BIPOLAR NEUTROSOPHIC WEAKLY BG*_CLOSED SETS

Article in High Technology Letters - August 2020

5 authors, including:

Vunnam Venkateswara Rao
Vignan University

Some of the authors of this publication are also working on these related projects:

Inconsistency, N-wise comparison in Multiple Criteria Decision Making problems View project
BIPOLAR NEUTROSOPHIC WEAKLY BG^\oplus-CLOSED SETS

T. Siva Nageswara Rao¹, G. Upender Reddy², V. Venkateswara Rao³, Y. Srinivasa Rao⁴

¹&³Division of Mathematics, V.F.S.T.R (Deemed to be University), Vadlamudi, Guntur (Dt.),
A.P, India.
²Department of Mathematics, Nizam College (A), Osmania University, Basheerbagh,
Hyderabad, TS, India.
⁴Research Scholar, Department of Mathematics, Acharya Nagarjuna University, Guntur (Dt.),
A.P, India.

ABSTRACT. In this paper are presented and explored new sort of bipolar Neutrosophic closed set which is known as bipolar Neutrosophic feebly $B g^\oplus$-closed sets in BNTSs and furthermore talked about properties and portrayal.

Key Words: Bipolar Neutrosophic sets, Bipolar Neutrosophic week closed sets, Bipolar Neutrosophic regular open sets and Bipolar Neutrosophic regular closed sets

1. INTRODUCTION

A. Salama presented NTSs in [2, 3] by utilizing Smarandache’s NSs, [7, 8]. Neutrosophic g closed set presented by R. Dhavasheelan et al. in [5, 6], what’s more, Neutrosophic g^\oplus-closed sets introduced by A. Atkinswesley et al. in [1]. Point of this current paper is, to present and research about new sort of Bipolar Neutrosophic closed set is known as bipolar Neutrosophic weakly $B g^\oplus$-closed sets in BNTS and furthermore examined about properties and portrayal. In 2016 derived the idea of the neutrosophic topology. The author also have the some more research work on neutrosophic theory see the references [9-17].

2. PRELIMINARIES

Definition 2.1: Consider Bipolar Neutrosophic set \(U_1^\oplus \) is in the form

\[
U_1^\oplus = \left\{ \langle u, \varepsilon_{U_1^p}(u), \phi_{U_1^p}(u), \varphi_{U_1^p}(u), \varepsilon_{U_1^n}(u), \phi_{U_1^n}(u), \varphi_{U_1^n}(u) \rangle : u \in BN_{\alpha^p} \right\},
\]

where \(\varepsilon_{U_1^p}(u), \varepsilon_{U_1^n}(u) \) denotes membership function, \(\phi_{U_1^p}(u), \phi_{U_1^n}(u) \) denotes indeterminacy and \(\varphi_{U_1^p}(u), \varphi_{U_1^n}(u) \) denotes non-membership function w.r.t. positive and negative ways.

Definition 2.2: Bipolar Neutrosophic set is the set

\[
U_1^\oplus = \left\{ \langle u, \varepsilon_{U_1^p}(u), \phi_{U_1^p}(u), \varepsilon_{U_1^n}(u), \phi_{U_1^n}(u), \varphi_{U_1^n}(u) \rangle : u \in BN_{\alpha^p} \right\}
\]
on \(BN_{\alpha^n} \) and

\[
\forall u \in BN_{\alpha^p}.
\]

