Bipolar Neutrosophic Projection Based Models for Multi-attribute Decision Making Problems

Surapati Pramanik*, Partha Pratim Dey**, Bibhas C. Giri ***
* Department of Mathematics, Nandalal Ghosh B.T. College, Panpur, P.O.-Narayanpur, District North 24 Parganas, Pin code-743126, West Bengal, India
** Department of Mathematics, Jadavpur University, Kolkata-700032, West Bengal, India
*** Department of Mathematics, Jadavpur University, Kolkata-700032, West Bengal, India
Emails: 1 surapati.math@gmail.com 2parsur.fuzz@gmail.com 3bcgiri.ju.math@gmail.com

Abstract

Bipolar neutrosophic sets are the extension of neutrosophic sets and are based on the idea of positive and negative preferences of information. Projection measure is a useful apparatus for modeling real life decision making problems. In the paper, we have defined projection, bidirectional projection and hybrid projection measures between bipolar neutrosophic sets and the proposed measures are then applied to multi-attribute decision making problems. The ratings of performance values of the alternatives with respect to the attributes are expressed by bipolar neutrosophic values. We calculate projection, bidirectional projection, and hybrid projection measures between each alternative and ideal alternative with bipolar neutrosophic information and then all the alternatives are ranked to identify best option. Finally, a numerical example is provided to demonstrate the applicability and effectiveness of the developed method. Comparison analysis with other existing methods is also provided.

Keywords: Bipolar neutrosophic sets, projection measure, bidirectional projection measure, hybrid projection measure, multi-attribute decision making.

1. Introduction

For describing and managing indeterminate and inconsistent information, Smarandache [1] introduced neutrosophic sets which has three independent components namely truth membership degree (T), indeterminacy membership degree (I) and falsity membership degree (F) where T, I, F lie in $]^{-0}, 1^{+}[$. Later, Wang et al. [2] proposed single valued neutrosophic sets (SVNSs) to deal real decision making problems where T, I, F lie in $[0,1]$.

In 1994, Zhang [3], [4] grounded the notion of bipolar fuzzy sets by extending the concept of fuzzy sets. The value of membership degree of an element of bipolar fuzzy set belongs to $[-1,1]$. With reference to a bipolar fuzzy set, the membership degree zero of an element reflects that the element is irrelevant to the corresponding property, the membership degree belongs to $(0,1]$ of an element reflects that the element somewhat satisfies the property, and the membership degree belongs to $[-1,0)$ of an element reflects that the element somewhat satisfies the implicit counter-property.

Deli et al. [5] introduced the concept of bipolar neutrosophic sets (BNSs) by combining the concept of bipolar fuzzy sets and neutrosophic sets. With reference to a bipolar neutrosophic set Q , the positive membership degrees $T_{Q}^{+}(x)$, $I_{Q}^{+}(x), F_{Q}^{+}(x)$ represent respectively the truth membership, indeterminate membership and falsity membership of an element $x \in X$ corresponding to the bipolar neutrosophic set Q and the negative membership degree $T_{Q}^{-}(x), I_{Q}^{-}(x), F_{Q}^{-}(x)$ denotes the truth membership, indeterminate membership and false membership of an element $x \in X$ to some implicit counter-property corresponding to the bipolar neutrosophic set Q .

Projection measure is a useful decision making device as it takes into account the distance as well as the included angle for measuring the closeness degree between two objects [6, 7]. Yue [6] and Zhang et al. [7] studied projection based multi attribute decision making in crisp environment i.e. projections are defined on ordinary numbers or crisp numbers. Yue [8] further investigated a new multi attribute group decision making (MAGDM) method based on determining the weights of the decision makers by employing projection technique with interval data. Yue and Jia [9] established a methodology for MAGDM based on a new normalized projection measure, in which the attribute values are provided by decision makers in hybrid form with crisp values and interval data.

Xu and Da [10] and Xu [11] studied projection method for decision making in uncertain environment with preference information. Wei [12] discussed a multi attribute decision making (MADM) method based on the projection technique, in which the attribute values are presented in terms of intuitionistic fuzzy numbers. Zhang et al. [13] proposed a grey relational projection method for MADM based on intuitionistic trapezoidal fuzzy number. Zeng et al. [14] investigated projections on interval valued intuitionistic fuzzy numbers and we developed model and algorithm to the MAGDM problems with interval-valued intuitionistic fuzzy information. Xu and Hu [15] developed two projection based models for MADM in intuitionistic fuzzy environment and interval valued intuitionistic fuzzy environment. Sun [16] presented a group decision making method based on projection method and score function under interval valued intuitionistic fuzzy environment. Tsao and Chen [17] developed a novel projection based compromising method for multi criteria decision making method in interval valued intuitionistic fuzzy environment.

In neutrosophic environment Chen and Ye [18] developed projection based model of neutrosophic numbers and presented MADM method to select clay-bricks in construction field. Bidirectional projection measure [19] considers the distance and included angle between two vectors x, y and also considers the bidirectional projection measure between two vectors x, y. Ye [19] defined bidirectional projection measure as an improvement of the general projection measure of SVNSs to overcome the drawback of the general projection measure. In the same study, Ye [19] developed multi attribute decision making method for selecting problems of mechanical design schemes under a single-valued neutrosophic environment. Ye [20] also presented bidirectional projection method for multiple attribute group decision making with neutrosophic numbers.

Ye [21] defined credibility - induced interval neutrosophic weighted arithmetic averaging operator and credibility - induced interval neutrosophic weighted geometric averaging operator and developed the projection measure based ranking method for multi-attribute decision making (MADM) problems with interval neutrosophic information and credibility information. Dey et al. [22] proposed a new approach to neutrosophic soft MADM using grey relational projection method. Dey et al. [23] defined weighted projection measure with interval neutrosophic assessments and applied the proposed concept to solve MADM problems with interval valued neutrosophic information.

In the field of bipolar neutrosophic environment, Deli et al. [5] defined score, accuracy, and certainty functions in order to compare BNSs and developed bipolar neutrosophic weighted average (BNWA) and bipolar neutrosophic weighted geometric (BNWG) operators to obtain collective bipolar neutrosophic information. In the same study, Deli et al. [5] also proposed a multi-criteria decision making (MCDM) approach on the basis of score, accuracy, and certainty functions and BNWA, BNWG operators. Deli and Subas [24] presented a single valued bipolar neutrosophic MCDM through correlation coefficient similarity measure. Şahin et al. [25] provided a MCDM method based on Jaccard similarity measure of BNS. Uluçay et al. [26] defined Dice similarity, weighted Dice similarity, hybrid vector similarity, weighted hybrid vector similarity measures under BNSs and developed MCDM methods based on the proposed similarity measures. Dey et al. [27] defined Hamming and Euclidean distance measures to compute the distance between BNSs and investigated a TOPSIS approach to derive the most desirable alternative.

In this study, we define projection, bidirectional projection and hybrid projection measures under bipolar neutrosophic information. Then, we develop three algorithms for solving MADM problems with bipolar neutrosophic assessments.

We organize the rest of the paper in the following way. In Section 2, we recall several useful definitions concerning SVNSs and BNSs. Section 3 defines projection, bidirectional projection and hybrid projection measures between BNSs. Section 4 is devoted to present three models for solving MADM under bipolar neutrosophic environment. In Section 5, we solve a decision making problem with bipolar neutrosophic information on the basis of the proposed measures. Comparison analysis is provided to demonstrate the feasibility and flexibility of the proposed methods in Section 6. Finally, the last Section provides conclusions and future scope of work.

2. Basic concepts regarding SVNSs and BNSs

In this Section, we provide some basic definitions regarding SVNSs, BNSs which are useful for the construction of the paper.
2.1 Single valued neutrosophic Sets [2]

Let X be a universal space of points with a generic element of X denoted by x, then a SVNS P is characterized by a truth membership function $T_{P}(x)$, an indeterminate membership function $I_{P}(x)$ and a falsity membership function $F_{P}(x)$. A SVNS P is expressed in the following way.

$$
P=\left\{x,\left\langle T_{P}(x), I_{P}(x), F_{P}(x)\right\rangle \mid x \in X\right\}
$$

where, $T_{P}(x), I_{P}(x), F_{P}(x): X \rightarrow[0,1]$ and $0 \leq T_{P}(x)+I_{P}(x)+F_{P}(x) \leq 3$ for each point $x \in X$.

2.2 Bipolar Neutrosophic Set [5]

Consider X be a universal space of objects, then a BNS Q in X is presented as follows:

$$
Q=\left\{x,\left\langle T_{Q}^{+}(x), I_{Q}^{+}(x), F_{Q}^{+}(x), T_{Q}^{-}(x), I_{Q}^{-}(x), F_{Q}^{-}(x)\right\rangle \mid x \in X\right\},
$$

where $T_{Q}^{+}(x), I_{Q}^{+}(x), F_{Q}^{+}(x): X \rightarrow[0,1]$ and $T_{Q}^{-}(x), I_{Q}^{-}(x), F_{Q}^{-}(x): X \rightarrow[-1,0]$.The positive membership degrees $T_{Q}^{+}(x), I_{Q}^{+}(x), F_{Q}^{+}(x)$ denote the truth membership, indeterminate membership, and falsity membership functions of an element $x \in X$ corresponding to a BNS Q and the negative membership degrees $T_{Q}^{-}(x), I_{Q}^{-}(x), F_{Q}^{-}(x)$ denote the truth membership, indeterminate membership, and falsity membership of an element $x \in X$ to several implicit counter property associated with a BNS Q. For convenience, a bipolar neutrosophic value (BNV) is presented as $\tilde{q}=\left\langle T_{Q}^{+}, I_{Q}^{+}, F_{Q}^{+}, T_{Q}^{-}, I_{Q}^{-}, F_{Q}^{-}\right\rangle$.

