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Abstract: We present a neutrosophic set-based model for a time-dependent decision-support system (DSS) with multi-attribute
criteria decision-making. Such a DSS includes multiple conflicting objectives, having strategies spanning over several discrete
time periods. In this paper, we utilize the concept of neutrosophic sets and some of its operations to develop a computational
model that captures decision trees with various imprecise preferences for a time-dependent DSS. Given a time-dependent DSS
with N objectives spanning over discrete time periods t ranging from t0 to tn, we use a set of m attributes, denoted by variables
a1, . . . , am, where each variable akt (k = 1, . . . ,m), for each t ∈ [t0, tn], is described by a triplet variable xk

(
τkt , ikt , fkt

)
, where

the terms τkt , ikt , and fkt represent degrees of truthfulness membership, indeterminacy membership, and falsity membership
for attribute akt at time t, respectively. We then define a set of m time-dependent vectors of imprecise consequences Sq
corresponding to a set of strategies derived from the membership of each attribute akt . We provide an example to illustrate our
model. For each time t, we normalize the set of imprecise consequences to define the weighted values for each attribute. We
proceed with an interpretation and a sensitivity analysis of the normalized imprecise consequences and derive a ranking process
of strategies at each time t. As a result, the model presents the decision maker with a set of strategies ranked based on the
neutrosophic values of each corresponding attribute at each time t.

1 Introduction

1.1 Computational modeling in decision-support systems

The challenges of decision-making in complex problems that are
rapidly changing and not easily specified in advance have led to the
development of model-driven decision-support systems (DSSs) [1].
Model-driven DSSs are complex systems in which a set of specific
required data (or attributes) are carefully studied and analyzed to de-
velop multiple sets of strategies, which allows the decision maker
to select the most efficient set of strategies that achieves a prede-
fined set of objectives. Model-driven DSSs have evolved over the
past three decades from simple model-oriented systems to advanced
multi-function entities [2]. This stems from the continuous evolu-
tion of the necessary computational modeling required to solve most
of these challenges. As a result, the growing need for decision sup-
port in such problems has shaped most DSS models to be robustly
designed specifically to [3] [4] [5]:

1. facilitate dynamic decision processes through the use of a series
of attributes to develop a set of strategies.
(a) Interdependency between each of the attributes and their conse-
quent strategies is accounted for and supported.
(b) Each strategy is then capable of affecting future attributes and/or
strategies at some later time.
2. support rather than just automate decision-making.
(a) Some DSS models will make decisions based on predefined
rules in the environment where the DSS operates. However, in the
most complex situations, many of those rules may not be as relevant
as originally thought. Thus, the best DSS models are also capable of
presenting the decision maker with relevant information about each
strategy and how it aligns with the corresponding objective(s). In the
end, the decision maker will select the best set of strategies.
3. be able to respond quickly to the changing needs of decision
makers.

(a) DSS models must support a body of knowledge for the
DSS [4] [5] that is capable of record keeping, presenting information
on an ad hoc basis in both standardized and customized reports, se-
lecting a desired subset of stored strategies for either presentation or
for deriving new strategies, and interacting directly with a decision
maker in such a way that the user has a flexible choice and sequence
of knowledge-management activities [5] [6].

In light of the stated specifications above, efficient model-driven
DSSs serve as critical tools for the decision maker, in that they facil-
itate them with the ability to select the best strategies based on any
given set of attributes in the present, foresee consequences in the fu-
ture, and present ad hoc information on each strategy’s alignment
with each of the given objectives at any given time. Moreover, in
more complex situations (e.g., when the problem contains multiple
conflicting objectives spanning over several discrete time periods t
(t ∈ [t0, tn]) and a predefined set of attributes along with their re-
spective weights and uncertainty are allowed to change over time),
model-driven DSSs have been developed to help identify optimal
strategies by using interactive multi-objective simulated anneal-
ing [1] or imprecise multi-attribute additive modeling [7]. In both
cases, each attribute is assigned an absolute weight value so that at
each point in time, the decision maker is able to evaluate its im-
portance or preference over other attributes at that point in time. In
contrast, each attribute can also be set to a different weight value at
each time t (t ∈ [t0, tn]) as more data become available [8]. Either
way, it becomes very difficult to assess each attribute (by the deci-
sion maker’s preference, the attribute’s importance, or the attribute’s
relevance, at time t) when presented with a sufficiently large number
of attributes or time units within the [t0, tn] interval.

Consequently, since most multi-attribute DSS models use a finite
but large number of attributes (time-dependent or not), we approach
this problem using a neutrosophic set-based computational model,
as described in more detail in Section 2. In the model, rather than
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restricting each individual attribute to a weighting value, we first de-
fine three categories of membership (truthfulness τ , indeterminacy
i, and falsity f ). Then, we assign each attribute a time-dependent
triplet variable x

(
τt, it, ft

)
, denoting whether that attribute holds

true, indeterminate, or false at time t. Finally, a strategy is developed
based on the membership of that attribute at time t. This allows us
to only specify what the membership of the attribute is at time t, and
therefore enables us to bypass the need to evaluate each attribute in-
dividually by preference, importance, or relevance, at each time t, as
mentioned above. Such a model is a neutrosophic set-based model,
derived from the theory of neutrosophy. Subsection 1.2 highlights
the main properties of neutrosophic logic and derived neutrosophic
sets necessary for the development of this model.

1.2 Neutrosophic sets and neutrosophy

Neutrosophic sets derive from neutrosophy. Neutrosophy and neu-
trosophic sets were both introduced by Smarandache in 1995 [9] [10]
as a generalization of intuitionistic fuzzy logic [11] [12] and sets,
respectively. Smarandache defined neutrosophy as the study of ori-
gins, nature, and scope of neutralities, as well as their interactions
with different ideational spectra [9]. In other words, neutrosophy is
the study of ideas and notions that are not true, nor false, but are said
to be between true and false, neutral, indeterminate, unclear, vague,
ambiguous, incomplete, contradictory, and so forth [13]. Thus, we
describe a neutrosophic set as one where each element of the uni-
verse of discourse U has a degree of truth, indeterminacy, and falsity,
respectively. The degrees of truth, indeterminacy, and falsity are
called neutrosophic components. Each neutrosophic component lies
in a non-standard, infinitesimal unit (hyperreal) interval [14], de-
noted ]−0, 1+[. Thus, unlike intuitionistic fuzzy sets, there is no
constraint between the degree of truth, the degree of indeterminacy,
and the degree of falsity in neutrosophic sets. Moreover, in neutro-
sophic sets, the sum of the scalar neutrosophic components (denoted
nn.s.) does not necessarily equal to 1. For example, assuming that
τ, i, f ∈]−0, 1+[ are the degrees of truthfulness, indeterminacy, and
falsity, respectively, the sum nn.s. = τ + i+ f can be any number
between 0 and 3. This leads to the two main distinctions between
neutrosophic sets and intuitionistic fuzzy sets, which are (a) in neu-
trosophic sets, nn.s. can be any number in the range 0 and 3 in order
to allow for the characterization of incomplete information while for
intuitionistic fuzzy sets, nn.s. is exactly equal to 1; and (b) in neu-
trosophic sets, we use the non-standard interval ]−0, 1+[ for each
of the neutrosophic components to differentiate between absolute
membership (denoted by 1+) and relative membership (denoted by
1), while the standard interval [0, 1] is used in intuitionistic fuzzy
sets [9]. Since decision-making involves the analysis of a finite set
of alternatives described in terms of evaluative criteria, neutrosophic
sets can be useful in the development of DSS models. To this end,
we define the general concepts and operations on neutrosophic sets.

1.2.1 General concepts of neutrosophic sets: We now in-
troduce precise definitions of concepts, terminology, and notation
in neutrosophic set theory. These are standard and follow those of
Smarandache [10] [13].