Then complement of \(U_1^\oplus \) is

\[
U_1^{\ominus C} = \left\{ \langle u, \phi_{U_1^p}(u), 1 - \phi_{U_1^p}(u), \varepsilon_{U_1^n}(u), 1 - \phi_{U_1^n}(u), \varphi_{U_1^n}(u) \rangle : u \in BN_{\alpha^p} \right\}.
\]
Definition 2.3. Let U_1° and U_2° are two BNSs,
\[
\forall u \in BN_{a_i}^\circ, U_1^\circ = \{ <u, \varepsilon_{U_1^\circ} (u), \phi_{U_1^\circ} (u), \phi_{U_1^\circ} (u), \varepsilon_{U_1^\circ} (u), \phi_{U_1^\circ} (u), \phi_{U_1^\circ} (u) > : u \in BN_{a_i}^\circ \},
\]
\[
\forall u \in BN_{a_i}^\circ, U_2^\circ = \{ <u, \varepsilon_{U_2^\circ} (u), \phi_{U_2^\circ} (u), \phi_{U_2^\circ} (u), \varepsilon_{U_2^\circ} (u), \phi_{U_2^\circ} (u), \phi_{U_2^\circ} (u) > : u \in BN_{a_i}^\circ \}.
\]
Then
\[
U_1^\circ \subseteq U_2^\circ \Leftrightarrow \varepsilon_{U_1^\circ} (u) \leq \varepsilon_{U_2^\circ} (u), \phi_{U_1^\circ} (u) \leq \phi_{U_2^\circ} (u),
\]
\[
\phi_{U_1^\circ} (u) \leq \phi_{U_2^\circ} (u), \phi_{U_1^\circ} (u) \geq \phi_{U_2^\circ} (u),
\]
\[
\phi_{U_1^\circ} (u) \geq \phi_{U_2^\circ} (u), \phi_{U_1^\circ} (u) \geq \phi_{U_2^\circ} (u)
\]

Definition 2.4. Let U_1° and U_2° be two BNS are
\[
\forall u \in BN_{a_i}^\circ, U_1^\circ = \{ <u, \varepsilon_{U_1^\circ} (u), \phi_{U_1^\circ} (u), \phi_{U_1^\circ} (u), \varepsilon_{U_1^\circ} (u), \phi_{U_1^\circ} (u), \phi_{U_1^\circ} (u) > : u \in BN_{a_i}^\circ \}
\]
\[
\forall u \in BN_{a_i}^\circ, U_2^\circ = \{ <u, \varepsilon_{U_2^\circ} (u), \phi_{U_2^\circ} (u), \phi_{U_2^\circ} (u), \varepsilon_{U_2^\circ} (u), \phi_{U_2^\circ} (u), \phi_{U_2^\circ} (u) > : u \in BN_{a_i}^\circ \}
\]
Then
\[
U_1^\circ \cap U_2^\circ = \{ <r, \varepsilon_{U_1^\circ} (u) \cap \varepsilon_{U_2^\circ} (u), \phi_{U_1^\circ} (u) \cap \phi_{U_2^\circ} (u), \phi_{U_1^\circ} (u) \cap \phi_{U_2^\circ} (u) > : u \in N_{a_i}^\circ \}
\]
\[
U_1^\circ \cup U_2^\circ = \{ <r, \varepsilon_{U_1^\circ} (u) \cup \varepsilon_{U_2^\circ} (u), \phi_{U_1^\circ} (u) \cup \phi_{U_2^\circ} (u), \phi_{U_1^\circ} (u) \cup \phi_{U_2^\circ} (u) > : u \in N_{a_i}^\circ \}
\]

Definition 2.5 Let $BN_{a_i}^\circ$ be non-empty set and $BN_{a_i}^{\forall}$ be the collection of bipolar Neutrosophic subsets of $BN_{a_i}^\circ$, satisfying the accompanying properties:

1. $0_{N_{a_i}^\circ}, 1_{N_{a_i}^\circ} \in BN_{a_i}^{\forall}$
2. $BN_{a_i}^\circ \cap BN_{a_i}^\circ \in BN_{a_i}^{\forall}$ for any $BN_{a_i}^\circ, BN_{a_i}^\circ \in BN_{a_i}^{\forall}$
3. $\bigcup BN_{a_i}^\circ \in BN_{a_i}^{\forall}$ for every $BN_{a_i}^\circ : i \in j \subseteq BN_{a_i}^{\forall}$.

