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Abstract 

This paper presents a new correlation coefficient measure, which satisfies the requirement of this measure equaling 
one if and only if two interval neutrosophic sets (INSs) are the same. And an objective weight of INSs is presented 
to unearth and utilize deeper information that is uncertain. Using the proposed weighted correlation coefficient 
measure of INSs, a decision-making method is developed, which takes into account the influence of the 
evaluations’ uncertainty and both the objective and subjective weights. 
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1. Introduction

The seminal theory of fuzzy sets (FSs) that was 
proposed by Zadeh in 1965 1 is regarded as an important 
tool for solving multi-criteria decision-making 

(MCDM) problems 2, 3. Since then, many new 
extensions that have resolved issues surrounding 
imprecise, incomplete and uncertain information have 
been suggested 4. For example, Turksen 5 introduced the 
interval-valued fuzzy set (IVFS) using an interval 
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number instead of one specific value to define the 
membership degree. Furthermore, in order to depict 
fuzzy information comprehensively, Atanassov and 
Gargov 6, 7 defined IFSs and interval-valued 
intuitionistic fuzzy sets (IVIFSs), which can handle 
incomplete and inconsistent information. Hesitant fuzzy 
sets (HFSs) were introduced by Torra and Narukawa 8 
to deal with situations where people are hesitant in 
expressing their preference regarding objects in a 
decision-making process. Moreover, all these extensions 
of FSs have been developed by authors working in 
various fields 9-11 with further extensions still being 
proposed 12-17. In particular, Florentin Smarandache 18, 19 
introduced neutrosophic logic and neutrosophic sets 
(NSs) in 1995, with the latter being characterized by the 
functions of truth, indeterminacy and falsity. What’s 
more, the three functions’ values lie in ]0 ,  1 [− + , the 
non-standard unit interval, which is the extension of the 
standard interval [0,  1]  of IFS. Additionally, the 
uncertainty shown here, i.e. the indeterminacy factor, is 
immune to truth and falsity values, while the 
incorporated uncertainty depends on the degrees of 
belongingness and non-belongingness in an IFS 20. 

However, NSs are difficult to apply in actual 
decision-making problems. Therefore, the single-valued 
neutrosophic set (SVNS) was put forward, with a 
number of MCDM methods being proposed under a 
single-valued neutrosophic environment 21-27, and some 
other extensions of NSs have been introduced 28-30. In 
consideration of the fact that using exact numbers to 
describe the degrees of truth, falsity and indeterminacy 
about a particular statement is sometimes infeasible in 
real situations, Wang et al. 31 proposed the concept of 
INSs and presented the set-theoretic operators of an 
INS. What’s more, the operations of an INS were 
discussed in Ref. 32. To correct deficiencies in Ref. 31, 
Zhang et al. 33 refined the INS’s operations, proposed a 
comparison approach between interval neutrosophic 
numbers (INNs) and developed the aggregation 
operators for INSs. In addition, kinds of MCDM 
methods utilizing INSs were put forward, including 
those using aggregation operators 33, a fuzzy cross-
entropy 34, similarity measures 35 and outranking 36. 

The correlation coefficient is an important tool for 
judging the relationship between two objects, and under 
fuzzy circumstances, the correlation coefficient is a 
principal vehicle for calculating the fuzziness of 
information in FS theory, which has been widely 

developed. For example, Chiang and Lin 37 introduced 
the correlation of FSs and in 1991 Gerstenkorn and 
Manko 38 defined the correlation of IFSs. However, 
Hong and Hwang 39 pointed out that the correlation 
coefficient in Ref. 38 did not satisfy the condition that 

( , ) 1K A B =  if and only if A B= , where ( , )K A B  
denotes the correlation coefficient between two FSs A  
and B . They also generalized the correlation coefficient 
of IFSs in a probability space 39 and proved that the 
method proposed overcame the shortcoming mentioned 
above in the case of finite spaces. Furthermore, Hung 
and Wu 40 defined the correlation coefficient of IFSs by 
utilizing the concept of centroids and introduced the 
concept of positive and negative correlation. Based on 
Ref. 40, Hanafy et al. 41 defined the correlation 
coefficient of generalized IFSs whose degrees of 
membership and non-membership lie between 0 and 
0.5. Moreover, Bustince and Burillo 42 discussed the 
correlation coefficient under an interval-valued 
intuitionistic fuzzy environment and demonstrated their 
properties. Additionally, in an interval-valued 
intuitionistic fuzzy environment, the correlation 
coefficient can also be an effective vehicle. For 
example, based on the correlation coefficient method of 
IVIFSs proposed in Ref. 42, Ye 43 developed a weighted 
correlation coefficient measure to solve MCDM 
problems with incompletely known criterion weight 
information, where the weight is determined by the 
entropy measure. Furthermore, the correlation 
coefficient has been widely applied in various scientific 
fields, such as decision making 44-46, pattern recognition 
47 and machine learning 48. 

The correlation coefficient measure is also effective 
under neutrosophic environments. Hanafy et al. 49 
defined the correlation and correlation coefficient of 
NSs, and Ye 21 introduced the correlation and 
correlation coefficient of SVNSs and utilized this 
measure to solve MCDM problems. Following the 
correlation coefficient in Ref. 49, Broumi and 
Smarandache 50 proposed the correlation coefficient 
measure and the weighted correlation coefficient 
measure of INSs. Nevertheless, there are some 
drawbacks in certain situations regarding the correlation 
coefficient measure defined in Ref. 21. In order to 
overcome these disadvantages, Ye 51 developed an 
improved correlation coefficient measure of SVNSs and 
extended it to INSs. 
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With regard to MCDM problems, alternatives are 
evaluated under various criteria. Therefore, criteria 
weights reflect the relative importance in ranking 
alternatives from a set of those available. With respect 
to multiple weights, they can be divided into two 
categories: subjective weights and objective weights 52. 
Subjective weights are related to the preferences or 
judgments of decision makers, while objective weights 
usually refer to the relative importance of various 
criteria without any consideration of the decision 
maker’s preferences. The subjective weight measure 
and objective weight measure have both been 
extensively studied. 

Regarding the subjective weight measure, Saatty 53, 54 
proposed an eigenvector method using pairwise weight 
ratios to obtain the weights of belonging of each 
member of the set. Subsequently, Keeney and Raiffa 55 
discussed some direct assessing methods to determine 
the subjective weight. Based on Ref. 54, Cogger and Yu 
56 introduced a new eigenweight vector whose 
computation is easier than Saatty’s method. Moreover, 
Chu 57 proposed a weighted least-squares method, 
several examples of which were shown to compare 
favourably with the eigenvector method. In order to deal 
with mixed multiplicative and fuzzy preference 
relations, Wang et al. 58 presented a chi-squared method. 

As for the objective weight, based on the notion of 
contrast intensity and the conflicting character of the 
evaluation criteria, Diakoulaki et al. 59 proposed the 
importance of criteria through an inter-criteria 
correlation method to obtain the objective weight. Wu 60 
made use of the maximizing deviation method and 
constructed a non-liner programming model to obtain 
the objective weight. Moreover, Zou et al. 61 proposed a 
new weight evaluation process, which utilized the 
entropy measure, and applied it in a water quality 
assessment. 

In general, the subjective method reflects the 
preference of the decision maker, while the objective 
method makes use of mathematical models to unearth 
the objective information. However, the subjective 
method may be influenced by the level of the decision 
maker’s knowledge and the objective method neglects 
the decision maker’s preference. The most common 
method of overcoming this shortage, and benefiting 
from not only the expertise of decision makers but also 
the relative importance of evaluation information, is to 
integrate the subjective and objective weights to explore 

a decision-making process that approaches, as closely as 
possible, the actual one. For instance, Ma et al. 62 set up 
a two-objective programming model by integrating the 
subjective and objective approaches to solve decision-
making problems; moreover this two-objective 
programming problem can be solved by making use of 
the linear weighted summation method. Similarly, 
Wang and Parkan 63 utilized a linear programming 
technique to integrate the subjective fuzzy preference 
relation and the objective decision matrix information in 
three different ways. 

