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A B S T R A C T

Linguistic neutrosophic numbers (LNNs) are an effective tool in describing the incomplete and indeterminate
evaluation information by using three linguistic variables (LVs) to denote the truth-degree (TD), indeterminacy-
degree (ID), and falsity-degree (FD), and the bidirectional projection measure has some advantages in dealing
with multi-criteria group decision making (MCGDM) problems because it can consider both the distance and the
included angle, but more importantly, it considers the bidirectional projection between each alternative and the
ideal solution. In this paper, we define a new distance measure between two linguistic neutrosophic sets (LNSs),
and build a model based on the maximum deviation to obtain fuzzy measure, further, we develop the bidirec-
tional projection-based MCGDM method with LNNs in which a weight model based on fuzzy measure is proposed
where the weights of evaluation criteria is partial unknown and the interactions among criteria are considered.
Finally, we use some examples to verify the effectiveness of the proposed approach and demonstrate its ad-
vantages by comparing with some existing methods.

1. Introduction

In the multi-criteria decision-making (MCDM) or MCGDM pro-
blems, the evaluation information is often fuzzy and imprecise due to
the limitation of human thought and uncertainty of decision environ-
ment. There are numerous researches on fuzzy set (FS) (Zadeh, 1965) or
its extensions which are used to properly express ambiguous evaluation
information in various fields (Chen, Chin, Li, & Yang, 2016; Dong, Li, &
Herrera, 2016; Estrella, Espinilla, Herrera, & Martínez, 2014; Morente-
Molinera, Kou, González-Crespo, Corchado, & Herrera-Viedma, 2017;
Peng, Wang, Zhang, & Chen, 2014; Zhang, Xu, & Liao, 2017; Zhou & Xu,
2017). Based on the FS, Smarandache (1999) firstly presented neu-
trosophic sets (NSs) to describe indeterminate and inconsistent in-
formation, in which each element of the universe consists of TD, ID, and
FD. In order to simplify the NS and apply it to various fields such as
commercial, science, engineering and medicine, Wang, Smarandache,
Zhang, and Sunderraman (2010) proposed the concept of single-valued
NSs (SVNSs), which are an extension of NSs. Due to their advantages of
describing indeterminacy in decision processes, SVNSs have been
widely applied to help decision makers (DMs) to make rational and
feasible decision. For instance, Liu and Wang (2014) proposed a single-
valued neutrosophic normalized weighted Bonferroni mean (BM) op-
erator for solving practical problems. Peng et al. (2014) extended the

ELECTRE approach to SVNSs. Ye (2014) developed a cross-entropy
measurement of SVNSs for MCDM.

In general, for qualitative environment, decision information can be
assessed with linguistic terms (LTs) rather than real numbers or fuzzy
numbers because of the imprecision of human judgement and the un-
certainty of decision environment. In this case, Zadeh (1975) proposed
the definition of LVs in 1975. Then, many fuzzy linguistic approaches
have been developed and applied to solve problems. Cordon and
Herrera (2000) proposed a novel methodology to improve the accuracy
of linguistic model. Herrera and Martinez (2000) developed a compu-
tational technique to avoid the loss of information in the process of
computing with words. As we can see, these methods based on the LVs
reflect only the truth/membership degree by default, while the ID and
FD cannot be expressed. It is insufficient to accommodate incomplete,
indeterminate and inconsistent information in actual decision-making
process. In order to overcome this limitation, Ye (2015) presented the
single-valued neutrosophic linguistic sets (SVNLSs), which described
the TD, ID, and FD of the each element in universe by LVs.

Obviously, the SVNLSs can provide more comprehensive informa-
tion than LVs, but there is only a single LV in SVNLSs, and the TD, ID
and FD are real numbers. In order to overcome the insufficiency of
SVNLSs, Fang and Ye (2017) gave the concept of LNN by means of LVs
and SVNNs; which is characterized by expressing the TD, ID and FD
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with three LVs rather than exact values. Further, Fan, Ye, Hu, and Fan
(2017) developed a LNN normalized weighted BM (LNNNWBM) op-
erator and a LNN normalized weighted geometric BM (LNNNWGBM)
operator for group decision. Liang, Zhao, and Wu (2017) proposed a
TOPSIS model with LNNs in mining project investment. Shi and Ye
(2017) developed a cosine similarity measure under LNNs. In addition,
some extended forms of LNNs were proposed to describe the different
complex information, such as linguistic neutrosophic cubic number
(LNCN) (Ye, 2017a); linguistic cubic variable (LCV) (Ye, 2018b); lin-
guistic neutrosophic uncertain number (LNUN) (Cui, Ye, & Shi, 2018);
hesitant neutrosophic linguistic numbers (HNLNs) (Ye, 2018a), and so
on.

The ranking methods of MCGDM or MCDM have recently attracted
more and more attentions in different fields. A series of well-known
techniques have been built to solve MCDM problems under various
fuzzy environments, such as projection model (Ye, 2017d); VIKOR
(Ren, Xu, & Wang, 2017), TOPSIS (Lourenzutti & Krohling, 2016); AHP
(Blagojevic, Srdjevic, Srdjevic, & Zoranovic, 2016); ELECTRE (Peng,
Wang, Wang, Yang, & Chen, 2015), TODIM (Zhang & Xu, 2014); and
other approaches (Liu & Guan, 2009; Wei, 2010). Among them, pro-
jection measure has its advantage that it can consider both the distance
and the included angle between evaluated alternatives. However, the
projection measure has its flaws in some cases (see the example in
Section 2.5) due to just considering the single directional projection
magnitude between the evaluated alternatives and not standardizing
the measurement values within [0,1]. In this case, Ye (2017b, 2017c)
presented the bidirectional projection measure for the SVNNs and
neutrosophic numbers respectively to overcome this shortcoming.

But so far, there is little study on the MCGDM problems based on the
LNNs. Based on above analysis, when we select the best alternative(s)
under the environment of LNNs, there are two situations need to con-
sidered as follows: (1) In practical situations, DMs usually allocate
criteria weights from their own preference or judgment, which maybe
cause deviation due to the complex decision environment, limited
specific knowledge of DMs and so on. What’s more, there usually ex-
isting interrelationships between criteria. To relieve these impacts and
consider the interactions among criteria, we can utilize the maximum
deviation method (Wei, 2008) to get the fuzzy measure (Simon, 1971)
and determine objective weights of criteria by Shapley weight measure
(Shapley, 1953). (2) The bidirectional projection method has the su-
periority in considering not only the distance and included angle but
also the bidirectional projection between each alternative and the ideal
solution. Furthermore, the value of bidirectional projection measure is
normalized within [0,1] to ensure the rationality and reliability of the
final result. Therefore, it is more suitable and valid for the bidirectional
projection method to handle MCGDM problems.

As a result, we will propose a new and reasonable MCGDM method
this paper, and the main innovations are shown as follows:

(1) Define a new distance measure between two LNSs and prove its
relevant properties;

(2) Build a model based on the maximum deviation to obtain fuzzy
density, then use Shapley weight to calculate the weight vector of
evaluation criteria;

(3) Put forward to the bidirectional projection measure with LNNs.
Further, establish the procedure of decision making by the proposed
method;

(4) Compare with other existing methods, and illustrate the feasibility
and superiority of our proposed methods.

To achieve these goals, the rest of this paper is organized as follows.
Section 2 describes preliminaries of LT set, SVNSs, LNNs, the fuzzy
measure and the projection and bidirectional projection measures.
Section 3 defines the distance of LNSs and builds the weight model
based on the fuzzy measure. Section 4 develops a novel MCGDM
method based on the bidirectional projection measure with LNNs.

Section 5 describes a numerical example and makes a comparison be-
tween the proposed method with those presented approaches in Fang
and Ye (2017), Liang et al. (2017), Tu et al. (2018) and Ye (2017b).
Section 6 concludes this paper.