Then the space $(BN_{a_i}^\circ, BN_{a_i}^{\forall})$ is known a BNTS (BNS–T-S). The component of $BN_{a_i}^{\forall}$ are called BNS-OS (Bipolar Neutrosophic open set) and its complement is BNS-CS (Bipolar Neutrosophic closed set).
Example 1. Let $B_{N_{u^*}} = \{ u \}$ and $\forall u \in B_{N_{u^*}}$

$U_1^\circ = \{ u, -6 \times 10^{-1}, -6 \times 10^{-1}, -6 \times 10^{-1}, 6 \times 10^{-1}, 6 \times 10^{-1} \}$,

$U_2^\circ = \{ u, -5 \times 10^{-1}, -7 \times 10^{-1}, -9 \times 10^{-1}, 5 \times 10^{-1}, 7 \times 10^{-1} \}$

$U_3^\circ = \{ u, -3 \times 10^{-1}, -4 \times 10^{-1}, -7 \times 10^{-1}, 6 \times 10^{-1}, 7 \times 10^{-1}, 5 \times 10^{-1} \}$

$U_4^\circ = \{ u, -2 \times 10^{-1}, -6 \times 10^{-1}, -4 \times 10^{-1}, 5 \times 10^{-1}, 6 \times 10^{-1}, 9 \times 10^{-1} \}$

Then collection $B_{N_{S_5}} = \{ 0_{N^*}, U_1^\circ, U_2^\circ, U_3^\circ, U_4^\circ, 1_{N^*} \}$ is known as BNS-T-S on N_{u^*}.

Definition 2.6. Let $\left(B_{N_{u^*}}, B_{N_{S_5}} \right)$ be BNTS. Then Bipolar Neutrosophic closure of U_1° is

$B_{N_{S_5}} \cong BCL \left(U_1^\circ \right) = \bigcap \{ L : L \text{ is a Bipolar Neutrosophic Closed set in } B_{N_{u^*}} \text{ and } U_1^\circ \subseteq L \}$.

Bipolar Neutrosophic interior of U_1° is:

$B_{N_{S_5}} \cong BINT \left(U_1^\circ \right) = \bigcup \{ L_1 : L_1 \text{ is a Bipolar Neutrosophic Open set in } B_{N_{u^*}} \text{ and } L_1 \subseteq U_1^\circ \}$.

Definition 2.7. Let $\left(B_{N_{u^*}}, B_{N_{S_5}} \right)$ be a BNTS. Then U_1° is known as

1. Bipolar Neutrosophic regular Closed set (BNeu-RCS) if $U_1^\circ = B_{N_{u^*}} \cong BCL \left(B_{N_{u^*}} \cong BINT \left(U_1^\circ \right) \right)[1]$;

2. Bipolar Neutrosophic α -Closed set (Neu-α CS) if $B_{N_{u^*}} \cong BCL \left(B_{N_{u^*}} \cong BINT \left(B_{N_{u^*}} \cong BCL \left(U_1^\circ \right) \right) \right) \subseteq U_1^\circ [1]$;

3. Bipolar Neutrosophic semi Closed set (BNeu-SCS) if $B_{N_{u^*}} \cong BINT \left(B_{N_{u^*}} \cong BCL \left(U_1^\circ \right) \right) \subseteq U_1^\circ [7]$;

4. Bipolar Neutrosophic pre Closed set (BNeu-PCS) if $B_{N_{u^*}} \cong BCL \left(B_{N_{u^*}} \cong BINT \left(U_1^\circ \right) \right) \subseteq U_1^\circ [15]$.

Definition 2.8. Let $\left(B_{N_{u^*}}, B_{N_{S_5}} \right)$ be a BNTS. Then U_1° is called:

1. Bipolar Neutrosophic (regular open) set BNeu-ROS if $U_1^\circ = B_{N_{u^*}} \cong BINT \left(B_{N_{u^*}} \cong BCL \left(U_1^\circ \right) \right)[1]$;

2. Bipolar Neutrosophic (–open) set (BNeu–OS) if $U_1^\circ \subseteq B_{N_{u^*}} \cong BINT \left(B_{N_{u^*}} \cong BCL \left(B_{N_{u^*}} \cong BINT \left(U_1^\circ \right) \right) \right), [1]$;
(3) Bipolar Neutrosophic (semi open) set (BNeu-SOS) if
\[U_1^\circ \subseteq BN_{eu} \approx BCL\left(BN_{eu} \approx BINT\left(U_1^\circ \right) \right), \] [7];

(4) Bipolar Neutrosophic (pre open) set (BNeu-POS) if
\[U_1^\circ \subseteq BN_{eu} \approx BINT\left(BN_{eu} \approx BCL\left(U_1^\circ \right) \right), \] [15].

