Let {E1, E2, . . . , Em} be a number of alternatives, {d1, d2, . . . , ds} be a group of decision makers
with weighting-vector for each decision maker being {v1, v2, . . . , vs}, and {c1, c2, . . . , cn} be a number of
criteria with weighting-vector for each criterion being {w1, w2, . . . , wn}, which thus satisfies wi ∈ [0, 1],

vk ∈ [0, 1],
n∑

j=1
w j = 1, and

s∑
k=1

vk = 1.

Step 1. Build the fuzzy decision-matrix µ(k) =
[
µk

i j

]
m x n

of each decision-maker, in which

µk
i j =

(((
αL

ij

)k
,
(
αM

ij

)k
,
(
αU

ij

)k
)
,
((
βL

ij

)k
,
(
βM

ij

)k
,
(
βU

ij

)k
)
,
((
γL

ij

)k
,
(
γM

ij

)k
,
(
γU

ij

)k
) )

, and assume that((
αL

ij

)k
,
(
αM

ij

)k
,
(
αU

ij

)k
)
∈ [0, 1] is the TMD,

((
βL

ij

)k
,
(
βM

ij

)k
,
(
βU

ij

)k
)
∈ [0, 1] is the IMD,((

γL
ij

)k
,
(
γM

ij

)k
,
(
γU

ij

)k
)
∈ [0, 1] is the FMD, and 0 ≤

(
αU

ij

)k
+

(
βU

ij

)k
+

(
γU

ij

)k
≤ 3 where

i = 1, 2, 3, . . . , m, j = 1, 2, 3, . . . , n, and k = 1, 2, 3, . . . , s.
Step 2. Determine the group TFNNs decision-making matrix F =[((

αL
fi j

,αM
fi j

,αU
fi j

)
,
(
βL

fi j
, βM

fi j
, βU

fi j

)
,
(
γL

fi j
,γM

fi j
,γU

fi j

))]
m x n

in which F =
[

fi j
]
m x n

where for TFNNWA Operator

fi j =



(
1−

s∏
k=1

(
1−

(
αL

ij

)k
)vk

, 1−
s∏

k=1

(
1−

(
αM

ij

)k
)vk

, 1−
s∏

k=1

(
1−

(
αU

ij

)k
)vk

)
,(

s∏
k=1

((
βL

ij

)k
)vk

,
s∏

k=1

((
βM

ij

)k
)vk

,
s∏

k=1

((
βU

ij

)k
)vk

)
,(

s∏
k=1

((
γL

ij

)k
)vk

,
s∏

k=1

((
γM

ij

)k
)vk

,
s∏

k=1

((
γU

ij

)k
)vk

)


(19)
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or for TFNNWG Operator

fi j =



(
s∏

k=1

((
αL

ij

)k
)vk

,
s∏

k=1

((
αM

ij

)k
)vk

,
s∏

k=1

((
αU

ij

)k
)vk

)
,(

1−
s∏

k=1

(
1−

(
βL

ij

)k
)vk

, 1−
s∏

k=1

(
1−

(
βM

ij

)k
)vk

, 1−
s∏

k=1

(
1−

(
βU

ij

)k
)vk

)
,(

1−
s∏

k=1

(
1−

(
γL

ij

)k
)vk

, 1−
s∏

k=1

(
1−

(
γM

ij

)k
)vk

, 1−
s∏

k=1

(
1−

(
γU

ij

)k
)vk

)


(20)

Step 3. Transform the group TFNNs decision making F =
[

fi j
]
m x n

into the normalized group TFNNs

decision matrix N =
[((
αL

ni j
,αM

ni j
,αU

ni j

)
,
(
βL

ni j
, βM

ni j
, βU

ni j

)
,
(
γL

ni j
,γM

ni j
,γU

ni j

))]
m x n

in which N =
[
ni j

]
m x n

where nij can be reached by using Equation (22) or (23). We then calculate the minimum and the
maximum values of TFNNs for each criterion C j ( j = 1, 2, 3, . . . , n).

αL−
fi j

= min
1 ≤ i ≤m

{
αL

fi j

}
, βL−

fi j
= min

1 ≤ i ≤m

{
βL

fi j

}
, γL−

fi j
= min

1 ≤ i ≤m

{
γL

fi j

}
, αU+

fi j
= max

1 ≤ i ≤m

{
αU

fi j

}
,

βU+
fi j

= max
1 ≤ i ≤m

{
βU

fi j

}
, and γU+

fi j
= max

1 ≤ i ≤m

{
γU

fi j

}
.