2. Preliminaries

2.1. Linguistic term set and linguistic scale function

A LT set (LTS) S s i t{ | 0, 1, 2, , 2 }t i= = is usually a finite and totally
ordered discrete set, where si denotes a LT and t is a positive integer.
Meanwhile, St satisfies the following characteristics (Zadeh, 1975):

(1) The LTSStis ordered: s si j if and only if i j> ;
(2) A negation operator is defined as: neg s s( )i t i2= .

LTs are usually converted into numerical values by linguistic scale
function (LSF), to reduce the loss of information in the integration
process.

Definition 1. (Peng & Wang, 2016). Let S s i t{ | 1, 2, , 2 }t i= = be a
discrete LTS, si be a LT. If i is a numerical value, then the LSF is a
mapping from si to i t( 0, 1, ,2 )i = , and it can be defined as follows:

f s i t: ( 0, 1, , 2 )i i = (1)

where f is a monotone increasing function, [0, 1]i .

Now, we introduce two kinds of LSFs (Peng & Wang, 2016):

f s i
t

i t1. ( )
2

( 0, 1, ,2 )i i1 = = = (2)

This function is defined on the basis of the subscript function and it
can evenly distribute the semantic value of the linguistic information.

f s
i t

i t t t
2. ( )

( 0, 1, , )

( , 1, ,2 )
i i

a a
a

a a
a

2
2 2

2
2 2

t t i
t

t i t
t

= =
=

= ++
(3)

where a is a parameter which can be determined by experiment. This
function has a property that the absolute deviation between adjacent
LTs increases from the middle of the given LT to both sides.

2.2. SVNSs

Definition 2. (Smarandache, 1999). Let X be a fixed set with the
element in X marked as x , and a NS B in X can be defined as:

B x T x I x F x x X{ , ( ), ( ), ( ) | }B B B=

where T x( )B , I x( )B and F x( )B denotes the TD, ID and FD of the element
x X to the set B respectively. For each x in X , it satisfies
T x I x F x( ), ( ), ( ) ]0 , 1 [B B B

+ , and T x I x F x0 ( ) ( ) ( ) 3B B B+ + +.

Definition 3. (Wang et al., 2010). Let X be a fixed set with the element
in X marked as x. A SVNS B in X is defined as:
B x T x I x F x x X{ , ( ), ( ), ( ) | }B B B= , where T x( )B , I x( )B and F x( )B
denotes the TD, ID and FD of the element x X to the set B
respectively. For each x in X, we have T x I x F x( ), ( ), ( ) [0, 1]B B B , and

T x I x F x0 ( ) ( ) ( ) 3B B B+ + .

For simplicity, we use x T I F( , , )= to represent an element x in
SVNS, and the element x is called a single-valued neutrosophic number
(SVNN).

2.3. LNNs

Definition 4. (Fang & Ye, 2017). Let X be a fixed set and
G g g g( , , , )t0 1 2= be a LTS. A LNS H in X is composed by a TD H x( ),
an ID H x( ) and a FD H x( ), where G, ,H x H x H x( ) ( ) ( ) , and x X ,

g g g H( , , )x x x( ) ( ) ( )H H H
= is called a LNN of H .As a convenience,
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t[0,2 ] can be used to present the set of all LNNs.

Definition 5. (Fang & Ye, 2017). Let
g g g g g g g g g( , , ), ( , , ), ( , , ) t1 2 [0,2 ]1 1 1 2 2 2

= = = , 0> ,
then the operations of LNNs are shown as follows:

g g g g g g g g g( , , ) ( , , ) , ,
t1 2 2 t t1 1 1 2 2 2 1 2 1 2 1 2

2
1 2
2

= = + (4)

g g g g g g

g g g

( , , ) ( , , )

, ,
t t

1 2

2 2t

1 1 1 2 2 2

1 2
2 1 2

1 2 1 2
1 2

=

=
+ + (5)

( )( )g g g g g g( , , ) , ,
t t t t t

t t2 2 1 2 2 2
2 2

= =
(6)

( )( )g g g g g g( , , ) , ,
t t t t t

t t t2 2 2 2 1 2
2 2 1 2

= =
(7)

Definition 6. (Fang & Ye, 2017). Let g g g( , , ) t[0,2 ]= , we can
define the score function ( ) and the accuracy function ( )of the LNN

as follows:

t
t

( ) 4
6

= +
(8)

t
( )

2
= (9)

Definition 7. (Fang & Ye, 2017). Let
g g g g g g( , , ), ( , , ) t1 2 [0,2 ]1 1 1 2 2 2

= = , then

(1) If ( ) ( )1 2< , then 1 2;
(2) If ( ) ( )1 2= ,

(a) and ( ) ( )1 2< , then 1 2;
(b) and ( ) ( )1 2= , then 1 2= .

Definition 8. (Fang & Ye, 2017). Let g g g i n( , , )( 1, 2, , )i i i i
= = be

a collection of LNNs, the linguistic neutrosophic weighted arithmetic
averaging (LNWAA) operator is defined as

( )( )

LNWAA

g g g

( , , ...., )

, ,

n
i

n

i i

t t t t t
t t

1 2
1

2 2 1 2 2 2
2 2i

n i i

i
n i

i
i
n i i

1 1 1

=

=

=

= = =

(10)

where ( , , ..., )n
T

1 2= is the weight vector of ( , , , )n1 2 ,
[0, 1]i and 1i

k
i1 == .

Definition 9. (Fang & Ye, 2017). Let g g g i n( , , )( 1, 2, , )i i i i
= = be

a collection of LNNs, the linguistic neutrosophic weight geometric
averaging (LNWGA) operator is defined as

( )

( )

LNWGA

g g

g

( , , ...., )

,

,

n
i

n

i

t t t t t

t t t

1 2
1

2 2 2 2 1 2

2 2 1 2

i

i
n i i

i
n i

i

i
n i i

1 1

1

=

=

=

= =

= (11)

where ( , , ..., )n
T

1 2= is the weight vector of ( , , , )n1 2 ,
[0, 1]i and 1i

k
i1 == .

2.4. The fuzzy measure

Fuzzy measure (Simon, 1971) is an effective tool that can be used to
measure the interaction among evaluation criteria, which is described
as follows:

Definition 10. (Simon, 1971). Let X x x x{ , , , }n1 2= be a fixed set. A
fuzzy measure on X is a set function µ: X( ) [0, 1]which satisfies the
following properties:

(1) Boundary: µ ( ) 0= , µ X( ) 1= ,
(2) Monotonicity: If M N X, ( ) and M N , then µ M µ N( ) ( )< ,

Definition 11. (Sugeno, 1974). Let X x x x{ , , , }n1 2= be a fixed set. A
fuzzy measure on X is called fuzzy measure when it meets the
following criteria: M N M N M N( ) ( ) ( ) ( ) ( )= + + ,
[ 1, ), M N P X, ( ) and M N = , where P X( ) is the power set
of X .

Meanwhile, the fuzzy measure of A can be obtained if A P X( )
as follows:

A
i

i
( )

( [1 ( )] 1) 0
( ) 0

i A

i A

1

=
+

= (12)

where i( ) is usually called the fuzzy density because it’s a fuzzy
measure for a subset with a single elementi. Since X( ) 1= , then the
value of can be determined by solving i1 [1 ( )]i

n
1+ = += .

Many researches based on fuzzy measures have been developed,
such as Choquet integral (Grabisc, Nguyen, & Walker, 1995) and
Shapley weight (Shapley, 1953). The Shapley weight indicates the
coefficient of importance. It can not only measure the importance for
criteria but also reflects the interactive characteristics among them;
which can be expressed by

X n t t
n

T x T( , ) ( 1) ! !
!

[ ( ) ( )]i
T X x

i
/ i

=
(13)

where n t, denotes the cardinality of set X T, , respectively.

2.5. Projection and bidirectional projection measures

Definition 12. (Xu, 2005). Let ( , , , )m1 2= and ( , , , )m1 2=
be two vectors, then

cos( , )
· ·

j
m

j j j
m

j j

j
m

j j
m

j

1 1

1
2

1
2

= == =

= = (14)

is called the cosine of the included angle between and , where

j
m

j1
2

= and j
m

j1
2

= are the modules of and respectively,
denoted by and .