As mentioned above, many objective weight 
measures have been proposed with the entropy weight 
being one of the most widely used approaches for 
solving MCDM problems 61, 64, 65. The entropy is also an 
important concept in the fuzzy environment. The fuzzy 
entropy was first introduced by Zadeh 1, 4 to measure 
uncertain information. In 1972, Luca and Termini 66 
proposed the axiomatic definition of the entropy of FSs 
and defined the entropy using the non-probability 
concept. Moreover, Trillas and Riera 67 proposed 
general expressions for the entropy and in 1982 Yager 68 
defined the fuzziness degree of an FS in terms of a lack 
of distinction between the FS and its complement. Fan 
and Xie 69 proposed the fuzzy entropy measure induced 
by distance, and similarly the entropy has been widely 
developed in an intuitionistic fuzzy environment. 
Bustince and Burillo 70 provided an axiom definition of 
an intuitionistic fuzzy entropy. Based on the axiomatic 
definition of the entropy of Luca et al. 66, Szmidt et al. 71 
extended it into IFSs and proposed an entropy measure 
for IFSs as a result of a geometric interpretation of IFSs 
using a ratio of distances between them; furthermore, 
they also proposed some new entropy measures based 
on the similarity measures in Ref. 72. With regard to the 
neutrosophic environment, Majumdar et al. 73 
introduced the entropy of SVNSs by providing an 
axiomatic definition based on the entropy’s definition of 
an FS proposed by Luca et al. 66, and proposed a new 
entropy measure based on the notion that the uncertainty 
of a SVNS is due to the belongingness, non-
belongingness and indeterminacy parts. Moreover, the 
relationships among the similarity measures, distance 
measures and entropy measures of FSs, IVFSs, IFSs and 
NSs have also been investigated 73-77. The entropy is 
also effective in dealing with practical problems. For 
example, as mentioned above, the entropy can be used 
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to obtain the objective weight in MCDM problems 43, 61, 

65, 78. 
However, most contributions on measuring the 

correlation coefficient and entropy concentrate on 
extensions of FSs and little effort has been made in this 
regard on INSs, which will restrict its potential 
scientific and engineering applications. Furthermore, the 
extant research about the correlation coefficient mostly 
only utilizes the objective measure under an 
environment where information about the criterion 
weight for alternatives is completely unknown or 
incompletely unknown 43, 78. However, the influence 
caused by the uncertainty of an evaluations still exists, 
whereas the information about the criterion weight is 
known and the objective weight can avert the non-
determinacy and arbitrariness caused by the subjective 
weight 79. Therefore, a lot more work on this issue needs 
to be conducted. Consequently, the correlation 
coefficient measure, weighted correlation coefficient 
measure and entropy measure for INSs are extended in 
this paper, and an objective weight measure based on 
the entropy for INSs is also proposed. Additionally, the 
notion that the weighted correlation coefficient measure 
should make use of the integrated weight is proposed. 
Furthermore, a MCDM procedure based on the 
weighted correlation coefficient measure, which 
considers both the subjective and objective weights, is 
established, and an illustrative example is provided to 
demonstrate the applicability of the proposed measures. 

The rest of this paper is organized as follows. Section 
2 briefly introduces IVIFSs, NSs, SVNSs and INSs, as 
well as some operations for INSs, such as intersection 

and union. In Section 3, the correlation coefficient 
measure, weighted correlation coefficient measure, 
entropy measure, and their properties for INSs are 
developed. In addition, an objective weight measure that 
makes use of the entropy for INSs is explored. In 
Section 4, a decision-making procedure based on the 
weighted correlation coefficient measure using the 
integrated weight for MCDM problems is provided. In 
Section 5, an illustrative example is presented to 
illustrate the proposed method and a comparative 
analysis and discussion are also provided. Finally, 
conclusions are drawn in Section 6. 

2. Preliminaries

In this section, some basic concepts and definitions 
related to INSs are introduced; these will be used in the 
rest of the paper. 
Definition 1. Let X  be a space of points (objects), with 
a generic element in X  denoted by x . An IFS A  in X  
is characterized by a membership function ( )A xµ  and a 
non-membership function ( )A xν . For each point x  in 
X , we have ( )A xµ , [ ]( ) 0,1A xν ⊆ , x X∈ . Thus, the 

IFS A  can be denoted by 7: 
{ , ( ), ( ) }A AA x x x x Xµ ν= < > ∈ . 

Definition 2. Let A and B be two IFSs in the universe of 
discourse 1 2{ , , , }nX x x x=   and 

{ , ( ), ( ) }i A i A i iA x x x x Xµ ν= < > ∈ , and 

{ , ( ), ( ) }i B i B i iB x x x x Xµ ν= < > ∈ ; then the correlation 

coefficient of A and B is defined by80: 

1
2 2 2 2 2 2

1 1

( ( ) ( ) ( ) ( ) ( ) ( ))
( , )

max( ( ( ) ( ) ( )), ( ( ) ( ) ( )))

n
A i B i A i B i A i B ii

n n
A i A i A i B i B i B ii i

x x x x x x
C A B

x x x x x x
µ µ ν ν π π

µ ν π µ ν π
=

= =

⋅ + +
=

+ + + +
∑

∑ ∑

where ( ) 1 ( ) ( )A i A i A ix x xπ µ ν= − −  and 
( ) 1 ( ) ( )B i B i B ix x xπ µ ν= − −  are called the degree of 

uncertainty (or hesitation). 
Definition 3. Let X  be a space of points (objects), with 
a generic element in X  denoted by x . An NS A  in X  
is characterized by a truth-membership function ( )AT x , 
an indeterminacy-membership function ( )AI x  and a 
falsity-membership function ( )AF x . ( )AT x , ( )AI x  and 

( )AF x  are real standard or nonstandard subsets of 
]0 ,  1 [− + , that is, ( ) : ]0 ,  1 [AT x X − +→ , 

( ) : ]0 ,  1 [AI x X − +→ , and ( ) : ]0 ,  1 [AF x X − +→ . There is 
no restriction on the sum of ( )AT x , ( )AI x  and ( )AF x , 
therefore, 0 sup ( ) sup ( ) sup ( ) 3A A AT x I x F x− +≤ + + ≤ 81. 
Definition 4. An NS A  is contained in the other NS B , 
denoted as A B⊆ , if and only if inf ( ) inf ( )A BT x T x≤ , 
sup ( ) sup ( )A BT x T x≤ , inf ( ) inf ( )A BI x I x≤ , 
sup ( ) sup ( )A BI x I x≤ , inf ( ) inf ( )A BF x F x≤  and 
sup ( ) sup ( )A BF x F x≤  for x X∈ 81. 

Since it is difficult to apply NSs to practical 
problems, Ye 22 reduced the NSs of nonstandard 
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intervals into a type of SVNS of standard intervals that 
preserved the operations of NSs. 
Definition 5. Let X  be a space of points (objects), with 
a generic element in X  denoted by x . An NS A  in X  
is characterized by ( )AT x , ( )AI x  and ( )AF x , which are 
singleton subintervals/subsets in the real standard [0, 1], 
that is ( ) : [0,1]AT x X → , ( ) : [0,1]AI x X → , and 

( ) : [0,1]AF x X → . Then, a simplification of A  is 
denoted by22: 

{ , ( ), ( ), ( )  | }A A AA x T x I x F x x X= < > ∈  
which is called an SVNS and is a subclass of NSs. 
Definition 6. Let X  be a space of points (objects) with 
generic elements in X  denoted by X . An INS A  in 
X  is characterized by a truth-membership function 

( )AT x , an indeterminacy-membership function ( )AI x , 
and a falsity-membership function ( )AF x . For each 
point x  in X , ( ) [inf ( ),sup ( )]A A AT x T x T x= , 

( ) [inf ( ),sup ( )]A A AI x I x I x= , 
( ) [inf ( ),sup ( )] [0,1]A A AF x F x F x= ⊆ , and 

0 sup ( ) sup ( ) sup ( ) 3A A AT x I x F x≤ + + ≤ , x X∈ 81. 
Only the subunitary interval of [0, 1] is considered, 

which is a subclass of an NS. Therefore, all INSs are 
clearly NSs. 

For any FS A , its complement cA  is defined by 
( ) 1 ( )c AA

m x m x= −  for all x in X. The complement of an 

INS A  is also denoted by cA . 
Definition 7. Let A  and B  be two INSs, then81, 82: 
(1) A B= , if and only if A B⊆  and A B⊇ ; 
(2) { ,[inf ( ),sup ( )],[1 sup ( ),c

A A AA x F x F x I x= < −
1 inf ( )],[inf ( ),sup ( )] }A A AI x T x T x− > ; and 

(3) A B⊆  if and only if inf ( ) inf ( )A BT x T x≤ , 
sup ( ) sup ( )A BT x T x≤ , inf ( ) inf ( )A BI x I x≥ , 
sup ( ) sup ( )A BI x I x≥ , inf ( ) inf ( )A BF x F x≥  and 
sup ( ) sup ( )A BF x F x≥ , for any x X∈ . 