(21)

If C j is a benefit criterion, each element of the matrix F can be normalized as follows.

ni j =



 αL
fi j
− αL−

fi j

αU+
fi j
− αL−

fi j

,
αM

fij
− αL−

fi j

αU+
fi j
− αL−

fi j

,
αU

fij
− αL−

fi j

αU+
fi j
− αL−

fi j

 βU+
fi j
− βU

fij

βU+
fi j
− βL−

fi j

,
βU+

fi j
− βM

fij

βU+
fi j
− βL−

fi j

,
βU+

fi j
− βL

fi j

βU+
fi j
− βL−

fi j

, γL
fi j
− γL−

fi j

γU+
fi j
− γL−

fi j

,
γM

fij
− γL−

fi j

γU+
fi j
− γL−

fi j

,
γU

fij
− γL−

fi j

γU+
fi j
− γL−

fi j



 (22)

If C j is a cost criterion, each element of the matrix F can be normalized as follows.

ni j =



 αU+
fi j
− αU

fij

αU+
fi j
− αL−

fi j

,
αU+

fi j
− αM

fij

αU+
fi j
− αL−

fi j

,
αU+

fi j
− αL

fi j

αU+
fi j
− αL−

fi j

,

 βU+
fi j
− βU

fij

βU+
fi j
− βL−

fi j

,
βU+

fi j
− βM

fij

βU+
fi j
− βL−

fi j

,
βU+

fi j
− βL

fi j

βU+
fi j
− βL−

fi j

, γU+
fi j
− γU

fij

γU+
fi j
− γL−

fi j

,
γU+

fi j
− γM

fij

γU+
fi j
− γL−

fi j

,
γU+

fi j
− γL

fi j

γU+
fi j
− γL−

fi j




(23)

Step 4. Utilize Equation (24) to calculate the weighted matrix

P =
[((
αL

pi j
,αM

pi j
,αU

pi j

)
,
(
βL

pi j
, βM

pi j
, βU

pi j

)
,
(
γL

pi j
,γM

pi j
,γU

pi j

))]
m x n

in which P =
[
pi j

]
m x n

and
n∑

j=1
w j = 1.

pi j = w j ∗ ni j =


(
1−

(
1− αL

ni j

)w j , 1−
(
1− αM

ni j

)w j , 1−
(
1− αU

ni j

)w j
)
,((

βL
ni j

)w j ,
(
βM

ni j

)w j ,
(
βU

ni j

)w j
)
,((

γL
ni j

)w j ,
(
γM

ni j

)w j ,
(
γU

ni j

)w j
)

 (24)
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Step 5. Based on Equation (25), the border-approximation-area (BAA) matrix

Q =
[((
αL

q j
,αM

q j
,αU

q j

)
,
(
βL

q j
, βM

qi j
, βU

qi j

)
,
(
γL

q j
,γM

q j
,γU

q j

))]
1 x n

in which Q =
[
q j
]
1 x n

can be constructed
and q j stands for the BAA for criterion j.

q j =



(
m∏

i=1

((
αL

pi j

)1/m
)
,

m∏
i=1

((
αM

pi j

)1/m
)
,

m∏
i=1

((
αU

pi j

)1/m
) )

,(
1−

m∏
i=1

(
1−

(
βL

pi j

)1/m
)
, 1−

m∏
i=1

(
1−

(
βM

pi j

)1/m
)
, 1−

m∏
i=1

(
1−

(
βU

pi j

)1/m
))

,(
1−

m∏
i=1

(
1−

(
γL

pi j

)1/m
)
, 1−

m∏
i=1

(
1−

(
γM

pi j

)1/m
)
, 1−

m∏
i=1

(
1−

(
γU

pi j

)1/m
))


(25)

Step 6. Based on Equation (13) and Definition 6, calculate the distance matrix D =
[
di j

]
m x n

. The element
di j is called the alternatives’ distance from BAA and is depicted by using Equation (26).

di j =


H
(
pi j, q j

)
, i f pi j > q j

0, i f pi j = q j

−H
(
pi j, q j

)
, i f pi j < q j

(26)

where H
(
pi j, q j

)
is the normalized Hamming distance between the alternative pi j and the BAA q j.

According to the traditional MABAC’s principle, we can see that if di j = 0, the alternative Ei will
be a part of the border approximation area (G); if di j > 0 (di j has a positive value), the alternative Ei will
be a part of the upper approximation area (G+); and if di j < 0 (di j has a negative value), the alternative
Ei will be a part of the lower approximation area (G−).

Since the ideal alternative E+
i and the non-ideal alternative E−i are spread across the upper

approximation border (G+) and the lower approximation border (G−), respectively, in order to decide
the best alternative, we should have as many the criterion of the alternative as possible located on the
upper approximation border (G+).

Step 7. Compute the final score value V(Ei) by using Equation (27).