Definition 2.9. A bipolar Neutrosophic set \(U_1^\circ \) of a BNTS \(\left(BN_{eu}^{\circ}, BN_{eu}^{\circ} \right) \) is called

(1) Bipolar Neutrosophic (Bg-closed) if \(BN_{eu} \approx BCL\left(U_1^\circ \right) \subseteq BG_i^\circ \) whenever \(U_1^\circ \subseteq BG_i^\circ \) and \(BG_i^\circ \) is Bipolar Neutrosophic open, [3];

(2) Bipolar Neutrosophic (Bsg-closed) if \(BN_{eu} \approx (BS_\delta) BCL\left(U_1^\circ \right) \subseteq BG_i^\circ \) whenever \(U_1^\circ \subseteq BG_i^\circ \) and \(BG_i^\circ \) is Bipolar Neutrosophic semi open, [14];

(3) Bipolar Neutrosophic (Bg-closed) if \(BN_{eu} \approx BCL\left(U_1^\circ \right) \subseteq BG_i^\circ \) whenever \(U_1^\circ \subseteq BG_i^\circ \) and \(BG_i^\circ \) is Bipolar Neutrosophic g-open, [2];

(4) Bipolar Neutrosophic (Bg-closed) if \(BN_{eu} \approx (\alpha) BCL\left(U_1^\circ \right) \subseteq BG \) whenever \(U_1^\circ \subseteq BG_i^\circ \) and \(BG_i^\circ \) is bipolar Neutrosophic - open, [8];

(5) Bipolar Neutrosophic (Bg-closed) if \(BN_{eu} \approx (\alpha) BCL\left(U_1^\circ \right) \subseteq BG_i^\circ \) whenever \(U_1^\circ \subseteq BG_i^\circ \) and \(BG_i^\circ \) is bipolar Neutrosophic - open, [4];

(6) Bipolar Neutrosophic (Bw-closed) if \(BN_{eu} \approx BCL\left(U_1^\circ \right) \subseteq BG \) whenever \(U_1^\circ \subseteq BG_i^\circ \) and \(BG_i^\circ \) is Bipolar Neutrosophic semi open, [13];

(7) Bipolar Neutrosophic (BgP-closed) if \(BN_{eu} \approx (P) BCL\left(U_1^\circ \right) \subseteq BG_i^\circ \) whenever \(U_1^\circ \subseteq BG_i^\circ \) and \(BG_i^\circ \) is Bipolar Neutrosophic open, [9];

(8) Bipolar Neutrosophic (Bgs-closed) if \(BN_{eu} \approx (S) BCL\left(U_1^\circ \right) \subseteq BG_i^\circ \) whenever \(U_1^\circ \subseteq BG_i^\circ \) and \(BG_i^\circ \) is Bipolar Neutrosophic open, [14].

The complements of the above mentioned closed set are their respective open sets.

Definition 2.10. If \(U_1^\circ \) is a Bipolar Neutrosophic set in BNTS \(\left(BN_{eu}^{\circ}, BN_{eu}^{\circ} \right) \) then

(1) \(BN_{eu} \approx (S) BC_L\left(U_1^\circ \right) = \cap \{ K_i^\circ : U_1^\circ \subseteq K_i^\circ, K_i^\circ \in BN_{eu} \left(S \right) \} \)}
(2) $BN_{eu} \approx (P) BC_L(U_1^\circ) = \cap\{K_1^\circ : U_1^\circ \subseteq K_1^\circ, K_1^\circ \text{ is } BN_{eu}(P)C_S\} \]

(3) $BN_{eu} \approx (\alpha) BC_L(U_1^\circ) = \cap\{K_1^\circ : U_1^\circ \subseteq K_1^\circ, K_1^\circ \text{ is } BN_{eu}(\alpha)C_S\} \]

Remark 2.1. (1) Every $BN_{eu}C_S$ is $BN_{eu}(g)C_S$.