A distance function or metric is a generalization of 
the concept of physical distance, and in FS theory, it 
describes how far one element is away from another. Ye 
83 defined the Hamming distance measure between two 
INSs. 
Definition 8. Let A  and B  be two INSs in the universe 
discourse 1 2{ , , , }nX x x x=  , then the distance measure 
between them can be defined as follows83: 
The Hamming distance: 

[

]

1

1( , ) | inf ( ) inf ( ) | | sup ( ) sup ( ) |
6

  | inf ( ) inf ( ) | | sup ( ) sup ( ) |
  | inf ( ) inf ( ) | | sup ( ) sup ( ) |

n

H A i B i A i B i
i

A i B i A i B i

A i B i A i B i

d A B T x T x T x T x

I x I x I x I x
F x F x F x F x

=
= − + −

+ − + −

+ − + −

∑

(1) 
The normalized Hamming distance: 

[

]

1

1( , ) | inf ( ) inf ( ) | | sup ( ) sup ( ) |
6

  | inf ( ) inf ( ) | | sup ( ) sup ( ) |
  | inf ( ) inf ( ) | | sup ( ) sup ( ) |

n

nH A i B i A i B i
i

A i B i A i B i

A i B i A i B i

d A B I x I x I x I x
n

I x I x I x I x
F x F x F x F x

=
= − + −

+ − + −

+ − + −

∑

        (2) 
Definition 9. Let A and B be two INSs in the universe 
of discourse 1 2{ , , , }nX x x x=   and 

{ ,[inf ( ),sup ( )],[inf ( ),sup ( )],i A i A i A i A iA x T x T x I x I x= <

[inf ( ),sup ( )] }A i A i iF x F x x X> ∈  and 
{ ,[inf ( ),sup ( )],[inf ( ),sup ( )],i B i B i B i B iB x T x T x I x I x= <

[inf ( ),sup ( )] }B i B i iF x F x x X> ∈ , then the correlation 

coefficient of A and B is defined by50: 
( , )( , )

( ) ( )
C A BK A B

E A E B
=

⋅
,           (3) 

where the correlation of two INSs A and B is given by: 

[

]

1

1( , ) inf ( ) inf ( ) sup ( ) sup ( )
2

 inf ( ) inf ( ) sup ( ) sup ( )
 inf ( ) inf ( ) sup ( ) sup ( )

n

A i B i A i B i
i

A i B i A i B i

A i B i A i B i

C A B T x T x T x T x

I x I x I x I x
F x F x F x F x

=
= ⋅ + ⋅

+ ⋅ + ⋅

+ ⋅ + ⋅

∑

and the informational intuitional energies of two IVIFSs 
A and B are defined as: 

2 2 2

1

2 2 2

1( ) (inf ( )) (sup ( )) (inf ( ))
2

   (sup ( )) (inf ( )) (sup ( )) ,

n

A i A i A i
i

A i A i A i

E A T x T x T x

T x F x F x
=

= + +

+ + + 

∑

2 2 2

1

2 2 2

1( ) (inf ( )) (sup ( )) (inf ( ))
2
  (sup ( )) (inf ( )) (sup ( )) .

n

B i B i B i
i

B i B i B i

E B T x T x T x

T x F x F x
=

= + +

+ + + 

∑

However, as Ye 51 mentioned, this correlation 
coefficient measure in Definition 9 cannot guarantee 
that the correlation coefficient of two INSs equals one if 
and only if two INSs are the same 51. 

In some cases, several different kinds of weight may 
be taken into account at the same time. In order to solve 
this problem, the integration measure of different kinds 
of weights is required. 
Definition 10. Let 1 2( , , , )nw w w w=   and 

1 2( , , , )nθ θ θ θ=   be two different types of weight 
vector. The final integrated weight vector 

1 2( , , , )nW W W W=   can be calculated as follows79: 
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1

i i
i n

i ii

w
W

w
θ
θ=

=
∑

                               (4) 

3. The Weighted Correlation Coefficient 
Measure for an INS 

In this section, a new correlation coefficient measure, 
the weighted correlation coefficient measure for INSs 
and their properties are developed. Moreover, an 
objective weight measure for the INS that utilizes the 
entropy is also explored. 

3.1. The correlation coefficient measure for an 
INS 

In order to overcome the deficiency presented in 
Definition 9, a novel correlation coefficient measure is 
proposed that is motivated by the correlation coefficient 
measure of IFSs suggested by Xu 80. 
Definition 11. A mapping K: ( ) ( ) [0,1]INS X INS X× →  
is called the INSs correlation coefficient measure if K 
satisfies the following properties: 
(KP1) 0 ( , ) 1K A B≤ ≤ ; 
(KP2) ( , ) ( , )K A B K B A= ; and 
(KP3) ( , ) 1K A B =  if and only if A B= . 
Definition 12. Let two INSs A  and B  in the universe 
discourse 1 2{ , , , }nX x x x=   be { ,[inf ( ),i A iA x T x= <  
sup ( )],[inf ( ),sup ( )],[inf ( ),sup ( )]A i A i A i A i A iT x I x I x F x F x

}ix X> ∈  and { ,[inf ( ),sup ( )],i B i B iB x T x T x= <  

[inf ( ),sup ( )],[inf ( ),sup ( )] }B i B i B i B i iI x I x F x F x x X> ∈ . 

Then a measure between A  and B  is defined by the 
following formula: 

( )

( )
1

1 1

( , )( , )
max ( ), ( )

( ( ), ( ))
              

max ( ( )), ( ( ))

n
i ii

n n
i ii i

C A BK A B
T A T B

C A x B x
T A x T B x
=

= =

=

= ∑
∑ ∑

    (5) 

where ( , )C A B  means the correlation between two INSs 
A  and B ; ( )T A  and ( )T B  refer to the information 

energies of the two INSs, respectively. They are 
provided by: 

1( ( ), ( )) [inf ( ) inf ( ) sup ( ) sup ( )
2

inf ( ) inf ( ) sup ( ) sup ( )
inf ( ) inf ( ) sup ( ) sup ( )],

i i A i B i A i B i

A i B i A i B i

A i B i A i B i

C A x B x T x T x T x T x

I x I x I x I x
F x F x F x F x

= ⋅ + ⋅

+ ⋅ + ⋅

+ ⋅ + ⋅

                                                                             (6) 

2 2 2

2 2 2

1( ( )) (inf ( )) +(sup ( )) (inf ( ))
2
+(sup ( )) (inf ( )) +(sup ( )) ,

i A i A i A i

A i A i A i

T A x T x T x I x

I x F x F x

= +

+ 
 (7) 

2 2 2

2 2 2

1( ( )) (inf ( )) +(sup ( )) (inf ( ))
2
+(sup ( )) (inf ( )) +(sup ( ))

i B i B i B i

B i B i B i

T B x T x T x I x

I x F x F x

= +

+ 

 

                                                                        (8) 
Theorem 1. The proposed measure ( , )K A B  satisfies 
all the axioms given in Definition 11. 
Proof. 
(KP1) According to Definition 6, [inf ( ),sup ( )]A i A iT x T x , 
[inf ( ),sup ( )]A i A iI x I x , [inf ( ),sup ( )]A i A iF x F x , 
[inf ( ),sup ( )]B i B iT x T x , [inf ( ),sup ( )]B i B iI x I x  and 
[inf ( ),sup ( )] [0,1]B i B iF x F x ⊆  exist for any 

{1,2, , }i n∈  . Thus, it holds that ( , ) 0C A B ≥ , 
( ) 0T A ≥  and ( ) 0T B ≥ . Therefore, 

( )
( , )( , ) 0

max ( ), ( )
C A BK A B
T A T B

= ≥ . According to the 

Cauchy–Schwarz inequality: ( )2
1 1 2 2 n na b a b a b+ + +  

( ) ( )2 2 2 2 2 2
1 2 1 2n na a a b b b≤ + + + ⋅ + + +   where ,i ia b R∈ , 

1, 2, ,i n=  , 
( )

( , )( , ) 1
max ( ), ( )

C A BK A B
T A T B

= ≤ . 