Definition 1 [5]. Let, $Q_{1}=\left\{x,\left\langle T_{Q_{1}}^{+}(x), I_{Q_{1}}^{+}(x), F_{Q_{1}}^{+}(x), T_{Q_{1}}^{-}(x), I_{Q_{1}}^{-}(x), F_{Q_{1}}^{-}(x)\right\rangle \mid x \in\right.$ $X\}$ and $Q_{2}=\left\{x,\left\langle T_{Q_{2}}^{+}(x), I_{Q_{2}}^{+}(x), F_{Q_{2}}^{+}(x), T_{Q_{2}}^{-}(x), I_{Q_{2}}^{-}(x), F_{Q_{2}}^{-}(x)\right\rangle \mid x \in X\right\}$ be two BNSs. Then $Q_{1} \subseteq Q_{2}$ if and only if
$T_{Q_{1}}^{+}(x) \leq T_{Q_{2}}^{+}(x), I_{Q_{1}}^{+}(x) \leq I_{Q_{2}}^{+}(x), F_{Q_{1}}^{+}(x) \geq F_{Q_{2}}^{+}(x) ; T_{Q_{1}}^{-}(x) \geq T_{Q_{2}}^{-}(x), I_{Q_{1}}^{-}(x) \geq I_{Q_{2}}^{-}(x)$, $F_{Q_{1}}^{-}(x) \leq F_{Q_{2}}^{-}(x)$ for all $x \in X$.

Definition 2 [5]. Let, $Q_{1}=\left\{x,\left\langle T_{Q_{1}}^{+}(x), I_{Q_{1}}^{+}(x), F_{Q_{1}}^{+}(x), T_{Q_{1}}^{-}(x), I_{Q_{1}}^{-}(x), F_{Q_{1}}^{-}(x)\right\rangle \mid x \in\right.$ $X\}$ and $Q_{2}=\left\{x,\left\langle T_{Q_{2}}^{+}(x), I_{Q_{2}}^{+}(x), F_{Q_{2}}^{+}(x), T_{Q_{2}}^{-}(x), I_{Q_{2}}^{-}(x), F_{Q_{2}}^{-}(x)\right\rangle \mid x \in X\right\}$ be two BNS. Then $Q_{1}=Q_{2}$ if and only if
$T_{Q_{1}}^{+}(x)=T_{Q_{2}}^{+}(x), I_{Q_{1}}^{+}(x)=I_{Q_{2}}^{+}(x), \quad F_{Q_{1}}^{+}(x)=F_{Q_{2}}^{+}(x) ; T_{Q_{1}}^{-}(x)=T_{Q_{2}}^{-}(x), \quad I_{Q_{1}}^{-}(x)=I_{Q_{2}}^{-}(x)$, $F_{Q_{1}}^{-}(x)=F_{Q_{2}}^{-}(x)$ for all $x \in X$.

Definition 3 [5]. Let, $Q=\left\{x,\left\langle T_{Q}^{+}(x), I_{Q}^{+}(x), F_{Q}^{+}(x), T_{Q}^{-}(x), I_{Q}^{-}(x), F_{Q}^{-}(x)\right\rangle \mid x \in\right.$ $X\}$ be a BNS. The complement of Q is represented by Q^{c} and is defined as follows:

$$
\begin{aligned}
& T_{Q^{c}}^{+}(x)=\left\{1^{+}\right\}-T_{Q}^{+}(x), I_{Q^{c}}^{+}(x)=\left\{1^{+}\right\}-I_{Q}^{+}(x), F_{Q^{c}}^{+}(x)=\left\{1^{+}\right\}-F_{Q}^{+}(x) ; \\
& T_{Q^{c}}^{-}(x)=\left\{1^{-}\right\}-T_{Q}^{-}(x), I_{Q^{c}}^{-}(x)=\left\{1^{-}\right\}-I_{Q}^{-}(x), F_{Q^{c}}^{-}(x)=\left\{1^{-}\right\}-F_{Q}^{-}(x) .
\end{aligned}
$$

Definition 4. Let, $Q_{1}=\left\{x,\left\langle T_{Q_{1}}^{+}(x), I_{Q_{1}}^{+}(x), F_{Q_{1}}^{+}(x), T_{Q_{1}}^{-}(x), I_{Q_{1}}^{-}(x), F_{Q_{1}}^{-}(x)\right\rangle \mid x \in\right.$ $X\}$ and $Q_{2}=\left\{x,\left\langle T_{Q_{2}}^{+}(x), I_{Q_{2}}^{+}(x), F_{Q_{2}}^{+}(x), T_{Q_{2}}^{-}(x), I_{Q_{2}}^{-}(x), F_{Q_{2}}^{-}(x)\right\rangle \mid x \in X\right\}$ be two BNSs. Their union $Q_{1} \cup Q_{2}$ is defined as follows:
$Q_{1} \cup Q_{2}=\left\{\operatorname{Max}\left(T_{Q_{1}}^{+}(x), T_{Q_{2}}^{+}(x)\right), \operatorname{Min}\left(I_{Q_{1}}^{+}(x), I_{Q_{2}}^{+}(x)\right), \operatorname{Min}\left(F_{Q_{1}}^{+}(x), F_{Q_{2}}^{+}(x)\right)\right.$, $\left.\operatorname{Min}\left(T_{Q_{1}}^{-}(x), T_{Q_{2}}^{-}(x)\right), \operatorname{Max}\left(I_{Q_{1}}^{-}(x), I_{Q_{2}}^{-}(x)\right), \operatorname{Max}\left(F_{Q_{1}}^{-}(x), F_{Q_{2}}^{-}(x)\right)\right\}, \forall x \in X$.
Their intersection $Q_{1} \cap Q_{2}$ is defined as follows:
$Q_{1} \cap Q_{2}=\left\{\operatorname{Min}\left(T_{Q_{1}}^{+}(x), T_{Q_{2}}^{+}(x)\right), \operatorname{Max}\left(I_{Q_{1}}^{+}(x), I_{Q_{2}}^{+}(x)\right), \operatorname{Max}\left(F_{Q_{1}}^{+}(x), F_{Q_{2}}^{+}(x)\right)\right.$, $\left.\operatorname{Max}\left(T_{Q_{1}}^{-}(x), T_{Q_{2}}^{-}(x)\right), \operatorname{Min}\left(I_{Q_{1}}^{-}(x), I_{Q_{2}}^{-}(x)\right), \operatorname{Min}\left(F_{Q_{1}}^{-}(x), F_{Q_{2}}^{-}(x)\right)\right\}, \forall x \in X$.

Definition 5 [5]. Let $\tilde{q}_{1}=<T_{Q_{1}}^{+}, I_{Q_{1}}^{+}, F_{Q_{1}}^{+}, T_{Q_{1}}^{-}, I_{Q_{1}}^{-}, F_{Q_{1}}^{-}>$and $\tilde{q}_{2}=\left\langle T_{Q_{2}}^{+}, I_{Q_{2}}^{+}\right.$, $F_{Q_{2}}^{+}, T_{Q_{2}}^{-}, I_{Q_{2}}^{-}, F_{Q_{2}}^{-}>$be two BNNs, then
i. $\beta \cdot \tilde{q}_{1}=<1-\left(1-T_{Q_{1}}^{+}\right)^{\beta},\left(I_{Q_{1}}^{+}\right)^{\alpha},\left(F_{Q_{1}}^{+}\right)^{\beta},-\left(-T_{Q_{1}}^{-}\right)^{\beta},-\left(-I_{Q_{1}}^{-}\right)^{\beta},-(1-(1-(-$ $\left.\left.\left.F_{Q_{1}}^{-}\right)\right)^{\beta}\right)>$;
ii. $\left(\tilde{q}_{1}\right)^{\beta}=\left\langle\left(T_{Q_{1}}^{+}\right)^{\beta}, 1-\left(1-I_{Q_{1}}^{+}\right)^{\beta}, 1-\left(1-F_{Q_{1}}^{+}\right)^{\beta},-\left(1-\left(1-\left(-T_{Q_{1}}^{-}\right)\right)^{\beta}\right),-\left(-I_{Q_{1}}^{-}\right)^{\beta}\right.$, $\left.\left(-F_{Q_{1}}^{-}\right)^{\beta}\right)>$;
iii. $\tilde{q}_{1}+\tilde{q}_{2}=<T_{Q_{1}}^{+}+T_{Q_{2}}^{+}-T_{Q_{1}}^{+} \cdot T_{Q_{2}}^{+}, I_{Q_{1}}^{+} \cdot I_{Q_{2}}^{+}, F_{Q_{1}}^{+} \cdot F_{Q_{2}}^{+},-T_{Q_{1}}^{-} \cdot T_{Q_{2}}^{-},-\left(-I_{Q_{1}}^{-}-I_{Q_{2}}^{-}-I_{Q_{1}}^{-} \cdot I_{Q_{2}}^{-}\right),-$ $\left(-F_{Q_{1}}^{-}-F_{Q_{2}}^{-}-F_{Q_{1}}^{-} \cdot F_{Q_{2}}^{-}\right)>$;
iv. $\tilde{q}_{1} \cdot \tilde{q}_{2}=<T_{Q_{1}}^{+} \cdot T_{Q_{2}}^{+}, I_{Q_{1}}^{+}+I_{Q_{2}}^{+}-I_{Q_{1}}^{+} \cdot I_{Q_{2}}^{+}, F_{Q_{1}}^{+}+F_{Q_{2}}^{+}-F_{Q_{1}}^{+} \cdot F_{Q_{2}}^{+},-\left(-T_{Q_{1}}^{-}-T_{Q_{2}}^{-}-T_{Q_{1}}^{-} \cdot T_{Q_{2}}^{-}\right),-$
$I_{Q_{1}}^{-} \cdot I_{Q_{2}}^{-},-F_{Q_{1}}^{-} \cdot F_{Q_{2}}^{-}>$
where $\beta>0$.

3. Projection, bidirectional projection and hybrid projection measures of BNSs

This Section proposes a general projection, a bidirectional projection and a hybrid projection measures for BNSs.