Definition 1.1. (Neutrosophic set) [10] Let A be a subset of the
universe of discourse U. We say that A is a neutrosophic set if
there are three functions, TA : U→]−0, 1+[, IA : U→]−0, 1+[,
and FA : U→]−0, 1+[, that assign the truthfulness, indeterminacy,
and falsity values of each x ∈ U. In other words, to say that A is
a neutrosophic set is to say that for each x ∈ U, there are three
numbers: τ = TA(x), i = IA(x), and f = FA(x). To simplify, we
simply write x(τ, i, f) ∈ A.

We caution the reader not to misinterpret the notation x(τ, i, f)
to denote a function of τ , i, and f . Instead, given x ∈ U, we write
the parenthesized triple (τ, i, f) next to it to indicate that these are
the neutrosophic components of x (with respect toA, which must be
included as part of the notation x(τ, i, f) ∈ A).

Definition 1.2. (Complement) [9] Given a neutrosophic set A, we
define the complement of A, denoted Ac, as the neutrosophic set
with the property that x(1− τA, 1− iA, 1− fA) ∈ Ac if and only
if x(τA, iA, fA) ∈ A.

Definition 1.3. (Containment) Given neutrosophic sets A1 and
A2, we write A1 ⊆ A2 if for all x(τA1, iA1, fA1) ∈ A1 and
x(τA2, iA2, fA2) ∈ A2,

τA1
≤ τA2

; (1)

fA1
≥ fA2

. (2)

Definition 1.4. (Union) Given neutrosophic sets A1 and A2, for
all x(τA1, iA1, fA1) ∈ A1 and x(τA2, iA2, fA2) ∈ A2, the neutro-
sophic components of xwith respect to the unionA3 = A1 ∪A2 are
defined by

τA3
= τA1

+ τA2
− τA1

× τA2
; (3)

iA3
= iA1

+ iA2
− iA1

× iA2
; (4)

fA3
= fA1

+ fA2
− fA1

× fA2
. (5)

Definition 1.5. (Intersection) Given neutrosophic sets A1 and
A2, for all x(τA1, iA1, fA1) ∈ A1 and x(τA2, iA2, fA2) ∈ A2,
the neutrosophic components of x with respect to the intersection
A3 = A1 ∩A2 are defined by

τA3
= τA1

× τA2
; (6)

iA3
= iA1

× iA2
; (7)

fA3
= fA1

× fA2
. (8)

Definition 1.6. (Single-valued neutrosophic set) [9] [15] Let U ⊂
U be a space of points (or objects) with a generic element x. Given
a neutrosophic set A, we say that A is a single-valued neutro-
sophic set (SVNS), denotedA(x) =

{〈
x : τ, i, f

〉
, x ∈ U

}
, if for all

x(τ, i, f) ∈ A, τ , i, and f are all in the standard interval [0, 1].

For a SVNS, there is no restriction on the sum nn.s., which
may be as low as 0 and as high as 3. Moreover, we caution the
reader not to confuse the notation x(τA, iA, fA) ∈ A with A(x) ={〈
x : τ, i, f

〉
, x ∈ U

}
. The former is the standard representation

of a given neutrosophic set A while the latter denotes that A is a
SVNS [10] (see Definitions 1.1 and 1.6).

1.2.2 Set-theoretic operations on SVNSs: The following
definitions highlight the set-theoretic operations on SVNSs.

Definition 1.7. [15] Given a SVNSA(x) =
{〈
x : τA, iA, fA

〉
, x ∈

U
}

, we define the following:

1. The complement of A, denoted Ac, is given by

Ac(x) =
{〈
x : fA, 1− iA, τA

〉
, x ∈ U

}
. (9)

2. For λ > 0, we have

λ×A(x) =
{〈
x : 1− (1− τA)λ, iλA, f

λ
A

〉
, x ∈ U

}
; (10)

Aλ(x) =
{〈
x : τλA, 1− (1− iA)λ, 1− (1− fA)λ

〉
,

x ∈ U
}
.

(11)

Definition 1.8. [9] [15] [16] Given two SVNSs A1(x) =
{〈
x :

τA1
, iA1

, fA1

〉
, x ∈ U

}
and A2(x) =

{〈
x : τA2

, iA2
, fA2

〉
, x ∈

U
}

, we define the following:

1. A1 ⊆ A2, if and only if

τA1
≤ τA2

, iA1
≥ iA2

, fA1
≥ fA2

. (12)
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2. A1 = A2, if and only if

τA1
= τA2

, iA1
= iA2

, fA1
= fA2

. (13)

3. A3 = A1 ∪A2 is defined by

A3(x) =
{〈
x : max(τA1

, τA2
),min(iA1

, iA2
),

min(fA1
, fA2

)
〉
, x ∈ U

}
.

(14)

4. A3 = A1 ∩A2 is defined by

A3(x) =
{〈
x : min(τA1

, τA2
),max(iA1

, iA2
),

max(fA1
, fA2

)
〉
, x ∈ U

}
.

(15)

5. A3 = A1 +A2 is defined by

A3(x) =
{〈
x : τA1

+ τA2
− τA1

τA2
, iA1

iA2
,

fA1
fA2

〉
, x ∈ U

}
.

(16)

6. A3 = A1 ×A2 is defined by

A3(x) =
{〈
x : τA1

τA2
, iA1

+ iA2
− iA1

iA2
,

fA1
+ fA2

− fA1
fA2

〉
, x ∈ U

}
.

(17)

Definition 1.9. [15] Given a SVNSA(x) =
{〈
x : τA, iA, fA

〉
, x ∈

U
}

, the score function σA : U → [0, 1], accuracy function αA :
U → [−1, 1], and certainty function υA : U → [0, 1] of A are
defined by

σA(x) =
2 + τA − iA − fA

3
; (18)

αA(x) = τA − fA; (19)

υA(x) = τA. (20)

Definition 1.10. [15] Given two SVNSs A1(x) =
{〈
x :

τA1
, iA1

, fA1

〉
, x ∈ U

}
and A2(x) =

{〈
x : τA2

, iA2
, fA2

〉
, x ∈

U
}

, we say that A1 ranks higher than A2, denoted A1 > A2, if
τA1

> τA2
and iA1

+ fA1
< iA2

+ fA2
. Conversely, we say that

A1 ranks lower than A2, denoted A1 < A2, if τA1
< τA2

and
iA1

+ fA1
> iA2

+ fA2
.

Remark 1. Given two SVNSs A1(x) =
{〈
x : τA1

, iA1
, fA1

〉
, x ∈

U
}

and A2(x) =
{〈
x : τA2

, iA2
, fA2

〉
, x ∈ U

}
, the following

hold true:

1. If σA1
(x) > σA2

(x), then A1 > A2.
2. If σA1

(x) = σA2
(x) and αA1

(x) > αA2
(x), then A1 > A2.

3. If σA1
(x) = σA2

(x), αA1
(x) = αA2

(x), and υA1
(x) >

υA2
(x), then A1 > A2.

4. If σA1
(x) = σA2

(x), αA1
(x) = αA2

(x), and υA1
(x) =

υA2
(x), then A1 = A2.

We provide the following explanations for the claims in
Remark 1:

1. Using equation (18), let iA1
+ fA1

= b1 for A1 and iA2
+

fA2
= b2 for A2, σA1

(x) > σA2
(x) means that τA1

− b1 >
τA2
− b2. We agree that τA1

≥ τA2
and b1 ≤ b2. It is easy to see

that at a minimum, A1 ≥ A2.
2. Using equation (19), αA1

(x) > αA2
(x) also means that τA1

−
fA1

> τA2
− fA2

. Thus, τA1
≥ τA2

and fA1
≤ fA2

leads to
A1 ≥ A2, at least.
3. Letting iA1

+ fA1
= b1 forA1 and iA2

+ fA2
= b2 forA2, we

know that b1 = b2, and τA1
− fA1

= τA2
− fA2

. However, with
υA1

(x) > υA2
(x), then τA1

> τA2
. Thus, A1 > A2.