Therefore, 0 ( , ) 1K A B≤ ≤  holds. 
(KP2) According to Eq. (6), it is known that 

( , ) ( , )C A B C B A= , and it’s clear that 

( ) ( )
( , ) ( , )( , )

max ( ), ( ) max ( ), ( )
C A B C A BK A B
T A T B T B T A

= = =

( , )K B A . 
(KP3) If A B= , inf ( ) inf ( )A i B iT x T x= , 
sup ( ) sup ( )A i B iT x T x= , inf ( ) inf ( )A i B iI x I x= , 
sup ( ) sup ( )A i B iI x I x= , inf ( ) inf ( )A i B iF x F x=  and 
sup ( ) sup ( )A i B iF x F x= . Thus, 

2 2 2
1

1( , ) (inf ( )) +(sup ( )) (inf ( ))
2 = = +∑n

A A i A iiC A B T x T x I x

2 2 2+(sup ( )) (inf ( )) +(sup ( )) + A i A i A iI x F x F x  and 

2 2
1

1( ) ( ) (inf ( )) +(sup ( ))
2

n
A i A iiT A T B T x T x= = = +∑

2 2 2 2(inf ( )) +(sup ( )) (inf ( )) +(sup ( ))A i A i A i A iI x I x F x F x +  , 

i.e. ( , ) ( ) ( )C A B T A T B= = . Thus, it is clear that 

( )
( , )( , ) 1

max ( ), ( )
C A BK A B
T A T B

= = . 
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If 
( )

( , )( , ) 1
max ( ), ( )

C A BK A B
T A T B

= = , then 

( , ) max( ( ), ( ))C A B T A T B= . According to the Cauchy–
Schwarz inequality, 

( , ) ( ) ( ) max( ( ), ( ))C A B T A T B T A T B≤ ⋅ ≤ . Thus, 

( , ) ( ) ( ) max( ( ), ( ))C A B T A T B T A T B= ⋅ = . If 

( , ) ( ) ( )C A B T A T B= ⋅ , there exists a nonzero real 
number η  such that inf ( ) inf ( )A i B iT x T xη= , 
sup ( ) sup ( )A i B iT x T xη= , inf ( ) inf ( )A i B iI x I xη= , 
sup ( ) sup ( )A i B iI x I xη= , inf ( ) inf ( )A i B iF x F xη=  and 
sup ( ) sup ( )A i B iF x F xη=  for any ix X∈ . Besides, if 

( ) ( ) max( ( ), ( ))T A T B T A T B⋅ = , ( ) ( )T A T B= . Based 
on these two conditions, it is obvious that 1η =  (i.e. 
A B= ). 

Hence, Theorem 1 is true, which means the measure 
( , )K A B  defined in Definition 12 is a correlation 

coefficient measure.  
Property 1. ( , )K A A  is the supremum of all ( , )K A B ; 
in other words, ( , ) ( , )K A A K A B≥ , ,A B INS∀ ∈ . 
Proof. 

Property 1 is easy to yield from Theorem 1, and 
according to this theorem, 0 ( , ) 1K A B≤ ≤  and 

( , ) 1K A A = . Thus, Property 1 is true. 
Property 1 implies that the correlation coefficient 

between an INS and itself is always greater than or 
equal to the correlation coefficient between the INS and 
any other INS defined in the same universe. 
Example 1. Assume 

{ ,[0.7,0.8],[0.0,0.1],[0.1,0.2] }A x= < > , and 
{ ,[0.4,0.5],[0.2,0.3],[0.3,0.4] }B x= < > , then 

( , ) 0.41C A B = , ( ) 0.595T A = , and ( ) 0.395T B = ; thus, 

( )
( , ) 0.41( , ) 0.689

max ( ), ( ) max(0.595,0.395)
C A BK A B
T A T B

= = = . 

3.2. The weighted correlation coefficient measure 
for an INS 

In Section 3.1, a correlation coefficient measure for 
INSs was proposed. However, this correlation 
coefficient measure does not take into consideration the 
relative importance of each INN in INSs. In many 
situations, such as MCDM 43, 78, different INNs may 
have different weights. In the following paragraphs, the 
weighted correlation coefficient between INSs, which is 

based on the correlation coefficient measure between 
INSs defined in Definition 12, will be introduced. 
Definition 13. Let { ,[inf ( ),sup ( )],i A i A iA x T x T x= <  
[inf ( ),sup ( )],[inf ( ),sup ( )] }A i A i A i A i iI x I x F x F x x X> ∈  
and { ,[inf ( ),sup ( )],[inf ( ),i B i B i B iB x T x T x I x= <  
sup ( )],[inf ( ),sup ( )] }B i B i B i iI x F x F x x X> ∈  be two 
INSs in the universe discourse 1 2{ , , , }nX x x x=  . Let 

1 2{ , , , }nw w w w=   be the weight vector of the elements 

ix ( 1, 2, , )i n=  . Then a measure between A  and B  
can be defined by the following formula: 

( )
1

1 1

( ( ), ( ))
( , )

max ( ( )), ( ( ))

n
i i ii

n n
i i i ii i

w C A x B x
K A B

w T A x w T B x
=

= =

= ∑
∑ ∑

   (9) 

where ( ( ), ( ))i iC A x B x , ( ( ))iT A x  and ( ( ))iT B x  satisfy 
Eqs. (6)-(8). 
Theorem 2. The proposed measure ( , )K A B  in 
Definition 13 satisfies all the axioms given in Definition 
11. 
Proof. 

(P1) According to Theorem 1, ( ( ), ( )) 0i iC A x B x ≥ , 
( ( )) 0iT A x ≥  and ( ( )) 0iT B x ≥ ( 1, 2, , )i n=  . Besides, 

0iw ≥ , thus, 

( )
1

1 1

( ( ), ( ))
( , ) 0

max ( ( )), ( ( ))

n
i i ii

n n
i i i ii i

w C A x B x
K A B

w T A x w T B x
=

= =

= >∑
∑ ∑

. 

According to the Cauchy–Schwarz inequality, 

1
1 1

( ( ), ( )) ( ( )) ( ( ))
n n

n
i i i i i i ii

i i
w C A x B x w T A x w T B x=

= =
≤∑ ∑ ∑

1 1
 max ( ( )), ( ( ))

n n

i i i i
i i

w T A x w T B x
= =

 ≤  
 
∑ ∑ . Therefore, 

( , ) 1K A B ≤ . 
(P2) According to Theorem 1, it is known that 
( ( ), ( )) ( ( ), ( ))i i i iC A x B x C B x A x=  exists for any 
{ ,2, , }i i n∈  . Therefore, it’s obvious that 

1 1( ( ), ( )) ( ( ), ( ))n n
i i i i i ii iw C A x B x w C B x A x= ==∑ ∑ . Thus, 

( )
1

1 1

( ( ), ( ))
( , )

max ( ( )), ( ( ))

n
i i ii

n n
i i i ii i

w C A x B x
K A B

w T A x w T B x
=

= =

= =∑
∑ ∑

( )
1

1 1

( ( ), ( ))
( , )

max ( ( )), ( ( ))

n
i i ii

n n
i i i ii i

w C B x A x
K B A

w T B x w T A x
=

= =

=∑
∑ ∑

. 

(P3) According to Theorem 1, 
( ( ), ( )) max( ( ( )), ( ( )))i i i iC A x B x T A x T B x=  is true for 

any { ,2, , }i i n∈   if A B= . Therefore, 
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( )1 1 1( ( ), ( )) max ( ( )), ( ( ))n n n
i i i i i i ii i iw C A x B x w T A x w T B x= = ==∑ ∑ ∑

 is proved to be correct. Hence, if A B= , ( , ) 1K A B = . 

If ( , ) 1K A B = , 1 ( ( ), ( ))n
i i ii w C A x B x= =∑  

( )1 1max ( ( )), ( ( ))n n
i i i ii iw T A x w T B x= =∑ ∑ . According to 

the Cauchy–Schwarz inequality: 

1
1 1

( ( ), ( )) ( ( )) ( ( ))
n n

n
i i i i i i ii

i i
w C A x B x w T A x w T B x=

= =
≤∑ ∑ ∑

1 1
max ( ( )), ( ( ))

n n

i i i i
i i

w T A x w T B x
= =

 ≤  
 
∑ ∑ . Thus, 

1
1 1

( ( ), ( )) ( ( )) ( ( ))
n n

n
i i i i i i ii

i i
w C A x B x w T A x w T B x=

= =
=∑ ∑ ∑

1 1
max ( ( )), ( ( ))

n n

i i i i
i i

w T A x w T B x
= =

 =  
 
∑ ∑ . If 

1
1 1

( ( ), ( )) ( ( )) ( ( ))
n n

n
i i i i i i ii

i i
w C A x B x w T A x w T B x=

= =
=∑ ∑ ∑ , 

there exists a nonzero real number η  such that 
inf ( ) inf ( )A i B iT x T xη= , sup ( ) sup ( )A i B iT x T xη= , 
inf ( ) inf ( )A i B iI x I xη= , sup ( ) sup ( )A i B iI x I xη= , 
inf ( ) inf ( )A i B iF x F xη=  and sup ( ) sup ( )A i B iF x F xη=  
for any ix X∈ . Besides, if 

1 1
( ( )) ( ( ))

n n

i i i i
i i

w T A x w T B x
= =

=∑ ∑

1 1
max ( ( )), ( ( ))

n n

i i i i
i i

w T A x w T B x
= =

 
 
 
∑ ∑ , ( ) ( )T A T B= . 