Definition 6. Consider $X=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be a finite universe of discourse and Q be a BNS in X, then modulus of Q is defined as follows:
$\|Q\|=\sqrt{\sum_{j=1}^{m} \alpha_{j}^{2}}=\sqrt{\sum_{j=1}^{m}\left[\left(T_{Q_{\mathrm{i}}}^{+}\right)^{2}+\left(I_{Q_{\mathrm{i}}}^{+}\right)^{2}+\left(F_{Q_{\mathrm{j}}}^{+}\right)^{2}+\left(T_{Q_{\mathrm{j}}}^{-}\right)^{2}+\left(I_{Q_{\mathrm{i}}}^{-}\right)^{2}+\left(F_{Q_{\mathrm{i}}}^{-}\right)^{2}\right]}$
where $\alpha_{\mathrm{j}}=\left\langle T_{Q_{i}}^{+}(x), I_{Q_{j}}^{+}(x), F_{Q_{j}}^{+}(x), T_{Q_{j}}^{-}(x), I_{Q_{j}}^{-}(x), F_{Q_{j}}^{-}(x)\right\rangle, \mathrm{j}=1,2, \ldots, m$.
Definition 7 [10, 28]. Consider $u=\left(u_{1}, u_{2}, \ldots, u_{\mathrm{m}}\right)$ and $v=\left(v_{1}, v_{2}, \ldots, v_{\mathrm{m}}\right)$ be two vectors, then the projection of vector u onto vector v can be defined as follows:
$\operatorname{Proj}(u)_{v}=\|u\| \operatorname{Cos}(u, v)=\sqrt{\sum_{\mathrm{j}=1}^{m} u_{\mathrm{j}}^{2}} \times \frac{\sum_{\mathrm{j}=1}^{m}\left(u_{\mathrm{j}} v_{\mathrm{j}}\right)}{\sqrt{\sum_{\mathrm{j}=1}^{m} u_{\mathrm{j}}^{2}} \times \sqrt{\sum_{\mathrm{j}=1}^{m} v_{\mathrm{j}}^{2}}}=\frac{\sum_{\mathrm{j}=1}^{m}\left(u_{\mathrm{j}} v_{\mathrm{j}}\right)}{\sqrt{\sum_{\mathrm{j}=1}^{m} v_{\mathrm{j}}^{2}}}$
where, $\operatorname{Proj}(u)_{v}$ represents that the closeness of u and v in magnitude.
Definition 8. Consider $X=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be a finite universe of discourse and R, S be two BNSs in X, then
$\operatorname{Proj}(R)_{S}=\|\mathrm{R}\| \operatorname{Cos}(R, S)=\frac{1}{\|S\|}(R . S)$
is called the projection of R on S, where

$$
\|R\|=\sqrt{\sum_{i=1}^{\mathrm{m}}\left[\left(T_{R}^{+}\right)^{2}\left(x_{i}\right)+\left(I_{R}^{+}\right)^{2}\left(x_{i}\right)+\left(F_{R}^{+}\right)^{2}\left(x_{i}\right)+\left(T_{R}^{-}\right)^{2}\left(x_{i}\right)+\left(I_{R}^{-}\right)^{2}\left(x_{i}\right)+\left(F_{R}^{-}\right)^{2}\left(x_{i}\right)\right]},
$$

$\|S\|=\sqrt{\sum_{i=1}^{\mathrm{m}}\left[\left(T_{S}^{+}\right)^{2}\left(x_{i}\right)+\left(I_{S}^{+}\right)^{2}\left(x_{i}\right)+\left(F_{S}^{+}\right)^{2}\left(x_{i}\right)+\left(T_{S}^{-}\right)^{2}\left(x_{i}\right)+\left(I_{S}^{-}\right)^{2}\left(x_{i}\right)+\left(F_{S}^{-}\right)^{2}\left(x_{i}\right)\right]}$,
and $R . S=\begin{aligned} & \sum_{i=1}^{m}\left[T_{R}^{+}\left(x_{i}\right) T_{S}^{+}(x)+I_{R}^{+}\left(x_{i}\right) I_{S}^{+}\left(x_{i}\right)+F_{R}^{+}\left(x_{i}\right) F_{S}^{+}\left(x_{i}\right)+T_{R}^{-}\left(x_{i}\right) T_{S}^{-}\left(x_{i}\right)+I_{R}^{-}\left(x_{i}\right) I_{S}^{-}\left(x_{i}\right)\right. \\ & \text {. }\end{aligned}$
Example 1. $R=\langle 0.5,0.3,0.2,-0.2,-0.1,-0.05\rangle, S=<0.7,0.3,0.1,-0.4,-0.2$, $-0.3>$ be two BNSs in X, then the projection of R on S is obtained as follows:
$\operatorname{Proj}(R)_{S}=\frac{1}{\|S\|}(R . S)$
$=\frac{(0.5)(0.7)+(0.3)(0.3)+(0.2)(0.1)+(-0.2)(-0.4)+(-0.1)(-0.2)+(-0.05)(-0.3)}{\sqrt{(0.7)^{2}+(0.3)^{2}+(0.1)^{2}+(-0.4)^{2}+(-0.2)^{2}+(-0.3)^{2}}}$
$=0.612952$
The bigger value of $\operatorname{Proj}(R)_{s}$ reflects that R and S are closer to each other.
However, in single valued neutrosophic environment, Ye [20] observed that for two vectors α and β, the general projection measure cannot describe accurately the degree of α close to β. We also notice that the general projection incorporated by Xu [11] is not reasonable in several cases under bipolar neutrosophic setting, for example let, $\alpha=\beta=\langle a, a, a,-a,-a,-a\rangle$ and $\gamma=\langle 2 a, 2 a, 2 a,-2 a,-2 a,-2 a\rangle$, then $\operatorname{Proj}(\alpha)_{\beta}=2.44949\|a\|$ and $\operatorname{Proj}(\gamma)_{\beta}=4.898979\|a\|$. This shows that β is much closer to γ than α which is not true because $\alpha=\beta$. Ye [20] opined that α is equal to β whenever $\operatorname{Proj}(\alpha)_{\beta}$ and $\operatorname{Proj}(\beta)_{\alpha}$ should be equal to 1 . Therefore, Ye [20] proposed an alternative method called bidirectional projection measure to overcome the limitation of general projection measure as given below.

Definition 9 [20]. Consider x and y be two vectors, then the bidirectional projection between x and y is defined as follows:
$B-\operatorname{proj}(x, y)=\frac{1}{1+\left|\frac{x \cdot y}{\|x\|}-\frac{x \cdot y}{\|y\|}\right|}=\frac{\|x\|\|y\|}{\|x\|\|y\|+|\|x\|-\|y\|| x \cdot y}$
where $\|x\|,\|y\|$ denote the modulus of x and y respectively, and $x . y$ is the inner product between x and y.
Here, B - $\operatorname{Proj}(x, y)=1$ if and only if $x=y$ and $0 \leq \operatorname{Br} \operatorname{Proj}(x, y) \leq 1$, i.e. bidirectional projection is a normalized measure.

Definition 10. Consider $R=\left\langle T_{R}^{+}\left(x_{i}\right), I_{R}^{+}\left(x_{i}\right), F_{R}^{+}\left(x_{i}\right), T_{R}^{-}\left(x_{i}\right), I_{R}^{-}\left(x_{i}\right), F_{R}^{-}\left(x_{i}\right)\right\rangle$ and $S=\left\langle T_{S}^{+}\left(x_{i}\right), I_{S}^{+}\left(x_{i}\right), F_{S}^{+}\left(x_{i}\right), T_{S}^{-}\left(x_{i}\right), I_{S}^{-}\left(x_{i}\right), F_{S}^{-}\left(x_{i}\right)\right\rangle$ be two BNSs in $X=\left(x_{1}\right.$, x_{2}, \ldots, x_{m}), then the bidirectional projection measure between R and S is defined as follows:
$B-\operatorname{Proj}(R, S)=\frac{1}{1+\left|\frac{R \cdot S}{\|R\|}-\frac{R \cdot S}{\|S\|}\right|}=\frac{\|R\|\|S\|}{\|R\|\|S\|+|\|R\|-\|S\|| R \cdot S}$
where
$\|R\|=\sqrt{\sum_{i=1}^{m}\left[\left(T_{R}^{+}\right)^{2}\left(x_{i}\right)+\left(I_{R}^{+}\right)^{2}\left(x_{i}\right)+\left(F_{R}^{+}\right)^{2}\left(x_{i}\right)+\left(T_{R}^{-}\right)^{2}\left(x_{i}\right)+\left(I_{R}^{-}\right)^{2}\left(x_{i}\right)+\left(F_{R}^{-}\right)^{2}\left(x_{i}\right)\right]}$
, $\|S\|=$
$\sqrt{\sum_{i=1}^{m}\left[\left(T_{S}^{+}\right)^{2}\left(x_{i}\right)+\left(I_{S}^{+}\right)^{2}\left(x_{i}\right)+\left(F_{S}^{+}\right)^{2}\left(x_{i}\right)+\left(T_{S}^{-}\right)^{2}\left(x_{i}\right)+\left(I_{S}^{-}\right)^{2}\left(x_{i}\right)+\left(F_{S}^{-}\right)^{2}\left(x_{i}\right)\right]}$ and
$\begin{aligned} R . S & =\sum_{\mathrm{i}=1}^{m}\left[T_{R}^{+}\left(x_{i}\right) T_{S}^{+}(x)+I_{R}^{+}\left(x_{i}\right) I_{S}^{+}\left(x_{i}\right)+F_{R}^{+}\left(x_{i}\right)\right]\end{aligned}$
Proposition 1. Let $B-\operatorname{Proj}(R)_{S}$ be a bidirectional projection measure between BNSs R and S, then we have

1. $0 \leq B-\operatorname{Proj}(R)_{S} \leq 1$;
2. $B-\operatorname{Proj}(R)_{s}=B-\operatorname{Proj}(S)_{R}$;
3. $B-\operatorname{Proj}(R)_{S}=1$ for $R=S$.

Proof.