4. Letting iA1
+ fA1

= b1 for A1 and iA2
+ fA2

= b2 for A2,
having b1 = b2, τA1

− fA1
= τA2

− fA2
, and τA1

= τA2
, then

A1 = A2 (see equation (13)).

Remark 2. The zero set, denoted 0N, is defined by 0N(x) =
{〈
x :

0, 1, 1
〉
, x ∈ U

}
. For all x ∈ U , σ0N(x) = 0, α0N(x) = −1, and

υ0N(x) = 0.

The claim in Remark 2 is easy to show (see Definition 1.9).

Definition 1.11. (Truth- and falsity-favorite) [9] Given a SVNS
A1(x) =

{〈
x : τA1

, iA1
, fA1

〉
, x ∈ U

}
, the SVNS A2 is a

1. truth-favorite of A1 and is denoted A2 = ∆A1, if

A2(x) =
{〈
x : min(τA1

+ iA1
, 1), 0, fA1

〉
, x ∈ U

}
. (21)

2. falsity-favorite of A1 and is denoted A2 = ∇A1, if

A2(x) =
{〈
x : τA1

, 0,min(iA1
+ fA1

, 1)
〉
, x ∈ U

}
. (22)

Remark 3. The complement of the zero set 0N, denoted 0cN, is
defined by 0cN(x) =

{〈
x : 1, 0, 0

〉
, x ∈ U

}
. Thus, 0N ⊂ 0cN. Fur-

thermore, 0cN is the complement of the false-favorite of 0N, with
σ0c

N
(x) = 1, α0c

N
(x) = 1, and υ0c

N
(x) = 1.

The claim in Remark 3 is easy to show (see Definitions 1.8, 1.9,
and 1.11).

Lemma 1.1. Given a SVNS A(x) =
{〈
x : τA, iA, fA

〉
, x ∈ U

}
,

we have 0N ⊆ A.

Proof: This claim is a generalization of Remark 3. If A is a zero
set, then A = 0N. Otherwise, for all x ∈ U , it is clear that 0 ≤ τA,
1 ≥ iA, and 1 ≥ fA for all τA, iA, fA ∈ [0, 1] (see Definition 1.8,
equation (12)). �

2 Developing a DSS computational model using
SVNSs

2.1 Defining objectives and attributes

Using set-theoretic operations on SVNSs, we now describe a model
to support a finite numberN of objectives over discrete time periods
ranging from t0 to tn. The set of N objectives are a predefined set
of decision alternatives well-known to the decision maker. Addition-
ally, each of the time periods represent an objective level. That is,
at each t ∈ [t0, tn], a specific set of attributes are used to develop
a course of action (in other words, a strategy) to achieve a particu-
lar objective and to determine whether that strategy is suitable over
those of other objectives at that level. Thus, having discrete time
periods in [t0, tn] implies having n+ 1 objective levels. Since the
objectives are spanned over t0 to tn, the ratio

m =
N

n+ 1

represents the number of attributes per objective level. The model
supports the rearrangement of the given objectives into an objec-
tive tree [1] with n+ 1 objective levels matching the time interval
[t0, tn], as illustrated in Figure 1. Previous studies have been able
to determine that an objective’s importance can change over time
based on how the decision maker perceives each objective and its
alignment with the strategy developed for each attribute [1]; thus,
the model also needs to take this finding into account. As a result,
the model is designed to support m time-dependent attributes, de-
noted, a1, . . . , am, spanning over each t ∈ [t0, tn] (Figure 1). That
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t = t0

t = t1

t = t2

t = tn

...

N Objectives

a1

am

...

a1

am

...

a1

am

...

a1

am

...

a1

am

...

Fig. 1: Objective tree including time periods [1].

is, each akt , with k ∈ [1,m], is a tuple:

akt =
{
akt0 , . . . , aktn

}
. (23)

Each attribute’s value at time t, i.e., akt , is determined based on
the neutrosophic values assigned to that attribute. That is, we by-
pass the need to determine the relevance of attribute akt at time t
beforehand. The model requires specifying only whether akt is true,
indeterminate, or false at time t. Then, we define each akt as a SVNS
(see Definition 2.1). Ultimately, for this model, the subset U ⊂ U
defined earlier as a space of points or objects (from Definition 1.6)
becomes the Cartesian product [1,m]× [t0, tn] with a generic el-
ement x, and is reflected in equation (24). To this end, the first
definition for the model is as follows:

Definition 2.1. Given a non-empty set of N predefined objectives
andm time-dependent attributes, all spanning over [t0, tn], for each
time t and for each k, the attribute akt is a SVNS and is defined by

akt(x) =

{〈
x : τkt , ikt , fkt

〉
, x ∈ [1,m]× [t0, tn]

}
, (24)

where τkt , ikt , fkt ∈ [0, 1], m ∈ N∗, k ∈ [1,m], and t ∈ [t0, tn].

Lemma 2.1. For k ∈ [1,m] and t ∈ [t0, tn], akt is a non-zero set.

Proof: We provide the following explanations for this claim:

1. For k ∈ [1,m] and all t, 0N ⊆ akt (see Lemma 1.1).
2. Let xval ∈ U , where U = [1,m]× [t0, tn], for which
we have two non-empty SVNSs aval1(xval) =

{〈
xval :

τval1 , ival1 , fval1

〉
, xval ∈ U

}
⊂ akt and aval2(xval) =

{〈
xval :

τval2 , ival2 , fval2

〉
, xval ∈ U

}
⊂ akt . If there exist λ1, λ2 > 0

such that λ1 × aval1 + λ2 × aval2 ⊂ akt , then akt is a non-zero

set. From Definition 1.7, we know that

λ1 × aval1(xval) =

{〈
xval : 1− (1− τval1)λ1 , iλ1

val1
,

fλ1

val1

〉
, xval ∈ U

}
;

(25)

λ2 × aval2(xval) =

{〈
xval : 1− (1− τval2)λ2 , iλ2

val2
,

fλ2

val2

〉
, xval ∈ U

}
.

(26)

Thus, let aval = λ1 × aval1 + λ2 × aval2 . We have

aval(xval) =

{〈
xval : 1− (1− τval1)λ1(1− τval2)λ2 ,

iλ1

val1
iλ2

val2
, fλ1

val1
fλ2

val2

〉
, xval ∈ U

}
.

(27)

We know that τval1 , ival1 , fval1 , τval2 , ival2 , fval2 ∈ [0, 1], thus for
any λ1, λ2 > 0, we have 0 ≤ iλ1

val1
iλ2

val2
≤ 1 and 0 ≤ fλ1

val1
fλ2

val2
≤

1. Furthermore, 1− τval1 ≤ 1 implies that (1− τval1)λ1 ≤ 1.
The same applies for (1− τval2)λ2 . As a result, 0 ≤ 1− (1−
τval1)λ1(1− τval2)λ2 ≤ 1 for any λ1, λ2 > 0. Now, since with
xval ∈ U , and aval1 , aval2 ⊂ akt , then aval ⊂ akt for all xval ∈ U .
3. Let aval1 ∩ aval2 ⊂ akt . If aval1 ∩ aval2 = 0N, then condition 1
applies. Otherwise,

[
aval1 ∩ aval2

]
(xval) =

{〈
xval : min(τval1 , τval2),

max(ival1 , ival2),max(fval1 , fval2)
〉
, xval ∈ U

}
.

(28)

Since aval1 , aval2 are non-empty sets, then aval1 ∩ aval2 from
equation (28) is a non-empty set, stemming from the fact that the
values min(τval1 , τval2), max(ival1 , ival2), and max(fval1 , fval2)
exist. Then, aval1 ∩ aval2 ⊂ akt implies that akt is a non-empty set.