Obviously, 0 cos( , ) 1< , and the greater the cosine value of the
angle between and , the closer and .

Definition 13. (Xu, 2005). Let ( , , , )m1 2= and ( , , , )m1 2=
be two vectors, then

P ( ) cos( , ) ·
·

roj
j

m

j
j
m

j j

j
m

j j
m

j

j
m

j j

j
m

j1

2 1

1
2

1
2

1

1
2

= = =
=

=

= =

=

=

(15)is called the projection of the vector on the vector .P ( )roj .

The projection measure P ( )roj needs to consider both the distance
and the included angle between and . In general, the larger the
value of P ( )roj is, the closer is to .

However, there are some unreasonable case in the projection mea-
surement.
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Example 1.. let ( , , , )m1 2= = and (2 , 2 , , 2 )m1 2= , then
P ( )roj = and P ( ) 2roj = .

Clearly, P ( )roj is larger than P ( )roj . But we can see the fact is,
is closer to than because = . Hence, sometimes the projection is
not able to depict the closeness between to accurately.

To overcome the shortcoming mentioned above in general projec-
tion, Ye (2017c) proposed the bidirectional projection model as fol-
lowing.

Definition 14. (Ye, 2017c). Let x x x x x x x([ , ], [ , ], , [ , ])l u l u
m
l

m
u

1 1 2 2= and
y y y y y([ , ], [ , ], ,l u l u

1 1 2 2= y y[ , ])m
l

m
u be two interval vectors, then

BP x y x y
x y x y x y

( , ) 1

1 | | ·roj x y
x

x y
y

· ·
=

+
=

+
(16)

is called the bidirectional projection between x and y, where
x x x(( ) ( ) )i

m
i
l

i
u

1
2 2= += and y y y(( ) ( ) )i

m
i
l

i
u

1
2 2= += are the

modules of x and y respectively.

The bidirectional projection model can consider both the distance
and the included angle between x and y, and it considers the bidirec-
tional projection between x and y. In addition, the value of bidirec-
tional projection measure is bounded within [0,1], the closer the value
of BP x y( , )roj is to 1, the closer x is toy. When, and only when x y= ,
then BP x y( , ) 1roj = .

3. Weight determination model based on fuzzy measure

In this section, we firstly redefine the distance of LNSs. Then, an
extended weight determination model is provided by combining the
maximum deviation method and fuzzy measure.

3.1. The distance between LNSs

In Ref. Liang et al. (2017); Liang et al. gave the axioms of distance
measure between any two LNSs.

Definition 15 (Liang et al., 2017.). Let G g g g( , , , )t0 1 2= , for any
A B C LNSs X, , ( ), if d A B( , ) satisfies the following properties:

(1) d A B0 ( , ) 1;
(2) d A B d B A( , ) ( , )= ;
(3) d A B( , ) 0= if and only if A B= ;
(4) d A C d A B d B C( , ) ( , ) ( , )+ .

then d A B( , ) is a distance measure between LNSs Aand B.

Definition 16 (Liang et al., 2017.). Let X be the universe of discourse,
where X x x x{ , , , }n1 2= , and let A and B be two LNSs in the X ,
where A x g g g x X{ , , , | }i x x x i( ) ( ) ( )A i A i A i= and B =

x g g g x X{ , , , | }i x x x i( ) ( ) ( )B i B i B i . Then, the distance between A and B
is defined as follows:

d A B
n

x
t

x
t

x
t

x
t

x
t

x
t

( , ) 1
3

( )
2

( )
2

( )
2

( )
2

( )
2

( )
2

, 0G
i

n
A i B i A i B i

A i B i

1
1

= +

+

>
=

(17)Obviously, we have some particular cases as follows.

(1) if 1= , it is a Hamming distance as follow.

d A B
n

x
t

x
t

x
t

x
t

x
t

x
t

( , ) 1
3

( )
2

( )
2

( )
2

( )
2

( )
2

( )
2

H
i

n
A i B i A i B i

A i B i

1
= +

+

=

(18)

(2) if 2= , it is a Euclidean distance as follow.

d A B
n

x
t

x
t

x
t

x
t

x
t

x
t

( , ) 1
3

( )
2

( )
2

( )
2

( )
2

( )
2

( )
2

E
i

n
A i B i A i B i

A i B i

1

2 2

2

= +

+

=

(19)

(3) when , it is a Hausdorff distance as follow.

d A B x
t

x
t

x
t

x
t

x
t

x
t

( , ) max ( )
2

( )
2

,
( )

2
( )

2
,

( )
2

( )
2

Hd
i

n
A i B i A i B i A i

B i

1
=

=

(20)

Although the above distance measures between LNSs satisfies the
distance axioms (Definition 15), some unreasonable cases can still be
found. For example, we suppose LNNs

g g g g g g g g g( , , ), ( , , ), ( , , )1 5 1 4 2 4 3 4 3 4 2 1 [0,6]= = = . In this case, the
distance between 1 and 3 calculated by Formula (16) is greater than
that between 2 and 3. It seems to be unreasonable since LNNs 1, 2,
and 3 are ordered as 3 1 2 on the basis of the comparison method
given in Definition 7. The sorted result indicates that the distance be-
tween 1 and 3 is smaller than that between 2 and 3.

As a powerful tool in modeling uncertain information, LNSs have
the advantage of both reflecting specific information: TD and FD, and
non-specific information: ID. It should be noted that the main goal of
distance measure is to measure the difference of information carried by
LNSs. Therefore, combining the above equations, we redefine a gen-
eralized hybrid distance as follows:

Definition 17.. Let G g g g( , , , )t0 1 2= , for any A B C LNSs X, , ( ),

d A B
n

x x x( , ) 1
3

[ ( ) ( ) ( )]L
i

n

i i i
1

1 2 3= + +
= (21)

x x
t

x
t

x
t

x
t

( ) 1
2

( )
2

( )
2

( )
2

( )
2i

A i B i A i B i
1 = +

x
x
t

x
t

x

x
t

x
t

x
t

x
t

( ) 1
2

( )
2

( )
2

( )

max ( )
2

( )
2

,
( )
2

( )
2

i
A i B i

i

A i B i A i B i

2 3= +

=

Proof:. (1) According to the Definition 17,
0 , , , , , 1x

t
x
t

x
t

x
t

x
t

x
t

( )
2

( )
2

( )
2

( )
2

( )
2

( )
2

A i A i A i B i B i B i , we can obtain

( )0 , , 1x
t

x
t

x
t

x
t

x
t

x
t

( )
2

( )
2

( )
2

( )
2

1
2

( )
2

( )
2

A i B i A i B i A i B i+ ,
then x0 ( ) 1i1 , x0 ( ) 1i2 , x0 ( ) 1i3 , so d A B0 ( , ) 1.

( )
( )

( )
d A B

n

(2) ( , )

1
3 max ,

L

i

n
x
t

x
t

x
t

x
t

x
t

x
t

x
t

x
t

x
t

x
t

1

1
2

( )
2

( )
2

( )
2

( )
2

1
2

( )
2

( )
2

( )
2

( )
2

( )
2

( )
2

A i B i A i B i A i B i

A i B i A i B i
=

+ + +

+

=

=

( )
( )

( )
n

d

B A

1
3 max ,

( , )

i

n
x
t

x
t

x
t

x
t

x
t

x
t

x
t

x
t

x
t

x
t

L
1

1
2

( )
2

( )
2

( )
2
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2

1
2

( )
2

( )
2

( )
2

( )
2

( )
2

( )
2

B i A i B i A i B i A i

B i A i B i A i

+ + +

+
=

=

d A B x x x x x

x A x B x x x
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Thus, we have d A C d A B d B C( , ) ( , ) ( , )L L L+ .