V(Ei) =
n∑

j=1
di j, (i = 1, 2, 3, . . . , m) . (27)

Step 8. Based on the value of V(Ei), rank all the alternatives in descending order. In MCGDM problems
for a selection case study, the alternative Ei will be the best alterative when the final score value
V(Ei) has the highest value.

4. Numerical Example and Discussion

This section separated into two subsections. Firstly, we present calculating steps of the proposed
TFNNs-MABAC model for MCGDM, in this case, we illustrate an invest selection problem. Secondly,
we compare our proposed TFNNs-MABAC method with TFNNWA Operator, TFNNWG Operator,
and VIKOR method.

4.1. Calculating Steps of the Proposed TFNNs-MABAC Method for MCGDM Problems

This sub-section demonstrates an illustrative example for evaluating an invest selection problem
under the TFNNs environment to show the proposed MABAC method. Suppose that a growth
investor wants to provide a sum of money to invest in one of the five technology enterprise candidates
Ei(i = 1, 2, . . . , 5). The investor has assigned three decision-makers dk(k = 1, 2, 3) to evaluate these
five technology enterprises. Each technology enterprise will be assessed based on four prerequisite
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criteria C j( j = 1, 2, 3, 4), which are the market-growth analysis (C1), the market-risk analysis (C2),
the employee’s analysis (C3), and the environmental impact analysis (C4), where C1, C2, and C3 are
benefit criteria, and C4 is a cost criterion. The weighting-vector for each criterion w j = {w1, w2, w3, w4}

has been given as w = {0.41, 0.14, 0.25, 0.20} and the weighting-vector for each decision-maker
vk = {v1, v2, v3} has been determined as v = {0.35, 0.40, 0.25}. Based on the decision-makers’ experience
and knowledge, the evaluation process will be conducted in the form of TFNNs.

In order to determine the best technology enterprise, we present the proposed calculation
procedure step by step as follows.

Step 1. Build the fuzzy decision-matrix µ(k) =
[
µk

i j

]
m x n

based on the evaluation of the decision makers

dk for each alternative Ei into each criterion C j that can be illustrated in Tables 1–3.

Step 2. Utilize Equation (19) to determine the group TFNNs decision-making matrix F =
[

fi j
]
m x n

using TFNNWA Operator and the results are presented in Table 4.
Step 3. Use Equation (22) or (23) to transform the group TFNNs decision making F =

[
fi j

]
m x n

into the

normalized group TFNNs decision matrix N =
[
ni j

]
m x n

and the results are shown in Table 5.

Step 4. Utilize Equation (24) to calculate the weighted TFNNs matrix P =
[
pi j

]
m x n

. The elements of
matrix P can be listed sequentially in Table 6.

Step 5. Construct the BAA matrix Q =
[
q j
]
1 x n

by using Equation (25) as seen in Table 7.

Step 6. Determine the distance matrix D =
[
di j

]
m x n

by using Equation (26) and the elements of matrix
D can be seen in Table 8.

Step 7. Calculate V(Ei) by using Equation (27) as listed in Table 9.
Step 8. Based on the results of V(Ei), all alternatives can be sorted in descending order. The alternative

Ei that has maximum value is the most possible selected alternative. Obviously, the result in term
of the ranking order of those alternatives is E1 > E5 > E4 > E2 > E3. Thus, the selected technology
enterprise in which the investment company invest to is the alternative E1.

Table 1. TFNNs judgement matrix by the decision maker d1.

C1 C2 C3 C4

E1

 (0.5, 0.7, 0.9),
(0.1, 0.2, 0.4),
(0.1, 0.2, 0.3)


 (0.2, 0.4, 0.6),
(0.3, 0.4, 0.5),
(0.1, 0.3, 0.4)


 (0.4, 0.5, 0.6),
(0.1, 0.2, 0.3),
(0.1, 0.2, 0.3)


 (0.3, 0.6, 0.9),
(0.4, 0.5, 0.7),
(0.1, 0.3, 0.5)


E2

 (0.4, 0.5, 0.6),
(0.3, 0.4, 0.5),
(0.2, 0.3, 0.4)


 (0.1, 0.3, 0.5),
(0.2, 0.4, 0.6),
(0.1, 0.2, 0.4)


 (0.4, 0.5, 0.9),
(0.5, 0.6, 0.7),
(0.4, 0.5, 0.6)


 (0.3, 0.4, 0.6),
(0.2, 0.3, 0.5),
(0.4, 0.5, 0.7)


E3

 (0.2, 0.4, 0.5),
(0.1, 0.3, 0.4),
(0.4, 0.5, 0.7)


 (0.1, 0.2, 0.3),
(0.3, 0.4, 0.5),
(0.5, 0.6, 0.7)


 (0.6, 0.7, 0.9),
(0.2, 0.4, 0.5),
(0.1, 0.3, 0.4)