As a result, for all k and t, akt is a non-zero set. �

In decision-making, to achieve defined objectives, one or more
strategies are developed. Those strategies are developed using at-
tributes that relate each objective with defined checkpoints such as
when to take a course of action and when to assess whether the ob-
jective(s) has/have been met. We apply this idea in the model. Each
SVNS akt ’s neutrosophic component values are used to determine
a set of strategies. However, as we often encounter, strategies can
be difficult to assess quantitatively. Therefore, the set of strategies
is characterized by a set of strategy consequences that allows us to
utilize the neutrosophic values from each akt and derive a vector
of intervals containing time-dependent consequence values for each
akt . We describe the obtained time-dependent consequence values
as imprecise consequences. This stems from the fact that the set of
strategies developed are based on neutrosophic values that encom-
pass unclear, ambiguous, or incomplete knowledge of each attribute
at time t. The decision maker will then assess each attribute based on
the imprecise consequence for that attribute. Last, it is worth noting
that this model does not manipulate or make changes to the ob-
jectives; any manipulation/assessment other than rearrangement of
attributes into an objective tree is left to the decision maker.

From Definition 2.1 and Lemma 2.1, it is possible to rank at-
tributes using the score function, compare attributes using the accu-
racy function, and determine the likelihood of an attribute using the
certainty function (see Definition 1.9). In doing so, we are also able
to derive strategy consequences from attributes. The next subsection
introduces the definitions for strategies and their consequences.
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2.2 Defining consequences of strategies

Definition 2.2. Given a non-empty set of N predefined objectives
andm time-dependent attributes represented by the SVNS akt(x) ={〈
x : τkt , ikt , fkt

〉
, x ∈ [1,m]× [t0, tn]

}
, let S be the set of avail-

able strategies derived from all akt . At time t, the set Sq of imprecise
consequences of such strategies is a stream defined by a vector of
imprecise consequences, denoted sqk (t). Thus, we write the set of
imprecise consequences as

Sq =
{
sq1(t), . . . , sqm(t)

}
; (29)

with each sqk (t), k ∈ [1,m], defined by

sqk (t) ∈
[
sLk (t), sUk (t)

]
, (30)

where sLk (t) and sUk (t) are (respectively) the lower and upper
endpoints of the imprecise consequence interval for attribute akt .

Assumption 2.1. For all akt , Sq ⊆ S.

Assumption 2.1 is critical for this model. From equation (30), we
can see that sqk (t) is a value from the interval

[
sLk (t), sUk (t)

]
. Thus,

for each akt , S contains all possible values within
[
sLk (t), sUk (t)

]
.

Hence, the description of S being the set of all available strategies
for all akt .

Assumption 2.2. For all akt , there is a continuous distribution
between sLk (t) and sUk (t) endpoints.

We will discuss the need for Assumption 2.2 later in this subsec-
tion.

Definition 2.3. Given a non-empty set of N predefined objectives
andm time-dependent attributes represented by the SVNS akt(x) ={〈
x : τkt , ikt , fkt

〉
, x ∈ [1,m]× [t0, tn]

}
, let S be the derived

set of available strategies. Each imprecise consequence interval[
sLk (t), sUk (t)

]
for akt is restricted to the following conditions:

1. If ikt = 0, then

sqk (t) = sLk (t) = sUk (t) = τkt . (31)

2. If ikt > 0, then

sLk (t) = min

(
2 + τkt − i

∗
kt
− fkt

3

)
, (32)

sUk (t) = max

(
2 + τkt − i

∗
kt
− fkt

3

)
, (33)

and
sLk (t) ≤ sqk (t) ≤ sUk (t), (34)

where i∗kt = {ikt , 1− ikt}.

In Definition 2.3, we put an emphasis on the indeterminacy of
akt . This stems from the fact that once we are able to precisely
characterize attribute akt , i.e., ikt = 0, we agree that its certainty
is based on the value of τkt , i.e., υakt

(x) = τkt . We describe this
scenario (i.e., ikt = 0) as having precise knowledge of akt . This is
also applicable when τkt = 0, leading to sLk (t) = sUk (t) = 0, and
both endpoints take the lowest possible value of 0. Conversely, with
ikt = 0 and τkt = 1, then sLk (t) = sUk (t) = 1, and both endpoints
take the highest possible value of 1. Now, if ikt > 0, we describe
this scenario as having imprecise knowledge of akt . Therefore, hav-
ing imprecise knowledge of the nature of attribute akt implies that
its indeterminacy becomes prevalent, and is used in determining both

endpoints of the imprecise consequence for akt . We do so by creat-
ing a masked indeterminacy value i∗kt that takes both the value of
ikt and the value of the complement 1− ikt , and substituting them
in the score function of akt , as seen in equations (32) and (33).

A special case is where ikt = 1− ikt , meaning ikt = 0.5, then
sLk (t) = sUk (t) = σakt

(x) (see equation (18)). As a result, each
sqk (t) is expected to be within an interval with distinct endpoints,
except for when ikt ∈ {0, 0.5}, in which case sqk (t) = sLk (t) =

sUk (t). We interpret this result as (a) having precise knowledge of
akt leads to a single strategy consequence that is solely based on the
certainty of attribute akt at time t, (b) having an imprecise knowl-
edge of akt at about 50% leads to a single strategy consequence that
takes all neutrosophic components into consideration.

It is worth noting that, when ikt 6= 0, we have an interval of im-
precise consequence values as seen in equation (30). This entails that
we need some creative way to generate the values between sLk (t)
and sUk (t) and estimate the best sqk (t) value(s) from the interval for
decision-making purposes. Obviously, this model is intended to em-
power the decision maker with a weighting tool in which attributes’
impacts on the current and future strategies are accounted for. By
presenting each potential strategy as a direct consequence of a par-
ticular attribute in the form of an interval, it is critical to predict
which value(s) from the interval are most likely, based on ikt . Thus,
we proceed with the following analysis:
First, it is clear that 0 ≤ sqk (t) ≤ 1 regardless of the value of ikt .
Second, let ¯ikt = 1− ikt , if ikt < 0.5, we agree that ¯ikt > ikt ,
then,

sLk (t) =
2 + τkt − ¯ikt − fkt

3
. (35)

Conversely, with ikt > 0.5, we have ¯ikt < ikt , and

sUk (t) =
2 + τkt − ¯ikt − fkt

3
. (36)

Consequently, for all ikt 6= 0, it is safe to say that

2 + τkt −max( ¯ikt , ikt)− fkt
3

≤ sqk (t)

≤
2 + τkt −min( ¯ikt , ikt)− fkt

3
.

(37)

Naturally, it is a more favorable scenario to have ¯ikt > ikt .
We describe such scenario as favorable indeterminacy. This stems
from the fact that precise knowledge about an attribute at time t
is achieved only when ikt → 0. We also describe the opposite sce-
nario, i.e., ¯ikt < ikt , as unfavorable indeterminacy. Therefore, the
smaller the indeterminacy, the larger the impact of the attribute’s cer-
tainty at time t. Moreover, for ikt 6= 0.5, it is clear that there exists
a ζt > 0 such that | ikt − ¯ikt |= ζt. Then, we provide the following
definition and remarks.

Definition 2.4. Given a non-empty set of N predefined objectives
andm time-dependent attributes represented by the SVNS akt(x) ={〈
x : τkt , ikt , fkt

〉
, x ∈ [1,m]× [t0, tn]

}
, let S be the derived set

of all available strategies. We define the reverse indeterminate
SVNS of akt , denoted akrt , as the SVNS with the property that
akrt(x) =

{〈
x : τkt , 1− ikt , fkt

〉
, x ∈ [1,m]× [t0, tn]

}
. The re-

sulted imprecise consequence interval sLkr (t) ≤ sqkr
(t) ≤ sUkr (t) is

called the reverse imprecise consequence interval of akt .

Remark 4. Given akt and akrt , let ¯ikt = 1− ikt and ikt > 0.