Example 2.. Let g g(g , , ),1 5 1 4= g g g g(g , , ), (g , , )2 4 3 4 3 4 2 1 [0,6]= = .
According to the new distance measure in Definition 17, we can obtain

d ( , ) 1
3

1
2

5
6

4
6

4
6

4
6

1
2

1
6

3
6

max 5
6

4
6

, 5
6

4
6

7
36

L 1 2 = +

+ + + =

d ( , ) 1
3

1
2

5
6

4
6

4
6

1
6

1
2

1
6

2
6

max 5
6

4
6

, 4
6

1
6

13
36

L 1 3 = +

+ + + =

d ( , ) 1
3

1
2

4
6

4
6

4
6

1
6

1
2

3
6

2
6

max 4
6

4
6

, 4
6

1
6

14
36

L 2 3 = +

+ + + =

From the results, we can seed d( , ) ( , )L L2 3 1 3> , which is in line
with the ordered result 3 1 2. Therefore, the proposed distance
measure is more reasonable.

3.2. A weight determination model based on fuzzy measure

Generally, fuzzy measure µ C( ) can be regarded as the subjective
importance level of criterion C in MCDM problems. However, the
weights of criteria are usually partial known, we use maximum devia-
tion method to get the fuzzy measure µ C( ).

In a MCDM problem with interaction criteria, suppose alternative
set is A A A A( , , , )m1 2= , criteria set is C C C C( , , , )n1 2= , then the

evaluation values of all alternatives under criteria set C can be ex-
pressed by LNNs r g g g( , , )ij ij ij ij

= with t, , [0, 2 ]ij ij ij

i m j n( 1, 2, ...., ; 1, 2, ...., )= = . Due to the weights of criteria wCj is
partially known, suppose w HC Cj j, whereHCj expresses the range of
weight for criteria wCj which is described by H H H[ , ]C C Cj j j= + . Further,
we use H to express the ranges of weights for all criteria.

Firstly, we define the deviation degree of A i m( 1, 2, ...., )i = to all
alternatives with respect to criteria C j n( 1, 2, ...., )j = as follows:

D µ C d r r µ C( ( , )) ( , ) ( , )ij C
k

m

ij kj C
1

j j=
= (22)

where d r r( , )ij kj is the distance between rij and rkj, µ C( , )Cj is the
Shapley weight of criterion Cj, µ is the fuzzy measure of
C j n( 1, 2, ...., )j = .

Then, the deviation degrees of all alternatives under the criteria
C j n( 1, 2, ...., )j = are expressed by

D µ C D µ C d r r µ C( ( , )) ( ( , )) ( , ) ( , )j C
i

m

ij C
i

m

k

m

ij kj C
1 1 1

j j j= =
= = = (23)

Thus, the total deviation of all alternatives with all criteria is pro-
posed as follows:

D µ C D µ C d a a µ C( ( , )) ( ( , )) ( , ) ( , )
j

n

j C
j

n

i

m

k

m

ij kj C
1 1 1 1

j j= =
= = = = (24)

So we can construct the maximum deviation model and obtain the
fuzzy density of each criteria and criteria set:

D µ C d a a µ C

s t
µ µ C

µ S µ T S T C S T
µ C H

max ( ( , )) ( , ) ( , )

. .
( ) 0, ( ) 1

( ) ( ), , ,
( )

j

n

i

m

k

m

ij kj C

j C

1 1 1
j

j

=

= =
= = =

(25)

Finally, the fuzzy measure of criteria can be obtained by formula
(12), and the Shapley weight of each criterion can be calculated by
means of formula (13).

4. A MCGDM method with LNNs based on fuzzy measure and
bidirectional projection measure

In this section, we propose a novel method to solve MCGDM pro-
blems with LNNs based on the bidirectional projection method.

Let A A A A{ , , ...., }m1 2= be a set of alternatives, C C C C{ , , ...., }n1 2= be
the set of criteria, D D D D{ , , ...., }p1 2= be the set of DMs. Suppose that
y g g g( , , )ij

k
o
k

q
k

u
k

ij ij ij
= is a LNN which represents the evaluation informa-

tion of the alternative Ai with respect to the criterion Cj given by the
DM Dk. Y y[ ]k

ij
k

m n= × is the decision matrix. ( , , ...., )p
T

1 2= is the
weight vector of DMsD k p( 1, 2, ...., )k = , which satisfies [0, 1]k and

1k
p

k1 == . Here we assume the weight vectorw w w w( , , , )n1 2= of
the criteria is partial known, and w a b a b[ , ], , [0, 1]j j j j j . Now, we
can propose a novel MCGDM method by above information as follows:

Step 1: Normalize the decision-making information.

There usually are two types of evaluation criteria, i.e., benefit cri-
teria and cost criteria. We should convert the different types of criteria
to same type. That is, normalize each decision matrix Y y[ ]k

ij
k

m n= ×

k p( 1, 2, ...., )= into the transformed decision matrix R r[ ]k
ij
k

m n= ×

k p( 1, 2, ...., )= , where r g g g( , , )ij
k k k k

ij ij ij
= and

r g g g
g g g for the benefit criterion C

g g g for the t criterion C
( , , )

( , , )

( , , ) cosij
k k k k o

k
q
k

u
k

j

u
k

t q
k

o
k

j2
ij ij ij

ij ij ij

ij ij ij

= =
(26)
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k p i m j n1, 2, ...., ; 1, 2, ...., ; 1, 2, ....,= = =

Step 2: Obtain collective evaluation values.

The collective decision-making matrix R r[ ]ij m n= =×
g g g( , , )m nij ij ij × can be obtained by utilizing the LNWAA operator or

LNWGA operator in Definition 8 or Definition 9.

Step 3: Calculate the Shapley weight of the criteria.

Firstly, use the maximum deviation model to get the fuzzy density
µ C( )j of criterion Cj. Then the fuzzy measure of criteria can be ob-
tained by formula (12), and the Shapley weight of each criterion can be
calculated by formula (13).

Step 4: Determine the ideal alternativeR .

For each criterionC j n( 1, 2, , )j = , we can obtain the maximum
value according to the comparison method in Definition 6, i.e.,
r r r r r r j n( , , , ), max( )( 1, 2, , )n j

i
ij1 2= = =+ + + + + . Thus the ideal alter-

native is R r r r( , , , )n1 2= + + + .

Step 5: Compute the bidirectional projection measure between
R and Ri i m( 1, 2, ...., )= .

BP R R R R
R R R R R R

( , )
| | ·roj i

i

i i i
=

+ (27)

where R w( )j
n

j t t t1
2

2

2

2

2

2

2
ij ij ij= + += , Ri =

( ) ( )( )w( )j
n

j t t t1
2

2
2

2

2

2

2ij ij ij+ += ,

R R w· ( ) · · ·i j
n

j t t t t t t1
2

2 2 2 2 2 2
ij ij ij ij ij ij= + += .

Step 6: Rank the alternatives.

Rank the alternatives according to the values of BP R R( , )roj i . The
bigger the global valueBP R R( , )roj i , the better the alternative Ai.

5. Application example

In this section, we will illustrate the proposed MCGDM method in
detail by some examples, and further prove its effectiveness and ad-
vantages by comparing with the existing MCGDM methods (Fang & Ye,
2017; Liang et al., 2017; Tu, Ye, & Wang, 2018; Ye, 2017b).

5.1. The application of the proposed method

In the following, we use a practical example from Liang et al. (2017)
to demonstrate the MCGDM process of the proposed method.

Example 5.1. There are four companies A1, A2, A3, A4 as alternatives
and there are five evaluation criteria: (1) C1 is the geographic risk; (2)
C2 is the technological risk; (3) C3 is the market risk; (4) C4 is the
management risk; (5) C5 is the political risk, which are used to evaluate
the alternatives by three DMs Dh h( 1, 2, 3)= based on the LTSs:
G g i{ | [0, 8]}i= , where G g extremely low g pretty low{ , ,0 1= = =
g low g slightly low g medium g slightly high g high, , , , ,2 3 4 5 6= = = = =
g pretty high g perfect, }7 8= = . Assume the weight vector of three DMs is

( ), ,
T1

3
1
3

1
3= , the weight vector of criteria is partly known and is

expressed by W W[0.05, 0.15], [0.2, 0.25],C C1 2= = WC3 =
W[0.15, 0.25], [0.1, 0.3],C4 = W [0.2, 0.3]C5 = . The evaluation value of

the alternative Ai i( 1, 2, 3, 4)= on the criterion C j( 1, 2, 3)j = by DM
Dh h( 1, 2, 3)= is expressed by the LNN, and then three LNN decision
matrices Y y[ ]h

ij
h

m n= × are constructed and listed in Tables 1–3. By the

above information, it is necessary to give the ranking of the
alternatives.