1. $B-\operatorname{Proj}(R, S)=0$ if and only if either $\|R\|=0$ or $\|S\|=0$ i.e. when either $R=(0,0,0,0,0,0)$ or $S=(0,0,0,0,0,0)$ which is trivial case. For two non-zero vectors R and $S,\|R\|\| \|\|+|\|R\|-\|S\|| R . S \geq\| R\||\|| |$, obviously, $B-\operatorname{Proj}(R, S) \leq 1$.
2. From definition, $R . S=S . R$, therefore, B -$\operatorname{Proj}(R)_{S}=\frac{\|R\|\|S\|}{\|R\|\|S\|+|\|R\|-\|S\|| R . S}=\frac{\|S\|\|\mid R\|}{\|S\|\|R\|+|\|S\|-\|R\|| S . R}=B-\operatorname{Proj}$ (S, R).
3. $\operatorname{Obviously,~} B-\operatorname{Proj}(R)_{S}=1$, only when $\|R\|=\|S\|$ i. e. when $T_{R}^{+}\left(x_{i}\right)=$ $T_{S}^{+}\left(x_{i}\right), \quad I_{R}^{+}\left(x_{i}\right)=I_{S}^{+}\left(x_{i}\right), \quad F_{R}^{+}\left(x_{i}\right)=F_{S}^{+}\left(x_{i}\right), T_{R}^{-}\left(x_{i}\right)=T_{S}^{-}\left(x_{i}\right), \quad I_{R}^{-}\left(x_{i}\right)=$ $I_{S}^{-}\left(x_{i}\right), F_{R}^{-}\left(x_{i}\right)=F_{S}^{-} .\left(x_{i}\right)$

This completes the proof.

Example 2. Assume that $R=\langle 0.5,0.3,0.2,-0.2,-0.1,-0.05\rangle, S=<0.7,0.3$, $0.1,-0.4,-0.2,-0.3>$ be two BNSs in the universe of discourse X, then the bidirectional projection measure between R on S is computed as given below.
$B-\operatorname{Proj}(R, S)=\frac{(0.6576473) \cdot(0.9380832)}{(0.6576473) \cdot(0.9380832)+|0.9380832-06576473|(0.575)}$
$=0.7927845$
Definition 11. Let $R=\left\langle T_{R}^{+}\left(x_{i}\right), I_{R}^{+}\left(x_{i}\right), F_{R}^{+}\left(x_{i}\right), T_{R}^{-}\left(x_{i}\right), I_{R}^{-}\left(x_{i}\right), F_{R}^{-}\left(x_{i}\right)\right\rangle$ and S $=\left\langle T_{S}^{+}\left(x_{i}\right), I_{S}^{+}\left(x_{i}\right), F_{S}^{+}\left(x_{i}\right), T_{S}^{-}\left(x_{i}\right), I_{S}^{-}\left(x_{i}\right), F_{S}^{-}\left(x_{i}\right)\right\rangle$ be two BNSs in $X=\left(x_{1}, x_{2}, \ldots\right.$, x_{m}), then the hybrid projection measure is defined as the combination of projection measure and bidirectional projection measure. The hybrid projection measure between R and S is represented as follows:
$\operatorname{Hyb}-\operatorname{Proj}(R, S)=\rho \operatorname{Proj}(R)_{S}+(1-\rho) B-\operatorname{Proj}(R, S)$

$$
=\rho \frac{R \cdot S}{\|S\|}+(1-\rho) \frac{\|R\|\|S\|}{\|R\|\|S\|+|\|R\|-\|S\|| R \cdot S}
$$

where
$\|R\|=\sqrt{\sum_{i=1}^{m}\left[\left(T_{R}^{+}\right)^{2}\left(x_{i}\right)+\left(I_{R}^{+}\right)^{2}\left(x_{i}\right)+\left(F_{R}^{+}\right)^{2}\left(x_{i}\right)+\left(T_{R}^{-}\right)^{2}\left(x_{i}\right)+\left(I_{R}^{-}\right)^{2}\left(x_{i}\right)+\left(F_{R}^{-}\right)^{2}\left(x_{i}\right)\right]}$,
$\|S\|=\sqrt{\sum_{i=1}^{m}\left[\left(T_{S}^{+}\right)^{2}\left(x_{i}\right)+\left(I_{S}^{+}\right)^{2}\left(x_{i}\right)+\left(F_{S}^{+}\right)^{2}\left(x_{i}\right)+\left(T_{S}^{-}\right)^{2}\left(x_{i}\right)+\left(I_{S}^{-}\right)^{2}\left(x_{i}\right)+\left(F_{S}^{-}\right)^{2}\left(x_{i}\right)\right]}$, and
$R . S=\sum_{i=1}^{{ }_{\mathrm{i}=1}^{m}}\left[T_{R}^{+}\left(x_{i}\right) T_{S}^{+}\left(x_{i}\right) F_{S}^{-}\left(x_{i}\right)\right] \quad I_{R}^{+}\left(x_{i}\right) I_{S}^{+}\left(x_{i}\right)+F_{R}^{+}\left(x_{i}\right) F_{S}^{+}\left(x_{i}\right)+T_{R}^{-}\left(x_{i}\right) T_{S}^{-}\left(x_{i}\right)+I_{R}^{-}\left(x_{i}\right) I_{S}^{-}\left(x_{i}\right)+$
where $0 \leq \rho \leq 1$.
Example 3. Assume that $R=\langle 0.5,0.3,0.2,-0.2,-0.1,-0.05\rangle, S=<0.7,0.3$, $0.1,-0.4,-0.2,-0.3>$ be two BNSs in the universe of discourse X, then the hybrid projection measure between R on S with $\rho=0.7$ is calculated as given below.
$H y b-\operatorname{Proj}(R, S)=(0.7) .(0.612952)+(1-0.7) .(0.7927845)=0.6669018$.
4. Projection, bi-directional projection and hybrid projection based decision making methods for MADM problems with bipolar neutrosophic information

In this Section, we develop projection based decision making models to MADM problems with bipolar neutrosophic assessments. Consider $E=\left\{E_{1}, E_{2}, \ldots, E_{\mathrm{m}}\right\}$, ($m \geq 2$) be a discrete set of m feasible alternatives, $F=\left\{F_{1}, F_{2}, \ldots, F_{\mathrm{n}}\right\},(\mathrm{n} \geq 2)$ be a set of attributes under consideration and $w=\left(w_{1}, w_{2}, \ldots, w_{\mathrm{n}}\right)^{\mathrm{T}}$ be the weight vector of the attributes such that $0 \leq w_{\mathrm{j}} \leq 1$ and $\sum_{\mathrm{j}=1}^{n} w_{\mathrm{j}}=1$. Now, we provide three algorithms for MADM problems involving bipolar neutrosophic information.

4.1. Algorithm 1.

Step 1. The rating of evaluation value of alternative $E_{\mathrm{i}}(\mathrm{i}=1,2, \ldots, m)$ for the predefined attribute $F_{\mathrm{j}}(\mathrm{j}=1,2, \ldots, n)$ is presented by the decision maker in terms of BNVs and the bipolar neutrosophic decision matrix is constructed as given below.

$$
\left\langle q_{\mathrm{ij}}\right\rangle_{\mathrm{m} \times \mathrm{n}}=\left[\begin{array}{llll}
q_{11} & q_{12} & \ldots & q_{1 n} \\
q_{21} & q_{22} & \ldots & q_{2 n} \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
q_{m 1} & q_{m 2} & \cdots & q_{m n}
\end{array}\right]
$$

where $\left.q_{\mathrm{ij}}=<\left(T_{\mathrm{ij}}^{+}, I_{\mathrm{ij}}^{+}, F_{\mathrm{ij}}^{+}, T_{\mathrm{ij}}^{-}, I_{\mathrm{ij}}^{-}, F_{\mathrm{ij}}^{-}\right)\right\rangle$with $T_{\mathrm{ij}}^{+}, I_{\mathrm{ij}}^{+}, F_{\mathrm{ij}}^{+},-T_{\mathrm{ij}}^{-},-I_{\mathrm{ij}}^{-},-F_{\mathrm{ij}}^{-} \in[0$, 1] and $0 \leq T_{\mathrm{ij}}^{+}+I_{\mathrm{ij}}^{+}+F_{\mathrm{ij}}^{+}-T_{\mathrm{ij}}^{-}-I_{\mathrm{ij}}^{-}-F_{\mathrm{ij}}^{-} \leq 6$ for $\mathrm{i}=1,2, \ldots, m ; \mathrm{j}=1,2, \ldots, n$.
Step 2. We formulate bipolar weighted decision matrix by multiplying weights w_{j} of the attributes as follows:

$$
w_{\mathrm{j}} \otimes\left\langle q_{\mathrm{ij}}\right\rangle_{\mathrm{m} \times \mathrm{n}}=\left\langle z_{\mathrm{ij}}\right\rangle_{\mathrm{m} \times \mathrm{n}}=\left[\begin{array}{llll}
z_{11} & z_{12} & \cdots & z_{1 \mathrm{n}} \\
z_{21} & z_{22} & \cdots & z_{2 \mathrm{n}} \\
\cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
z_{\mathrm{m} 1} & z_{\mathrm{m} 2} & \cdots & z_{\mathrm{mn}}
\end{array}\right]
$$