 (0.3, 0.4, 0.7),
(0.4, 0.6, 0.9),
(0.1, 0.2, 0.3)


E4

 (0.1, 0.4, 0.6),
(0.2, 0.5, 0.7),
(0.1, 0.2, 0.3)


 (0.4, 0.6, 0.7),
(0.2, 0.3, 0.4),
(0.1, 0.4, 0.6)


 (0.3, 0.5, 0.7),
(0.2, 0.3, 0.4),
(0.1, 0.2, 0.5)


 (0.4, 0.6, 0.9),
(0.3, 0.5, 0.7),
(0.1, 0.2, 0.4)


E 5

 (0.6, 0.7, 0.9),
(0.1, 0.2, 0.3),
(0.1, 0.2, 0.3)


 (0.4, 0.6, 0.7),
(0.3, 0.4, 0.7),
(0.1, 0.3, 0.4)


 (0.4, 0.5, 0.6),
(0.1, 0.3, 0.4),
(0.1, 0.3, 0.5)


 (0.2, 0.3, 0.9),
(0.1, 0.3, 0.4),
(0.1, 0.4, 0.5)





Axioms 2020, 9, 104 11 of 18

Table 2. TFNNs judgement matrix by the decision maker d2.

C1 C2 C3 C4

E1

 (0.4, 0.6, 0.7),
(0.1, 0.2, 0.3),
(0.1, 0.2, 0.3)


 (0.1, 0.3, 0.5),
(0.2, 0.3, 0.4),
(0.1, 0.2, 0.3)


 (0.3, 0.4, 0.5),
(0.1, 0.3, 0.4),
(0.2, 0.4, 0.6)


 (0.2, 0.4, 0.7),
(0.3, 0.4, 0.6),
(0.2, 0.3, 0.4)


E2

 (0.3, 0.4, 0.6),
(0.2, 0.5, 0.7),
(0.3, 0.5, 0.6)


 (0.2, 0.3, 0.4),
(0.1, 0.3, 0.5),
(0.2, 0.3, 0.4)


 (0.3, 0.4, 0.6),
(0.4, 0.5, 0.9),
(0.2, 0.3, 0.5)


 (0.1, 0.3, 0.5),
(0.1, 0.2, 0.3),
(0.1, 0.2, 0.4)


E3

 (0.3, 0.6, 0.9),
(0.2, 0.4, 0.7),
(0.5, 0.7, 0.9)


 (0.1, 0.2, 0.4),
(0.1, 0.3, 0.6),
(0.4, 0.7, 0.9)


 (0.1, 0.3, 0.4),
(0.2, 0.4, 0.6),
(0.1, 0.3, 0.5)


 (0.3, 0.4, 0.6),
(0.4, 0.7, 0.9),
(0.1, 0.2, 0.5)


E4

 (0.2, 0.3, 0.6),
(0.2, 0.6, 0.9),
(0.1, 0.3, 0.4)


 (0.1, 0.7, 0.9),
(0.3, 0.4, 0.5),
(0.3, 0.4, 0.6)


 (0.4, 0.6, 0.9),
(0.2, 0.3, 0.4),
(0.1, 0.2, 0.3)


 (0.3, 0.4, 0.5),
(0.1, 0.2, 0.3),
(0.1, 0.2, 0.3)


E5

 (0.4, 0.5, 0.6),
(0.1, 0.3, 0.4),
(0.1, 0.2, 0.5)


 (0.5, 0.6, 0.9),
(0.3, 0.4, 0.6),
(0.2, 0.3, 0.4)


 (0.4, 0.5, 0.7),
(0.2, 0.3, 0.4),
(0.3, 0.4, 0.5)


 (0.2, 0.3, 0.6),
(0.1, 0.3, 0.4),
(0.1, 0.2, 0.5)


Table 3. TFNNs judgement matrix by the decision maker d3.

C1 C2 C3 C4

E1

 (0.4, 0.5, 0.7),
(0.1, 0.2, 0.5),
(0.1, 0.2, 0.3)


 (0.2, 0.3, 0.5),
(0.3, 0.4, 0.6),
(0.1, 0.2, 0.3)


 (0.3, 0.4, 0.7),
(0.2, 0.3, 0.4),
(0.2, 0.5, 0.7)


 (0.3, 0.5, 0.7),
(0.3, 0.5, 0.6),
(0.2, 0.3, 0.4)


E2

 (0.3, 0.4, 0.5),
(0.4, 0.5, 0.6),
(0.4, 0.5, 0.6)


 (0.2, 0.3, 0.5),
(0.1, 0.3, 0.4),
(0.2, 0.3, 0.4)