Case 1:. If the criteria weights are partial known, the decision-making
steps of the proposed method as follows:

Step 1: Normalize the decision-making information.

Since all the criteria values belong to the cost type, we normalize
evaluation values by Eq. (26), which are listed in Tables 4–6

Step 2: Obtain collective evaluation values.

Utilize the LNWAA operator in (10) to aggregate all individual de-
cision matrix Rk k p( 1, 2, ...., )= into collective one
R r g g g[ ] ( , , )ij m n m nij ij ij

= =× × , which is shown in Table 7.

Step 3: Calculate the Shapley weight of the criteria.

Firstly, establish the maximum deviation model based on the fuzzy
measure as follows:

D µ C µ C C C C
µ C µ C C C C

µ C µ C C C C µ C µ C C C C
µ C µ C C C C µ C C µ C C C
µ C C µ C C C µ C C µ C C C
µ C C µ C C C µ C C µ C C C
µ C C µ C C C µ C C µ C C C
µ C C µ C C C µ C C µ C C C

µ C C µ C C C

max ( ) 0.3668( ( ) ( , , , ))
0.1340( ( ) ( , , , ))

0.1419( ( ) ( , , , )) 0.2692( ( ) ( , , , ))
0.3736( ( ) ( , , , )) 0.1669( ( , ) ( , , ))
0.1696( ( , ) ( , , )) 0.0325( ( , ) ( , , ))
0.0023( ( , ) ( , , )) 0.0920( ( , ) ( , , ))
0.0451( ( , ) ( , , )) 0.0798( ( , ) ( , , ))
0.2143( ( , ) ( , , )) 0.0772( ( , ) ( , , ))

0.2143( ( , ) ( , , )) 2.5962

1 2 3 4 5

2 1 3 4 5

3 1 2 4 5 4 1 2 3 5

5 1 2 3 4 1 2 3 4 5

1 3 2 4 5 1 4 2 3 5

1 5 2 3 4 2 3 1 4 5

2 4 1 3 5 2 5 1 3 4

3 4 1 2 5 3 4 1 2 5

4 5 1 2 3

=

+
+

+ +
+ +

+ +

s t

µ C µ C µ C µ C
µ C
µ µ C C C C C

µ S µ T S T C S T

. .

( ) [0, 0.1], ( ) [0.2, 0.25], ( ) [0.15, 0.25], ( )
[0.1, 0.3], ( ) [0.2, 0.3]

( ) 0, ( , , , , ) 1
( ) ( ), , ,

1 2 3 4

5

1 2 3 4 5= =

Then apply the Lingo tool to solve this linear programming model.
Thus we get the fuzzy density µ C( )j of criteria Cj as follows:
µ C( ) 0.051 = , µ C( ) 0.252 = , µ C( ) 0.153 = , µ C µ C( ) ( ) 0.34 5= = .

Then we can get 0.1225= by formula (12), and the fuzzy
measure of the criteria can be calculated and listed in Table 8.

Based on the calculated fuzzy measure, we obtain the Shapley
weight of each criterion according to formula (13).

0.05 0.24 0.15 0.28 0.281 2 3 4 5= = = = =

Step 4: Determine the ideal alternative R .

According to the comparison method in Definition 6, we can obtain
the maximum value of each criterion in Table 9.

Thus we identify the ideal alternative R r r r( , , , )1 2 5= + + + .

Step 5: Calculate the bidirectional projection measure between R
and Ri i( 1, 2, 3, 4)= based on the formula (27).

The modules of R and Ri i( 1, 2, 3, 4)= are R 0.273= ,
R 0.3431 = , R 0.3712 = , R 0.3363 = , R 0.2804 = respectively.

The inner products of R and Ri i( 1, 2, 3, 4)= are R R· 0.0981 = ,
R R· 0.1742 = , R R· 0.1973 = , R R· 0.1674 = .

The bidirectional projection measures between R and Ri
i( 1, 2, 3, 4)= are

BP R R BP R R BP R R BP R R( , ) 0.931 ( , ) 0.855 ( , ) 0.880 ( , )

0.984
roj roj roj roj1 2 3 4= = =

=
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Step 6: Rank the alternatives.

Since BP R R BP R R BP R R BP R R( , ) ( , ) ( , ) ( , )roj roj roj roj4 1 3 2> > > , we
can obtain A A A4 1 3

A2 and the best choice is A4.

Case 2:. If the criteria weights are given directly by DMs, for example,
the weight vector is (0.19, 0.21, 0.15, 0.05, 0.4)j

T= , then we can skip
the Step 3 of the proposed method to handle the above problem.

Then, the bidirectional projection measures between R and Ri
i( 1, 2, 3, 4)= of Case 2 can be calculated as follows:

BP R R( , ) 0.933roj 1 = , BP R R( , ) 0.965roj 2 = , BP R R( , ) 0.938roj 3 = ,
BP R R( , ) 0.999roj 4 = . So we have A A A A4 3 1 2, which is different
from the ranking result of Case 1 because of the diverse weights of
criteria values.

In decision making process, weights of criteria will influence the
final decision-making result. However, it is difficult for DMs to assign
appropriate criteria weights due to the time pressure, data loss, and
limited domain knowledge about the problem. Furthermore, it is
common that there are interactions among criteria in realistic decision
environment. To get the reasonable criteria weights, we combine the
maximum deviation model and fuzzy measure, and propose Shapley
weight which not only avoids the subjective judgments of DMs but also
considers the relationship between criteria. The criteria weights in Case
2 are given only from the preference or judgments of DMs while the
Case 1 uses the maximum deviation model to determine the criteria
weights, which can effectively reduce the subjective effects. Therefore,
the weight model in the paper is more reasonable and suitable to de-
termine weight for each criterion.

5.2. The verification of the effectiveness

In the following, we give an example to compare the ranking results
of the proposed MCGDM method with the ones of Fang and Ye’s method
(Fang & Ye, 2017) based on the LNWAA operator and Liang et al.’s
method (Liang et al., 2017) based on the extended TOPSIS model.

Example 5.2. An investment company needs to select an industry to
invest and there are four possible investment alternatives
A A A A{ , , , }1 2 3 4 which are the technology company, the jewelry

company, the food company, the sporting goods company,
respectively. There are three criteria (suppose their weight vector is
W (0.35, 0.25, 0.4)T= ): the market risk (C1), the growth risk (C2), the
policy risk (C3). The DM gives the evaluation information of the alternatives
A A A A{ , , , }1 2 3 4 with the criteria C j( 1, 2, 3)j = by LNNs based on the

LTs: G g extremely low g pretty low g low{ , , ,0 1 2= = = = g slight3 =
ly low g medium g slightly high g high g pretty

high g perfect

, , , ,

, }
4 5 6 7

8

= = = =

=

.

The decision matrix X x[ ]ij 4 3= × is listed in Table 10.
For convenience, we set the same weight vector of the criteria

W (0.35, 0.25, 0.4)T= for these methods and the comparison results are
shown in Table 11.

From Table 11, we can see that the ranking result of proposed
method is same as the ones of the methods in Fang and Ye (2017) and
Liang et al. (2017), i.e., A A A A4 1 2 3. It can prove our proposed
method is effective and rational.

5.3. Further comparison with other methods

In the above sub-section, we have proved the validity of our pro-
posed method by obtaining the same ranking results with the two ex-
isting methods (Fang & Ye, 2017; Liang et al., 2017). In the following,
we will set up two examples to further illustrate the advantages of the
proposed method. Example 5.3 will show the advantages of the pro-
posed method based on the bidirectional projection by comparing with
projection of LNNs and the method based on TOPSIS model proposed by
Liang et al. (2017). Example 5.4 will show the advantages of the pro-
posed method with LNNs by comparing with bidirectional projection of
SVNs in Ye (2017b) and the weighted symmetry measure of SVNs in Tu
et al. (2018).

