

University of New Mexico

1

BMBJ-neutrosophic ideals in BCK/BCI-algebras

M. Mohseni Takallo¹, Hashem Bordbar¹, R.A. Borzooei¹, Young Bae Jun^{1,2}

¹Department of Mathematics, Shahid Beheshti University, Tehran, Iran

E-mail: bordbar.amirh@gmail.com (H. Bordbar), borzooei@sbu.ac.ir (R.A. Borzooei)

²Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea.

E-mail: skywine@gmail.com

*Correspondence: M. Mohseni Takallo (mohammad.mohseni1122@gmail.com)

Abstract: The concepts of a BMBJ-neutrosophic \circ -subalgebra and a (closed) BMBJ-neutrosophic ideal are introduced, and several properties are investigated. Conditions for an MBJ-neutrosophic set to be a BMBJ-neutrosophic ideal in BCK/BCI-algebras are provided. Characterizations of BMBJ-neutrosophic ideal are discussed. Relations between a BMBJ-neutrosophic subalgebra, a BMBJ-neutrosophic \circ -subalgebra and a (closed) BMBJ-neutrosophic ideal are considered.

Keywords: MBJ-neutrosophic set; BMBJ-neutrosophic subalgebra; BMBJ-neutrosophic ideal; BMBJ-neutrosophic o-subalgebra.

1 Introduction

Smarandache introduced the notion of neutrosophic set which is a more general platform that extends the notions of classic set, (intuitionistic) fuzzy set and interval valued (intuitionistic) fuzzy set (see [11, 12]). Neutrosophic set theory is applied to various part which is referred to the site

http://fs.gallup.unm.edu/neutrosophy.htm.

Jun and his colleagues applied the notion of neutrosophic set theory to BCK/BCI-algebras (see [4, 5, 6, 7, 10, 13, 14]). Borzooei et al. [2] studied commutative generalized neutrosophic ideals in BCK-algebras. Mohseni et al. [9] introduced the notion of MBJ-neutrosophic sets which is another generalization of neutrosophic set. They introduced the concept of MBJ-neutrosophic subalgebras in BCK/BCI-algebras, and investigated related properties. They gave a characterization of MBJ-neutrosophic subalgebra, and established a new MBJ-neutrosophic subalgebra by using an MBJ-neutrosophic subalgebra of a BCI-algebra. They considered the homomorphic inverse image of MBJ-neutrosophic subalgebra, and discussed translation of MBJ-neutrosophic subalgebra. Bordbar et al. [1] introduced the notion of BMBJ-neutrosophic subalgebras, and investigated related properties.

In this paper, we apply the notion of MBJ-neutrosophic sets to ideals of BCK/BI-algebras. We introduce the concepts of a BMBJ-neutrosophic \circ -subalgebra and a (closed) BMBJ-neutrosophic ideal, and investigate several properties. We provide conditions for an MBJ-neutrosophic set to be a BMBJ-neutrosophic ideal in BCK/BCI-algebras, and discuss characterizations of BMBJ-neutrosophic ideal. We consider relations between a BMBJ-neutrosophic subalgebra, a BMBJ-neutrosophic \circ -subalgebra and a (closed) BMBJneutrosophic ideal.

2 Preliminaries

By a BCI-algebra, we mean a set X with a binary operation * and a special element 0 that satisfies the following conditions:

(I)
$$((x * y) * (x * z)) * (z * y) = 0,$$

(II) (x * (x * y)) * y = 0,

- (III) x * x = 0,
- (IV) $x * y = 0, y * x = 0 \Rightarrow x = y$

for all $x, y, z \in X$. If a *BCI*-algebra X satisfies the following identity:

(V)
$$(\forall x \in X) (0 * x = 0),$$

then X is called a *BCK-algebra*.

By a *weakly* BCK-algebra (see [3]), we mean a BCI-algebra X satisfying $0 * x \le x$ for all $x \in X$. Every BCK/BCI-algebra X satisfies the following conditions:

$$(\forall x \in X) (x * 0 = x), \tag{2.1}$$

$$(\forall x, y, z \in X) (x \le y \Rightarrow x * z \le y * z, z * y \le z * x),$$
(2.2)

$$(\forall x, y, z \in X) ((x * y) * z = (x * z) * y),$$
(2.3)

$$(\forall x, y, z \in X) ((x * z) * (y * z) \le x * y)$$
 (2.4)

where $x \le y$ if and only if x * y = 0. Any *BCI*-algebra X satisfies the following conditions (see [3]):

$$(\forall x, y \in X)(x * (x * (x * y)) = x * y),$$
(2.5)

$$(\forall x, y \in X)(0 * (x * y) = (0 * x) * (0 * y)).$$
(2.6)

A BCI-algebra X is said to be *p*-semisimple (see [3]) if

$$(\forall x \in X)(0 * (0 * x) = x).$$
 (2.7)

In a *p*-semisimple *BCI*-algebra *X*, the following holds:

$$(\forall x, y \in X)(0 * (x * y) = y * x, \ x * (x * y) = y).$$
(2.8)

A BCI-algebra X is said to be associative (see [3]) if

$$(\forall x, y, z \in X)((x * y) * z = x * (y * z)).$$
 (2.9)

By an (S)-BCK-algebra, we mean a BCK-algebra X such that, for any $x, y \in X$, the set

 $\{z \in X \mid z * x \le y\}$

has the greatest element, written by $x \circ y$ (see [8]).

A nonempty subset S of a BCK/BCI-algebra X is called a *subalgebra* of X if $x * y \in S$ for all $x, y \in S$. A subset I of a BCK/BCI-algebra X is called an *ideal* of X if it satisfies:

$$0 \in I, \tag{2.10}$$

$$(\forall x \in X) (\forall y \in I) (x * y \in I \implies x \in I).$$
(2.11)

A subset I of a BCI-algebra X is called a *closed ideal* of X (see [3]) if it is an ideal of X which satisfies:

$$(\forall x \in X)(x \in I \implies 0 * x \in I).$$
(2.12)

By an *interval number* we mean a closed subinterval $\tilde{a} = [a^-, a^+]$ of I, where $0 \le a^- \le a^+ \le 1$. Denote by [I] the set of all interval numbers.