(2) Every $BN_{eu}(\alpha)C_S$ is $BN_{eu}(\alpha g)C_S$.

(3) Every $BN_{eu}(g)C_S$ is $BN_{eu}(g\alpha)C_S$.

(4) Every $BN_{eu}(\alpha g)C_S$ is $BN_{eu}(g\alpha)C_S$.

(5) Every $BN_{eu}(w)C_S$ is Nu(g)CS.

(6) Every $BN_{eu}(g)C_S$ is $BN_{eu}(w)C_S$.

(7) Every $BN_{eu}(sg)C_S$ is $BN_{eu}(sg)C_S$.

Lemma 2.1. Let U_1° and U_2° be any two BNSs of a BNTS $(BN_{u^\circ}, BN_{u^\circ})$. Then:

(a) U_1° is a $BN_{eu}C_S$ in $BN_{u^\circ} \Leftrightarrow BN_{eu} \approx BC_L(U_1^\circ) = (U_1^\circ)$

(b) U_1° is a $BN_{eu}O_S$ in $BN_{u^\circ} \Leftrightarrow BN_{eu} \approx BINT(U_1^\circ) = (U_1^\circ)$

(c) $BN_{eu} \approx BCL(U_1^\circ) = (BN_{eu} \approx BINT(U_1^\circ))C$.

(d) $BN_{eu} \approx BINT(U_1^\circ) = (BN_{eu} \approx BCL(U_1^\circ))C$.

(e) $U_1^\circ \subseteq U_2^\circ \Rightarrow BN_{eu} \approx BINT(U_1^\circ) \subseteq BN_{eu} \approx BINT(U_2^\circ)$.

(f) $U_1^\circ \subseteq U_2^\circ \Rightarrow BN_{eu} \approx BCL(U_1^\circ) \subseteq BN_{eu} \approx BCL(U_2^\circ)$.

(g) $BN_{eu} \approx BCL(U_1^\circ \cup U_2^\circ) \Rightarrow BN_{eu} \approx BCL(U_1^\circ) \cup BN_{eu} \approx BCL(U_2^\circ)$.

(h) $BN_{eu} \approx INT(U_1^\circ \cap U_2^\circ) \Rightarrow BN_{eu} \approx BINT(U_1^\circ) \cap BN_{eu} \approx BINT(U_2^\circ)$.

3. BIPOLAR NEUTROSOPHIC WEAKLY B g°-CLOSED
Definition 3.1. A bipolar Neutrosophic set U_1° of a BNTS $\left(BN_{u^\circ},BN_{s^\circ} \right)$ is called bipolar Neutrosophic weakly B_g° -closed if $BN_{eu} \approx BC_L\left(BN_{eu} \approx BINT\left(U_1^\circ \right) \right) \subseteq P_1^\circ$ whenever $U_1^\circ \subseteq P_1^\circ$ and P_1° is Bipolar Neutrosophic g-open in BN_{u°.

Theorem 3.1. Every $BN_{eu}\left(W \right)C_S$ set is $BN_{eu}\left(W^g \right)C_S$.

Proof. Let U_1° is $BN_{eu}\left(W \right)C_S$. Let $U_1^\circ \subseteq J_1^\circ$ and $J_1^\circ BN_{eu}\left(S \right)O_S$ in BN_{u°.

Since every $BN_{eu}\left(S \right)O_S$ is $BN_{eu}\left(g \right)O_S J_1^\circ$ is $BN_{eu}\left(g \right)O_S$.

Using definition $BN_{eu}\left(W \right)C_S BN_{eu} \approx BC_L\left(U_1^\circ \right) \subseteq J_1^\circ$.