Example 5.3. A company plans to develop a new career and there are
four possible alternatives and there are five criteria shown as follows
(suppose weight vector is W (0.05, 0.24, 0.15, 0.28, 0.28)T= ): the
production (C1), the technical skill (C2), the management
development (C3), the market growth (C4), the social policy (C5). The
DM gives the evaluation information of the alternatives A A A A{ , , , }1 2 3 4
with the criteria C j( 1, 2, 3, 4, 5)j = by LNNs based on the LTs:
G g extremely bad g pretty bad g bad g a little

bad g medium g a little good g good

{ , , ,

, , , ,
0 1 2 3

4 5 6

= = = = =

= = =
g pretty good g perfect, }7 8= = . The decision matrix X x[ ]ij 4 5= × is listed
in Table 12. Then we can get the ranking results in Table 13.

From Table 13, it can be seen that the ranking results of the pro-
posed method based on the bidirectional projection is different from the
ones by projection and TOPSIS (Liang et al., 2017). Next, we discuss
and analyze the superiority of our proposed method as follows:

(1) Compared with the method based on the projection measure

The projection measure can be calculated by formula
P A A( , )roj i

A A
A

· i= ,
whereA x x x x x x j( , , , ), max( )( 1, 2, 3, 4)j

i
ij1 2 3 4= = =+ + + + + . Then the

ideal alternative is A A4= and we can getP A( ) 0.297roj A 1 = ,

Table 1
LNN decision matrix Y1 given by DM D1.

C1 C2 C3 C4 C5

A1 g g g( , , )1.0 2.0 1.0 g g g( , , )2.0 3.0 2.0 g g g( , , )4.0 4.0 3.0 g g g( , , )1.0 5.0 1.0 g g g( , , )3.0 3.0 2.0
A2 g g g( , , )2.0 6.0 2.0 g g g( , , )3.0 8.0 2.0 g g g( , , )2.0 4.0 1.0 g g g( , , )3.0 1.0 2.0 g g g( , , )1.0 2.0 1.0
A3 g g g( , , )2.0 3.0 1.0 g g g( , , )3.0 2.0 3.0 g g g( , , )1.0 4.0 1.0 g g g( , , )3.0 5.0 1.0 g g g( , , )5.0 2.0 4.0
A4 g g g( , , )3.0 1.0 2.0 g g g( , , )1.0 7.0 1.0 g g g( , , )4.0 6.0 3.0 g g g( , , )2.0 5.0 1.0 g g g( , , )4.0 6.0 4.0

Table 2
LNN decision matrix Y 2 given by DM D2.

C1 C2 C3 C4 C5

A1 g g g( , , )1.0 6.0 1.0 g g g( , , )4.0 3.0 4.0 g g g( , , )2.0 6.0 2.0 g g g( , , )3.0 5.0 2.0 g g g( , , )5.0 2.0 4.0
A2 g g g( , , )1.0 4.0 1.0 g g g( , , )3.0 2.0 1.0 g g g( , , )2.0 3.0 4.0 g g g( , , )4.0 0.0 5.0 g g g( , , )2.0 6.0 4.0
A3 g g g( , , )3.0 5.0 2.0 g g g( , , )2.0 4.0 3.0 g g g( , , )1.0 6.0 5.0 g g g( , , )3.0 5.0 3.0 g g g( , , )2.0 6.0 1.0
A4 g g g( , , )2.0 7.0 2.0 g g g( , , )4.0 6.0 1.0 g g g( , , )3.0 7.0 2.0 g g g( , , )4.0 4.0 2.0 g g g( , , )3.0 8.0 4.0
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P A( ) 0.193roj A 2 = , P A( ) 0.278roj A 3 = , P A( ) 0.265roj A 4 = . Because
P A P A P A P A( ) ( ) ( ) ( )rojA rojA rojA rojA1 3 4 2> > > , we have A A A A1 3 4 2.

Clearly, P A( )roj A 1 and P A( )roj A 3 is larger than P A( )roj A 4 . In fact, A4
is closer to A than A1 and A3 due to A A4= . Thus the ranking result
obtained by using the projection measure is unreasonable. On the other
hand, the bidirectional projection measure is based on the projection of
the Ai on the A P A( )roj A i and the projection of the A on the Ai
P A( )roj Ai . Due to the difference between the P A( )roj A i and
theP A( )roj Ai , we utilize the closeness degree P A P A| ( ) ( )|roj A i roj Ai to
select the optimal alternative. The closer toA , the better Ai is.
Since P A P A| ( ) ( )| 0roj A roj A4 4 = <
P A P A P A P A P A

P A

| ( ) ( )| 0.0298 | ( ) ( )| 0.0327 | ( )

( )| 0.1197
roj A roj A roj A roj A roj A

roj A

2 2 3 1 1

2

= < = <

=

,

then BP R R( , ) 1roj 4 = >BP R R B( , ) 0.9710roj 2 = > P R R( , ) 0.9683roj 3 = >
BP R R( , ) 0.8931roj 1 = , which is more reasonable and comprehensive
than the general projection measure based on the single directional
projection magnitude between Ai andA .

Comparing with the projection model, the proposed bidirectional

projection method not only considers the distance and included angle
but also the bidirectional projection magnitudes. Therefore, the bidir-
ectional projection measure is more general and reasonable than the
projection method because it can overcome the shortcoming of the
projection method. In addition, the value of bidirectional projection
measure is normalized within [0,1] to avoid some unreasonable result.

(2) Compared with the method based on the LNN-TOPSIS (Liang et al.,
2017)

As we have known, the TOPSIS model determines the best alter-
native which has the shortest distance from the ideal alternative and the
farthest distance from the negative ideal alternative. The proposed
method selects the optimal alternative considering both the distance
and the included angle between options, which can better reflect su-
periority and rationality of ranking result. For example, comparing with
the bidirectional projection measure, the differences of the ranking
result between TOPSIS method in Liang et al. (2017) and the proposed
method are A2 and A3. Then we calculate the distance between ideal
alternative A+ and Ai is d d d d0 0.70 0.71 1.364 3 2 1= < = < = < =+ + + + ,
and the distance between negative ideal alternative A and Ai is
d d d1.36 0.72 0.704 2 3= > = > = d 01> = . Then the associated cor-
relation coefficients are D D D D1 0.50 04 2 3 1= > = > = . We can see
that it is hard to distinguish which is preferable if the distance between
A+ and Ai is equal to the distance between A and Ai. In other word,
there are defects in TOPSIS model when d di i=+ . In such case, the
bidirectional projection measure is more reasonable because it con-
siders both distance and included angle or even the bidirectional pro-
jection magnitudes. So our proposed method is more effective and
suitable than Liang et al.’s method (Liang et al., 2017) in practical
applications.

Example 5.4. An investment company plans to invest a domestic coal
mine and there are four possible mines as alternatives. There are five
criteria shown as follows (suppose their weight vector is
W (0.05, 0.24, 0.15, 0.28, 0.28)T= ): the geological condition (C1), the
production (C2), the market development (C3), the technical capacity
(C4), the social policy (C5). The DM gives the evaluation information of
the alternatives A A A A{ , , , }1 2 3 4 with the criteria C j( 1, 2, 3, 4, 5)j = by
LNNs based on the LTs: G g extremely bad g pretty bad{ , ,0 1= = =
g bad g a little bad g medium, , ,2 3 4= = = g a little good g good, ,5 6= =
g pretty good g perfect, }7 8= = . The decision matrix X x[ ]ij 4 5= × is
listed in Table 14, and the comparison results of different approaches
are shown in Table 15.

From Table 15, it can be seen that the ranking result of the proposed
method based on bidirectional projection with LNNs is different from

Table 3
LNN decision matrix Y 3 given by DM D3.

