See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/343880798

BIPOLAR NEUTROSOPHIC WEAKLY BG* -CLOSED SETS

Article in High Technology Letters • August 2020

CItATIONS
0

5 authors, including:

Vunnam Venkateswara Rao
Vignan University
26 PUBLICATIONS 45 CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects:

BIPOLAR NEUTROSOPHIC WEAKLY $B G^{\oplus}$-CLOSED SETS

T. Siva Nageswara Rao ${ }^{1}$, G. Upender Reddy ${ }^{2}$, V. Venkateswara Rao ${ }^{3}$, Y. Srinivasa Rao ${ }^{4}$
${ }^{1 \& 3}$ Division of Mathematics, V.F.S.T.R (Deemed to be University), Vadlamudi, Guntur (Dt.), A.P, India.
${ }^{2}$ Department of Mathematics, Nizam College (A), Osmania University, Basheerbagh, Hyderabad, TS, India.
${ }^{4}$ Research Scholar, Department of Mathematics, Acharya Nagarjuna University, Guntur (Dt.), A.P, India.

Abstract

In this paper are presented and explored new sort of bipolar Neutrosophic closed set which is known as bipolar Neutrosophic feebly $B g^{\oplus}$ - closed sets in BNTSs and furthermore talked about properties and portrayal.

Key Words: Bipolar Neutrosophic sets, Bipolar Neutrosophic week closed sets, Bipolar Neutrosophic regular open sets and Bipolar Neutrosophic regular closed sets

1. INTRODUCTION

A. Salama presented NTSs in [2, 3] by utilizing Smarandache's NSs, $[7,8]$. Neutrosophic g closed set presented by R. Dhavasheelan et al. in [5, 6], what's more, Neutrosophic g^{\oplus} closed sets introduced by A. Atkinswesley et al. in [1]. Point of this current paper is, to present and research about new sort of Bipolar Neutrosophic closed set is known as bipolar Neutrosophic weakly B g^{\oplus}-closed sets in BNTS and furthermore examined about properties and portrayal. In 2016 derived the idea of the neutrosophic topology. The author also have the some more research work on neutrosophic theory see the references [9-17].

2. PRELIMINARIES

Definition 2.1: Consider Bipolar Neutrosophic set U_{1}^{\otimes} is in the form
$U_{1}^{\otimes}=\left\{<u, \varepsilon_{U_{p}^{\otimes}}(u), \phi_{U_{p}^{\otimes}}(u), \varphi_{U_{p}^{\otimes}}(u) \varepsilon_{U_{N}^{\otimes}}(u), \phi_{U_{N}^{\otimes}}(u), \varphi_{U_{N}^{\otimes}}(u)>: u \in B N_{u_{Y}^{\otimes}}\right\}$,
where $\varepsilon_{U_{P}^{\otimes}}(u), \varepsilon_{U_{N}^{\otimes}}(u)$ denotes membership function, $\phi_{U_{P}^{\otimes}}(u), \phi_{U_{N}^{\otimes}}(u)$ denotes indeterminacy and $\varphi_{U_{P}^{\otimes}}(u), \varphi_{U_{P}^{\otimes}}(u)$ denotes non-membership function w.r.t. positive and negative ways.

Definition 2.2: Bipolar Neutrosophic set is the set
$U_{1}^{\otimes}=\left\{<u, \varepsilon_{U_{p}^{\otimes}}(u), \phi_{U_{p}^{\otimes}}(u), \varphi_{U_{p}^{\otimes}}(u) \varepsilon_{U_{N}^{\otimes}}(u), \phi_{U_{N}^{\otimes}}(u), \varphi_{U_{N}^{\otimes}}(u)>: u \in B N_{u_{Y}^{\otimes}}\right\}$ on $B N_{u_{\gamma}^{\otimes}}$ and $\forall u \in B N_{u_{\gamma}^{\otimes}}$.

Then complement of U_{1}^{\otimes} is
$U_{1}^{\otimes C}=\left\{<u, \varphi_{U_{P}^{\otimes}}(u), 1-\phi_{U_{P}^{\otimes}}(u), \varepsilon_{U_{P}^{\otimes}}(u), \varphi_{U_{N}^{\otimes}}(u), 1-\phi_{U_{N}^{\otimes}}(u), \varepsilon_{U_{N}^{\otimes}}(u)>: u \in B N_{u_{V}^{\otimes}}\right\}$