where $\mathrm{z}_{\mathrm{ij}}=w_{\mathrm{j}} . q_{\mathrm{ij}}=<1-\left(1-\mathrm{T}_{\mathrm{ij}}^{+}\right)^{w_{\mathrm{j}}},\left(\mathrm{I}_{\mathrm{ij}}^{+}\right)^{w_{\mathrm{j}}},\left(\mathrm{F}_{\mathrm{ij}}^{+}\right)^{w_{\mathrm{j}}},-\left(-\mathrm{T}_{\mathrm{ij}}^{-}\right)^{w_{\mathrm{j}}},-\left(-\mathrm{I}_{\mathrm{ij}}^{-}\right)^{w_{\mathrm{j}}},-(1-$ $\left.\left.\left(1-\left(-\mathrm{F}_{\mathrm{ij}}^{-}\right)\right)^{w_{\mathrm{j}}}\right)\right\rangle=\left\langle\mu_{\mathrm{ij}}^{+}, v_{\mathrm{ij}}^{+}, \omega_{\mathrm{ij}}^{+}, \mu_{\mathrm{ij}}^{-}, v_{\mathrm{ij}}^{-}, \omega_{\mathrm{ij}}^{-}>\right.$with $\mu_{\mathrm{ij}}^{+}, v_{\mathrm{ij}}^{+}, \omega_{\mathrm{ij}}^{+},-\mu_{\mathrm{ij}}^{-},-v_{\mathrm{ij}}^{-}$, $\omega_{\mathrm{ij}}^{-} \in[0,1]$ and $0 \leq \mu_{\mathrm{ij}}^{+}+v_{\mathrm{ij}}^{+}+\omega_{\mathrm{ij}}^{+}-\mu_{\mathrm{ij}}^{-}-v_{\mathrm{ij}}^{-}-\omega_{\mathrm{ij}}^{-} \leq 6$ for $\mathrm{i}=1,2, \ldots, m_{;} \mathrm{j}=1,2, \ldots, n$.
Step 3. We identify the bipolar neutrosophic positive ideal solution (BNPIS) [15, 16] as follows:
$z^{\text {PIS }}=\left\langle e_{\mathrm{j}}^{+}, f_{\mathrm{j}}^{+}, g_{\mathrm{j}}^{+}, e_{\mathrm{j}}^{-}, f_{\mathrm{j}}^{-}, g_{\mathrm{j}}^{-}\right\rangle=<\left[\left\{\operatorname{Max}_{\mathrm{i}}\left(\mu_{\mathrm{ij}}^{+}\right) \mid \mathrm{j} \in \sigma\right\} ;\left\{\operatorname{Min}_{\mathrm{i}}\left(\mu_{\mathrm{ij}}^{+}\right) \mid \mathrm{j} \in \varsigma\right\}\right]$,
$\left[\left\{\operatorname{Min}_{\mathrm{i}}\left(v_{\mathrm{ij}}^{+}\right) \mid \mathrm{j} \in \sigma\right\} ;\left\{\operatorname{Max}_{\mathrm{i}}\left(v_{\mathrm{ij}}^{+}\right) \mid \mathrm{j} \in \varsigma\right\}\right],\left[\left\{\operatorname{Min}_{\mathrm{i}}\left(\omega_{\mathrm{ij}}^{+}\right) \mid \mathrm{j} \in \sigma\right\} ;\right.$
$\left.\left\{\operatorname{Max}\left(\omega_{\mathrm{ij}}^{-}\right) \mid j \in \varsigma\right\}\right],\left[\left\{\operatorname{Min}_{\mathrm{i}}\left(\mu_{\mathrm{ij}}^{-}\right) \mid j \in \sigma\right\} ;\left\{\operatorname{Max}\left(\mu_{\mathrm{ij}}^{-}\right) \mid j \in \varsigma\right\}\right],\left[\left\{\operatorname{Max}_{\mathrm{i}}\left(v_{\mathrm{ij}}^{-}\right) \mid j \in \sigma\right\} ;\right.$
$\left.\left\{\operatorname{Min}_{\mathrm{i}}\left(v_{\mathrm{ij}}^{-}\right) \mid \mathrm{j} \in \varsigma\right\}\right],\left[\left\{\operatorname{Max}_{\mathrm{i}}\left(\omega_{\mathrm{ij}}^{-}\right) \mid \mathrm{j} \in \sigma\right\} ;\right.$
$\left.\left\{\operatorname{Min}\left(\omega_{\mathrm{ij}}^{-}\right) \mid j \in \varsigma\right\}\right]>, j=1,2, \ldots, n$, where σ and ς are benefit and cost type attributes respectively.
Step 4. Determine the projection measure between z^{PIS} and $Z^{i}=\left\langle z_{\mathrm{ij}}\right\rangle_{m \times n}$ for all $\mathrm{i}=$ $1,2, \ldots, m ; j=1,2, \ldots, n$ by using the following Eq.
$\operatorname{Proj}\left(Z^{i}\right)_{z^{P I S}}=\frac{\sum_{\mathrm{j}=1}^{\mathrm{n}}\left[\mu_{i j}^{+} e_{j}^{+}+v_{i j}^{+} f_{j}^{+}+\omega_{i j}^{+} g_{j}^{+}+\mu_{i j}^{-} e_{j}^{-}+v_{i j}^{-} f_{j}^{-}+\omega_{i j}^{-} g_{j}^{-}\right]}{\sqrt{\sum_{j=1}^{n}\left[\left(e_{j}^{+}\right)^{2}+\left(f_{j}^{+}\right)^{2}+\left(g_{j}^{+}\right)^{2}+\left(e_{j}^{-}\right)^{2}+\left(f_{j}^{-}\right)^{2}+\left(g_{j}^{-}\right)^{2}\right]}}$
Step 5. Rank the alternatives in a descending order based on the projection measure $\operatorname{Proj}\left(Z^{i}\right)_{z^{P I S}}$ for $\mathrm{i}=1,2, \ldots, m$ and bigger value of $\operatorname{Proj}\left(Z^{i}\right)_{z^{P I S}}$ determines the best alternative.

4.2. Algorithm 2.

Step 1. Give the bipolar neutrosophic decision matrix $\left\langle q_{\mathrm{ij}}\right\rangle_{\mathrm{m} \times \mathrm{n}}, \mathrm{i}=1,2, \ldots, m_{;} \mathrm{j}=$ $1,2, \ldots, n$.
Step 2. Construct weighted bipolar neutrosophic decision matrix $\left\langle z_{\mathrm{ij}}\right\rangle_{m \times n}, \mathrm{i}=1,2$, $\ldots, m ; j=1,2, \ldots, n$.
Step 3. Determine $z^{\text {PIS }}=\left\langle e_{\mathrm{j}}^{+}, f_{\mathrm{j}}^{+}, g_{\mathrm{j}}^{+}, e_{\mathrm{j}}^{-}, f_{\mathrm{j}}^{-}, g_{\mathrm{j}}^{-}\right\rangle ; \mathrm{j}=1,2, \ldots, n$.
Step 4. Compute the bidirectional projection measure between $z^{\text {PIS }}$ and Z^{i} $=\left\langle z_{\mathrm{ij}}\right\rangle_{\mathrm{m} \times \mathrm{n}}$ for all $\mathrm{i}=1,2, \ldots, m ; \mathrm{j}=1,2, \ldots, n$ by using the Eq. as given below.
$\operatorname{B-Proj}\left(\mathrm{Z}^{\mathrm{i}}, z^{\mathrm{PIS}}\right)=\frac{\left\|Z^{i}\right\|\left\|z^{P I S}\right\|}{\left\|Z^{i}\right\|\left\|z^{P I S}\right\|+\left|\left\|Z^{i}\right\|-\left\|z^{P I S}\right\|\right| Z^{i} \cdot z^{P I S}}$
where $\left\|Z^{i}\right\|=\sqrt{\sum_{j=1}^{n}\left[\left(\mu_{i j}^{+}\right)^{2}+\left(v_{i j}^{+}\right)^{2}+\left(\omega_{i j}^{+}\right)^{2}+\left(\mu_{i j}^{-}\right)^{2}+\left(v_{i j}^{-}\right)^{2}+\left(\omega_{i j}^{-}\right)^{2}\right]}, \mathrm{i}=1,2, \ldots, m$.
$\left\|z^{P I S}\right\|=\sqrt{\sum_{j=1}^{n}\left[\left(e_{j}^{+}\right)^{2}+\left(f_{j}^{+}\right)^{2}+\left(g_{j}^{+}\right)^{2}+\left(e_{j}^{-}\right)^{2}+\left(f_{j}^{-}\right)^{2}+\left(g_{j}^{-}\right)^{2}\right]}$ and
$Z^{i} \cdot z^{P I S}=\sum_{\mathrm{j}=1}^{\mathrm{n}}\left[\mu_{i j}^{+} e_{j}^{+}+v_{i j}^{+} f_{j}^{+}+\omega_{i j}^{+} g_{j}^{+}+\mu_{i j}^{-} e_{j}^{-}+v_{i j}^{-} f_{j}^{-}+\omega_{i j}^{-} g_{j}^{-}\right], \mathrm{i}=1,2, \ldots, m$.
Step 5. According to the bidirectional projection measure $B-\operatorname{Proj}\left(\mathrm{Z}^{\mathrm{i}}, z^{\mathrm{PIS}}\right)$ for $\mathrm{i}=1$, $2, \ldots, m$ alternatives are ranked and bigger value of $B-\operatorname{Proj}\left(\mathrm{Z}^{\mathrm{i}}, z^{\mathrm{PIS}}\right)$ reflects the best option.

4.3. Algorithm 3.

Step 1. Construct the bipolar neutrosophic decision matrix $\left\langle q_{\mathrm{ij}}\right\rangle_{m \times n}, \mathrm{i}=1,2, \ldots, m_{;} \mathrm{j}$ $=1,2, \ldots, n$.
Step 2. Formulate the weighted bipolar neutrosophic decision matrix $\left\langle z_{\mathrm{ij}}\right\rangle_{m \times n}, \mathrm{i}=1$, $2, \ldots, m ; \mathrm{j}=1,2, \ldots, n$.
Step 3. Identify $z^{\text {PIS }}=\left\langle e_{\mathrm{j}}^{+}, f_{\mathrm{j}}^{+}, g_{\mathrm{j}}^{+}, e_{\mathrm{j}}^{-}, f_{\mathrm{j}}^{-}, g_{\mathrm{j}}^{-}\right\rangle, \mathrm{j}=1,2, \ldots, n$.