1. If ikt = ¯ikt , then akt = akrt , and

sqkr
(t) = sqk (t) = σakt

(x). (38)
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2. If ikt > ¯ikt , then sLk (t) ≤ sqkr
(t) ≤ sUkr (t), where

sLk (t) =
2 + τkt − ikt − fkt

3
, (39)

sUkr (t) =
2 + τkt − ¯ikt − fkt

3
. (40)

3. If ikt < ¯ikt , then sLkr (t) ≤ sqk (t) ≤ sUk (t), where

sLkr (t) =
2 + τkt − ¯ikt − fkt

3
, (41)

sUk (t) =
2 + τkt − ikt − fkt

3
. (42)

The claim in Remark 4 is easy to show (see Definitions 1.9, 2.3,
and 2.4).

Lemma 2.2. For distinct k, l ∈ [1,m], let
[
sLk (t), sUk (t)

]
⊆[

sLl (t), sUl (t)
]
. If ikt = min(ikt ,

¯ikt) and ilt = min(ilt , īlt), then
akt ≤ alt .

Proof: We provide the following explanation for this claim. We are
aware that each interval is a continuous distribution (See Assump-
tion 2.2), but we also know that

[
sLk (t), sUk (t)

]
⊆
[
sLl (t), sUl (t)

]
is equivalent to sLl (t) ≤ sLk (t) ≤ sUk (t) ≤ sUl (t). That said, from
equation (37), we agree that

2 + τlt −max(īlt , ilt)− flt
3

≤
2 + τkt −max( ¯ikt , ikt)− fkt

3
,

(43)

and

2 + τkt −min( ¯ikt , ikt)− fkt
3

≤
2 + τlt −min(īlt , ilt)− flt

3
.

(44)

Then, we can deduce that

| ikt − ¯ikt | ≤ | ilt − īlt | . (45)

From Remark 4, we know that if

1. ikt > ¯ikt , then sLk (t) ≤ sqkr
(t) ≤ sUkr (t);

2. ikt < ¯ikt , then sLkr (t) ≤ sqk (t) ≤ sUk (t).

Doing the same for ilt and īlt ; when ikt = min(ikt ,
¯ikt) and ilt =

min(ilt , īlt), we can see that sUk (t) ≤ sUl (t). As a result, akt ≤ alt
(see Remark 1). �

In Assumption 2.2, we claimed that there is a continuous distri-
bution between sLk (t) and sUk (t) endpoints for each akt , thus we
agree that the probability that a particular value between sLk (t) and
sUk (t) endpoints is assumed is 0; which is fine, as the intent here is
not to handpick a value from that interval. Assuming that the contin-
uous distribution between sLk (t) and sUk (t) endpoints is uniform, if
s̄qt is the distribution mean, then we can imply that, for any values

ε, y > 0,

Pr
[
s̄qt − ε ≤ y ≤ s̄qt

]
= Pr

[
s̄qt ≤ y ≤ s̄qt + ε

]
. (46)

Then, it is easy to see that the probability density function is

f(y) =


1

sUk (t)− sLk (t)
, if sLk (t) ≤ y ≤ sUk (t);

0, otherwise;

(47)

and that any value within the
[

min(ikt ,
¯ikt),max(ikt ,

¯ikt)
]

yields
equally probable real y values, with the condition that sLk (t) ≤ y ≤
sUk (t).

Now, we try a more complex distribution. Assuming that the
continuous distribution is normal, using the central limit theorem
(CLT) [17], we know that the density of the sum of two or more
independent variables within the sLk (t) ≤ y ≤ sUk (t) interval is the
convolution of their densities [18]. That is, as we add more indepen-
dent variables to the sum, the density of the sum tends to converge
towards the normal density. If s̄qt is the distribution mean at time
t, let ns be the number of real values within

[
sLk (t), sUk (t)

]
, we

expect ns →∞. Thus, the classical CLT states that as ns gets suf-
ficiently large, the distribution gets close to the normal distribution
with mean s̄qt and variance δ2. As a result, within each closed set[
sLk (t), sUk (t)

]
, we want sqk (t) to be as close to the mean s̄qt as

possible. In the end, each attribute akt has a consequence of strategy
that is either presented as a single value within [0, 1] or as a contin-
uous distribution in

[
sLk (t), sUk (t)

]
, dependent on whether ikt = 0

or not. This gives the decision maker the freedom to (a) develop a
problem-solving approach on approximation and conduct sensitivity
analysis as needed, or (b) perform discounting on each attribute over
time once more data about each attribute become available and per-
form further sensitivity (or any other) analysis as needed. Since this
model solely relies on current data based on the neutrosophic values
of each attribute, we use an example in which we apply (a) and leave
(b) for further discussions on this topic.

3 Computing example

3.1 Model example input and computation

We use an example in which we apply the definitions, lemmas,
and remarks from Section 2. We use an objective tree over time
that consists of N = 110 objectives, n = 11 objective levels de-
rived from 11 time periods ranging from t = 0 to t = 10. We are
also given 10 attributes, defined by the time-dependent set a =
{a1, a2, . . . , a10}, as seen in Table 1. We describe the time peri-
ods as a tuple t = {0, 1, . . . , 10}, in order to account for the initial
knowledge or characteristics of attributes at time t = 0. At time
t = 0, it is expected that the decision maker’s knowledge of each at-
tribute and its relevance to objectives is precise, and therefore there
are no indeterminacy and ik = 0, with k ∈ [1, 10]. It is also as-
sumed that each attribute akt is a SVNS, therefore each τkt , ikt ,
and fkt are in [0, 1]. Also, each akt is a 11-tuple in the form of
equations (23) and (24). All simulations are run using the input val-
ues recorded in Tables 1 and 2. Neutrosophic components for each
akt , with t ∈ [1, 10], are recorded in Table 2.

We calculate the score, accuracy, and certainty values for each akt
for all t using equations (18) through (20), as seen in Table 3. Using
Definition 2.3 and equations (31) through (33), we then determine
the imprecise consequences intervals for each akt in Table 4. As
expected, since the neutrosophic values used for t = 0 have no inde-
terminacy, i.e., ikt = 0, the imprecise consequences intervals only
takes one value, which is the value of τkt . In this case, the term “im-
precise” is an oxymoron since technically, the consequence for each
akt is precise at t = 0 and refers to the certainty of that akt . At times
t > 0, we have determined the imprecise consequence intervals with
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both sLk (t) and sUk (t) endpoints for each attributes akt . From As-
sumption 2.2, there is a continuous distribution between sLk (t) and
sUk (t). This is also taken into account in our analysis.

3.2 Approximation-based approach

In Definition 2.4, Remark 4, and Lemma 2.2, we introduced the
terms reverse indeterminate SVNSs and reverse imprecise conse-
quence intervals for each attribute when presented with the scenario
in which ikt > ¯ikt . This is critical in determining one of the two
endpoints in the imprecise intervals for each akt at time t when
presented with an indeterminacy that is larger than 0.5. We also
determined that, for distinct k, l ∈ [1,m], having

[
sLk (t), sUk (t)

]
⊆[

sLl (t), sUl (t)
]

where ikt = min(ikt ,
¯ikt) and ilt = min(ilt , īlt)

leads to the conclusion that akt ≤ alt from an attribute scoring or
ranking standpoint. Depending on the number of objectives and at-
tributes being present, drawing such conclusion can be a tough task
for a fairly large number of attributes. Thus, we describe the fol-
lowing approximation-based approach to help determine the most
relevant attribute(s) at time t, using equation (48). We assume that
each imprecise consequence interval is a normal distribution, and
we look at the median of each distribution at time t, denoted ¯sqk , as
seen in Table 5. Once again, at time t = 0, we had both endpoints
being equal (See Table 4); therefore, for t = 0, ¯sqk = τkt . For each
t, the ¯sqk values from Table 5 are then normalized to generate each
attribute weight value, denoted ˆsqk (See Table 6). The results from
Table 6 allow the decision maker to rank each attribute based on the
imprecise consequence values at each time t. As a result, to obtain
the ˆsqk values in Table 6, at each t, withm = 10 and k ∈ [1,m], we
use

ˆsqk =
¯sqk

m∑
k=1

¯sqk

(48)

and
m∑
k=1

ˆsqk = 1. (49)

3.3 Interpretation of results and sensitivity analysis

By corresponding each weight value from Table 6 to its relative at-
tribute, the decision maker can choose to prioritize directly based on
these weight values. Additionally, these values can also be used to
perform discounting on each attribute with the end goal being the
prioritization of attributes at time t. Using discounting, however, is
an extra measure for comparing attributes, for the purpose of this
paper; it has been left to the decision maker’s discretion.