Definition 2.3. Let U_{1}^{\otimes} and U_{2}^{\otimes} are two BNSs,

$$
\begin{aligned}
& \forall u \in B N_{u_{Y}^{\otimes}}, U_{1}^{\otimes}=\left\{<u, \varepsilon_{U_{1 p}^{\otimes}}(u), \phi_{U_{1 P}^{\otimes}}(u), \varphi_{U_{1 p}^{\otimes}}(u) \varepsilon_{U_{U_{N}^{8}}^{\otimes}}(u), \phi_{U_{1 N}^{\otimes}}(u), \varphi_{U_{1 N}^{\otimes}}(u)>: u \in B N_{u_{Y}^{\otimes}}\right\}, \\
& \forall u \in B N_{u_{Y}^{\otimes}}, U_{2}^{\otimes}=\left\{<u, \varepsilon_{U_{2 p}^{\otimes}}(u), \phi_{U_{2 p}^{\otimes}}(u), \varphi_{U_{2 p}^{\otimes}}(u) \varepsilon_{U_{2 N}^{\otimes}}(u), \phi_{U_{2 N}^{\otimes}}(u), \varphi_{U_{2 N}^{\otimes}}(u)>: u \in B N_{u_{Y}^{\otimes}}\right\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& U_{1}^{\otimes} \subseteq U_{2}^{\otimes} \Leftrightarrow \varepsilon_{U_{1 p}^{\otimes}}(u) \leq \varepsilon_{U_{2 p}^{\otimes}}(u), \varepsilon_{U_{1 N}^{\otimes}}(u) \leq \varepsilon_{U_{2 N}^{\otimes}}(u), \\
& \phi_{U_{1 P}^{\oplus}}^{\otimes}(u) \leq \phi_{U_{2 p}^{\ominus}}^{\otimes}(u), \phi_{U_{1 N}^{\ominus}}(u) \leq \phi_{U_{2 N}^{\otimes}}(u), \\
& \varphi_{U_{1 P}^{\ominus}}(u) \geq \varphi_{U_{2 P}^{\otimes}}(u), \varphi_{U_{1 N}^{\otimes}}(u) \geq \varphi_{U_{2 N}^{\ominus}}(u)
\end{aligned}
$$

Definition 2.4. Let U_{1}^{\otimes} and U_{2}^{\otimes} be two BNSs are

$$
\begin{aligned}
& \forall u \in B N_{u_{\gamma}^{\ominus}}, U_{1}^{\otimes}=\left\{<u, \varepsilon_{U_{1 p}^{\ominus}}(u), \phi_{U_{1 p}^{\ominus}}(u), \varphi_{U_{1 p}^{\oplus}}(u) \varepsilon_{U_{1 N}^{\oplus}}(u), \phi_{U_{1 N}^{\otimes}}(u), \varphi_{U_{1 N}^{\otimes}}(u)>: u \in B N_{u_{\gamma}^{\ominus}}\right\} \\
& \left.\forall u \in B N_{u_{Y}^{\otimes}}, U_{2}^{\otimes}=\left\{<u, \varepsilon_{U_{2 p}^{\otimes}}(u), \phi_{U_{2 p}^{®}}(u), \varphi_{U_{2 p}^{\otimes}}(u) \varepsilon_{U_{2 N}^{\otimes}}(u), \phi_{U_{2 N}^{\otimes}}(u), \varphi_{U_{2 N}^{\otimes}}(u)\right\rangle: u \in B N_{u_{Y}^{\otimes}}\right\}
\end{aligned}
$$

Then
$U_{1}^{\otimes} \cap U_{2}^{\otimes}=\left\{\begin{array}{l}\left\langle r, \varepsilon_{U_{1 P}^{\otimes}}(u) \cap \varepsilon_{U_{2 P}^{\otimes}}(u), \varepsilon_{U_{1 N}^{\otimes}}(u) \cap \varepsilon_{U_{2 N}^{\otimes}}(u)\right. \\ \phi_{U_{1 P}^{\otimes}}(u) \cap \phi_{U_{2 p}^{\otimes}}(u), \phi_{U_{1 N}^{\otimes}}(u) \cap \phi_{U_{2 N}^{\otimes}}(u) \\ \varphi_{U_{1 P}^{\otimes}}(u) \cup \varphi_{U_{2 p}^{\otimes}}(u), \varphi_{U_{1 N}^{\otimes}}(u) \cup \varphi_{U_{2 N}^{\otimes}}(u)>: u \in N_{u_{Y}^{\otimes}}\end{array}\right\}$

Definition 2.5 Let $B N_{u_{\gamma}^{\otimes}}$ be non-empty set and $B N_{S \zeta}$ be the collection of bipolar Neutrosophic subsets of $\mathrm{B} N_{u_{\gamma}^{\otimes}}$ satisfying the accompanying properties:
(1) $0_{N_{u}^{*}}, 1_{N_{u}^{*}} \in B N_{S \zeta}$
(2) $B N_{u s_{1}}^{*} \cap B N_{u s_{2}}^{*} \in B N_{S \zeta}$ for any $B N_{u s_{1}}^{*}, B N_{u s_{2}}^{*} \in B N_{S \zeta}$
(3) $\cup B N_{u s_{i}}^{*} \in B N_{S \zeta}$ for every $B N_{u s_{i}}^{*}: i \in j \subseteq B N_{s \zeta}$.