Let X be a nonempty set. A function $A : X \to [I]$ is called an *interval-valued fuzzy set* (briefly, an *IVF set*) in X. Let $[I]^X$ stand for the set of all IVF sets in X. For every $A \in [I]^X$ and $x \in X$, $A(x) = [A^-(x), A^+(x)]$ is called the *degree* of membership of an element x to A, where $A^- : X \to I$ and $A^+ : X \to I$ are fuzzy sets in X which are called a *lower fuzzy set* and an *upper fuzzy set* in X, respectively. For simplicity, we denote $A = [A^-, A^+]$.

Let X be a non-empty set. A *neutrosophic set* (NS) in X (see [11]) is a structure of the form:

$$A := \{ \langle x; A_T(x), A_I(x), A_F(x) \rangle \mid x \in X \}$$

where $A_T : X \to [0, 1]$ is a truth membership function, $A_I : X \to [0, 1]$ is an indeterminate membership function, and $A_F : X \to [0, 1]$ is a false membership function. For the sake of simplicity, we shall use the symbol $A = (A_T, A_I, A_F)$ for the neutrosophic set

$$A := \{ \langle x; A_T(x), A_I(x), A_F(x) \rangle \mid x \in X \}.$$

We refer the reader to the books [3, 8] for further information regarding BCK/BCI-algebras, and to the site "http://fs.gallup.unm.edu/neutrosophy.htm" for further information regarding neutrosophic set theory.

Let X be a non-empty set. By an *MBJ-neutrosophic set* in X (see [9]), we mean a structure of the form:

$$\mathcal{A} := \{ \langle x; M_A(x), B_A(x), J_A(x) \rangle \mid x \in X \}$$

where M_A and J_A are fuzzy sets in X, which are called a truth membership function and a false membership function, respectively, and \tilde{B}_A is an IVF set in X which is called an indeterminate interval-valued membership function.

For the sake of simplicity, we shall use the symbol $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ for the MBJ-neutrosophic set

$$\mathcal{A} := \{ \langle x; M_A(x), B_A(x), J_A(x) \rangle \mid x \in X \}$$

Let X be a BCK/BCI-algebra. An MBJ-neutrosophic set $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ in X is called a *BMBJ-neutrosophic subalgebra* of X (see [1]) if it satisfies:

$$(\forall x \in X)(M_A(x) + B_A^-(x) \le 1, B_A^+(x) + J_A(x) \le 1)$$
(2.13)

$$(\forall x, y \in X) \begin{pmatrix} M_A(x * y) \ge \min\{M_A(x), M_A(y)\} \\ B_A^-(x * y) \le \max\{B_A^-(x), B_A^-(y)\} \\ B_A^+(x * y) \ge \min\{B_A^+(x), B_A^+(y)\} \\ J_A(x * y) \le \max\{J_A(x), J_A(y)\} \end{pmatrix}.$$
(2.14)

3 BMBJ-neutrosophic ideals

Definition 3.1. Let X be a BCK/BCI-algebra. An MBJ-neutrosophic set $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ in X is called a *BMBJ-neutrosophic ideal* of X if it satisfies (2.13) and

$$(\forall x \in X) \begin{pmatrix} M_A(0) \ge M_A(x) \\ B_A^-(0) \le B_A^-(x) \\ B_A^+(0) \ge B_A^+(x) \\ J_A(0) \le J_A(x) \end{pmatrix},$$
(3.1)

$$(\forall x, y \in X) \begin{pmatrix} M_A(x) \ge \min\{M_A(x * y), M_A(y)\} \\ B_A^-(x) \le \max\{B_A^-(x * y), B_A^-(y)\} \\ B_A^+(x) \ge \min\{B_A^+(x * y), B_A^+(y)\} \\ J_A(x) \le \max\{J_A(x * y), J_A(y)\} \end{pmatrix}.$$
(3.2)

A BMBJ-neutrosophic ideal $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ of a *BCI*-algebra X is said to be *closed* if

$$(\forall x \in X) \begin{pmatrix} M_A(0 * x) \ge M_A(x) \\ B_A^-(0 * x) \le B_A^-(x) \\ B_A^+(0 * x) \ge B_A^+(x) \\ J_A(0 * x) \le J_A(x) \end{pmatrix}.$$
(3.3)

Example 3.2. Consider a set $X = \{0, 1, 2, a\}$ with the binary operation * which is given in Table 1. Then

*	0	1	2	a
0	0	0	0	a
1	1	0	0	a
2	2	2	0	a
a	a	a	a	0

Table 1: Cayley table for the binary operation "*"

(X; *, 0) is a *BCI*-algebra (see [3]). Let $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ be an MBJ-neutrosophic set in X defined by Table 2. It is routine to verify that $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is a closed MBJ-neutrosophic ideal of X.

X	$M_A(x)$	$ ilde{B}_A(x)$	$J_A(x)$
0	0.7	[0.02, 0.08]	0.2
1	0.5	[0.02, 0.06]	0.2
2	0.4	[0.02, 0.06]	0.7
a	0.3	[0.02, 0.06]	0.7

Table 2: MBJ-neutrosophic set $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$

Proposition 3.3. Let X be a BCK/BCI-algebra. Then every BMBJ-neutrosophic ideal $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ of X satisfies the following assertion.

$$x * y \leq z \implies \begin{cases} M_A(x) \geq \min\{M_A(y), M_A(z)\}, \\ B_A^-(x) \leq \max\{B_A^-(y), B_A^-(z)\}, \\ B_A^+(x) \geq \min\{B_A^+(y), B_A^+(z)\}, \\ J_A(x) \leq \max\{J_A(y), J_A(z)\} \end{cases}$$
(3.4)

for all $x, y, z \in X$.