Based on these two conditions, it is obvious that 1η =  
(i.e. A B= ). 

Thus, Theorem 2 holds, which signifies that the 
measure ( , )K A B  defined by Eq. (9) is a correlation 
coefficient measure. For convenience, it is called a 
weighted correlation coefficient measure. 
Example 2. Assume 1{ ,[0.7,0.8],[0.0,0.1],A x= <  

2[0.1,0.2] , ,[0.6,0.7],[0.1,0.2],[0.1,0.3] }x> < > , {B =  

1 2,[0.4,0.5],[0.2,0.3],[0.3,0.4] , ,[0.4,0.6],[0.1,x x< > <
0.3],[0.2,0.4] }> , and {0.4,0.6}w = . Thus, 

1 1( ( ), ( )) 0.41C A x B x = , 2 2( ( ), ( )) 0.435C A x B x = , 

1( ( )) 0.595T A x = , 2( ( )) 0.5T A x = , 1( ( )) 0.395T B x = , 
and 2( ( )) 0.41T B x = ; therefore, 

2

1
( ( ), ( )) 0.425i i i

i
w C A x B x

=
=∑ , 

2

1
( ( )) 0.538i i

i
w T A x

=
=∑ , 

and 
2

1
( ( )) 0.404i i

i
w T B x

=
=∑ . Thus, ( , ) 0.790K A B = . 

As noted in Section 1, the integrated weight can not 
only benefit from the decision makers’ expertise, but 

also from the relative importance of evaluation 
information. In order to assess the relative importance 
of weights accurately and comprehensively, it’s better to 
utilize the integrated weight rather than only the 
subjective or objective weights in order to obtain the 
weighted correlation coefficient. 

The subjective and objective weights should be 
calculated in order to compute the integrated weight. 
The subjective weight that mirrors the individual 
preference can be evaluated by the decision maker, 
while the objective weight that reflects the relative 
importance contained in the decision matrix should be 
calculated by mathematical methods. Certainly, many 
kinds of objective weight measures have been proposed 
and every measure has its own advantages. Due to the 
fact that the more equivocal the information is, the less 
important it will be 84, the entropy weight measure will 
be utilized to obtain the objective weight. 

3.3. The entropy weight measure for an INS 

In this section, the entropy measure and an objective 
weight measure based on the entropy for an INS are 
proposed. 

The entropy is an important concept which is named 
after Claude Shannon who first introduced the concept. 
In information theory, the entropy is a measure for 
calculating the uncertainty associated with a random 
variable as it characterizes the uncertainty about the 
source of information. Thus the entropy is a measure of 
uncertainty. Based on the axiomatic definition of the 
entropy measure for SVNSs in Ref. 73, the entropy for 
INSs can be defined as follows. 
Definition 14. A real function : ( ) [0,1]E INS X →  is 
called the entropy on INS(X), if E satisfies the following 
properties: 
(EP1) ( ) 0E A =  (minimum) if A  is a crisp set 
( ( ))A P X∀ ∈ ; 
(EP2) ( ) 1E A =  (maximum) if ( ) ( )A AT x I x= =  

( )AF x (i.e. inf ( ) inf ( ) inf ( )A A AT x I x F x= =  and 
sup ( ) sup ( ) sup ( )A A AT x I x F x= = ) for any x X∈ ; and 
(EP3) ( ) ( )E A E B≤  if A  is less fuzzy than B  or B  is 
more uncertain than A , i.e. (1) 
inf ( ) inf ( ) inf ( ) inf ( )A A B BT x F x I x F x− ≤ −  and 
sup ( ) sup ( ) sup ( ) sup ( )A A B BT x F x I x F x− ≤ −  for 
inf ( ) inf ( )A AT x F x≥  and sup ( ) sup ( )A AT x F x≤  or 
inf ( ) inf ( ) inf ( ) inf ( )A A B BT x F x I x F x− ≥ −  and 
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sup ( ) sup ( ) sup ( ) sup ( )A A B BT x F x I x F x− ≥ −  for 
inf ( ) inf ( )A AT x F x≤ , sup ( ) sup ( )A AT x F x≤  and 
sup ( ) sup ( )A BT x T x≥ ; and (2) inf ( ) inf ( )A BI x I x≤  and 
sup ( ) sup ( )A BI x I x≤  for inf ( ) sup ( ) 1B BI x I x+ ≤  or 
inf ( ) inf ( )A BI x I x≥  and sup ( ) sup ( )A BI x I x≥  for 
inf ( ) sup ( ) 1B BI x I x+ ≥ ; 
(EP4) ( ) ( )cE A E A= . 

A great deal of research has demonstrated the 
connection among the distance measure, the similarity 
measure and the entropy measure of FSs 73-77. Having 
taken these studies into account, the entropy measure of 
INSs based on the distance measure defined in 
Definition 8 is now proposed. 
Definition 15. Let A  be an INS in the universe 
discourse 1 2{ , , , }nX x x x=  , and assume that 

( ) : ( ) [0,1]E A N X → . ( )E A  is a measure such that: 
( ) 1 ( , )cE A d A A= − .                             (10) 

where ( , )cd A A  refers to the distance measure between 
INS A  and its complementary set cA  utilizing Eq. (2). 
Theorem 3. The proposed measure ( )E A  satisfies all 
the axioms given in Definition 14. 
Proof. Let { ,[inf ( ),sup ( )],[inf ( ),i A i A i A iA x T x T x I x= <  
sup ( )],[inf ( ),sup ( )] }A i A i A i iI x F x F x x X> ∈ and 

{ ,[inf ( ),sup ( )],[inf ( ),sup ( )],i B i B i B i B iB x T x T x I x I x= <

[inf ( ),sup ( )] }B i B i iF x F x x X> ∈  be two INSs. 

(EP1) If an INS A  is a crisp set, i.e. 
inf ( ) sup ( ) 1A i A iT x T x= = , inf ( ) sup ( ) 0A i A iI x I x= = , 
and inf ( ) sup ( ) 0A i A iF x F x= =  or inf ( )A iT x =  
sup ( ) 0A iT x = , inf ( ) sup ( ) 1A i A iI x I x= = , and 
inf ( ) sup ( ) 1A i A iF x F x= = . By using Definition 7, the 
complementary set of A can be calculated, i.e. 
inf ( ) sup ( ) 0c ci iA A

T x T x= = , inf ( ) sup ( ) 1c cA i iA
I x I x= =

, and inf ( ) sup ( ) 1c ci iA A
F x F x= =  or inf ( )c iA

T x =  
sup ( ) 1c iA

T x = , inf ( ) sup ( ) 0c ci iA A
I x I x= = , and 

inf ( ) sup ( ) 0c ci iA A
F x F x= =  respectively. Therefore, 

it’s obvious that ( ) 0E A = . 
(EP2) If ( ) ( ) ( )A i A i A iT x I x F x= =  and 
inf ( ) sup ( ) 1A i A iT x T x+ = , by using Eq. (10), the 
entropy can be calculated: 

[1
1( ) 1 | inf ( ) inf ( ) | | sup ( )

6
n

A i A i A iiE A T x F x T x
n == − − +∑

sup ( )| | inf ( ) sup ( ) 1 | | sup ( )A i A i A i A iF x I x I x I x− + + − + +

inf ( ) 1 | | inf ( ) inf ( ) | | sup ( )A i A i A i A iI x F x T x F x− + − +

]sup ( ) | 1A iT x− = . 
(EP3) inf ( ) inf ( ) inf ( ) inf ( )A i A i B i B iT x F x I x F x− ≤ −  
and sup ( ) sup ( ) sup ( ) sup ( )A i A i B i B iT x F x I x F x− ≤ −  for 
inf ( ) inf ( )A i A iT x F x≥  and sup ( ) sup ( )A i A iT x F x≤  or 
inf ( ) inf ( ) inf ( ) inf ( )A i A i B i B iT x F x I x F x− ≥ − and 
sup ( ) sup ( ) sup ( ) sup ( )A i A i B i B iT x F x I x F x− ≥ −  for 
inf ( ) inf ( )A i A iT x F x≤ , sup ( ) sup ( )A i A iT x F x≤  and 
sup ( ) sup ( )A i B iT x T x≥ . Thus, it is quite obvious that 
| inf ( ) inf ( ) | | sup ( ) sup ( ) |A A A i A iT x F x T x F x− + − ≥
| inf ( ) inf ( ) | | sup ( ) sup ( ) |B i B i B i B iT x F x T x F x− + − . 
inf ( ) inf ( )A i B iI x I x≤  and sup ( ) sup ( )A i B iI x I x≤  for 
inf ( ) sup ( ) 1B i B iI x I x+ ≤  or inf ( ) inf ( )A i B iI x I x≥  and 
sup ( ) sup ( )A i B iI x I x≥  for inf ( ) sup ( ) 1B i B iI x I x+ ≥ , 
thus (inf ( ) sup ( )) 1A i A iF x F x+ − ≥  