At first glance, it is easy to see that at time t = 0, attribute a5
would be ranked first, followed closely by attribute a9, then by a2,
a10, a1, a7, a6, a4, a3, and a8, respectively. Doing the same for
t = 1, the attribute ranking is a6, a1, a2, a3, a5, a10, a7, a4, a9,
and a8, respectively. For t = 2, we have a10, a2, a6, a1, a7, a3, a4,
a8, a5, and a9, in that order. The same process is used to determine
the ranking or priority for the same attributes at times t = 3, . . . , 10.

The approximation-based approach using the medians of the im-
precise consequence intervals in Subsection 3.2 gives us an outlet
in assigning a weighted value to each attribute because it allows
us to bypass the need to compare each imprecise consequence
interval with another (See Lemma 2.2). That approach, however,
does not take into account whether attribute akt contains a fa-
vorable or unfavorable indeterminacy at time t. This stems from
the fact that the median is the closest to the halfway point be-
tween sLk (t) and sUk (t), therefore that approach does not take into
account whether ikt = min(ikt ,

¯ikt) (favorable indeterminacy) or
ikt = max(ikt ,

¯ikt) (unfavorable indeterminacy). We know that
each

[
sLk (t), sUk (t)

]
is a continuous distribution, so we define εkt =

dsqk(t) as an arbitrary infinitesimal variation from the median
¯sqk (t) such that ¯sqk (t)− εkt ≤ ¯sqk (t) ≤ ¯sqk (t) + εkt , at time t.

Thus, we recompute the weighted values ( ˆsqk ) using

ˆsqk =



¯sqk + εkt
m∑
k=1

¯sqk

, if ikt = min(ikt ,
¯ikt);

¯sqk − εkt
m∑
k=1

¯sqk

, otherwise.

(50)

For simplicity, we use the same εkt throughout t = 1, . . . , 10. How-
ever, it is normal to envision a case where the decision maker would
choose a different εkt value as t progresses. Moreover, since at t =
0, there is no imprecise consequence interval for any of the attributes
(See Table 4), the newly computed values only affect the previous
weighted values from Table 6 for t > 0. Those newly computed
weighted values are then reflected in Table 7 using εkt = 0.1.

As an interpretation of the results in Table 7, we can see that there
are no new attribute weighting or ranking for t = 0, as expected.
For t = 1, we have the attributes in which ikt = min(ikt ,

¯ikt) (i.e.,
a6, a1, and a5, respectively), then followed by those in which ikt 6=
min(ikt ,

¯ikt), such as a2, a3, a10, a7, a4, a9, and a8, in that order.
For t = 2, we have a10, a2, a6, a1, a7, a3, a9, a4, a8, and a5, in
that order. The same process is repeated to determine the rankings at
times t = 3, . . . , 10.

As expected, our first observation is that when ikt =
min(ikt ,

¯ikt), attributes with the largest τkt and smallest ikt val-
ues yield a larger ˆsqk than those that do not. Moreover, we can see
that when two or more attributes contain ikt 6= min(ikt ,

¯ikt), prior-
ity is given to the one(s) with the largest τkt . This new ranking aligns
more with Lemma 2.2 than the approximation-based approach of just
using the normalized weights of the median values of the imprecise
consequence intervals reflected in Table 6. For instance, at t = 4,
a4 has ikt = 0.39 while ikt for a9 is 0.198; we also can see that
[0.711, 0.785] ⊆ [0.669, 0.87], and according to both Lemma 2.2
and the ˆsqk values obtained in Table 7, we observe that a9 would
be ranked just ahead of a4. As a result, where applicable, either
Lemma 2.2 or the approach in equation (50) can be used to deter-
mine which attribute has the most impactful strategy between any
given set of attributes, at a specific time in the future. The challenge,
in applying the approach in equation (50), is how to determine which
εkt is best to facilitate prioritizing attributes with favorable inde-
terminacy over those with unfavorable indeterminacy. We can see
that the standard deviations from the imprecise consequence inter-
val medians, at each t > 0, are 0.178, 0.163, 0.247, 0.189, 0.179,
0.174, 0.11, 0.189, 0.166, and 0.187, respectively. Thus, choos-
ing εkt = 0.1 is a sensible pick. Any pick too small (i.e., εkt → 0)
would get us right around the median value, which defeats the pur-
pose of establish some bias towards favorable indeterminacy. Any
pick too large creates a significant gap between attributes with fa-
vorable indeterminacy and those with unfavorable indeterminacy.
Ultimately, having the intervals available to the decision maker em-
powers them in choosing any approximation approach that suits the
end-goal of the scenario at hand.

4 Future work and discussion

We have developed a DSS computation model for decision-support
scenarios where we have N objectives with m attributes spanning
over n time periods. We represented each attribute in the form of a
single-valued neutrosophic set and performed necessary operations
to determine a specific set of strategies in which each attribute’s
imprecise consequence were presented as a continuous distribution
interval. We proceeded with defining a model to detect when inde-
terminacy is favorable or unfavorable, and presented approaches that
help achieve that bias. We provided a computation example in which
the model is used, and conducted a sensitivity analysis of the results.
While this example provided a clear application of the model, cer-
tain areas still need further discussion. These areas, which can be
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addressed in future research on this computation model, include the
following:

1. Since each imprecise consequence is given in the form of a con-
tinuous distribution interval, assuming that the distribution is normal,
would the normal density of each interval help establish a trend about
each attribute?
2. Can the neutrosophic components of an attribute be linked with
any property other than how impactful the attribute would be in the
future?
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6 Appendix

This appendix section contains tables that present the data used and
the obtained results for the model computation example. A summary
is as follows:

1. Table 1: Initial neutrosophic values for all attributes at time t = 0.
2. Table 2: Neutrosophic values for all attributes at 1 ≤ t ≤ 10.
3. Table 3: Score (σ), accuracy (α), and certainty (υ) values for all
attributes’ SVNSs, at time t ∈ [0, 10].
4. Table 4: Imprecise consequence intervals for all attributes’
SVNSs, at time t ∈ [0, 10].
5. Table 5: Imprecise consequence intervals medians for at time t,
for each akt .
6. Table 6: Imprecise consequence weight values at time t for each
akt , obtained via the normalization of the imprecise consequence
values of akt for each t.

7. Table 7: Imprecise consequence weight values at future time t for
each akt , obtained via adding or subtracting an arbitrary εkt = 0.1
from the imprecise consequence interval median for each attribute
akt , depending on whether the value of ikt is less than 0.5 or not, at
time t > 0.
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Table 1 Initial neutrosophic values for all attributes, at time t = 0.

Neutrosophic Component Attributes
(
akt (t = 0)

)
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

τk 0.581 0.74 0.149 0.258 0.97 0.515 0.565 0.144 0.925 0.634
ik 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
fk 0.419 0.26 0.851 0.742 0.03 0.485 0.435 0.856 0.075 0.366

Table 2 Neutrosophic values for all attributes, at 1 ≤ t ≤ 10.