C1 C2 C3 C4 C5

A1 g g g( , , )2.0 4.0 1.0 g g g( , , )3.0 5.0 2.0 g g g( , , )5.0 1.0 4.0 g g g( , , )2.0 6.0 1.0 g g g( , , )3.0 3.0 2.0
A2 g g g( , , )1.0 2.0 1.0 g g g( , , )2.0 4.0 2.0 g g g( , , )1.0 5.0 3.0 g g g( , , )4.0 2.0 0.0 g g g( , , )0.0 5.0 6.0
A3 g g g( , , )2.0 3.0 3.0 g g g( , , )1.0 5.0 2.0 g g g( , , )2.0 4.0 5.0 g g g( , , )0.0 4.0 6.0 g g g( , , )3.0 2.0 4.0
A4 g g g( , , )2.0 3.0 2.0 g g g( , , )4.0 2.0 1.0 g g g( , , )1.0 4.0 3.0 g g g( , , )3.0 4.0 5.0 g g g( , , )0.0 4.0 5.0

Table 4
Normalized decision matrix R1 by DM D1.

C1 C2 C3 C4 C5

A1 g g g( , , )1 6 1 g g g( , , )2 5 2 g g g( , , )3 4 4 g g g( , , )1 3 1 g g g( , , )2 5 3
A2 g g g( , , )2 2 2 g g g( , , )2 0 3 g g g( , , )1 4 2 g g g( , , )2 7 3 g g g( , , )1 6 1
A3 g g g( , , )1 5 2 g g g( , , )3 6 3 g g g( , , )1 4 1 g g g( , , )1 3 3 g g g( , , )4 6 5
A4 g g g( , , )2 7 3 g g g( , , )1 1 1 g g g( , , )3 2 4 g g g( , , )1 3 2 g g g( , , )4 2 4

Table 5
Normalized decision matrix R2 by DM D2.

C1 C2 C3 C4 C5

A1 g g g( , , )1 2 1 g g g( , , )4 5 4 g g g( , , )2 2 2 g g g( , , )2 3 3 g g g( , , )4 6 5
A2 g g g( , , )1 4 1 g g g( , , )1 6 3 g g g( , , )4 5 2 g g g( , , )5 8 4 g g g( , , )4 2 2
A3 g g g( , , )2 3 3 g g g( , , )3 4 2 g g g( , , )5 2 1 g g g( , , )3 3 3 g g g( , , )1 2 2
A4 g g g( , , )2 1 2 g g g( , , )1 2 4 g g g( , , )2 1 3 g g g( , , )2 4 4 g g g( , , )4 0 3

Table 6
Normalized decision matrix R3 by DM D3.

C1 C2 C3 C4 C5

A1 g g g( , , )1 4 2 g g g( , , )2 3 3 g g g( , , )4 7 5 g g g( , , )1 2 2 g g g( , , )2 5 3
A2 g g g( , , )1 6 1 g g g( , , )2 4 2 g g g( , , )3 3 1 g g g( , , )0 6 4 g g g( , , )6 3 0
A3 g g g( , , )3 5 2 g g g( , , )2 3 1 g g g( , , )5 4 2 g g g( , , )6 4 0 g g g( , , )4 6 3
A4 g g g( , , )2 5 2 g g g( , , )1 6 4 g g g( , , )3 4 1 g g g( , , )5 4 3 g g g( , , )5 4 0

Table 7
Collective decision matrix R.

C1 C2 C3 C4 C5

A1 g g g( , , )1.00 3.63 1.26 g g g( , , )2.76 4.22 2.89 g g g( , , )3.08 3.83 3.42 g g g( , , )1.35 2.62 1.82 g g g( , , )2.76 5.31 3.56
A2 g g g( , , )1.35 3.63 1.26 g g g( , , )1.68 0.00 2.62 g g g( , , )2.81 3.91 1.59 g g g( , , )2.76 6.95 3.63 g g g( , , )4.17 3.30 0.00
A3 g g g( , , )2.06 4.22 2.29 g g g( , , )2.69 4.16 1.82 g g g( , , )4.02 3.17 1.26 g g g( , , )3.88 3.30 0.00 g g g( , , )3.18 4.16 3.11
A4 g g g( , , )2.00 3.27 2.29 g g g( , , )1.00 2.29 2.52 g g g( , , )2.69 2.00 2.29 g g g( , , )2.99 3.63 2.88 g g g( , , )4.37 0.00 0.00
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the ones by Ye’s method based on SVN-bidirectional projection (Ye,
2017b) and Tu et al.’s method based on SVN-symmetry measure (Tu
et al., 2018). In the following, we give analysis about this experimental
result as follows:

(1) Compared with the method (Ye, 2017b) based on the SVN-bidir-
ectional projection

The information in Reference (Ye, 2017b) is SVNNs. To begin; we
translate LNNs into SVNNs. There are two conversion methods by LSF
in Peng and Wang (2016). For example, when f f s( )i1= , the evaluation
value of x g g g( , , )12 3.0 4.0 3.0= is converted into (0.375, 0.5, 0.375);
when f f s( )i2= a( 1.37)= , the evaluation value ofx12is converted into
(0.427, 0.5, 0.427).

Then we use the SVN-bidirectional projection method (Ye, 2017b)
to rank the alternatives. From Table 13, we can see the differences of
ranking results by the proposed method and the method in Ye (2017b)
based on the LSF f f s( )i1= are A1 and A3. The module of each

alternative based two methods is same, but the inner product between
A and Ai is changed. The main reason is these two method adopt
different ways to determine the ideal alternative: our method is based
on the score function, while the method in Ye (2018) is determined by
A e e e( , , , )n1 2= and e T I F(max( ), min( ), min( ))j

i
ij

i
ij

i
ij= .

It is worth noting that the method in Ye (2017b) based on the
f f s( )i2= has the same ranking order as the proposed method, which
reflects there exists inaccuracy in the conversion process of f f s( )i1= .
The characteristics of two kinds of LSFs can be graphically shown in
Fig. 1 (suppose a= 1.37).

From Fig. 1, we can see LSF1 only shows the conversion values
unidirectional growth. But in practical application, there are two di-
rections including “good” and “bad” when DMs judge the criteria va-
lues. Thus, LSF2 is more suitable to reflect the psychological process of
DMs by bidirectional geometric growth. Although LSF2 is a good tool in
linguistic information transformation, LNNs can describe more complex
linguistic information and is more suitable for qualitative decision-
making environment than SVNs. So our proposed method with LNNs is
more flexible and innovative.

(2) Compared with the method (Tu et al., 2018) based on the weighted
symmetry measure between SVNSs

Similar to Ye’s MCDM method (Ye, 2017b), the method in Tu et al.
(2018) is also based on SVNNs so that we translate LNNs into SVNNs
with f s( )i2 . Then we calculate the weighted symmetry measure values
between the ideal alternative A and each alternative A i( 1, 2, 3, 4)i =
and obtain the corresponding ranking order, i.e., A A A A4 1 3 2.

Table 8
fuzzy measure of criteria.

Criteria Criteria Criteria Criteria

{ } 0 C C{ , }1 4 0.348 C C C{ , , }1 2 3 0.443 C C C{ , , }2 4 5 0.821
C{ }1 0.05 C C{ , }1 5 0.348 C C C{ , , }1 2 4 0.588 C C C{ , , }3 4 5 0.728
C{ }2 0.25 C C{ , }2 3 0.395 C C C{ , , }1 2 5 0.588 C C C C{ , , , }1 2 3 4 0.727
C{ }3 0.15 C C{ , }2 4 0.541 C C C{ , , }1 3 4 0.492 C C C C{ , , , }1 2 3 5 0.727
C{ }4 0.3 C C{ , }2 5 0.541 C C C{ , , }1 3 5 0.492 C C C C{ , , , }1 2 4 5 0.866
C{ }5 0.3 C C{ , }3 4 0.444 C C C{ , , }1 4 5 0.635 C C C C{ , , , }1 3 4 5 0.774
C C{ , }1 2 0.298 C C{ , }3 5 0.444 C C C{ , , }2 3 4 0.681 C C C C{ , , , }2 3 4 5 0.956
C C{ , }1 3 0.199 C C{ , }4 5 0.589 C C C{ , , }2 3 5 0.681 C C C C C{ , , , , }1 2 3 4 5 1

Table 9
The maximum value of each criterion.

r1+ r2
+ r3

+ r4
+ r5

+

g g g( , , )1.35 3.63 1.26 g g g( , , )1.68 0 2.62 g g g( , , )4.02 3.17 1.26 g g g( , , )3.88 3.3 0 g g g( , , )4.37 0 0

Table 10
Linguistic neutrosophic decision matrix of Example 5.2.