Step 4. By combining projection measure $\operatorname{Proj}\left(Z^{i}\right)_{z^{P / S}}$ and bidirectional projection measure B-Proj ($\left.Z^{\mathrm{i}}, z^{\text {PIS }}\right)$, we calculate the hybrid projection measure between $z^{\text {PIS }}$ and $\mathrm{Z}^{\mathrm{i}}=\left\langle\mathrm{Z}_{\mathrm{ij}}\right\rangle_{\mathrm{m} \times \mathrm{n}}$ for all $\mathrm{i}=1,2, \ldots, m_{;} \mathrm{j}=1,2, \ldots, n$ as follows.
$\operatorname{Hyb}-\operatorname{Proj}\left(\mathrm{Z}^{\mathrm{i}}, z^{\mathrm{PIS}}\right)=\rho \operatorname{Proj}\left(Z^{i}\right)_{z^{P I S}}+(1-\rho) B-\operatorname{Proj}\left(\mathrm{Z}^{\mathrm{i}}, z^{\mathrm{PIS}}\right)$

$$
=\rho \frac{Z^{i} \cdot z^{P I S}}{\left\|z^{P I S}\right\|}+(1-\rho) \frac{\left\|Z^{i}\right\|\left\|z^{P I S}\right\|}{\left\|Z^{i}\right\|\left\|z^{P I S}\right\|+\left|\left\|Z^{i}\right\|-\left\|z^{P I S}\right\|\right| Z^{i} \cdot z^{P I S}}
$$

where $\left\|Z^{i}\right\|=\sqrt{\sum_{j=1}^{n}\left[\left(\mu_{i j}^{+}\right)^{2}+\left(v_{i j}^{+}\right)^{2}+\left(\omega_{i j}^{+}\right)^{2}+\left(\mu_{i j}^{-}\right)^{2}+\left(v_{i j}^{-}\right)^{2}+\left(\omega_{i j}^{-}\right)^{2}\right]}, \mathrm{i}=1$,
$2, \ldots, m$,
$\left\|z^{P I S}\right\|=\sqrt{\sum_{j=1}^{n}\left[\left(e_{j}^{+}\right)^{2}+\left(f_{j}^{+}\right)^{2}+\left(g_{j}^{+}\right)^{2}+\left(e_{j}^{-}\right)^{2}+\left(f_{j}^{-}\right)^{2}+\left(g_{j}^{-}\right)^{2}\right]}$,
$Z^{i} \cdot z^{P I S}=\sum_{\mathrm{j}=1}^{n}\left[\mu_{i j}^{+} e_{j}^{+}+v_{i j}^{+} f_{j}^{+}+\omega_{i j}^{+} g_{j}^{+}+\mu_{i j}^{-} e_{j}^{-}+v_{i j}^{-} f_{j}^{-}+\omega_{i j}^{-} g_{j}^{-}\right], \mathrm{i}=1,2, \ldots, m$, with $0 \leq \rho \leq 1$.

Step 5. We rank all the alternatives in accordance with the hybrid projection measure $\operatorname{Hyb}-\operatorname{Proj}\left(\mathrm{Z}^{\mathrm{i}}, z^{\text {PIS }}\right)$ and greater value of $\operatorname{Hyb}-\operatorname{Proj}\left(\mathrm{Z}^{\mathrm{i}}, z^{\text {PIS }}\right)$ implies the better alternative.

5. A numerical example

Consider the problem studied in [5,27] where a customer desires to purchase a car. Suppose four types of car (alternatives) $E \mathrm{i}$, $(\mathrm{i}=1,2,3,4)$ are taken into consideration in the decision making situation. Four attributes namely Fuel economy $\left(F_{1}\right)$, Aerod $\left(F_{2}\right)$, Comfort $\left(F_{3}\right)$, Safety $\left(F_{4}\right)$ is considered to evaluate the alternatives. Assume the weight vector [5] of the attribute is given by $w=\left(w_{1}, w_{2}\right.$, $\left.w_{3}, w_{4}\right)=(0.5,0.25,0.125,0.125)$.

Method 1. The proposed projection measure based decision making with bipolar neutrosophic information for car selection is presented in the following steps:

Step 1: Construct the bipolar neutrosophic decision matrix The bipolar neutrosophic decision matrix $\left\langle q_{\mathrm{ij}}\right\rangle_{\mathrm{m} \times \mathrm{n}}$ presented by the decision maker as given below (see Table 1).

Table 1. The bipolar neutrosophic decision matrix

	F_{1}	F_{2}	F_{3}	F_{4}
E_{1}	$<0.5,0.7,0.2,-$	$<0.4,0.5,0.4,-$	$<0.7,0.7,0.5,-$	$<0.1,0.5,0.7,-$ 0.7,-0.3,$-0.6>$
	$0.7,-0.8,-0.4>$	$0.8,-0.7,-0.6>$	$0.5,-0.2,-0.8>$	

E_{2}	$\begin{aligned} & \langle 0.9,0.7,0.5,- \\ & 0.7,-0.7,-0.1> \end{aligned}$	$\begin{aligned} & <0.7,0.6,0.8,- \\ & 0.7,-0.5,-0.1> \end{aligned}$	$\begin{aligned} & <0.9,0.4,0.6,- \\ & 0.1,-0.7,-0.5> \end{aligned}$	$\begin{aligned} & <0.5,0.2,0.7,- \\ & 0.5,-0.1,-0.9> \end{aligned}$
E_{3}	$\begin{aligned} & \hline<0.3,0.4,0.2,- \\ & 0.6,-0.3,-0.7> \end{aligned}$	$\begin{aligned} & <0.2,0.2,0.2,- \\ & 0.4,-0.7,-0.4> \end{aligned}$	$\begin{aligned} & \hline<0.9,0.5,0.5,- \\ & 0.6,-0.5,-0.2> \end{aligned}$	$\begin{aligned} & <0.7,0.5,0.3,- \\ & 0.4,-0.2,-0.2> \end{aligned}$
E_{4}	$\begin{aligned} & \langle 0.9,0.7,0.2,- \\ & 0.8,-0.6,-0.1> \end{aligned}$	$\begin{aligned} & <0.3,0.5,0.2,- \\ & 0.5,-0.5,-0.2> \end{aligned}$	$\begin{aligned} & <0.5,0.4,0.5,- \\ & 0.1,-0.7,-0.2> \end{aligned}$	$\begin{aligned} & <0.2,0.4,0.8,- \\ & 0.5,-0.5,-0.6> \end{aligned}$

Step 2. Construction of weighted bipolar neutrosophic decision matrix
The weighted decision matrix $\left\langle z_{\mathrm{ij}}\right\rangle_{\mathrm{m} \times \mathrm{n}}$ is obtained by multiplying weights of the attributes to the bipolar neutrosophic decision matrix as follows (see Table 2).

Table 2. The weighted bipolar neutrosophic decision matrix

	F_{1}	F_{2}	F_{3}	F_{4}
E_{1}	$\begin{gathered} <0.293,0.837, \\ 0.447,-0.837,- \\ 0.548,-0.368> \end{gathered}$	$\begin{aligned} & \hline<0.120,0.795, \\ & 0.841,-0.915,- \\ & 0.946,-0.120> \end{aligned}$	$\begin{gathered} \hline<0.140,0.956, \\ 0.917,-0.972,- \\ 0.956,-0.108> \end{gathered}$	$\begin{aligned} & \hline<0.013,0.917, \\ & 0.956,-0.917,- \\ & 0.818,-0.182> \end{aligned}$
E_{2}	$\begin{gathered} \langle 0.684,0.837, \\ 0.707,-0.837,- \\ 0.837,-0.051> \end{gathered}$	$\begin{gathered} \hline<0.260,0.880, \\ 0.946,-0.915,- \\ 0.841,-0.026> \end{gathered}$	$\begin{aligned} & <0.250,0.892, \\ & 0.938,-0.750,- \\ & 0.956,-0.083> \end{aligned}$	$\begin{gathered} <0.083,0.818, \\ 0.956,-0.917,- \\ 0.750,-0.250> \end{gathered}$
E_{3}	$\begin{gathered} <0.163,0.632, \\ 0.447,-0.774,- \\ 0.548,-0.452> \end{gathered}$	$\begin{gathered} <0.054,0.669, \\ 0.669,-0.795,- \\ 0.915,-0.120> \end{gathered}$	$\begin{gathered} \hline<0.250,0.917, \\ 0.917,-0.938,- \\ 0.917,-0.028> \end{gathered}$	$\begin{gathered} <0.140,0.917, \\ 0.860,-0.892,- \\ 0.818,-0.028> \end{gathered}$
E_{4}	$\begin{gathered} <0.648,0.837, \\ 0.447,-0.894,- \\ 0.774,-0.051> \end{gathered}$	$\begin{aligned} & <0.085,0.841, \\ & 0.669,-0.841,- \\ & 0.841,-0.054> \end{aligned}$	$\begin{gathered} <0.083,0.892, \\ 0.917,-0.750,- \\ 0.956,-0.028> \end{gathered}$	$\begin{aligned} & <0.062,0.818, \\ & 0.972,-0.917,- \\ & 0.917,-0.108> \end{aligned}$

Step 3. Selection of BNPIS
The BNRPIS $\left(z^{\text {PIS }}\right)=\left\langle e_{\mathrm{j}}^{+}, f_{\mathrm{j}}^{+}, g_{\mathrm{j}}^{+}, e_{\mathrm{j}}^{-}, f_{\mathrm{j}}^{-}, g_{\mathrm{j}}^{-}\right\rangle,(\mathrm{j}=1,2,3,4)$ is computed from the weighted decision matrix as follows:

$$
\begin{aligned}
& \left.\left\langle e_{1}^{+}, f_{1}^{+}, g_{1}^{+}, e_{1}^{-}, f_{1}^{-}, g_{1}^{-}\right\rangle=<0.684,0.632,0.447,-0.894,-0.548,-0.051\right\rangle \\
& \left\langle e_{2}^{+}, f_{2}^{+}, g_{2}^{+}, e_{2}^{-}, f_{2}^{-}, g_{2}^{-}\right\rangle=<0.26,0.669,0.669,-0.915,-0.841,-0.026> \\
& \left.\left\langle e_{3}^{+}, f_{3}^{+}, g_{3}^{+}, e_{3}^{-}, f_{3}^{-}, g_{3}^{-}\right\rangle=<0.25,0.892,0.917,-0.972,-0.917,-0.028\right\rangle \\
& \left.\left\langle e_{4}^{+}, f_{4}^{+}, g_{4}^{+}, e_{4}^{-}, f_{4}^{-}, g_{4}^{-}\right\rangle=<0.14,0.818,0.86,-0.917,-0.75,-0.028\right\rangle
\end{aligned}
$$

Step 4. Determination of weighted projection measure

The projection measure between positive ideal bipolar neutrosophic solution $z^{\text {PIS }}$ and each weighted decision matrix $\left\langle\mathrm{z}_{\mathrm{ij}}\right\rangle_{m \times n}$ can be obtained as follows:
$\operatorname{Proj}\left(Z^{1}\right)_{z^{P / S}}=3.4214, \operatorname{Proj}\left(Z^{2}\right)_{z^{P / S}}=3.4972, \operatorname{Proj}\left(Z^{3}\right)_{z^{P / S}}=3.1821, \operatorname{Proj}$ $\left(Z^{4}\right)_{z^{P / S}}=3.3904$.
Step 5. Rank the alternatives
We observe that $\operatorname{Proj}\left(Z^{2}\right)_{z^{P I S}}>\operatorname{Proj}\left(Z^{1}\right)_{z^{P I S}}>\operatorname{Proj}\left(Z^{4}\right)_{z^{P I S}}>\operatorname{Proj}\left(Z^{3}\right)_{z^{P I S}}$.
Therefore, the ranking order of the cars is $\mathrm{E}_{2} \succ \mathrm{E}_{1} \succ \mathrm{E}_{4} \succ \mathrm{E}_{3}$ and hence, E_{2} is the best alternative for the customer.