 $\textit{Proof.} \ \text{Let} \ x,y,z \in X \text{ be such that } x*y \leq z. \text{ Then}$

$$M_A(x * y) \ge \min\{M_A((x * y) * z), M_A(z)\} = \min\{M_A(0), M_A(z)\} = M_A(z),$$

$$B_A^-(x*y) \le \max\{B_A^-((x*y)*z), B_A^-(z)\} = \max\{B_A^-(0), B_A^-(z)\} = B_A^-(z),$$

$$B_A^+(x*y) \ge \min\{B_A^+((x*y)*z), B_A^+(z)\} = \min\{B_A^+(0), B_A^+(z)\} = B_A^+(z),$$

and

$$J_A(x * y) \le \max\{J_A((x * y) * z), J_A(z)\} = \max\{J_A(0), J_A(z)\} = J_A(z).$$

It follows that

$$M_A(x) \ge \min\{M_A(x * y), M_A(y)\} = \min\{M_A(y), M_A(z)\},$$

$$B_{A}^{-}(x) \le \max\{B_{A}^{-}(x * y), B_{A}^{-}(y)\} = \max\{B_{A}^{-}(y), B_{A}^{-}(z)\},\$$

$$B_A^+(x) \ge \min\{B_A^+(x*y), B_A^+(y)\} = \min\{B_A^+(y), B_A^+(z)\},\$$

and

$$J_A(x) \le \max\{J_A(x * y), J_A(y)\} = \max\{J_A(y), J_A(z)\}$$

This completes the proof.

We provide conditions for an MBJ-neutrosophic set to be a BMBJ-neutrosophic ideal in BCK/BCI-algebras.

Theorem 3.4. Every MBJ-neutrosophic set in a BCK/BCI-algebra X satisfying (3.1) and (3.4) is a BMBJneutrosophic ideal of X.

Proof. Let $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ be an MBJ-neutrosophic set in X satisfying (3.1) and (3.4). Note that $x * (x * y) \le y$ for all $x, y \in X$. It follows from (3.4) that

 $M_A(x) \ge \min\{M_A(x*y), M_A(y)\},\$ $B_A^-(x) \le \max\{B_A^-(x*y), B_A^-(y)\},\$ $B_A^+(x) \ge \min\{B_A^+(x*y), B_A^+(y)\},\$

and

$$J_A(x) \le \max\{J_A(x * y), J_A(y)\}.$$

Therefore $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is a BMBJ-neutrosophic ideal of X.

Given an MBJ-neutrosophic set $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ in a BCK/BCI-algebra X, we consider the following sets.

$$U(M_A; t) := \{ x \in X \mid M_A(x) \ge t \}, L(B_A^-; \alpha^-) := \{ x \in X \mid B_A^-(x) \le \alpha^- \}, U(B_A^+; \alpha^+) := \{ x \in X \mid B_A^+(x) \ge \alpha^+ \}, L(J_A; s) := \{ x \in X \mid J_A(x) \le s \}$$

where $t, s, \alpha^{-}, \alpha^{+} \in [0, 1]$.

Theorem 3.5. An MBJ-neutrosophic set $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ in a BCK/BCI-algebra X is an MBJ-neutrosophic ideal of X if and only if the non-empty sets $U(M_A; t)$, $L(B_A^-; \alpha^-)$, $U(B_A^+; \alpha^+)$ and $L(J_A; s)$ are ideals of X for all $t, s, \alpha^-.\alpha^+ \in [0, 1]$.

Proof. Suppose that $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is an MBJ-neutrosophic ideal of X. Let $t, s, \alpha^-, \alpha^+ \in [0, 1]$ be such that $U(M_A; t), L(B_A^-; \alpha^-), U(B_A^+; \alpha^+)$ and $L(J_A; s)$ are non-empty. Obviously, $0 \in U(M_A; t) \cap L(B_A^-; \alpha^-) \cap U(B_A^+; \alpha^+) \cap L(J_A; s)$. For any $x, y, a, b, p, q, u, v \in X$, if $x * y \in U(M_A; t), y \in U(M_A; t), a * b \in L(B_A^-; \alpha^-)$, $b \in L(B_A^-; \alpha^-), p * q \in U(B_A^+; \alpha^+), q \in U(B_A^+; \alpha^+), u * v \in L(J_A; s)$ and $v \in L(J_A; s)$, then

$$M_{A}(x) \ge \min\{M_{A}(x * y), M_{A}(y)\} \ge \min\{t, t\} = t, B_{A}^{-}(a) \le \max\{B_{A}^{-}(a * b), B_{A}^{-}(b)\} \le \max\{\alpha^{-}, \alpha^{-}\} = \alpha^{-}, B_{A}^{+}(p) \ge \min\{B_{A}^{+}(p * q), B_{A}^{+}(q)\} \ge \min\{\alpha^{+}, \alpha^{+}\} = \alpha^{+}, J_{A}(u) \le \max\{J_{A}(u * v), J_{A}(v)\} \le \min\{s, s\} = s,$$

M. Mohseni Takallo, Hashem Bordbar, R.A. Borzooei, Y.B. Jun, BMBJ-neutrosophic ideals in BCK/BCI-algebras.

and so $x \in U(M_A; t)$, $a \in L(B_A^-; \alpha^-)$, $p \in U(B_A^+; \alpha^+)$ and $u \in L(J_A; s)$. Therefore $U(M_A; t)$, $L(B_A^-; \alpha^-)$, $U(B_A^+; \alpha^+)$ and $L(J_A; s)$ are ideals of X.