But $BN_{eu} \approx BC_L\left(BN_{eu} \approx BINT\left(U_1^\circ \right) \right) \subseteq BN_{eu} \approx BC_L\left(U_1^\circ \right) \subseteq J_1^\circ$. We have $BN_{eu} \approx BC_L\left(BN_{eu} \approx BINT\left(U_1^\circ \right) \right) \subseteq J_1^\circ$ whenever $U_1^\circ \subseteq J_1^\circ$ and J_1° is $BN_{eu}\left(S \right)O_S$ in BN_{u°. Therefore U_1° is $BN_{eu}\left(W^g \right)C_S$.

Theorem 3.2. Every $BN_{eu}\left(g^\circ \right)C_S$ is $BN_{eu}\left(W^g \right)C_S$.

Proof. Let U_1° is $BN_{eu}\left(g^\circ \right)C_S$. Let $U_1^\circ \subseteq J_1^\circ$ and J_1° is $BN_{eu}\left(g \right)O_S$ in BN_{u°. Using definition $BN_{eu}\left(g^\circ \right)C_S BN_{eu} \approx BC_L\left(U_1^\circ \right) \subseteq J_1^\circ$. But $BN_{eu} \approx BC_L\left(BN_{eu} \approx BINT\left(U_1^\circ \right) \right) \subseteq BN_{eu} \approx BC_L\left(U_1^\circ \right) \subseteq J_1^\circ$. We have $BN_{eu} \approx BC_L\left(BN_{eu} \approx BINT\left(U_1^\circ \right) \right) \subseteq J_1^\circ$ whenever $U_1^\circ \subseteq J_1^\circ$ and J_1° is $BN_{eu}\left(g \right)O_S$ in BN_{u°. Therefore U_1° is $BN_{eu}\left(W^g \right)C_S$.

Theorem 3.3. Every $BN_{eu}\left(g \right)C_S$ is $BN_{eu}\left(W^g \right)C_S$.

Proof. U_1° is $BN_{eu}\left(g \right)C_S$. $U_1^\circ \subseteq J_1^\circ$ and $J_1^\circ BN_{eu}\left(O_S \right)$ in BN_{u°. Since every $BN_{eu}\left(O_S \right)$ is $BN_{eu}\left(g \right)O_S J_1^\circ$ is $BN_{eu}\left(g \right)O_S$.

Presently using definition $BN_{eu}\left(g \right)C_S BN_{eu} \approx BC_L\left(U_1^\circ \right) \subseteq J_1^\circ$.

High Technology Letters
Volume 26, Issue 8, 2020
ISSN NO : 1006-6748
http://www.gjstx-e.cn/
But $BN_{eu} \approx BCL(BN_{eu} \approx BINT(U_1^\circ)) \subseteq BN_{eu} \approx BCL(U_1^\circ) \subseteq J_1^\circ$. We have

$BN_{eu} \approx BCL(BN_{eu} \approx BINT(U_1^\circ)) \subseteq J_1^\circ$ whenever $U_1^\circ \subseteq J_1^\circ$ and J_1° is $BN_{eu}(g)O_S$ in BN_{eu}. Therefore U_1° is $BN_{eu}(W_g^\circ)C_S$ set.

Theorem 3.4. Every $BN_{eu}(\alpha g)C_S$ is $BN_{eu}(W_g^\circ)C_S$.

Proof. Let U_1° is $BN_{eu}(\alpha g)C_S$. Let $U_1^\circ \subseteq J_1^\circ$ and J_1° in BN_{eu}. Since every $BN_{eu}O_S$ is $BN_{eu}(g)O_SJ_1^\circ$ is $BN_{eu}(g)O_S$.

Presently using definition $BN_{eu}(\alpha g)CS$, $BN_{eu}(\alpha) \approx BCL(U_1^\circ) \subseteq J_1^\circ$.