Method 2. The proposed bidirectional projection measure based decision making for car selection is presented as follows:
Step 1. Same as Method 1
Step 2. Same as Method 1
Step 3. Same as Method 1
Step 4. Calculation of bidirectional projection measure
The bidirectional projection measure between positive ideal bipolar neutrosophic solution $z^{\text {PIS }}$ and each weighted decision matrix $\left\langle\mathrm{z}_{\mathrm{ij}}\right\rangle_{\mathrm{m} \times \mathrm{n}}$ can be determined as given below.
$B-\operatorname{Proj}\left(\mathrm{Z}^{1}, z^{\mathrm{PIS}}\right)=0.8556, B-\operatorname{Proj}\left(\mathrm{Z}^{2}, z^{\mathrm{PIS}}\right)=0.8101, B-\operatorname{Proj}\left(\mathrm{Z}^{3}, z^{\mathrm{PIS}}\right)=0.9503, B-$ $\operatorname{Proj}\left(\mathrm{Z}^{4}, z^{\mathrm{PIS}}\right)=0.8969$.
Step 5. Ranking the alternatives
Here, we notice that B-Proj $\left(\mathrm{Z}^{3}, z^{\mathrm{PIS}}\right)>B$ - $\operatorname{Proj}\left(\mathrm{Z}^{4}, z^{\mathrm{PIS}}\right)>B-\operatorname{Proj}\left(\mathrm{Z}^{1}, z^{\mathrm{PIS}}\right)>B$ $\operatorname{Proj}\left(\mathrm{Z}^{2}, z^{\text {PIS }}\right)$ and therefore, the ranking order of the alternatives is obtained as E_{3} $\succ \mathrm{E}_{4} \succ \mathrm{E}_{1} \succ \mathrm{E}_{2}$. Hence, E_{3} is the best choice among the alternatives.

Method 3. The proposed hybrid projection measure based MADM with bipolar neutrosophic information is provided as follows:
Step 1. Same as Method 1
Step 2. Same as Method 1
Step 3. Same as Method 1
Step 4. Computation of hybrid projection measure
The hybrid projection measures for different values of $\rho \in[0,1]$ and the ranking order are shown in the following Table 3

Table 3. Results of hybrid projection measure for different valus of ρ

Similarity measure	ρ	Measure values	Ranking order
Hyb-Proj ($Z^{\text {i }}, z^{\text {PIS }}$)	0.25	$\begin{aligned} & \operatorname{Hyb-Proj}\left(Z^{l}, z^{\text {PIS }}\right)=1.4970 \\ & \operatorname{Hyb-Proj}\left(Z^{2}, z^{\text {PIS }}\right)=1.4819 \\ & \operatorname{Hyb-Proj}\left(Z^{3}, z^{\text {PIS }}\right)=1.5082 \\ & \operatorname{Hyb-Proj}\left(Z^{4}, z^{\text {PIS }}\right)=1.5203 \end{aligned}$	$E_{4}>E_{3}>E_{1}>E_{2}$
Hyb-Proj ($\left.Z^{\text {i }}, z^{\text {PIS }}\right)$	0. 50	$\begin{aligned} & \operatorname{Hyb-Proj}\left(Z^{l}, z^{\text {PIS }}\right)=2.1385 \\ & \operatorname{Hyb-Proj}\left(Z^{2}, z^{\text {PIS }}\right)=2.1536 \\ & \operatorname{Hyb-Proj}\left(Z^{3}, z^{\text {PIS }}\right)=2.0662 \\ & \text { Hyb-Proj }\left(Z^{4}, z^{\text {PIS }}\right)=2.1436 \end{aligned}$	$E_{2}>E_{4}>E_{1}>E_{3}$
Hyb-Proj ($\left.Z^{i}, z^{\text {PIS }}\right)$	0.75	$\begin{aligned} \operatorname{Hyb-Proj}\left(Z^{l}, z^{\text {PIS }}\right) & =2.7800 \\ \operatorname{Hyb-Proj}\left(Z^{2}, z^{\text {PIS }}\right) & =2.8254 \\ \operatorname{Hyb-Proj}\left(Z^{3}, z^{\text {PIS }}\right) & =2.6241 \\ \operatorname{Hyb}-\operatorname{Proj}\left(Z^{4}, z^{\text {PIS }}\right) & =2.7670 \end{aligned}$	$E_{2}>E_{1}>E_{4}>E_{2}$
Hyb-Proj ($\left.Z^{i}, z^{\text {PIS }}\right)$	0. 90	$\begin{aligned} & \operatorname{Hyb-Proj}\left(Z^{l}, z^{\text {PIS }}\right)=3.1648 \\ & \operatorname{Hyb-Proj}\left(Z^{2}, z^{\text {PIS }}\right)=3.2285 \\ & \operatorname{Hyb-Proj}\left(Z^{3}, z^{\mathrm{PIS}}\right)=2.9589 \\ & \operatorname{Hyb-Proj}\left(Z^{4}, z^{\text {PIS }}\right)=3.1410 \end{aligned}$	$E_{2}>E_{1}>E_{4}>E_{3}$

6. Comparative analysis

In the Section, we compare the results obtained from the proposed methods with the results derived from other existing methods under bipolar neutrosophic environment to show the effectiveness of the developed methods.

Dey et al. [27] assume that the weights of the attributes are not identical and weights are fully unknown to the decision maker. Dey et al. [27] formulated maximizing deviation model under bipolar neutrosophic assessment to compute unknown weights of the attributes as $w=(0.2585,0.2552,0.2278,0.2585)$. By considering $w=(0.2585,0.2552,0.2278,0.2585)$, the proposed projection measure are shown as follows:
$\operatorname{Proj}\left(Z^{1}\right)_{z^{P / S}}=3.3954, \operatorname{Proj}\left(Z^{2}\right)_{z^{P / S}}=3.3872, \operatorname{Proj}\left(Z^{3}\right)_{z^{P / S}}=3.1625$, Proj $\left(Z^{4}\right)_{z^{p I S}}=3.2567$.

Since, $\operatorname{Proj}\left(Z^{1}\right)_{z^{n / S}}>\operatorname{Proj}\left(Z^{2}\right)_{z^{n I S}}>\operatorname{Proj}\left(Z^{4}\right)_{z^{r I S}}>\operatorname{Proj}\left(Z^{3}\right)_{z^{p / S}}$, therefore the ranking order of the four alternatives is given by $\mathrm{E}_{1} \succ \mathrm{E}_{2} \succ \mathrm{E}_{4} \succ \mathrm{E}_{3}$. Thus, E_{1} is the best choice for the customer.

Now, by taking $w=(0.2585,0.2552,0.2278,0.2585)$, the bidirectional projection measure are calculated as given below.
$B-\operatorname{Proj}\left(\mathrm{Z}^{1}, z^{\mathrm{PIS}}\right)=0.8113, B-\operatorname{Proj}\left(\mathrm{Z}^{2}, z^{\mathrm{PIS}}\right)=0.8111, B-\operatorname{Proj}\left(\mathrm{Z}^{3}, z^{\mathrm{PIS}}\right)=0.9854, B-$ $\operatorname{Proj}\left(Z^{4}, z^{\text {PIS }}\right)=0.9974$.

Since, B-Proj $\left(\mathrm{Z}^{4}, z^{\mathrm{PIS}}\right)>B-\operatorname{Proj}\left(\mathrm{Z}^{3}, z^{\mathrm{PIS}}\right)>B-\operatorname{Proj}\left(\mathrm{Z}^{1}, z^{\mathrm{PIS}}\right)>B-\operatorname{Proj}$ $\left(\mathrm{Z}^{2}, z^{\text {PIS }}\right.$), consequently the ranking order of the four alternatives is given by $\mathrm{E}_{4} \succ$ $\mathrm{E}_{3} \succ \mathrm{E}_{1} \succ \mathrm{E}_{2}$ and hence, E_{4} is obviously the best option for the customer.
Also, by taking $w=(0.2585,0.2552,0.2278,0.2585)$, the proposed hybrid projection measures for different values of $\rho \in[0,1]$ and the ranking order are revealed in the following Table 4.
Table 4. Results of hybrid projection measure for different valus of ρ