Conversely, assume that the non-empty sets $U(M_A;t)$, $L(B_A^-;\alpha^-)$, $U(B_A^+;\alpha^+)$ and $L(J_A;s)$ are ideals of X for all $t, s, \alpha^-, \alpha^+ \in [0, 1]$. Assume that $M_A(0) < M_A(a)$, $B_A^-(0) > B_A^-(a)$, $B_A^+(0) < B_A^+(a)$ and $J_A(0) > J_A(a)$ for some $a \in X$. Then $0 \notin U(M_A; M_A(a)) \cap L(B_A^-; B_A^-(a)) \cap U(B_A^+; B_A^+(a)) \cap L(J_A; J_A(a)$, which is a contradiction. Hence $M_A(0) \ge M_A(x)$, $B_A^-(0) \le B_A^-(x)$, $B_A^+(0) \ge B_A^+(x)$ and $J_A(0) \le J_A(x)$ for all $x \in X$. If $M_A(a_0) < \min\{M_A(a_0 * b_0), M_A(b_0)\}$ for some $a_0, b_0 \in X$, then $a_0 * b_0 \in U(M_A; t_0)$ and $b_0 \in U(M_A; t_0)$ but $a_0 \notin U(M_A; t_0)$ for $t_0 := \min\{M_A(a_0 * b_0), M_A(b_0)\}$. This is a contradiction, and thus $M_A(a) \ge \min\{M_A(a * b), M_A(b)\}$ for all $a, b \in X$. Similarly, we can show that $J_A(a) \le \max\{J_A(a * b), J_A(b)\}$ for all $a, b \in X$. Suppose that $B_A^-(a_0) > \max\{B_A^-(a_0 * b_0), B_A^-(b_0)\}$ for some $a_0, b_0 \in X$. Taking $\alpha^- = \max\{B_A^-(a_0 * b_0), B_A^-(b_0)\}$ implies that $a_0 * b_0 \in L(B_A^-; \alpha^-)$ and $b_0 \in L(B_A^-; \alpha^-)$ but $a_0 \notin L(B_A^-; \alpha^-)$. This is a contradiction. Thus $B_A^-(x) \le \max\{B_A^-(x * y), B_A^-(y)\}$ for all $x, y \in X$. Similarly, we obtain $B_A^+(x) \ge \min\{B_A^+(x * y), B_A^+(y)\}$ for all $x, y \in X$. Consequently $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is a BMBJ-neutrosophic ideal of X.

Theorem 3.6. An MBJ-neutrosophic set $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ in a BCK/BCI-algebra X is a BMBJ-neutrosophic ideal of X if and only if (M_A, B_A^-) and (B_A^+, J_A) are intuitionistic fuzzy ideals of X.

Proof. Straightforward.

Theorem 3.7. Given an ideal I of a BCK/BCI-algebra X, let $\mathcal{A} = (M_A, B_A, J_A)$ be an MBJ-neutrosophic set in X defined by

$$M_A(x) = \begin{cases} t & \text{if } x \in I, \\ 0 & \text{otherwise,} \end{cases} B_A^-(x) = \begin{cases} \alpha^- & \text{if } x \in I, \\ 1 & \text{otherwise,} \end{cases}$$
$$B_A^+(x) = \begin{cases} \alpha^+ & \text{if } x \in I, \\ 0 & \text{otherwise,} \end{cases} J_A(x) = \begin{cases} s & \text{if } x \in I, \\ 1 & \text{otherwise,} \end{cases}$$

where $t, \alpha^+ \in (0, 1]$, $s, \alpha^- \in [0, 1)$. Then $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is a BMBJ-neutrosophic ideal of X such that $U(M_A; t) = L(B_A^-; \alpha^-) = U(B_A^+; \alpha^+) = L(J_A; s) = I$.

Proof. It is clear that $U(M_A; t) = L(B_A^-; \alpha^-) = U(B_A^+; \alpha^+) = L(J_A; s) = I$. Let $x, y \in X$. If $x * y \in I$ and $y \in I$, then $x \in I$ and so

$$M_A(x) = t = \min\{M_A(x * y), M_A(y)\}$$

$$B_A^-(x) = \alpha^- = \max\{B_A^-(x * y), B_A^-(y)\},$$

$$B_A^+(x) = \alpha^+ = \min\{B_A^+(x * y), B_A^+(y)\},$$

$$J_A(x) = s = \max\{J_A(x * y), J_A(y)\}.$$

If any one of x * y and y is contained in I, say $x * y \in I$, then $M_A(x * y) = t$, $B_A^-(x * y) = \alpha^-$, $J_A(x * y) = s$, $M_A(y) = 0$, $B_A^-(y) = 1$, $B_A^+(y) = 0$ and $J_A(y) = 1$. Hence

$$M_A(x) \ge 0 = \min\{t, 0\} = \min\{M_A(x * y), M_A(y)\}$$

$$B_A^-(x) \le 1 = \max\{B_A^-(x * y), B_A^-(y)\},$$

$$B_A^+(x) \ge 0 = \min\{B_A^+(x * y), B_A^+(y)\},$$

$$J_A(x) \le 1 = \max\{s, 1\} = \max\{J_A(x * y), J_A(y)\}.$$

M. Mohseni Takallo, Hashem Bordbar, R.A. Borzooei, Y.B. Jun, BMBJ-neutrosophic ideals in BCK/BCI-algebras.

If $x * y, y \notin I$, then $M_A(x * y) = 0 = M_A(y)$, $B_A^-(x * y) = 1 = B_A^-(y)$, $B_A^+(x * y) = 0 = B_A^+(y)$ and $J_A(x * y) = 1 = J_A(y)$. It follows that

 $M_A(x) \ge 0 = \min\{M_A(x * y), M_A(y)\}$ $B_A^-(x) \le 1 = \max\{B_A^-(x * y), B_A^-(y)\},$ $B_A^+(x) \ge 0 = \min\{B_A^+(x * y), B_A^+(y)\},$ $J_A(x) \le 1 = \max\{J_A(x * y), J_A(y)\}.$

It is obvious that $M_A(0) \ge M_A(x)$, $B_A^-(0) \le B_A^-(x)$, $B_A^+(0) \ge B_A^+(x)$ and $J_A(0) \le J_A(x)$ for all $x \in X$. Therefore $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is a BMBJ-neutrosophic ideal of X.

Theorem 3.8. For any non-empty subset I of X, let $\mathcal{A} = (M_A, B_A, J_A)$ be an MBJ-neutrosophic set in X which is given in Theorem 3.7. If $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is a BMBJ-neutrosophic ideal of X, then I is an ideal of X.

Proof. Obviously, $0 \in I$. Let $x, y \in X$ be such that $x * y \in I$ and $y \in I$. Then $M_A(x * y) = t = M_A(y)$, $B_A^-(x * y) = \alpha^- = B_A^-(y)$, $B_A^+(x * y) = \alpha^+ = B_A^+(y)$ and $J_A(x * y) = s = J_A(y)$. Thus

 $M_{A}(x) \ge \min\{M_{A}(x * y), M_{A}(y)\} = t,$ $B_{A}^{-}(x) \le \max\{B_{A}^{-}(x * y), B_{A}^{-}(y)\} = \alpha^{-},$ $B_{A}^{+}(x) \ge \min\{B_{A}^{+}(x * y), B_{A}^{+}(y)\} = \alpha^{+},$ $J_{A}(x) \le \max\{J_{A}(x * y), J_{A}(y)\} = s,$

and hence $x \in I$. Therefore I is an ideal of X.