 (0.2, 0.4, 0.6),
(0.1, 0.5, 0.9),
(0.2, 0.3, 0.6)


 (0.2, 0.3, 0.5),
(0.1, 0.2, 0.4),
(0.1, 0.2, 0.4)


E3

 (0.4, 0.6, 0.7),
(0.3, 0.4, 0.6),
(0.6, 0.7, 0.9)


 (0.1, 0.2, 0.4),
(0.1, 0.3, 0.4),
(0.4, 0.6, 0.9)


 (0.2, 0.3, 0.4),
(0.2, 0.3, 0.5),
(0.1, 0.3, 0.4)


 (0.2, 0.4, 0.6),
(0.4, 0.6, 0.9),
(0.1, 0.2, 0.3)


E4

 (0.2, 0.3, 0.4),
(0.2, 0.7, 0.9),
(0.1, 0.3, 0.4)


 (0.1, 0.4, 0.7),
(0.3, 0.4, 0.9),
(0.3, 0.5, 0.6)


 (0.4, 0.5, 0.9),
(0.2, 0.3, 0.5),
(0.1, 0.2, 0.4)


 (0.2, 0.4, 0.6),
(0.1, 0.2, 0.4),
(0.1, 0.2, 0.3)


E5

 (0.4, 0.5, 0.7),
(0.1, 0.3, 0.5),
(0.1, 0.2, 0.4)


 (0.5, 0.6, 0.7),
(0.3, 0.4, 0.5),
(0.2, 0.3, 0.4)


 (0.4, 0.5, 0.6),
(0.2, 0.3, 0.5),
(0.3, 0.4, 0.6)


 (0.2, 0.3, 0.4),
(0.1, 0.3, 0.4),
(0.1, 0.2, 0.3)


Table 4. The group TFNNs decision matrix F by TFNNWA Operator.

C1 C2 C3 C4

E1

 (0.437, 0.6175, 0.7957),
(0.1, 0.2, 0.3769),
(0.1, 0.2, 0.3)


 (0.161, 0.3367, 0.5375),
(0.255, 0.3565, 0.4786),
(0.1, 0.2304, 0.3317)


 (0.3367, 0.437, 0.593),

(0.1189, 0.260, 0.3616),
(0.1569, 0.3318, 0.4892)


 (0.262, 0.5025, 0.7957),
(0.3317, 0.4573, 0.633),
(0.1569, 0.3, 0.4324)


E2

 (0.3367, 0.437, 0.577),
(0.274, 0.4624, 0.5987),
(0.2797, 0.4181, 0.5206)


 (0.1663, 0.3, 0.4621),
(0.1274, 0.3317, 0.504),
(0.1569, 0.2603, 0.4)


 (0.3142, 0.437, 0.7537),

(0.3058, 0.5329, 0.824),
(0.2549, 0.3587, 0.5578)


 (0.1996, 0.337, 0.5375),
(0.1274, 0.230, 0.3854),
(0.162, 0.2756, 0.4865)


E3

 (0.2942, 0.539, 0.7688),
(0.1736, 0.362, 0.5537),
(0.484, 0.6222, 0.8242)


 (0.1, 0.2, 0.3667),

(0.1468, 0.3317, 0.509),
(0.4324, 0.6381, 0.8242)


 (0.342, 0.4796, 0.6795),

(0.2, 0.3722, 0.5378),
(0.1, 0.3, 0.4373)


 (0.2762, 0.4, 0.6383),

(0.4, 0.6381, 0.9),
(0.1, 0.2, 0.368)


E4

 (0.166, 0.3367, 0.5573),
(0.2, 0.585, 0.8242),
(0.1, 0.2603, 0.3616)


 (0.219, 0.6054, 0.8066),
(0.260, 0.3616, 0.5356),
(0.2042, 0.4229, 0.6)


 (0.3667, 0.5426, 0.8531),

(0.2, 0.3, 0.4229),
(0.1, 0.2, 0.3854)


 (0.314, 0.4793, 0.7307),
(0.1468, 0.276, 0.4336),

(0.1, 0.2, 0.3317)


E5

 (0.479, 0.5818, 0.7708),
(0.1, 0.2603, 0.3824),
(0.1, 0.2, 0.3954)


 (0.467, 0.6, 0.8066),

(0.3, 0.4, 0.605),
(0.1569, 0.3, 0.4)


 (0.4, 0.5, 0.6434),

(0.1569, 0.3, 0.4229),
(0.2042, 0.3616, 0.5233)


 (0.2, 0.3, 0.7275),

(0.1, 0.3, 0.4),
(0.1, 0.2549, 0.44)
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Table 5. The normalized TFNNs decision matrix N.