But $BN_{eu} \approx (\alpha)BCL(U_1^\circ) \subseteq BN_{eu} \approx BCL(U_1^\circ)$

Therefore $BN_{eu} \approx BCL(U_1^\circ) \subseteq J_1^\circ$. Now

$BN_{eu} \approx BCL(BN_{eu} \approx BINT(U_1^\circ)) \subseteq BN_{eu} \approx BCL(U_1^\circ) \subseteq J_1^\circ$.

We have $BN_{eu} \approx BCL(BN_{eu} \approx BINT(U_1^\circ)) \subseteq J_1^\circ$ whenever $U_1^\circ \subseteq J_1^\circ$ and J_1° is $BN_{eu}(g)O_S$ in BN_{eu}. Therefore U_1° is $BN_{eu}(W_g^\circ)C_S$.

Theorem 3.5. Every $BN_{eu}(\alpha g)C_S$ is $BN_{eu}(W_g^\circ)C_S$.

Proof. From theorem 3.4 we get every $BN_{eu}(\alpha g)C_S$ is $BN_{eu}(W_g^\circ)C_S$.

Theorem 3.6 Every $BN_{eu}(gP)C_S$ is $BN_{eu}(W_g^\circ)C_S$.

Proof. Let U_1° is $BN_{eu}(gP)C_S$. Let $U_1^\circ \subseteq J_1^\circ$ J_1° in BN_{eu}. Since every $BN_{eu}O_S$ is $BN_{eu}(g)O_SJ_1^\circ$ is $BN_{eu}(g)O_S$.

Presently using definition $BN_{eu}(P)C_SBN_{eu}(P) \approx BCL(U_1^\circ) \subseteq J_1^\circ$.

But $BN_{eu} \approx (P)BCL(U_1^\circ) \subseteq BN_{eu} \approx BCL(U_1^\circ)$

Therefore $BN_{eu} \approx BCL(U_1^\circ) \subseteq U_1^\circ$.

Now $BN_{eu} \approx BCL(BN_{eu} \approx BINT(U_1^\circ)) \subseteq BN_{eu} \approx BCL(U_1^\circ) \subseteq J_1^\circ$.

High Technology Letters

Volume 26, Issue 8, 2020

ISSN NO: 1006-6748

http://www.gjstx-e.cn/
We have \(BN_{eu} \approx BCL \left(BN_{eu} \approx BINT \left(U_{1}^{\circ} \right) \right) \subseteq J_{1}^{\circ} \) whenever \(U_{1}^{\circ} \subseteq J_{1}^{\circ} \) and \(J_{1}^{\circ} \) is \(BN_{eu} \left(g \right) O_{S} \) in \(BN_{au}^{\circ} \). Therefore \(U_{1}^{\circ} \) is \(BN_{eu} \left(W_{g}^{\circ} \right) C_{S} \).

Corollary 3.1.

1. Every \(BN_{eu} C_{S} \) is \(BN_{eu} \left(W_{g}^{\circ} \right) C_{S} \).
2. Every \(BN_{eu} (\alpha) C_{S} \) is \(BN_{eu} \left(W_{g}^{\circ} \right) C_{S} \).
3. Every \(BN_{eu} (P) C_{S} \) is \(BN_{eu} \left(W_{g}^{\circ} \right) C_{S} \).
4. Every \(BN_{eu} (R) C_{S} \) is \(BN_{eu} \left(W_{g}^{\circ} \right) C_{S} \).

Proof. Obvious.

Theorem 3.7 Let \(U_{1}^{\circ} \) is \(BN_{eu} \left(W_{g}^{\circ} \right) C_{S} \) is a BNTS \(\left(BN_{au}^{\circ}, BN_{S}^{\circ} \right) \) and \(U_{1}^{\circ} \subseteq U_{2}^{\circ} \subseteq BN_{eu} \approx BCL \left(BN_{eu} \approx BINT \left(U_{1}^{\circ} \right) \right) \). Then \(U_{2}^{\circ} \) is \(BN_{eu} \left(W_{g}^{\circ} \right) C_{S} \) in \(BN_{au}^{\circ} \).

Proof.