Neutrosophic Component Attributes
(
akt (t > 0)

)
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

akt (t = 1)
τk 0.913 0.636 0.624 0.374 0.504 0.989 0.471 0.009 0.35 0.477
ik 0.434 0.861 0.749 0.829 0.001 0.29 0.981 0.867 0.755 0.512
fk 0.087 0.364 0.376 0.626 0.496 0.011 0.529 0.991 0.65 0.523

akt (t = 2)
τk 0.553 0.77 0.519 0.293 0.246 0.701 0.532 0.276 0.094 0.903
ik 0.966 0.126 0.951 0.797 0.544 0.373 0.782 0.596 0.482 0.033
fk 0.447 0.23 0.481 0.707 0.754 0.299 0.468 0.724 0.906 0.097

akt (t = 3)
τk 0.223 0.256 0.014 0.898 0.026 0.994 0.851 0.887 0.704 0.257
ik 0.965 0.619 0.537 0.066 0.22 0.111 0.06 0.125 0.252 0.535
fk 0.777 0.744 0.986 0.102 0.974 0.006 0.149 0.113 0.296 0.743

akt (t = 4)
τk 0.227 0.505 0.254 0.872 0.116 0.634 0.274 0.614 0.904 0.1
ik 0.4 0.548 0.012 0.39 0.843 0.129 0.558 0.305 0.198 0.574
fk 0.773 0.495 0.746 0.128 0.884 0.366 0.726 0.386 0.096 0.9

akt (t = 5)
τk 0.345 0.103 0.481 0.036 0.01 0.692 0.479 0.85 0.495 0.187
ik 0.048 0.66 0.083 0.333 0.306 0.065 0.568 0.354 0.349 0.379
fk 0.655 0.897 0.519 0.964 0.99 0.308 0.521 0.15 0.505 0.813

akt (t = 6)
τk 0.421 0.236 0.379 0.072 0.582 0.598 0.794 0.837 0.553 0.041
ik 0.115 0.947 0.764 0.556 0.805 0.948 0.426 0.043 0.408 0.503
fk 0.579 0.764 0.621 0.928 0.418 0.402 0.206 0.163 0.447 0.959

akt (t = 7)
τk 0.431 0.498 0.436 0.27 0.235 0.004 0.468 0.334 0.564 0.568
ik 0.197 0.046 0.041 0.591 0.143 0.081 0.875 0.682 0.014 0.159
fk 0.569 0.502 0.564 0.73 0.765 0.996 0.532 0.666 0.436 0.432

akt (t = 8)
τk 0.767 0.571 0.761 0.344 0.032 0.168 0.239 0.807 0.359 0.051
ik 0.265 0.164 0.436 0.68 0.054 0.778 0.514 0.228 0.855 0.846
fk 0.233 0.429 0.239 0.656 0.968 0.832 0.761 0.193 0.641 0.949

akt (t = 9)
τk 0.005 0.318 0.816 0.064 0.286 0.337 0.622 0.457 0.09 0.554
ik 0.028 0.749 0.314 0.722 0.915 0.475 0.687 0.37 0.297 0.473
fk 0.995 0.682 0.184 0.936 0.714 0.663 0.378 0.543 0.91 0.446

akt (t = 10)
τk 0.738 0.788 0.46 0.017 0.401 0.304 0.657 0.921 0.367 0.925
ik 0.447 0.399 0.973 0.962 0.626 0.191 0.379 0.201 0.957 0.162
fk 0.262 0.212 0.54 0.983 0.599 0.696 0.343 0.079 0.633 0.075
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Table 3 Score (σ), accuracy (α), and certainty (υ) values for all attributes’ SVNSs, at time t ∈ [0, 10].

Function Attributes
(
akt

)
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

akt (t = 0)
σakt

(x) 0.721 0.827 0.433 0.505 0.98 0.677 0.71 0.429 0.95 0.756
αakt

(x) 0.162 0.48 -0.702 -0.484 0.94 0.03 0.13 -0.712 0.85 0.268
υakt

(x) 0.581 0.74 0.149 0.258 0.97 0.515 0.565 0.144 0.925 0.634
akt (t = 1)

σakt
(x) 0.797 0.47 0.5 0.306 0.669 0.896 0.32 0.05 0.315 0.481

αakt
(x) 0.826 0.272 0.248 -0.252 0.008 0.978 -0.058 -0.982 -0.3 -0.046

υakt
(x) 0.913 0.636 0.624 0.374 0.504 0.989 0.471 0.009 0.35 0.477

akt (t = 2)
σakt

(x) 0.38 0.805 0.362 0.263 0.316 0.676 0.427 0.319 0.235 0.924
αakt

(x) 0.106 0.54 0.038 -0.414 -0.508 0.402 0.064 -0.448 -0.812 0.806
υakt

(x) 0.553 0.77 0.519 0.293 0.246 0.701 0.532 0.276 0.094 0.903
akt (t = 3)

σakt
(x) 0.16 0.298 0.164 0.91 0.277 0.959 0.881 0.883 0.719 0.326

αakt
(x) -0.554 -0.488 -0.972 0.796 -0.948 0.988 0.702 0.774 0.408 -0.486

υakt
(x) 0.223 0.256 0.014 0.898 0.026 0.994 0.851 0.887 0.704 0.257

akt (t = 4)
σakt

(x) 0.351 0.487 0.499 0.785 0.13 0.713 0.33 0.641 0.87 0.209
αakt

(x) -0.546 0.01 -0.492 0.744 -0.768 0.268 -0.452 0.228 0.808 -0.8
υakt

(x) 0.227 0.505 0.254 0.872 0.116 0.634 0.274 0.614 0.904 0.1
akt (t = 5)

σakt
(x) 0.547 0.182 0.626 0.246 0.238 0.773 0.463 0.782 0.547 0.332

αakt
(x) -0.31 -0.794 -0.038 -0.928 -0.98 0.384 -0.042 0.7 -0.01 -0.626

υakt
(x) 0.345 0.103 0.481 0.036 0.01 0.692 0.479 0.85 0.495 0.187

akt (t = 6)
σakt

(x) 0.576 0.175 0.331 0.196 0.453 0.416 0.721 0.877 0.566 0.193
αakt

(x) -0.158 -0.528 -0.242 -0.856 0.164 0.196 0.588 0.674 0.106 -0.918
υakt

(x) 0.421 0.236 0.379 0.072 0.582 0.598 0.794 0.837 0.553 0.041
akt (t = 7)

σakt
(x) 0.555 0.65 0.61 0.316 0.442 0.309 0.354 0.329 0.705 0.659

αakt
(x) -0.138 -0.004 -0.128 -0.46 -0.53 -0.992 -0.064 -0.332 0.128 0.136

υakt
(x) 0.431 0.498 0.436 0.27 0.235 0.004 0.468 0.334 0.564 0.568

akt (t = 8)
σakt

(x) 0.756 0.659 0.695 0.336 0.337 0.186 0.321 0.795 0.288 0.085
αakt

(x) 0.534 0.142 0.522 -0.312 -0.936 -0.664 -0.522 0.614 -0.282 -0.898
υakt

(x) 0.767 0.571 0.761 0.344 0.032 0.168 0.239 0.807 0.359 0.051
akt (t = 9)

σakt
(x) 0.327 0.296 0.773 0.135 0.219 0.4 0.519 0.515 0.294 0.545

αakt
(x) -0.99 -0.364 0.632 -0.872 -0.428 -0.326 0.244 -0.086 -0.82 0.108

υakt
(x) 0.005 0.318 0.816 0.064 0.286 0.337 0.622 0.457 0.09 0.554

akt (t = 10)
σakt

(x) 0.676 0.726 0.316 0.024 0.392 0.472 0.645 0.88 0.259 0.896
αakt

(x) 0.476 0.576 -0.08 -0.966 -0.198 -0.392 0.314 0.842 -0.266 0.85
υakt

(x) 0.738 0.788 0.46 0.017 0.401 0.304 0.657 0.921 0.367 0.925
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Table 4 Imprecise consequence intervals for all attributes’ SVNSs, at time t ∈
[0, 10].