C1 C2 C3 C4

E1

 (0.4301, 0.7168, 1),
(0, 0.138, 0.3824),
(0, 0.138, 0.2761)


 (0.0868, 0.335, 0.6191),
(0.267, 0.4796, 0.7353),

(0, 0.1801, 0.32)


 (0.0417, 0.2279, 0.517),

(0, 0.2004, 0.3442),
(0.1243, 0.5064, 0.8502)


 (0, 0.4918, 0.8961),

(0.3334, 0.5533, 0.710),
(0.1398, 0.4825, 0.8527)


E2

 (0.2707, 0.430, 0.6525),
(0.240, 0.5004, 0.6886),
(0.2481, 0.4392, 0.5807)


 (0.0938, 0.283, 0.5124),

(0, 0.4278, 0.7884),
(0.0785, 0.2213, 0.4142)


 (0, 0.2779, 0.8156),

(0.2649, 0.587, 1),
(0.3393, 0.5651, 1)


 (0.4331, 0.77, 1),
(0.643, 0.8368, 0.9656),
(0, 0.5456, 0.8384)


E3

 (0.2032, 0.592, 0.9572),
(0.1017, 0.361, 0.6265),

(0.5302, 0.721, 1)


 (0, 0.1415, 0.3774),
(0.0406, 0.4278, 0.798),

(0.5491, 0.743, 1)


 (0.052, 0.3069, 0.6778),
(0.1149, 0.359, 0.5939),
(0, 0.4368, 0.7368)


 (0.264, 0.6639, 0.8715),

(0, 0.3272, 0.625),
(0.3066, 0.7412, 1)


E4

 (0, 0.2707, 0.6211),
(0.138, 0.6697, 1),
(0, 0.2213, 0.3613)


 (0.1684, 0.7152, 1),

(0.278, 0.4904, 0.8546),
(0.1439, 0.4459, 0.6904)


 (0.974, 0.4239, 1),
(0.1149, 0.2567, 0.431),
(0, 0.2184, 0.6235)


 (0.109, 0.531, 0.8078),
(0.5829, 0.7804, 0.941),
(0.4003, 0.7412, 1)


E5

 (0.497, 0.6601, 0.9604),
(0, 0.2213, 0.3899),
(0, 0.138, 0.4079)


 (0.5194, 0.7075, 1),

(0.3612, 0.5706, 1),
(0.0785, 0.2761, 0.4142)


 (0.159, 0.3447, 0.6109),

(0.0538, 0.2567, 0.431),
(0.2276, 0.5716, 0.9246)


 (0.1145, 0.832, 0.9994),

(0.625, 0.75, 13),
(0.1202, 0.5992, 1)


Table 6. The weighted normalized TFNNs decision matrix P.

C1 C2 C3 C4

E1

 (0.2059, 0.4039, 1),
(0, 0.444, 0.6743),
(0, 0.444, 0.59)


 (0.0126, 0.0555, 0.126),
(0.831, 0.9022, 0.9578),
(0, 0.7866, 0.8525)


 (0.0106, 0.063, 0.1664),

(0, 0.6691, 0.7659),
(0.5938, 0.844, 0.9602)


 (0, 0.1266, 0.3642),

(0.803, 0.8883, 0.9338),
(0.6747, 0.8644, 0.9686)


E2

 (0.1214, 0.2059, 0.3516),
(0.5574, 0.7529, 0.8581),
(0.5647, 0.7137, 0.8002)


 (0.014, 0.0455, 0.0956),

(0, 0.8879, 0.9672),
(0.7004, 0.8096, 0.8839)


 (0, 0.0626, 0.3447),
(0.7174, 0.8753, 1),
(0.7626, 0.867, 1)


 (0.1073, 0.2547, 1),
(0.9155, 0.965, 0.993),
(0, 0.8859, 0.9653)


E3

 (0.0889, 0.3076, 0.7253),
(0.3917, 0.6587, 0.8255),

(0.7709, 0.8745, 1)


 (0, 0.0211, 0.0641),
(0.639, 0.8879, 0.9689),
(0.8967, 0.9592, 1)


 (0.013, 0.0875, 0.2466),
(0.582, 0.7741, 0.8778),
(0, 0.8129, 0.9265)


 (0.0595, 0.1959, 0.337),

(0, 0.7998, 0.9102),
(0.7894, 0.9418, 1)


E4

 (0, 0.1214, 0.3283),
(0.444, 0.8484, 1),
(0, 0.5388, 0.6587)


 (0.0255, 0.1612, 1),
(0.8359, 0.905, 0.9782),
(0.7623, 0.893, 0.9494)


 (0.0252, 0.1288, 1),
(0.582, 0.7118, 0.8102),
(0, 0.6836, 0.8886)


 (0.023, 0.1404, 0.2809),
(0.8976, 0.952, 0.9879),
(0.8327, 0.9418, 1)


E5

 (0.2457, 0.3575, 0.7339),
(0, 0.5388, 0.6797),
(0, 0.444, 0.6923)


 (0.0974, 0.1581, 1),

(0.8671, 0.9244, 1),
(0.7004, 0.8351, 0.8839)


 (0.042, 0.1002, 0.2102),

(0.4817, 0.7118, 0.81),
(0.6907, 0.8695, 0.9806)


 (0.024, 0.2998, 0.7807),

(0.9102, 0.944, 1),
(0.6546, 0.9026, 1)


Table 7. The TFNNs-BAA matrix Q

[
q j

]
1 x 4

.