Let \(P_{1}^{\circ} \) is \(BN_{eu} \left(g \right) O_{S} \) in \(BN_{au}^{\circ} \) such that \(U_{2}^{\circ} \subseteq P_{1}^{\circ} \). Then \(U_{1}^{\circ} \subseteq P_{1}^{\circ} \) and since \(U_{1}^{\circ} \) is \(BN_{eu} \left(W_{g}^{\circ} \right) C_{S} \), \(BN_{eu} \approx BCL \left(BN_{eu} \approx BINT \left(U_{1}^{\circ} \right) \right) \subseteq P_{1}^{\circ} \).

Now \(U_{2}^{\circ} \subseteq BN_{eu} \approx BCL \left(BN_{eu} \approx BINT \left(U_{1}^{\circ} \right) \right) \)

\[
\Rightarrow BN_{eu} \approx BCL \left(BN_{eu} \approx BINT \left(U_{2}^{\circ} \right) \right) \subseteq BN_{eu} \approx BCL \left(BN_{eu} \approx BINT \left(U_{1}^{\circ} \right) \right) \]

\[
\Rightarrow BN_{eu} \approx BCL \left(BN_{eu} \approx BINT \left(U_{2}^{\circ} \right) \right) \subseteq BN_{eu} \approx BCL \left(BN_{eu} \approx BINT \left(U_{1}^{\circ} \right) \right) \subseteq P_{1}^{\circ} .
\]

Consequently \(U_{2}^{\circ} \) is \(BN_{eu} \left(W_{g}^{\circ} \right) C_{S} \).

Definition 3.8 A Bipolar Neutrosophic set \(U_{1}^{\circ} \) of a BNTS \(\left(BN_{au}^{\circ}, BN_{S}^{\circ} \right) \) is called \(BN_{eu} \left(g^{\circ} \right) O_{S} \) iff \(U_{1}^{\circ c} \) is \(BN_{eu} \left(g^{\circ} \right) C_{S} \).

Remark 3.9 Every \(BN_{eu} \left(W \right) O_{S} \) is \(BN_{eu} \left(W_{g}^{\circ} \right) O_{S} \).
Theorem 3.8. A Bipolar Neutrosophic set U_1° of a BNTS $\left(BN_{a^p}, BN_{s^c} \right), BN_{eu}(W_{g^o})O_S$ if $M_1^\circ \subseteq BN_{eu} \approx BCL(BN_{eu} \approx BINT(U_1^\circ))$ whenever M_1° is $BN_{eu}(g)C_S$ and $M_1^\circ \subseteq U_1^\circ$.

Proof: Follows from Definition 3.8.

Theorem 3.9. U_1° is $BN_{eu}(W_{g^o})O_S$ of a BNTS $\left(BN_{a^p}, BN_{s^c} \right)$ and $BN_{eu} \approx BCL(BN_{eu} \approx BINT(U_1^\circ)) \subseteq U_2^\circ \subseteq U_1^\circ$. Then U_2° is $BN_{eu}(W_{g^o})O_S$.

Proof. Suppose U_1° is a $BN_{eu}(W_{g^o})O_S$ in BN_{a^p} and $BN_{eu} \approx BCL(BN_{eu} \approx BINT(U_1^\circ)) \subseteq U_2^\circ \subseteq U_1^\circ$.

$\Rightarrow U_1^{oc} \subseteq U_2^{oc} \subseteq (BN_{eu} \approx BCL(BN_{eu} \approx BINT(U_1^\circ)))^c$

$\Rightarrow U_1^{oc} \subseteq U_2^{oc} \subseteq BN_{eu} \approx BCL(BN_{eu} \approx BINT(U_1^{oc}))$ and U_1^{oc} is $BN_{eu}(W_{g^o})C_S$ it follows from theorem 3.8 that U_2^{oc} is $BN_{eu}(W_{g^o})C_S$. Hence U_2^{oc} is $BN_{eu}(W_{g^o})O_S$.

REFERENCES

1. A. ATKINSWESTLEY, S. CHANDRASEKAR: Neutrosophic g_- closed sets (Communicated)