Theorem 3.9. In a BCK-algebra, every BMBJ-neutrosophic ideal is a BMBJ-neutrosophic subalgebra.

Proof. Let $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ be a BMBJ-neutrosophic ideal of a BCK-algebra X. Since $(x * y) * x \le y$ for all $x, y \in X$, it follows from Proposition 3.3 that

 $M_A(x * y) \ge \min\{M_A(x), M_A(y)\},\$ $B_A^-(x * y) \le \max\{B_A^-(x), B_A^-(y)\},\$ $B_A^+(x * y) \ge \min\{B_A^+(x), B_A^+(y)\},\$ $J_A(x * y) \le \max\{J_A(x), J_A(y)\}$

for all $x, y \in X$. Hence $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is a BMBJ-neutrosophic subalgebra of a *BCK*-algebra *X*. \Box

The converse of Theorem 3.9 may not be true as seen in the following example.

Example 3.10. Consider a *BCK*-algebra $X = \{0, 1, 2, 3\}$ with the binary operation * which is given in Table 3. Let $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ be an MBJ-neutrosophic set in X defined by Table 4. Then $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is a BMBJ-neutrosophic subalgebra of X, but it is not a BMBJ-neutrosophic ideal of X since

$$B_A^+(1) \not\ge \min\{B_A^+(1*2), B_A^+(2)\}.$$

We provide a condition for a BMBJ-neutrosophic subalgebra to be a BMBJ-neutrosophic ideal in a BCK-algebra.

M. Mohseni Takallo, Hashem Bordbar, R.A. Borzooei, Y.B. Jun, BMBJ-neutrosophic ideals in BCK/BCI-algebras.

*	0	1	2	3
0	0	0	0	0
1	1	0	0	1
2	2	1	0	2
3	3	3	3	0

Table 3: Cayley table for the binary operation "*"

Table 4: MBJ-neutrosophic set $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$

X	$M_A(x)$	$ ilde{B}_A(x)$	$J_A(x)$
0	0.7	[0.03, 0.08]	0.2
1	0.4	[0.02, 0.06]	0.3
2	0.4	[0.03, 0.08]	0.4
3	0.6	[0.02, 0.06]	0.5

Theorem 3.11. Let $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ be a BMBJ-neutrosophic subalgebra of a BCK-algebra X satisfying the condition (3.4). Then $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is a BMBJ-neutrosophic ideal of X.

Proof. For any $x \in X$, we get

 $M_A(0) = M_A(x * x) \ge \min\{M_A(x), M_A(x)\} = M_A(x),$

 $B_{A}^{-}(0) = B_{A}^{-}(x * x) \le \max\{B_{A}^{-}(x), B_{A}^{-}(x)\} = B_{A}^{-}(x),$

$$B_A^+(0) = B_A^+(x * x) \ge \min\{B_A^+(x), B_A^+(x)\} = B_A^+(x),$$

and

$$J_A(0) = J_A(x * x) \le \max\{J_A(x), J_A(x)\} = J_A(x).$$

Since $x * (x * y) \le y$ for all $x, y \in X$, it follows from (3.4) that

 $M_{A}(x) \ge \min\{M_{A}(x * y), M_{A}(y)\},\$ $B_{A}^{-}(x) \le \max\{B_{A}^{-}(x * y), B_{A}^{-}(y)\},\$ $B_{A}^{+}(x) \ge \min\{B_{A}^{+}(x * y), B_{A}^{+}(y)\},\$ $J_{A}(x) \le \max\{J_{A}(x * y), J_{A}(y)\}$

for all $x, y \in X$. Therefore $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is a BMBJ-neutrosophic ideal of X.

M. Mohseni Takallo, Hashem Bordbar, R.A. Borzooei, Y.B. Jun, BMBJ-neutrosophic ideals in BCK/BCI-algebras.

Theorem 3.9 is not true in a *BCI*-algebra as seen in the following example.

Example 3.12. Let (Y, *, 0) be a *BCI*-algebra and let $(\mathbb{Z}, -, 0)$ be an adjoint *BCI*-algebra of the additive group $(\mathbb{Z}, +, 0)$ of integers. Then $X = Y \times \mathbb{Z}$ is a *BCI*-algebra and $I = Y \times \mathbb{N}$ is an ideal of X where \mathbb{N} is the set of all non-negative integers (see [3]). Let $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ be an MBJ-neutrosophic set in X which is given in Theorem 3.7. Then $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is a BMBJ-neutrosophic ideal of X by Theorem 3.7. But it is not a BMBJ-neutrosophic subalgebra of X since

$$M_A((0,0) * (0,1)) = M_A((0,-1)) = 0 < t = \min\{M_A((0,0)), M_A(0,1))\},\$$

$$B_{A}^{-}((0,0)*(0,2)) = B_{A}^{-}((0,-2)) = 1 > \alpha^{-} = \max\{B_{A}^{-}((0,0)), B_{A}^{-}(0,2))\},\$$

$$B^+_A((0,0)*(0,2)) = B^+_A((0,-2)) = 0 < \alpha^+ = \min\{B^+_A((0,0)), B^+_A(0,2))\}$$

and/or

$$J_A((0,0) * (0,3)) = J_A((0,-3)) = 1 > s = \max\{J_A((0,0)), J_A(0,3))\}$$

Definition 3.13. A BMBJ-neutrosophic ideal $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ of a *BCI*-algebra X is said to be *closed* if

$$(\forall x \in X)(M_A(0 * x) \ge M_A(x), B_A^-(0 * x) \le B_A^-(x), B_A^+(0 * x) \ge B_A^+(x), J_A(0 * x) \le J_A(x)).$$
(3.5)

Theorem 3.14. In a BCI-algebra, every closed BMBJ-neutrosophic ideal is a BMBJ-neutrosophic subalgebra.