C1 C2 C3 C4

qj

 (0, 0.2565, 0.5724),
(0.316, 0.6815, 1),
(0.3694, 0.6517, 1)


 (0, 0.0671, 0.2388),
(0.7341, 0.9025, 1),
(0.7058, 0.8761, 1)


 (0, 0.085, 0.3124),
(0.5197, 0.7613, 1),
(0.5047, 0.8257, 1)


 (0, 0.1927, 0.4852),
(0.8274, 0.9267, 1),
(0.6692, 0.9126, 1)


Table 8. The distance between the matrix N and the matrix Q.

C1 C2 C3 C4

E1 0.294133218 0.135433717 0.13017763 0.044585725
E2 −0.14492263 0.127541677 −0.073960167 0.17199896
E3 −0.132228984 −0.070633077 0.096657248 0.156082795
E4 −0.166411125 0.125660975 0.201853503 −0.064361377
E5 0.241339491 0.140794649 0.076253482 0.061268628

Table 9. The final score values of alternatives.

E1 E2 E3 E4 E5

V(Ei) 0.60433029 0.08065784 0.049877982 0.096741976 0.51965625
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4.2. Compare the TFNNs-MABAC Method with Some TFNNs Aggregation Operators and VIKOR Method

This sub-section demonstrates the comparison between our proposed TFNNs-MABAC with
TFNNWA operator and TFNNWG operator to examine the effectiveness of our proposed MABAC
method in the TFNN environment. Based on the obtained results of Table 4 and weighting-vector for
each criterion w j = {0.41, 0.14, 0.25, 0.20}, the operators of TFNNWA and TFNNWG can be used to
calculate overall fi j to fi (See Table 10). The use of these two operators aims to fuse overall the weighted
input data that are expressed as TFNNs into a single TFNN (see Theorem 1 and 2). In other words,
the aggregation result of both TFNNWA or TFNNWG operators is still in terms of fuzzy information.
Moreover, to look at an exact number or a crips value representing the aggregation result for each
alternative, we will easily find them through the score function value of TFNNs. After calculating the
values of the TFNNs score function S( fi), we can generate the results of alternatives score as presented
in Table 11. Afterward, the alternatives’ ranking order by these two TFNNs aggregation operators can
be seen in Table 13 and Figure 2.

Analyzing the results of our proposed TFNNs-MABAC method with TFNNWA and TFNNWG
operators, we confirm that the results of our proposed MABAC method are the same as the results
generated by the TFNNWA operator but insignificantly changed with the TFNNWG operator.
The proposed TFNNs-MABAC method showed that the alternatives E1 and E5, respectively, placed in
the first position and the second position, whereas the TFNNWG advised vice versa. Since the results
in terms of ranking order provided by both aggregation operators are different, we then investigated
further the discrepancy between truth and falsity of the TFNNWA and TFNNWG results for each
alternative through the accuracy function of TFNNs. After calculating the accuracy function values of
the TFNNs A( fi) for each aggregation operator, as seen in Table 12, we obtain the accuracy function
values for all alternatives determined by TFNNWA have a bit larger than TFNNWG. It indicates that
the ranking order suggested by TFNNWA is more affirmative in this aggregate comparison.

Nevertheless, in terms of the computational complexity, those two aggregation operators need
relatively shorter computations to obtain decision-making by evaluating overall alternatives with their
operators. Considering the abovementioned TFNNWA’s advantage and from its result, as shown in
Table 4, we then continued to perform the procedures of our proposed TFNNs-MABAC method for
selecting the best alternative. The TFNNs-MABAC method evaluates ideal and non-ideal alternatives
by spreading as many the criterion of the alternative as possible located on the upper approximation
border. Although the TFNNs-MABAC takes a bit more time in returning the decision, it considers
the conflicting attribute to avoid the inconsistency and uncertainty of DMs. Therefore, our proposed
TFNNs-MABAC can be more scientific and reasonable in real-life MCGDM applications.