(inf ( ) sup ( )) 1B i B iF x F x+ − . Therefore, 

2 inf ( ) inf ( ) sup ( ) sup ( )A i A i A i A iT x F x T x F x − + − +

[inf ( ) sup ( ) 1 2 | inf ( ) inf ( ) |A i A i B i B iI x I x T x F x+ −  ≥ −

sup ( ) sup ( ) inf ( ) sup ( ) 1B i B i B i B iT x F x I x I x+ − + + − 
( 1, 2, , )i n=  . Thus, ( ) ( )E A E B≤ . 
(EP4) By using Eq. (10), ( )E A  and ( )cE A  can be 
respectively calculated: 

1
1( ) 1 2 inf ( ) inf ( )

6
n

A i A iiE A T x F x
n == − × ×  −∑

sup ( ) sup ( ) inf ( ) sup ( ) 1A i A i A i A iT x F x I x I x+ − + + −  ; 

and 1
1( ) 1 2 inf ( ) inf ( )

6
nc

A i A iiE A F x T x
n == − × ×  − +∑  

sup ( ) sup ( ) 1 (inf ( ) sup ( ))A i A i A i A iF x T x I x I x− + − +  . 

Therefore, ( ) ( )cE A E A= . 
Thus, Theorem 3 holds which indicates the measure 

proposed in Definition 15 is an entropy measure. 
Example 3. Assume { ,[0.7,0.8],[0.0,0.1],A x= <  
[0.1,0.2] }> , then { ,[0.1,0.2],[0.9,1.0],cA x= <  

[0.7,0.8] }> , and 1( ) 1 2 [ 0.7 0.1
6

E A = − × × − +  

0.8 0.2 0 0.1 1] 0.3− + + − = . 
In the following paragraphs, based on the above 

entropy measure, an objective weight measure for an 
INS is proposed called the entropy weight measure. 

The entropy can be regarded as a measure of the 
uncertainty degree involved in an FS, and it reflects the 
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objective information contained in the decision values. 
Thus, utilizing the entropy as a vehicle to obtain the 
objective weight is a reasonable action. According to 
entropy theory 21, 78, if an FS provides less uncertainty 
than other ones, it should be paid more attention. 
Therefore, the bigger weight should be assigned to the 
less uncertain fuzzy information in MCDM problems, 
otherwise the fuzzy information will be considered 
unimportant, which means its weight will be smaller. 

According to these theories, an entropy weight 
measure is established to determine the objective weight 
under an interval-valued neutrosophic environment: 

( )
( )( )
( )( )1

1
j n

j

j

j

E A
H

n E A

x
A

x=

−
=

−∑
                 (11) 

where A  is an INS in the universe discourse 

1 2{ , , , }nX x x x=  , ( ) [ ]{ inf ( ),sup ( ) ,j A i A iA x T x T x=  

[ ] [ ] }inf ( ),sup ( ) , inf ( ),sup ( )A i A i A i A iI x I x F x F x  and 

( )( )jE A x  is calculated by Eq. (10). 

Property 2. The proposed weight measure satisfies the 
following properties: 
(W1) ( ) [0,1]jH A ∈ ; and 

(W2) ( )1 1n
j jH A= =∑ . 

Proof. 
(W1) Let ( ) ( ) ( )( )1 2, , , nH H H HA A A=   be an entropy 

weight vector calculated according to Equation (11). 
According to Theorem 3, it is known that the entropy 
value of INSs lies between 0 and 1, i.e., 

( )( ) [0,1]jE A x ∈ ; thus, it’s obvious that 

( )( )1 [0,1]jE A x− ∈  and ( )( )1 [0,1]n
jjn E A x=− ∈∑ . 

Besides, ( )( )( ) ( )( )
1,

1 1
n

j j
i i j

E A x n E A x n
= ≠

 − + − + = − 
 

∑  

( )( )1 0n
jj E A x= ≥∑ and ( )( )

1,
1 0

n

j
i i j

n E A x
= ≠

 − + ≥ 
 

∑  

hold, which means ( )( ) ( )( )( )1 1n
j jjn E A x E A x=− ≥ −∑  

is true. Based on these conclusions, it is possible to 

obtain ( )
( )( )
( )( )1

1
[0,1]j n

j

j

j

E A
H

n E A

x
A

x=

−
=

−
∈

∑
. 

(W2) Obviously, ( ) ( )( )
( )( )1 1

1

1 jn n
j jj n

j j

E A x

n E A x
H A= =

=

−
=

−
=∑ ∑

∑
 

( )( )
( )( )

( )( )
( )( )

1 1

1 1

1
1

n n
j jj j

n n
j jj j

E A x n E A x

n E A x n E A x
= =

= =

− −
= =

− −

∑ ∑

∑ ∑
. 

Therefore, Property 2 holds. 
Example 4. Assume 1{ ,[0.7,0.8],[0.0,0.1],A x= <  

2[0.1,0.2] , ,[0.4,0.5],[0.2,0.3],[0.3,0.4] ,x> < >  
3 ,[0.6,0.7],[0.1,0.2],[0.1,0.3] }x< > . By using Eq. (10), 

it can be calculated that ( )( )1 0.3E A x = , 

( )( )2 0.767E A x =  and ( )( )3 0.467E A x = . Moreover, 

according to Eq. (11), ( )1 0.477H A = , ( )1 0.159H B =  

and ( )1 0.364H C = . 

Example 5. Assume that there are three INSs 
1 2{ ,[0.4,0.5],[0.0,0.1],[0.3,0.4] , ,[0.6,0.7],A x x= < > <  

[0.4,0.5],[0.1,0.3] }> , 1{ ,[0.7,0.8],[0.0,0.1],B x= <  

2[0.1,0.2] , ,[0.2,0.4],[0.5,0.6],[0.2,0.4] }x> < >  and 

1 2{ ,[1,1],[0,0],[0,0] , ,[1,1],[0,0],[0,0] }C x x= < > < > , 
and that (0.5,0.5)w =  is the subjective weight vector. 
According to Eq. (9), the weighted correlation 
coefficient based on the subjective weight can be 
calculated: ( , ) 0.55K A C =  and ( , ) 0.525K B C = . 
Therefore, ( , ) ( , )K A C K B C> is true, which means that 
the relative similarity degree between A  and C  is more 
than that between B  and C . Furthermore, by using Eq. 
(11), the objective weight matrix can be obtained: 

(0.52,0.48)AH = , and (0.95,0.05)BH = , and 
according to Eq. (4), the integrated weight matrix is 

0.52 0.48
0.95 0.05

W  
=  
 

. By using Eq. (9), the weighted 

correlation coefficient based on the subjective weight 
can be calculated: ( , ) 0.546K A C =  and 

( , ) 0.728K B C = . Thus, ( , ) ( , )K A C K B C< is true, 
which means that the relative similarity degree between 
A  and C  is less than that between B  and C . 

The above example shows that the relative similarity 
degree may be different when using two different kinds 
of weight. The reason for this lies in the fact that the 
subjective weight only reflects the preference of 
decision maker and ignores the objective information 
included in the decision matrix; in contrast, the 
integrated weight can benefit from not only the decision 
makers’ expertise but also the relative importance of 
evaluation information. 
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4. The Weighted Correlation Coefficient’s 
Application to MCDM Problems 

In this section, a model for MCDM problems that 
applies the weighted correlation coefficient measure for 
INSs and takes into account the integration of the 
objective and subjective weights is presented. 

Assume there are m alternatives 1{ ,A A= 2 ,A  , }mA  
and n criteria 1{ ,C C= 2 ,C  , }nC , whose subjective 
weight vector provided by the decision maker is 

1 2( , , , )nw w w w=  , where 0jw ≥  ( 1, 2, ,j n=  ), and 

1
1

n

j
j

w
=

=∑ . Let ( )ij m nR a ×=  be the interval neutrosophic 

decision matrix, where , ,
ij ij ijij a a aa T I F= 〈 〉  is an 

evaluation value, denoted by INN, where 
[inf ,sup ]

ij ij ija a aT T T=  indicates the truth-membership 

function that the alternative iA  satisfies the criterion 

jC , [inf ,sup ]
ij ij ija a aI I I=  indicates the indeterminacy-

membership function that the alternative iA  satisfies the 
criterion jC  and [inf ,sup ]

ij ij ija a aF F F=  indicates the 

falsity-membership function that the alternative iA  
satisfies the criterion jC . 