Proof. Let $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ be a closed BMBJ-neutrosophic ideal of a *BCI*-algebra X. Using (3.2), (2.3), (III) and (3.3), we have

$$M_A(x * y) \ge \min\{M_A((x * y) * x), M_A(x)\} = \min\{M_A(0 * y), M_A(x)\} \ge \min\{M_A(y), M_A(x)\}, M_A(x)\} = \min\{M_A(y), M_A(x)\} = \min\{M_A(y)$$

$$B_A^-(x*y) \le \max\{B_A^-((x*y)*x), B_A^-(x)\} = \max\{B_A^-(0*y), B_A^-(x)\} \le \max\{B_A^-(y), B_A^-(x)\},$$

$$B_A^+(x*y) \ge \min\{B_A^+((x*y)*x), B_A^+(x)\} = \min\{B_A^+(0*y), B_A^+(x)\} \ge \min\{B_A^+(y), B_A^+(x)\},$$

and

$$J_A(x * y) \le \max\{J_A((x * y) * x), J_A(x)\} = \max\{J_A(0 * y), J_A(x)\} \le \max\{J_A(y), J_A(x)\}$$

for all $x, y \in X$. Hence $\mathcal{A} = (M_A, B_A, J_A)$ is a BMBJ-neutrosophic subalgebra of X.

Theorem 3.15. In a weakly BCK-algebra, every BMBJ-neutrosophic ideal is closed.

Proof. Let $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ be a BMBJ-neutrosophic ideal of a weakly BCK-algebra X. For any $x \in X$, we obtain

$$M_A(0 * x) \ge \min\{M_A((0 * x) * x), M_A(x)\} = \min\{M_A(0), M_A(x)\} = M_A(x),$$

M. Mohseni Takallo, Hashem Bordbar, R.A. Borzooei, Y.B. Jun, BMBJ-neutrosophic ideals in BCK/BCI-algebras.

$$B_A^-(0*x) \le \max\{B_A^-((0*x)*x), B_A^-(x)\} = \max\{B_A^-(0), B_A^-(x)\} = B_A^-(x),$$

$$B_A^+(0*x) \ge \min\{B_A^+((0*x)*x), B_A^+(x)\} = \min\{B_A^+(0), B_A^+(x)\} = B_A^+(x),$$

$$J_A(0 * x) \le \max\{J_A((0 * x) * x), J_A(x)\} = \max\{J_A(0), J_A(x)\} = J_A(x).$$

Therefore $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is a closed BMBJ-neutrosophic ideal of X.

Corollary 3.16. In a weakly BCK-algebra, every BMBJ-neutrosophic ideal is a BMBJ-neutrosophic subalgebra.

The following example shows that any BMBJ-neutrosophic subalgebra is not a BMBJ-neutrosophic ideal in a *BCI*-algebra.

Example 3.17. Consider a *BCI*-algebra $X = \{0, a, b, c, d, e\}$ with the *-operation in Table 5.

*	0	a	b	С	d	e
0	0	0	С	b	С	c
a	a	0	c	b	c	c
b	b	b	0	c	0	0
c	c	c	b	0	b	b
d	d	b	a	c	0	a
e	e	b	a	С	a	0

Table 5: Cayley table for the binary operation "*"

Let $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ be an MBJ-neutrosophic set in X defined by Table 6.

Table 6: MBJ-neutrosophic set $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$

X	$M_A(x)$	$ ilde{B}_A(x)$	$J_A(x)$
0	0.7	[0.14, 0.19]	0.3
a	0.4	[0.04, 0.45]	0.6
b	0.7	[0.14, 0.19]	0.3
c	0.7	[0.14, 0.19]	0.3
d	0.4	[0.04, 0.45]	0.6
e	0.4	[0.04, 0.45]	0.6

M. Mohseni Takallo, Hashem Bordbar, R.A. Borzooei, Y.B. Jun, BMBJ-neutrosophic ideals in BCK/BCI-algebras.

It is routine to verify that $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is a BMBJ-neutrosophic subalgebra of X. But it is not a BMBJ-neutrosophic ideal of X since

 $M_A(d) < \min\{M_A(d * c), M_A(c)\},\$ $B_A^-(d) > \max\{B_A^-(d * c), B_A^-(c)\},\$ $B_A^+(d) < \min\{B_A^+(d * c), B_A^+(c)\},\$

and/or

$$J_A(d) > \max\{J_A(d * c), J_A(c)\}$$

Theorem 3.18. In a p-semisimple BCI-algebra X, the following are equivalent.

(1) $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is a closed BMBJ-neutrosophic ideal of X.

(2) $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is a BMBJ-neutrosophic subalgebra of X.

Proof. (1) \Rightarrow (2). See Theorem 3.14.

(2) \Rightarrow (1). Suppose that $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is a BMBJ-neutrosophic subalgebra of X. For any $x \in X$, we get

 $M_A(0) = M_A(x * x) \ge \min\{M_A(x), M_A(x)\} = M_A(x),$

 $B_{A}^{-}(0) = B_{A}^{-}(x * x) \le \max\{B_{A}^{-}(x), B_{A}^{-}(x)\} = B_{A}^{-}(x),$

 $B_A^+(0) = B_A^+(x * x) \ge \min\{B_A^+(x), B_A^+(x)\} = B_A^+(x),$

and

$$J_A(0) = J_A(x * x) \le \max\{J_A(x), J_A(x)\} = J_A(x).$$

Hence $M_A(0*x) \ge \min\{M_A(0), M_A(x)\} = M_A(x), B_A^-(0*x) \le \max\{B_A^-(0), B_A^-(x)\} = B_A^-(x) B_A^+(0*x) \ge \min\{B_A^+(0), B_A^+(x)\} = B_A^+(x) \text{ and } J_A(0*x) \le \max\{J_A(0), J_A(x)\} = J_A(x) \text{ for all } x \in X. \text{ Let } x, y \in X.$ Then

$$M_A(x) = M_A(y * (y * x)) \ge \min\{M_A(y), M_A(y * x)\}$$

= min{ $M_A(y), M_A(0 * (x * y))$ }
 $\ge \min\{M_A(x * y), M_A(y)\},$

$$B_{A}^{-}(x) = B_{A}^{-}(y * (y * x)) \le \max\{B_{A}^{-}(y), B_{A}^{-}(y * x)\}$$