Furthermore, comparing our TFNNs-MABAC method with the TFNNs-VIKOR [43] method,
as displayed in Table 13 and Figure 2, the best alternative selected by the VIKOR method is similar;
however, the result of ranking order is slightly different to our proposed method. The VIKOR method
advised the alternative E3 and the alternative E2, respectively, placed in the fourth position and the
fifth position, whereas the proposed method suggested vice versa. Additionally, the alternatives’
evaluation process in the VIKOR method is based on distance measures from the positive and negative
ideal solutions in terms of each criterion like set-pair Analysis and TOPSIS. In contrast to other
decision-making methods, the VIKOR method chooses an alternative with the lowest final score as the
best alternative.

Table 10. The overall alternative values by using some TFNNs aggregation operators.

f1 f2 f3 f4 f5

TFNNWA

 (0.34, 0.52, 0.72),
(0.15, 0.27, 0.42),
(0.12, 0.25, 0.36)


 (0.28, 0.4, 0.61),
(0.21, 0.39, 0.57),
(0.22, 0.34, 0.5)


 (0.27, 0.45, 0.68),

(0.2, 0.4, 0.59),
(0.23, 0.41, 0.59)


 (0.25, 0.46, 0.72),
(0.19, 0.39, 0.57),
(0.11, 0.24, 0.38)


 (0.41, 0.51, 0.74),
(0.13, 0.29, 0.42),
(0.12, 0.25, 0.43)


TFNNWG

 (0.32, 0.49, 0.69),
(0.17, 0.29, 0.45),
(0.12, 0.25, 0.38)


 (0.27, 0.39, 0.58),
(0.23, 0.42, 0.63),
(0.23, 0.35, 0.5)


 (0.25, 0.42, 0.64),
(0.22, 0.42, 0.66),
(0.32, 0.49, 0.69)


 (0.23, 0.44, 0.68),
(0.19, 0.43, 0.65),
(0.11, 0.25, 0.4)


 (0.38, 0.49, 0.73),
(0.14, 0.29, 0.43),
(0.13, 0.26, 0.43)
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Table 11. The score function value of alternatives S( fi).

S( f1) S( f2) S( f3) S( f4) S( f5)

TFNNWA 0.6661 0.5566 0.5505 0.6129 0.6641

TFNNWG 0.6476 0.5393 0.5010 0.5868 0.6511
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Figure 2. Flow diagram of the calculation procedures for our proposed MABAC method.

Table 12. The accuracy function value of alternatives S( fi).

A( f1) A( f2) A( f3) A( f4) A( f5)

TFNNWA 0.2799 0.0680 0.0546 0.2309 0.2779

TFNNWG 0.2479 0.0480 −0.0603 0.1937 0.2476

Table 13. The results of ranking order of alternatives.

Ranking Order

TFNNWA E1 > E5 > E4 > E2 > E3
TFNNWG E5 > E1 > E4 > E2 > E3

TFNNs-VIKOR method [43] E1 > E5 > E4 > E3 > E2
TFNNs-MABAC method E1 > E5 > E4 > E2 > E3

5. Conclusions

In this article, we proposed the TFNNs-MABAC method based on some fundamental theories
in TFNNs and the traditional MABAC model for MCGDM. Firstly, we reviewed the concepts,
some essential operators, and operation laws of TFNNs, and then encapsulated the score and
accuracy functions of TFNNs. Afterward, we discussed two aggregation operators regarding
TFNNs and reviewed the definition of normalized Hamming distance among two TFNNs. Secondly,
we developed the TFNNs-MABAC method by integrating the traditional MABAC with TFNNs.
We demonstrated the steps of calculating the procedure of our proposed TFNNs-MABAC in
detail through a numerical-example for an invest selection problem. Eventually, we performed
a comparative-analysis to underline the benefits of the proposed TFNNs-MABAC. The proposed
method verified conformity, effectiveness, and reasonableness for implemented to MCGDM problems.

In practice decision-making real-life time, the TFNNs are an effective instrument to solve the
impreciseness and incompleteness of DMs. However, there is a limitation of the proposed method.
Due to the number of functions for each membership degree of TFNNs, increasingly, the computational
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complexity in particular to calculate the overall value of some aggregation TFNN operators for a
large of TFNNs group will be a bit slower and more complex. Therefore, it needs a high-performance
computing technology or a database indexing technique to retrieve the overall aggregated value fast in
the decision-making process.

Future works can utilize our proposed TFNNs-MABAC method to risk assessment for MCGDM
cases, such as [45–50], many other uncertain and fuzzy circumstances [51–60]. The neutrosophic sets,
such as [61–69], can be many possible chances to improve our proposed MABAC method for further
studies. Other interesting future studies are to develop a novel decision-making model based on
the TFNNs in social network group decision making [70] or apply the model to two-sided matching
decision-making problems [71].
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