In MCDM environments, the concept of an ideal 
point has been used to help identify the best alternative 
in the decision set 43. An ideal alternative can be 
identified by using a maximum operator to determine 
the best value of each criterion among all alternatives 83. 
Thus, an ideal INN in the ideal alternative *A  can be 
defined as: 

* * * * * * *= [a , ],[ , ],[ , ] [max(a ),max( )],

[min(a ),min( )],[min(a ),min( )] ,

j j j j j j j ij iji i

ij ij ij iji i i i

b c d e f b

b b

a =
 (12) 

where { }1,2, ,i m∈   and 1,2, ,j n=  . 

Based on Eq. (10) and the integrated weight matrix 
11 12 1

21 22 2

1 2

n

n

m m mn

W W W
W W W

W

W W W

 
 
 =
 
 
 





   



, where ijW  is the 

integrated weight of alternative iA  under criterion jC , 

the weighted correlation coefficient measure between 
the alternative iA  and the ideal alternative A∗  can be 
denoted as: 

( )( )( )
* * * * * *

1*

* 2 * 2 * 2 * 2 * 2 * 2
1 1

[a (inf ) (sup )+c (inf ) (sup )+ (inf ) (sup )]
( , )

max , [(a ) (b ) ( ) ( ) ( ) ( ) ]
ij ij ij ij ij ij

n
ij j a j a j a j a j a j aj

i n n
ij i j ij j j j j j jj j

W T b T I d I e F f F
K A A

W T A x W c d e f
=

= =

⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅
=

+ + + + +

∑

∑ ∑
         (13) 

where ( )( )i jT A x  can be obtained based on Eq. (7). 
The larger the value of the weighted correlation 

coefficient *( , )iK A A  is, the closer the alternative iA  is 
to the ideal alternative A∗ . Therefore, all the 
alternatives can be ranked according to the value of the 
weighted correlation coefficients so that the best 
alternative can be selected. In the following paragraphs, 
a procedure that considers the integrated weight to rank 
and select the most desirable alternative(s) is proposed 
based upon the weighted correlation coefficient 
measure. 

Step 1. Calculate the distance between the set 
{ }ij ijA a=  formed by the rating value ija  and its 

complementary set c
ijA . 

By using Eq. (2), the distance matrix 

11 11 12 12 1 1

21 21 22 22 2 2

1 1 2 2

( , ) ( , ) ( , )
( , ) ( , ) ( , )

( , ) ( , ) ( , )

c c c
nh nh nh n n

c c c
nh nh nh n n

c c c
nh m m nh m m nh mn mn

d A A d A A d A A
d A A d A A d A A

D

d A A d A A d A A

 
 
 =
 
 
  





   



 

can be obtained. 

Step 2. Calculate the entropy value of the set 
{ }ij ijA a= . 

By using Eq. (10) and the distance matrix D , the 
entropy value matrix 

11 12 1

21 22 2

1 2

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

n

n

m m mn

E A E A E A
E A E A E A

E

E A E A E A

 
 
 = =
 
 
 





   



11 11 12 12 1 1

21 21 22 22 2 2

1 1 2 2

1 ( , ) 1 ( , ) 1 ( , )
1 ( , ) 1 ( , ) 1 ( , )

1 ( , ) 1 ( , ) 1 ( , )

c c c
nh nh nh n n

c c c
nh nh nh n n

c c c
nh m m nh m m nh mn mn

d A A d A A d A A
d A A d A A d A A

d A A d A A d A A

 − − −
 − − − 
 
 
− − −  





   



can be calculated. 
Step 3. Calculate the objective weight matrix H . 
By using Eq. (11) and the entropy value matrix E , 

it’s easy to calculate the objective weight matrix:  
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11 12 1

21 22 2

1 2

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

n

n

m m mn

H A H A H A
H A H A H A

H

H A H A H A

 
 
 = =
 
 
 





   



 

111 12

1 1 11 1 1

221 22

2 2 21 1 1

1 2

1 1

1 ( )1 ( ) 1 ( )
(1 ( )) (1 ( )) (1 ( ))

1 ( )1 ( ) 1 ( )
(1 ( )) (1 ( )) (1 ( ))

1 ( ) 1 ( ) 1 ( )
(1 ( )) (1 ( )) (

n
n n n

j j jj j j

n
n n n

j j jj j j

m m mn
n n

mj mjj j

E AE A E A
E A E A E A

E AE A E A
E A E A E A

E A E A E A
E A E A

= = =

= = =

= =

−− −
− − −

−− −
− − −

− − −
− −

∑ ∑ ∑

∑ ∑ ∑

∑ ∑





   


1 1 ( ))n

mjj E A=

 
 
 
 
 
 
 
 
 
 

−  ∑
. 

Step 4. Calculate the integrated weight matrix W . 
By using Eq. (4), the subjective weight 

1 2( , , , )nw w w w=   provided by the decision maker and 
the objective weight can be integrated, and the 
integrated weight matrix is: 

11 12 1

21 22 2

1 2

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

n

n

m m mn

W A W A W A
W A W A W A

W

W A W A W A

 
 
 = =
 
 
 





   



11 11 2 12

1 1 11 1 1

21 21 2 22

2 2 21 1 1

1 1 2 2

1 1 1

n n
n n n

j j j j j jj j j

n n
n n n

j j j j j jj j j

m m n mn
n n n

j mj j mj j mjj j j

w Hw H w H
w H w H w H

w Hw H w H
w H w H w H

w H w H w H
w H w H w H

= = =

= = =

= = =

 
 
 
 
 
 
 
 
 
 
  

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑





   



. 

Step 5. Calculate the ideal alternative A∗ . 

By using Eq. (12), the ideal alternative A∗  can be 
calculated. 

Step 6. Calculate the weighted correlation coefficient 
between the alternative iA  and the ideal alternative A∗ . 

By using Eq. (13) and the integrated weight matrix, 
the weighted correlation coefficient value between 

iA and A∗  can be obtained. 
Step 7. Rank the alternatives depending on the 

weighted correlation coefficient value. 

5. Illustrative example 

5.1. An example of the weighted correlation 
coefficient measure for MCDM problems with 
INSs 

In this section, an example of an MCDM problem of 
alternatives is used to demonstrate the applicability and 
effectiveness of the proposed decision-making method. 

Example 6. The decision-making problem adapted 
from Ref. 33 is to be considered. There is a panel with 
four possible alternatives: 1A , 2A , 3A , 4A . The 
decision must be taken according to the following three 
criteria: 1C , 2C  and 3C . The weight vector of the 
criteria is given by (0.35,0.25,0.4)w = . The four 
possible alternatives are evaluated by a decision maker 
under the above three criteria. In order to reflect reality 
more accurately and obtain more uncertainty 
information, the evaluation values are transformed into 
INNs, as shown in the following interval neutrosophic 
decision matrix D: 

 
[0.4,0.5],[0.2,0.3],[0.3,0.4] [0.4,0.6],[0.1,0.3],[0.2,0.4] [0.7,0.9],[0.2,0.3],[0.4,0.5]
[0.6,0.7],[0.1,0.2],[0.2,0.3] [0.6,0.7],[0.1,0.2],[0.2,0.3] [0.3,0.6],[0.3,0.5],[0.8,0.9]
[0.3,0.6],[

D

〈 〉 〈 〉 〈 〉
〈 〉 〈 〉 〈 〉

=
〈 0.2,0.3],[0.3,0.4] [0.5,0.6],[0.2,0.3],[0.3,0.4] [0.4,0.5],[0.2,0.4],[0.7,0.9]
[0.7,0.8],[0.0,0.1],[0.1,0.2] [0.6,0.7],[0.1,0.2],[0.1,0.3] [0.6,0.7],[0.3,0.4],[0.8,0.9]

 
 
 
 〉 〈 〉 〈 〉
 
〈 〉 〈 〉 〈 〉 

.

Let the ideal alternative be * [1,1],[0,0],[0,0]A =< > . 
The decision-making procedure based on INSs is as 
follows. 

Step 1. Calculate the distance between the set 
{ }ij ijA a=  formed by the rating value ija  and its 

complementary set c
ijA . 

By using Eq. (2), the distance matrix is 
0.23 0.33 0.40
0.50 0.50 0.33
0.23 0.30 0.37
0.70 0.53 0.23

D

 
 
 =
 
 
 

. 