= max{ $B_{A}^{-}(y), B_{A}^{-}(0 * (x * y))$ }
 $\le \max\{B_{A}^{-}(x * y), B_{A}^{-}(y)\}$

$$B_{A}^{+}(x) = B_{A}^{+}(y * (y * x)) \ge \min\{B_{A}^{+}(y), B_{A}^{+}(y * x)\}$$

= min{ $B_{A}^{+}(y), B_{A}^{+}(0 * (x * y))$ }
 $\ge \min\{B_{A}^{+}(x * y), B_{A}^{+}(y)\}$

$$J_A(x) = J_A(y * (y * x)) \le \max\{J_A(y), J_A(y * x)\} = \max\{J_A(y), J_A(0 * (x * y))\} \le \max\{J_A(x * y), J_A(y)\}.$$

Therefore $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is a closed BMBJ-neutrosophic ideal of X.

Since every associative *BCI*-algebra is *p*-semisimple, we have the following corollary.

Corollary 3.19. In an associative BCI-algebra X, the following are equivalent.

- (1) $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is a closed BMBJ-neutrosophic ideal of X.
- (2) $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is a BMBJ-neutrosophic subalgebra of X.

Definition 3.20. Let X be an (S)-BCK-algebra. An MBJ-neutrosophic set $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ in X is called a BMBJ-neutrosophic \circ -subalgebra of X if the following assertions are valid.

$$M_{A}(x \circ y) \geq \min\{M_{A}(x), M_{A}(y)\},\B_{A}^{-}(x \circ y) \leq \max\{B_{A}^{-}(x), B_{A}^{-}(y)\},\B_{A}^{+}(x \circ y) \geq \min\{B_{A}^{+}(x), B_{A}^{+}(y)\},\J_{A}(x \circ y) \leq \max\{J_{A}(x), J_{A}(y)\}$$
(3.6)

for all $x, y \in X$.

Lemma 3.21. Every BMBJ-neutrosophic ideal of a BCK/BCI-algebra X satisfies the following assertion.

$$(\forall x, y \in X) \left(x \le y \implies M_A(x) \ge M_A(y), B_A^-(x) \le B_A^-(y), B_A^+(x) \ge B_A^+(y), J_A(x) \le J_A(y) \right).$$
(3.7)

Proof. Assume that $x \leq y$ for all $x, y \in X$. Then x * y = 0, and so

$$M_A(x) \ge \min\{M_A(x * y), M_A(y)\} = \min\{M_A(0), M_A(y)\} = M_A(y),$$

$$B_A^-(x) \le \max\{B_A^-(x*y), B_A^-(y)\} = \max\{B_A^-(0), B_A^-(y)\} = B_A^-(y),$$

$$B_A^+(x) \ge \min\{B_A^+(x*y), B_A^+(y)\} = \min\{B_A^+(0), B_A^+(y)\} = B_A^+(y),$$

and

$$J_A(x) \le \max\{J_A(x*y), J_A(y)\} = \max\{J_A(0), J_A(y)\} = J_A(y).$$

This completes the proof.

M. Mohseni Takallo, Hashem Bordbar, R.A. Borzooei, Y.B. Jun, BMBJ-neutrosophic ideals in BCK/BCI-algebras.

Theorem 3.22. In an (S)-BCK-algebra, every BMBJ-neutrosophic ideal is a BMBJ-neutrosophic \circ -subalgebra.

Proof. Let $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ be a BMBJ-neutrosophic ideal of an (S)-BCK-algebra X. Note that $(x \circ y) * x \leq y$ for all $x, y \in X$. Using Lemma 3.21 and (3.2) inplies that

$$M_A(x \circ y) \ge \min\{M_A((x \circ y) * x), M_A(x)\} \ge \min\{M_A(y), M_A(x)\},\$$

$$B_{A}^{-}(x \circ y) \le \max\{B_{A}^{-}((x \circ y) * x), B_{A}^{-}(x)\} \le \max\{B_{A}^{-}(y), B_{A}^{-}(x)\},\$$

$$B_A^+(x \circ y) \ge \min\{B_A^+((x \circ y) * x), B_A^+(x)\} \ge \min\{B_A^+(y), B_A^+(x)\},\$$

and

$$J_A(x \circ y) \le \max\{J_A((x \circ y) * x), J_A(x)\} \le \max\{J_A(y), J_A(x)\}.$$

Therefore $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is a BMBJ-neutrosophic \circ -subalgebra of X.

We provide a characterization of a BMBJ-neutrosophic ideal in an (S)-BCK-algebra.

Theorem 3.23. Let $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ be an MBJ-neutrosophic set in an (S)-BCK-algebra X. Then $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is a BMBJ-neutrosophic ideal of X if and only if the following assertions are valid.

$$M_A(x) \ge \min\{M_A(y), M_A(z)\}, B_A^-(x) \le \max\{B_A^-(y), B_A^-(z)\}, B_A^+(x) \ge \min\{B_A^+(y), B_A^+(z)\}, J_A(x) \le \max\{J_A(y), J_A(z)\}$$
(3.8)

for all $x, y, z \in X$ with $x \leq y \circ z$.