Imprecise Consequences Set
(
Sq

)
of Strategies Set S

sq1 sq2 sq3 sq4 sq5
sq6 sq7 sq8 sq9 sq10

t = 0
0.581 0.74 0.149 0.258 0.97
0.515 0.565 0.144 0.925 0.634

t = 1
[0.753, 0.797] [0.47, 0.711] [0.5, 0.666] [0.306, 0.526] [0.336, 0.669]
[0.756, 0.896] [0.32, 0.641] [0.05, 0.295] [0.315, 0.485] [0.481, 0.489]

t = 2
[0.38,0.691] [0.555,0.805] [0.362,0.663] [0.263,0.461] [0.316,0.345]
[0.592,0.676] [0.427,0.615] [0.319,0.383] [0.223,0.235] [0.613,0.924]

t = 3
[0.16,0.47] [0.298,0.377] [0.164,0.188] [0.621,0.91] [0.091,0.277]
[0.7,0.959] [0.587,0.881] [0.633,0.883] [0.553,0.719] [0.326,0.35]

t = 4
[0.285,0.351] [0.487,0.519] [0.173,0.499] [0.711,0.785] [0.13,0.358]
[0.466,0.713] [0.33,0.369] [0.511,0.641] [0.669,0.87] [0.209,0.258]

t = 5
[0.246,0.547] [0.182,0.289] [0.348,0.626] [0.135,0.246] [0.109,0.238]
[0.483,0.773] [0.463,0.509] [0.685,0.782] [0.446,0.547] [0.251,0.332]

t = 6
[0.319,0.576] [0.175,0.473] [0.331,0.507] [0.196,0.233] [0.453,0.656]
[0.416,0.715] [0.671,0.721] [0.572,0.877] [0.505,0.566] [0.193,0.195]

t = 7
[0.353,0.555] [0.347,0.65] [0.304,0.61] [0.316,0.377] [0.204,0.442]
[0.03,0.309] [0.354,0.604] [0.329,0.45] [0.381,0.705] [0.432,0.659]

t = 8
[0.6,0.756] [0.435,0.659] [0.653,0.695] [0.336,0.456] [0.039,0.337]

[0.186,0.371] [0.321,0.331] [0.614,0.795] [0.288,0.524] [0.085,0.316]
t = 9

[0.013,0.327] [0.296,0.462] [0.649,0.773] [0.135,0.283] [0.219,0.496]
[0.383,0.4] [0.519,0.644] [0.428,0.515] [0.159,0.294] [0.527,0.545]

t = 10
[0.641,0.676] [0.658,0.726] [0.316,0.631] [0.024,0.332] [0.392,0.476]
[0.266,0.472] [0.564,0.645] [0.681,0.88] [0.259,0.564] [0.671,0.896]

Table 5 Imprecise consequence intervals medians for at time t, for each akt .

Time (t) Imprecise Consequence Median Values ( ¯sqk ) for akt at Time t
¯sq1 ¯sq2 ¯sq3 ¯sq4 ¯sq5 ¯sq6 ¯sq7 ¯sq8 ¯sq9 ¯sq10

t = 0 0.581 0.74 0.149 0.258 0.97 0.515 0.565 0.144 0.925 0.634
t = 1 0.775 0.59 0.583 0.416 0.503 0.826 0.481 0.172 0.4 0.485
t = 2 0.536 0.68 0.512 0.362 0.33 0.634 0.521 0.351 0.229 0.768
t = 3 0.315 0.338 0.176 0.766 0.184 0.829 0.734 0.758 0.636 0.338
t = 4 0.318 0.503 0.336 0.748 0.244 0.59 0.35 0.576 0.77 0.233
t = 5 0.396 0.236 0.487 0.19 0.174 0.628 0.486 0.734 0.497 0.292
t = 6 0.448 0.324 0.419 0.215 0.554 0.566 0.696 0.724 0.536 0.194
t = 7 0.454 0.498 0.457 0.347 0.323 0.169 0.479 0.39 0.543 0.546
t = 8 0.678 0.547 0.674 0.396 0.188 0.278 0.326 0.704 0.406 0.2
t = 9 0.17 0.379 0.711 0.209 0.358 0.392 0.582 0.472 0.226 0.536
t = 10 0.659 0.692 0.474 0.178 0.434 0.369 0.604 0.78 0.412 0.784

Table 6 Imprecise consequence weight values at time t for each akt , obtained via the normalization of the
imprecise consequence values of akt for each t.

Time (t) Imprecise Consequence Weighted Values ( ˆsqk ) for akt at Time t
m∑

k=1

ˆsqk

ˆsq1 ˆsq2 ˆsq3 ˆsq4 ˆsq5 ˆsq6 ˆsq7 ˆsq8 ˆsq9 ˆsq10

t = 0 0.106 0.135 0.027 0.047 0.177 0.094 0.103 0.026 0.169 0.116 1.00
t = 1 0.148 0.113 0.111 0.08 0.096 0.158 0.092 0.033 0.076 0.093 1.00
t = 2 0.109 0.138 0.104 0.074 0.067 0.129 0.106 0.071 0.047 0.156 1.00
t = 3 0.062 0.067 0.035 0.151 0.036 0.163 0.145 0.149 0.125 0.067 1.00
t = 4 0.068 0.108 0.072 0.16 0.052 0.126 0.075 0.123 0.165 0.05 1.00
t = 5 0.096 0.057 0.118 0.046 0.042 0.152 0.118 0.178 0.121 0.071 1.00
t = 6 0.096 0.069 0.09 0.046 0.118 0.121 0.149 0.155 0.115 0.041 1.00
t = 7 0.108 0.118 0.109 0.083 0.077 0.04 0.114 0.093 0.129 0.13 1.00
t = 8 0.154 0.124 0.153 0.09 0.043 0.063 0.074 0.16 0.092 0.045 1.00
t = 9 0.042 0.094 0.176 0.052 0.089 0.097 0.144 0.117 0.056 0.133 1.00
t = 10 0.122 0.128 0.088 0.033 0.081 0.069 0.112 0.145 0.076 0.146 1.00
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Table 7 Imprecise consequence weight values at future time t for each akt , obtained via adding or subtracting
an arbitrary εkt = 0.1 from the imprecise consequence interval median for each attribute akt , depending on
whether the value of ikt is less than 0.5 or not, at time t > 0.

Time (t > 0) Imprecise Consequence Weighted Values ( ˆsqk ) for akt at Future t
m∑

k=1

ˆsqk

ˆsq1 ˆsq2 ˆsq3 ˆsq4 ˆsq5 ˆsq6 ˆsq7 ˆsq8 ˆsq9 ˆsq10

t = 1 0.167 0.094 0.092 0.06 0.115 0.177 0.073 0.014 0.057 0.074 0.923
t = 2 0.089 0.158 0.084 0.053 0.047 0.149 0.086 0.051 0.067 0.176 0.96
t = 3 0.042 0.047 0.015 0.171 0.056 0.183 0.164 0.169 0.145 0.047 1.039
t = 4 0.09 0.086 0.093 0.182 0.031 0.148 0.054 0.145 0.186 0.028 1.043
t = 5 0.12 0.033 0.142 0.07 0.067 0.177 0.094 0.202 0.145 0.095 1.145
t = 6 0.117 0.048 0.068 0.025 0.097 0.1 0.17 0.176 0.136 0.02 0.957
t = 7 0.132 0.142 0.132 0.059 0.101 0.064 0.09 0.069 0.153 0.154 1.096
t = 8 0.177 0.147 0.176 0.067 0.065 0.04 0.051 0.183 0.07 0.023 0.999
t = 9 0.067 0.069 0.201 0.027 0.064 0.122 0.119 0.142 0.081 0.158 1.05
t = 10 0.141 0.147 0.069 0.014 0.062 0.087 0.131 0.163 0.058 0.164 1.036
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