Similarity measure	ρ	Measure values	Ranking order
Hyb-Proj ($\left.Z^{i}, z^{\text {PIS }}\right)$	0.25	$\begin{aligned} & \operatorname{Hyb-Proj}\left(Z^{l}, z^{\mathrm{PIS}}\right)=1.4573 \\ & \operatorname{Hyb-Proj}\left(Z^{2}, z^{\mathrm{PIS}}\right)=1.4551 \\ & \operatorname{Hyb-Proj}\left(Z^{3}, z^{\mathrm{PIS}}\right)=1.5297 \\ & \operatorname{Hyb-Proj}\left(Z^{4}, z^{\mathrm{PIS}}\right)=1.5622 \end{aligned}$	$E_{4}>E_{3}>E_{1}>E_{2}$
Hyb-Proj ($\left.Z^{i}, z^{\text {PIS }}\right)$	0.50	$\begin{aligned} & \operatorname{Hyb-Proj}\left(Z^{l}, z^{\text {PIS }}\right)=2.1034 \\ & \operatorname{Hyb-Proj}\left(Z^{2}, z^{\text {PIS }}\right)=2.0991 \\ & \text { Hyb-Proj }\left(Z^{3}, z^{\text {PIS }}\right)=2.0740 \\ & \text { Hyb-Proj }\left(Z^{4}, z^{\text {PIS }}\right)=2.1270 \end{aligned}$	$E_{4}>E_{1}>E_{2}>E_{3}$
Hyb-Proj ($\left.Z^{i}, z^{\text {PIS }}\right)$	0.75	$\begin{aligned} & \operatorname{Hyb-Proj}\left(Z^{l}, z^{\text {PIS }}\right)=2.4940 \\ & \operatorname{Hyb-Proj}\left(Z^{2}, z^{\text {PIS }}\right)=2.7432 \\ & \operatorname{Hyb-Proj}\left(Z^{3}, z^{\text {PIS }}\right)=2.6182 \\ & \operatorname{Hyb}-\operatorname{Proj}\left(Z^{4}, z^{\text {PIS }}\right)=2.6919 \end{aligned}$	$E_{2}>E_{4}>E_{3}>E_{1}$
Hyb-Proj ($\left.Z^{i}, z^{\text {PIS }}\right)$	0. 90	$\begin{aligned} & \operatorname{Hyb-Proj}\left(Z^{l}, z^{\text {PIS }}\right)=3.1370 \\ & \operatorname{Hyb-Proj}\left(Z^{2}, z^{\text {PIS }}\right)=3.1296 \\ & \operatorname{Hyb-Proj}\left(Z^{3}, z^{\text {PIS }}\right)=2.9448 \\ & \operatorname{Hyb-Proj}\left(Z^{4}, z^{\text {PIS }}\right)=3.0308 \end{aligned}$	$E_{1}>E_{2}>E_{4}>E_{3}$

Deli et al. [5] assume the weight vector of the attributes as $w=(0.5,0.25,0.125$, 0.125) and the ranking order based on score values is presented as follows:

$$
E_{3} \succ E_{4} \succ E_{2} \succ E_{1}
$$

Thus, E_{3} was the most desirable alternative.
Dey et al. [27] employed maximizing deviation method to find unknown attribute weights as $w=(0.2585,0.2552,0.2278,0.2585)$. The ranking order of the alternatives is presented based on the relative closeness coefficient as given below.

$$
E_{3} \succ E_{2} \succ E_{4} \succ E_{1}
$$

Obviously, E_{3} was the most suitable option for the customer.

Dey et al. [27] also consider the weight vector of the attributes as $w=(0.5$, $0.25,0.125,0.125)$, then by using TOPSIS method, the ranking order of the cars is represented as follows:

$$
E_{4} \succ E_{2} \succ E_{3} \succ E_{1}
$$

So, E_{4} would be the most preferable alternative for the buyer. We observe that different projection measures provide different ranking results and the projection measure is weight sensitive. Therefore, decision maker should choose the projection measure and weights of the attributes in the decision making context according to his/her needs, desires and practical condition

7. Conclusion

In this paper, we have defined projection, bidirectional projection measures between bipolar neutrosophic sets. Further, we have defined a hybrid projection measure by combining projection and bidirectional projection measures. Through these projection measures we have developed three algorithms for multi-attribute decision making models under bipolar neutrosophic environment for choosing the best alternative. Finally, a car selection problem has been provided to show the flexibility and applicability of the proposed methods. Furthermore, comparison analysis of the proposed methods with the other existing methods has also been demonstrated. The proposed algorithms can be extended to interval bipolar neutrosophic environment. In future, we shall apply projection, bidirectional projection, and hybrid projection measures of interval bipolar neutrosophic sets for group decision making, medical diagnosis, weaver selection, pattern recognition problems.

References

1. Smarandache, F. A unifying field of logics. Neutrosophy: Neutrosophic probability, set and logic. American Research Press, Rehoboth, 1998.
2. Wang, H., F. Smarandache, Y. Zhang, R. Sunderraman. Single valued neutrosophic sets. Multispace and Multi-Structure, Vol. 4, 2010, pp. 410-413.
3. Zhang, W. R. Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multiagent decision analysis. In: Proc. of IEEE Conf., 1994, pp. 305-309. DOI: 10.1109/IJCF.1994.375115.
4. Zhang, W. Bipolar fuzzy sets." In: Proc. of the IEEE World Congress on Computational Science (FuzzIEEE), Anchorage, Alaska, 1998, pp. 835-840. DOI: 10.1109/FUZZY.1998.687599.
5. Deli, I., M. Ali, F. Smarandache. Bipolar neutrosophic sets and their application based on multicriteria decision making problems. In: International conference on advanced mechatronic systems (ICAMechS), IEEE (August, 2015), 2015, pp. 249-254.
6. Yue, Z. L. Approach to group decision making based on determining the weights of experts by using projection method. Applied Mathematical Modelling, Vol. 36, 2012, No 7, pp. 29002910.
7. Zhang, G., Y. Jing, H. Huang, Y. Gao. Application of improved grey relational projection method to evaluate sustainable building envelope performance. Applied Energy, Vol. 87, 2010, No 2, pp. 710-720.
8. Yue, Z. Application of the projection method to determine weights of decision makers for group decision making. Scientia Iranica, Vol. 19, 2012, No 3, 872-878.
9. Yue, Z., Y. Jia. A direct projection-based group decision-making methodology with crisp values and interval data. Soft Computing, 2015. DOI 10.1007/s00500-015-1953-5.
10. Xu, Z. S., Q. Da. Projection method for uncertain multi-attribute decision making with preference information on alternatives. International Journal of Information \& Decision Making, Vol. 3, 2004, pp. 429-434.
11. Xu, Z. On method for uncertain multiple attribute decision making problems with uncertain multiplicative preference information on alternatives. Fuzzy optimization and Decision Making, Vol. 4, 2005, pp. 131-139.
12. Wei G. W. Decision-making based on projection for intuitionistic fuzzy multiple attributes. Chinese Journal of Management, Vol. 6, 2009, No 9, pp. 1154-1156.
13. Zhang, X., F. Jin, P. Liu. A grey relational projection method for multi-attribute decision making based on intuitionistic trapezoidal fuzzy number. Applied Mathematical Modelling, Vol. 37, 2013, No 5, pp.3467-3477.
14. Zeng, S., T. Baležentis, J. Chen, G. Luo. A projection method for multiple attribute group decision making with intuitionistic fuzzy information. Informatica, Vol. 24, 2013, No 3, pp. 485-503.
15. Xu, Z., H. Hu. Projection models for intuitionistic fuzzy multiple attribute decision making. International Journal of Technology \& Decision Making, Vol. 9, 2010, No 2, pp. 267-280
16. Sun, G. A group decision making method based on projection method and score function under IVIFS environment. British Journal of Mathematics \& Computer Science, Vol. 9, 2015, No 1, pp. 62-72. DOI: 10.9734/BJMCS/2015/9549.
17. Tsao, C. Y., T. Y. Chen. A projection-based compromising method for multiple criteria decision analysis with interval-valued intuitionistic fuzzy information. Applied Soft Computing, Volume 45, 2016, pp. 207-223.
18. Chen, J., J. Ye. A projection model of neutrosophic numbers for multiple attribute decision making of clay-brick selection. Neutrosophic Sets and Systems, Vol. 12, 2016, pp. 139-142.
19. Ye, J. Projection and bidirectional projection measures of single-valued neutrosophic sets and their decision-making method for mechanical design schemes. Journal of Experimental \& Theoretical Artificial Intelligence, 2016. DOI: 10.1080/0952813X.2016.1259263.
20. Ye, J. Bidirectional projection method for multiple attribute group decision making with neutrosophic numbers. Neural Computing and Applications, 2015. DOI: 10.1007/s00521-015-2123-5.
21. Ye, J. Interval neutrosophic multiple attribute decision-making method with credibility information. International Journal of Fuzzy Systems, 2016. DOI: 10.1007/s40815-015-01224.
22. Dey, P. P., S. Pramanik, B. C. Giri. Neutrosophic soft multi-attribute decision making based on grey relational projection method. Neutrosophic Sets and Systems, Vol. 11, 2016, pp. 98106.
23. Dey, P. P., S. Pramanik, B. C. Giri, Extended projection based models for solving multiple attribute decision making problems with interval valued neutrosophic information. In: F. Smarandache, S. Pramanik (ed.), New Trends in Neutrosophic Theory and Applications, Pons asbl, Brussells, 2016, pp. 127-140.
24. Deli, I., Y. A. Subas. Multiple criteria decision making method on single valued bipolar neutrosophic set based on correlation coefficient similarity measure. In: International Conference on mathematics and mathematics education (ICMME-2016), Frat University, Elazg, Turkey, May 12-14, 2016.
25. Şahin, M., I. Deli, V. Uluçay. Jaccard vector similarity measure of bipolar neutrosophic set based on multi-criteria decision making. In: International Conference on Natural Science and Engineering (ICNASE'16), Killis, March 19-20, 2016.
26. Uluçay, V., I. Deli, M. Şahin. Similarity measures of bipolar neutrosophic sets and their application to multiple criteria decision making. Neural Computing and Applications, 2016. DOI: 10.1007/s00521-016-2479-1.
27. Dey, P. P., S. Pramanik, B. C. Giri. TOPSIS for solving multi-attribute decision making problems under bi-polar neutrosophic environment. In: F. Smarandache, S. Pramanik (ed.), New Trends in Neutrosophic Theory and Applications, Pons asbl, Brussells, 2016, pp. 65-77.
28. Xu, Z. S. Theory method and applications for multiple attribute decision-making with uncertainty. Tsinghua University Press, Beijing, 2004.