Step 2. Calculate the entropy value of the set 
{ }ij ijA a= .
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By using Eq. (10) and the distance matrix D , the 

entropy value matrix is 

0.77 0.67 0.60
0.50 0.50 0.67
0.77 0.70 0.63
0.30 0.47 0.77

E

 
 
 =
 
 
 

. 

Step 3. Calculate the objective weight matrix H . 
By using Eq. (11) and the entropy value matrix E , 

it’s easy to calculate the objective weight matrix 
0.24 0.34 0.42
0.376 0.376 0.248
0.26 0.33 0.41
0.48 0.36 0.16

H

 
 
 =
 
 
 

. 

Step 4. Calculate the integrated weight matrix W . 
By using Eq. (4), the subjective weight 

(0.35,0.25,0.4)w =  provided by the decision maker 
and the objective weight can be integrated and the 

integrated weight matrix is 

0.25 0.25 0.50
0.405 0.29 0.305
0.27 0.24 0.49
0.52 0.28 0.20

W

 
 
 =
 
 
 

. 

Step 5. Calculate the ideal alternative A∗ . 
By using Eq. (12), the following ideal alternative can 

be obtained: {* [0.7,0.8],[0.0,0.1],[0.1,0.2] ,A =  

}[0.6,0.7],[0.1,0.2],[0.1,0.3] [0.7,0.9],[0.2,0.3],[0.4,0.5]， . 

Step 6. Calculate the weighted correlation coefficient 
between the alternative iA  and the ideal alternative A∗ . 
By using Eq. (12) and the integrated weight matrix, the 
weighted correlation coefficient value between iA and 
A∗  can be obtained, and 1( , ) 0.9148K A A∗ = , 

2( , ) 0.899K A A∗ = , 3( , ) 0.8517K A A∗ = , and 

4( , ) 0.9219K A A∗ = . 
Step 7. Rank the alternatives depending on the 

weighted correlation coefficient value. 
Based on the steps above, the final order 

4 1 2 3A A A A    is obtained. Clearly, 4A  is the best 
alternative in this example. 

5.2. Comparison analysis and discussion 

In order to validate the feasibility of the proposed 
method, a comparative study with other methods was 
conducted, which includes two cases. In the first case, 
the proposed method is compared to the methods that 
were outlined in Refs. 33 and 35 using interval value 
neutrosophic information. In the second one, it is 

compared to the methods using single valued 
neutrosophic information introduced in Refs. 21, 85 and 
51. 

Case 1. The proposed method is compared with some 
methods that use interval neutrosophic information. 

With regard to the method in Ref. 35, the similarity 
measures were firstly calculated and used to determine 
the final ranking order of all the alternatives, and then 
two aggregation operators were developed in order to 
aggregate the interval neutrosophic information 33. The 
results from the different methods used to resolve the 
MCDM problem in Example 6 are shown in Table 1. 

 

Table 1. The results of different methods using INSs. 

Methods The final ranking 
The best 
alternative(s) 

The worst 
alternative(s) 

Method 1 35 4 2 3 1A A A A    A4 A1 
Method 2 35 2 4 3 1A A A A    A2 A1 
Method 3 33 4 1 2 3A A A A    A4 A3 
Method 4 33 1 4 2 3A A A A    A1 A3 

The proposed 
method 4 1 2 3A A A A    A4 A3 

From the results presented in Table 1, the best 
alternatives in Ref. 35 are A4 and A2 respectively, whilst 
the worst one is A1. In contrast, by using the methods in 
Ref. 33, the best ones are A4 and A1 respectively, whilst 
the worst one is A3. With regard to the proposed method 
in this paper, the best one is A4, whilst the worst one is 
A3. There are a number of reasons why differences exist 
between the final rankings of all the compared methods 
and the proposed method. Firstly, these different 
measures and aggregation operators also lead to 
different rankings, and it is very difficult for decision 
makers to confirm their judgments when using operators 
and measures that have similar characteristics. 
Secondly, the proposed method in this paper pays more 
attention to the impact that uncertainty has on the 
decision and also takes into consideration the integrated 
weight. Moreover, different aggregation operators lead 
to different rankings because the operators emphasize 
the decision makers’ judgments differently. Method 3 in 
Ref. 33 uses the interval neutrosophic number weighted 
averaging (INNWA) operator, whilst method 4 in Ref. 
33 utilizes the interval neutrosophic number weighted 
geometric (INNWG) operator. The INNWA operator is 
based on an arithmetic average and emphasizes the 
group’s major points, while the INNWG operator 
emphasizes personal major points. That is the reason 
why results emanating from method 3 and method 4 in 
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Ref. 33 are different. By comparison, the proposed 
method in this paper focuses on the weighted correlation 
coefficient measure, which takes both the subjective and 
objective weights into consideration. Notwithstanding, 
the ranking of the proposed method is the same as that 
of the INNWA operator, which emphasizes the group’s 
major points. Therefore, the proposed method is 
effective. 

Case 2. The proposed method is compared with some 
methods that use simplified neutrosophic information. 
The comparison results are listed in Table 2. 

 

Table 2. The results of different methods using SVNSs. 

Methods The final ranking 
The best 
alternative(s) 

The worst 
alternative(s) 

Method 5 85 2 4 3 1A A A A    A2 A1 

Method 6 21 2 4 3 1A A A A    A2 A1 

Method 7 51 2 4 3 1A A A A    A2 A1 
The proposed 

method 4 2 3 1A A A A    A4 A1 

From the results presented in Table 2, the worst 
alternatives of Refs. 85, 21, 51 and the proposed method 
are same, i.e., 1A . The best alternatives of Refs. 85, 21 
and 51 are also the same one, i.e., 2A , but the best one 
of the proposed method is 4A . The reason why 
differences exist in the final rankings of the three 
compared methods and the proposed method is now 
provided. As mentioned in Case 1, the proposed 
weighted correlation coefficient method not only 
considers the subjective weight, which reflects the 
decision maker’s subjective preference, but also refers 
to the objective weight, which mirrors the objective 
information in the decision matrix. This shows that the 
proposed method can also be used for MCDM problems 
with single valued neutrosophic information. 

From the comparison analysis presented above, it can 
be concluded that the proposed method is more flexible 
and reliable in managing MCDM problems than the 
compared methods in an interval neutrosophic 
environment, which means that the method developed in 
this paper has certain advantages. Firstly, it can also be 
used to solve problems with preference information that 
is expressed by INSs as well as SVNSs. Secondly, it 
unearths the deeper information that is uncertain and 
utilizes it to make a precise decision. Furthermore, it is 
also capable of managing MCDM problems with a 
completely unknown criteria weight. 

6. Conclusion 

An NS has been applied in addressing problems with 
uncertain, imprecise, incomplete and inconsistent 
information that exist in actual scientific and 
engineering applications. Moreover, the correlation 
coefficient measure is important in NS theory and the 
entropy measure captures the uncertainty of NSs. In this 
paper, a new correlation coefficient measure for INSs 
that satisfies the condition that the value equals one if 
and only if two INSs are the same was proposed, which 
was motivated by the correlation coefficient of IFSs. 
Additionally, the weighted correlation coefficient 
measure was extended and its property was developed. 
Furthermore, the entropy measure of INSs was defined 
based on the relationship between distance and the 
entropy. In order to obtain the integrated weight, an 
objective weight measure that utilizes the entropy for 
INSs was also discussed and the decision-making 
procedure for MCDM problems was established. 
Finally, an illustrative example demonstrated the 
applicability of the proposed decision-making method 
and a comparative analysis showed that the proposed 
methods were appropriate and effective for dealing with 
MCDM problems. 

This study makes several contributions. Firstly, the 
method proposed is simple and convenient to compute 
and contributes to decreasing the loss of evaluation 
information. The feasibility and validity of the proposed 
method have been verified through the illustrative 
example and comparison analysis. Therefore, this 
method has a great deal of potential for dealing with 
issues regarding interval neutrosophic information in a 
number of environments, including cluster analysis and 
artificial intelligence. Secondly, the new correlation 
coefficient measure overcomes the shortcoming that the 
equivalent measure in Ref 50 does not satisfy the 
conditions that the value equals one if and only if two 
INSs are the same. In addition, this paper elaborates and 
demonstrates the viewpoint that the uncertainty of 
evaluation is related to its importance, and combining 
the subjective and objective weights can avoid the non-
determinacy and arbitrariness that results from 
subjective opinions. Subsequently, based on these 
viewpoints, the paper makes further use of uncertainty 
information and proposes a weighted correlation 
coefficient decision-making method that takes both the 
subjective and objective weights into account, which 
can be helpful in making better decisions. 
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