C1 C2 C3

A1 g g g( , , )6.0 1.0 2.0 g g g( , , )7.0 2.0 1.0 g g g( , , )5.0 2.0 3.0
A2 g g g( , , )7.0 2.0 2.0 g g g( , , )6.0 2.0 2.0 g g g( , , )6.0 2.0 2.0
A3 g g g( , , )6.0 2.0 2.0 g g g( , , )6.0 2.0 2.0 g g g( , , )6.0 3.0 2.0
A4 g g g( , , )7.0 1.0 2.0 g g g( , , )6.0 2.0 2.0 g g g( , , )6.0 2.0 1.0

Table 11
The ranking results by different approaches of Example 5.2.

Approaches Ranking orders

Approach with LNWAA operator (Fang & Ye, 2017) A A A A4 1 2 3
Approach with LNN-TOPSIS (Liang et al., 2017) A A A A4 1 2 3
the proposed method based on the bidirectional projection A A A A4 1 2 3

Table 12
Linguistic neutrosophic decision matrix of Example 5.3.

C1 C2 C3 C4 C5

A1 g g g( , , )1.0 4.0 2.0 g g g( , , )3.0 4.0 3.0 g g g( , , )3.0 4.0 3.0 g g g( , , )3.0 7.0 4.0 g g g( , , )3.0 5.0 4.0
A2 g g g( , , )1.0 4.0 1.0 g g g( , , )1.0 1.0 3.0 g g g( , , )3.0 2.0 1.0 g g g( , , )1.0 3.0 1.0 g g g( , , )4.0 2.0 0.0
A3 g g g( , , )1.0 3.0 2.0 g g g( , , )3.0 0.0 4.0 g g g( , , )4.0 3.0 1.0 g g g( , , )4.0 3.0 2.0 g g g( , , )4.0 1.0 2.0
A4 g g g( , , )2.0 3.0 1.0 g g g( , , )2.0 0.0 3.0 g g g( , , )4.0 2.0 1.0 g g g( , , )4.0 3.0 0.0 g g g( , , )4.0 0.0 0.0

Table 13
The ranking results of different approaches of Example 5.3.

Approaches Ranking orders

Approach based on the projection with LNNs A A A A1 3 4 2
Approach with LNN-TOPSIS (Liang et al., 2017) A A A A4 2 3 1
The proposed method based on the bidirectional projection A A A A4 2 3 1
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From Table 15, it can be seen that the ranking result obtained by the
proposed method is different from the ones by Tu et al.’s method (Tu
et al., 2018). In the following, we give analysis about this experimental
result as follows:

When comparing the proposed method with the Tu et al.’s method
(Tu et al., 2018), there exist different evaluation information and
measurement of two methods. Obviously, we have known linguistic
evaluation can better describe the imprecise cognition and be closer to
presentative judgement of human by comparing the Ye’s MCDM
method (Ye, 2017b) with our proposed method. Therefore, to further
demonstrate the superiority of bidirectional projection, we compare the
SVN-bidirectional projection (Ye, 2017b) with the SVN-weighted sym-
metry measure (Tu et al., 2018).

When comparing the Ye’s MCDM method (Ye, 2017b) based on the
SVN-bidirectional projection with Tu et al.’s method (Tu et al., 2018)
based on SVN-weighted symmetry measure, we can see these two
methods are based on the same evaluation information. The reason
resulting in different ranking order of these two methods is because the
different measurements are used to assess decision information. Spe-
cifically, the bidirectional projection measure use
BP R R( , )roj i

1

1 R Ri
R

R Ri
Ri

· ·
=

+
to obtain the bidirectional projection

values between the ideal alternative A and each alternative Ai, while
the weighted symmetry measure is based on
M R R( , )i 1

1 R Ri
R

R Ri
Ri

·
2

·
2

=
+

in this illustrated example. From the ex-

pression of BP R R( , )roj i and M R R( , )i , we can see there is a common
advantage that they both consider the interactions between each al-
ternative and the ideal alternative instead of only considering the
projection/asymmetry measure of each alternative on the ideal

alternative. The bidirectional projection measure is refined based on the
projection measure, which considers the distance of each alternative
and the closeness to the ideal alternative. The symmetry measure is
proposed by improving an asymmetry measure that lacks of sufficient
theoretical support. In a word, the proposed method is a new and ef-
fective MCDM model under linguistic neutrosophic environment.

Based on the comparisons and analysis above, the proposed method
based on the bidirectional projection measure of LNNs has the ad-
vantage over the projection measure and the TOPSIS method in Liang
et al. (2017) because it can consider the distance and included angle
between options as well as the bidirectional projection magnitudes.
Meanwhile, our method is more suitable in practical applications than
the weighted symmetry measure of SVNs in Tu et al. (2018) and the
bidirectional projection measure of SVNs in Ye (2017b) because LNNs
can describe the uncertain and fuzzy evaluation information by LVs.

6. Conclusion

LNNs combine the advantages of LTs and SVNNs that they can ex-
press uncertain and incomplete information by LTs. Thus, they are a
good tool to describe MCGDM evaluation information. In addition, the
bidirectional projection measure can not only consider both the dis-
tance and the included angle but also consider the bidirectional pro-
jection between each alternative and the ideal solution. Based on the
above, we develop the bidirectional projection-based MCGDM method
with LNNs. What’s more, we redefine a new distance of LNSs and build
a weight determination model based on the fuzzy measure to obtain the
objective weight vector of criteria, which considers the relationship
between criteria and avoids the subjective preference or judgment of
DMs. Finally, we verify the validity and show advantages of the pro-
posed method by solving practical problem and comparing with other
methods (Fang & Ye, 2017; Liang et al., 2017; Tu et al., 2018; Ye,
2017b). The main contribution of this study is that the proposed
method not only extended the bidirectional projection method to the
field of LNNs, but also enriched the existing research theories of LNNs.
In the future, we’d like to extend potential applications of the proposed
method in different domains, such as supplier selection, transformer
condition assessment, and product engineering and so on (Guan, Zhao,
& Du, 2017).
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Table 14
Linguistic neutrosophic decision matrix of Example 5.4.

C1 C2 C3 C4 C5

A1 g g g( , , )1.0 4.0 1.0 g g g( , , )3.0 4.0 3.0 g g g( , , )3.0 4.0 3.0 g g g( , , )1.0 3.0 2.0 g g g( , , )3.0 5.0 4.0
A2 g g g( , , )1.0 4.0 1.0 g g g( , , )2.0 0.0 3.0 g g g( , , )3.0 4.0 2.0 g g g( , , )3.0 7.0 4.0 g g g( , , )4.0 3.0 0.0
A3 g g g( , , )2.0 4.0 2.0 g g g( , , )3.0 4.0 2.0 g g g( , , )4.0 3.0 1.0 g g g( , , )4.0 3.0 0.0 g g g( , , )3.0 4.0 3.0
A4 g g g( , , )2.0 3.0 2.0 g g g( , , )1.0 2.0 3.0 g g g( , , )3.0 2.0 2.0 g g g( , , )3.0 4.0 3.0 g g g( , , )4.0 0.0 0.0

Table 15
The ranking results of different approaches

Approaches Ranking orders

Approach based on the bidirectional projection with f f s( )i1= (Ye, 2017b) A A A A4 1 3 2

Approach based on the bidirectional projection with f f s( )i2= (Ye, 2017b) A A A A4 3 1 2

Approach based on the symmetry measure with f f s( )i2= (Tu et al., 2018) A A A A4 1 3 2
The proposed method based on the bidirectional projection A A A A4 3 1 2
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