Proof. Assume that $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is a BMBJ-neutrosophic ideal of X and let $x, y, z \in X$ be such that $x \leq y \circ z$. Using (3.1), (3.2) and Theorem 3.22, we have

$$M_A(x) \ge \min\{M_A(x * (y \circ z)), M_A(y \circ z)\} = \min\{M_A(0), M_A(y \circ z)\} = M_A(y \circ z) \ge \min\{M_A(y), M_A(z)\},$$

$$B_{A}^{-}(x) \leq \max\{B_{A}^{-}(x * (y \circ z)), B_{A}^{-}(y \circ z)\} \\ = \max\{B_{A}^{-}(0), B_{A}^{-}(y \circ z)\} \\ = B_{A}^{-}(y \circ z) \leq \max\{B_{A}^{-}(y), B_{A}^{-}(z)\},$$

$$B_A^+(x) \ge \min\{B_A^+(x * (y \circ z)), B_A^+(y \circ z)\} = \min\{B_A^+(0), B_A^+(y \circ z)\} = B_A^+(y \circ z) \ge \min\{B_A^+(y), B_A^+(z)\},$$

M. Mohseni Takallo, Hashem Bordbar, R.A. Borzooei, Y.B. Jun, BMBJ-neutrosophic ideals in BCK/BCI-algebras.

$$J_A(x) \le \max\{J_A(x * (y \circ z)), J_A(y \circ z)\} = \max\{J_A(0), J_A(y \circ z)\} = J_A(y \circ z) \le \max\{J_A(y), J_A(z)\}.$$

Conversely, let $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ be an MBJ-neutrosophic set in an (S)-BCK-algebra X satisfying the condition (3.8) for all $x, y, z \in X$ with $x \leq y \circ z$. Sine $0 \leq x \circ x$ for all $x \in X$, it follows from (3.8) that

 $M_A(0) \ge \min\{M_A(x), M_A(x)\} = M_A(x),$ $B_A^-(0) \le \max\{B_A^-(x), B_A^-(x)\} = B_A^-(x),$ $B_A^+(0) \ge \min\{B_A^+(x), B_A^+(x)\} = B_A^+(x),$

and

$$J_A(0) \le \max\{J_A(x), J_A(x)\} = J_A(x).$$

Note that $x \leq (x * y) \circ y$ for all $x, y \in X$. Hence we have

$$M_A(x) \ge \min\{M_A(x * y), M_A(y)\}, B_A^-(x) \le \max\{B_A^-(x * y), B_A^-(y)\}, B_A^+(x) \ge \min\{B_A^+(x * y), B_A^+(y)\} \text{ and } J_A(x) \le \max\{J_A(x * y), J_A(y)\}.$$

Therefore $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is a BMBJ-neutrosophic ideal of X.

4 Conclusions

As a generalization of neutrosophic set, Mohseni et al. [9] have introduced the notion of MBJ-neutrosophic sets, and have applied it to BCK/BCI-algebras. BMBJ-neutrosophic set has been introduced in [1] with an application in BCK/BCI-algebras. In this article, we have applied the notion of MBJ-neutrosophic sets to ideals of BCK/BI-algebras. We have introduced the concepts of a BMBJ-neutrosophic \circ -subalgebra and a (closed) BMBJ-neutrosophic ideal, and have investigated several properties. We have provided conditions for an MBJ-neutrosophic set to be a BMBJ-neutrosophic ideal in BCK/BCI-algebras, and have discussed characterizations of BMBJ-neutrosophic ideal. We have considered relations between a BMBJ-neutrosophic subalgebra, a BMBJ-neutrosophic \circ -subalgebra and a (closed) BMBJ-neutrosophic ideal. Using the results and ideas in this paper, our future work will focus on the study of several algebraic structures and substructures.

Acknowledgments

The authors wish to thank the anonymous reviewers for their valuable suggestions.

M. Mohseni Takallo, Hashem Bordbar, R.A. Borzooei, Y.B. Jun, BMBJ-neutrosophic ideals in BCK/BCI-algebras.

References

- [1] H. Bordbar, M. Mohseni Takallo, R.A. Borzooei and Y.B. Jun, BMBJ-neutrosophic subalgebras of BCK/BCI-algebras, preprint
- [2] R.A. Borzooei, X.H. Zhang, F. Smarandache and Y.B. Jun, Commutative generalized neutrosophic ideals in *BCK*-algebras, Symmetry 2018, 10, 350; doi:10.3390/sym10080350.
- [3] Y.S. Huang, BCI-algebra, Beijing: Science Press (2006).
- [4] Y.B. Jun, Neutrosophic subalgebras of several types in *BCK/BCI*-algebras, Ann. Fuzzy Math. Inform. 14(1) (2017), 75–86.
- [5] Y.B. Jun, S.J. Kim and F. Smarandache, Interval neutrosophic sets with applications in *BCK/BCI*-algebra, Axioms 2018, 7, 23; doi:10.3390/axioms7020023
- [6] Y.B. Jun, F. Smarandache and H. Bordbar, Neutrosophic N-structures applied to BCK/BCI-algebras, Information 2017, 8, 128; doi:10.3390/info8040128
- [7] Y.B. Jun, F. Smarandache, S.Z. Song and M. Khan, Neutrosophic positive implicative N-ideals in BCK/BCI-algebras, Axioms 2018, 7, 3; doi:10.3390/axioms7010003
- [8] J. Meng and Y.B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul (1994).
- [9] M. Mohseni Takallo, R.A. Borzooei and Y.B. Jun, MBJ-neutrosophic structures and its applications in *BCK/BCI*-algebras, Neutrosophic Sets and Systems, 23 (2018), 72–84. DOI: 10.5281/zenodo.2155211
- [10] M.A. Öztürk and Y.B. Jun, Neutrosophic ideals in *BCK/BCI*-algebras based on neutrosophic points, J. Inter. Math. Virtual Inst. 8 (2018), 1–17.
- [11] F. Smarandache, A unifying field in logics. Neutrosophy: Neutrosophic probability, set and logic, Rehoboth: American Research Press (1999).
- [12] F. Smarandache, Neutrosophic set, a generalization of intuitionistic fuzzy sets, International Journal of Pure and Applied Mathematics, 24(5) (2005), 287–297.
- [13] S.Z. Song, M. Khan, F. Smarandache and Y.B. Jun, A novel extension of neutrosophic sets and its application in *BCK/BI*-algebras, New Trends in Neutrosophic Theory and Applications (Volume II), Pons Editions, Brussels, Belium, EU 2018, 308–326, by Florentin Smarandache and Surapati Pramanik (Editors).
- [14] S.Z. Song, F. Smarandache and Y.B. Jun, , Neutrosophic commutative N-ideals in BCK-algebras, Information 2017, 8, 130; doi:10.3390/info8040130

Received: March 10, 2019. Accepted: June 20, 2019