Then the space $\left(B N_{u_{\zeta}^{\ominus}}, B N_{S \zeta}\right)$, is known a BNTS (BNS -T-S). The component of $B N_{S \zeta}$ are called BNS-OS (Bipolar Neutrosophic open set) and its complement is BNS-CS (Bipolar Neutrosophic closed set)

Example 1. Let $\mathrm{B} N_{u_{\gamma}^{\otimes}}=\{u\}$ and $\forall u \in B N_{u_{\gamma}^{\ominus}}$
$U_{1}^{\otimes}=\left\langle u,-6 \times 10^{-1},-6 \times 10^{-1},-6 \times 10^{-1}, 6 \times 10^{-1}, 6 \times 10^{-1}, 6 \times 10^{-1}\right\rangle$,
$U_{2}^{\otimes}=\left\langle u,-5 \times 10^{-1},-7 \times 10^{-1},-9 \times 10^{-1}, 5 \times 10^{-1}, 7 \times 10^{-1}, 9 \times 10^{-1}\right\rangle$
$U_{3}^{\otimes}=\left\langle u,-3 \times 10^{-1},-4 \times 10^{-1},-7 \times 10^{-1}, 6 \times 10^{-1}, 7 \times 10^{-1}, 5 \times 10^{-1}\right\rangle$,
$U_{4}^{\otimes}=\left\langle u,-2 \times 10^{-1},-6 \times 10^{-1},-4 \times 10^{-1}, 5 \times 10^{-1}, 6 \times 10^{-1}, 9 \times 10^{-1}\right\rangle$
Then collection $B N_{S \zeta}=\left\{0_{N_{u}^{*}}, U_{1}^{\otimes}, U_{2}^{\otimes}, U_{3}^{\otimes}, U_{4}^{\otimes}, 1_{N_{u}^{*}}\right\}$ is known as BNS-T-S on $N_{u_{\gamma}^{\otimes}}$.
Definition 2.6. Let $\left(B N_{u_{r}^{\otimes}}, B N_{S \zeta}\right)$ be BNTS. Then Bipolar Neutrosophic closure of U_{1}^{\otimes} is $B N_{u} \approx B C L\left(U_{1}^{\otimes}\right)=\cap\left\{L: L\right.$ is a Bipolar Neutrosophic Closed set in $B N_{u_{\gamma}^{\otimes}}$ and $\left.U_{1}^{\otimes} \subseteq L\right\}$.

Bipolar Neutrosophic interior of U_{1}^{\otimes} is:
$B N_{u} \approx \operatorname{BINT}\left(U_{1}^{\otimes}\right)=\cup\left\{L_{1}: L_{1}\right.$ is a Bipolar Neutrosophic Open set in $B N_{u_{\gamma}^{\otimes}}$ and $\left.L_{1} \subseteq U_{1}^{\otimes}\right\}$.
Definition 2.7. Let $\left(B N_{u_{Y}^{\otimes}}, B N_{S \zeta}\right)$ be a BNTS. Then U_{1}^{\otimes} is known as
(1) Bipolar Neutrosophic regular Closed set (BNeu-RCS) if $U_{1}^{\otimes}=B N_{e u} \approx B C L\left(B N_{e u} \approx B I N T\left(U_{1}^{\otimes}\right)\right)[1] ;$
(2) Bipolar Neutrosophic α-Closed set (Neu- $\alpha \mathrm{CS}$) if $B N_{e u} \approx B C L\left(B N_{e u} \approx \operatorname{BINT}\left(B N_{e u} \approx B C L\left(U_{1}^{\otimes}\right)\right)\right) \subseteq U_{1}^{\otimes}[1] ;$
(3) Bipolar Neutrosophic semi Closed set (BNeu-SCS) if $B N_{e u} \approx \operatorname{BINT}\left(B N_{e u} \approx B C L\left(U_{1}^{\otimes}\right)\right) \subseteq U_{1}^{\otimes}$ [7];
(4) Bipolar Neutrosophic pre Closed set (BNeu-PCS) if $B N_{e u} \approx B C L\left(B N_{e u} \approx B I N T\left(U_{1}^{\otimes}\right)\right) \subseteq U_{1}^{\otimes}[15] ;$

Definition 2.8. Let $\left(B N_{u_{\gamma}^{\otimes}}, B N_{S \zeta}\right)$ be a BNTS. Then U_{1}^{\otimes} is called:
(1) Bipolar Neutrosophic (regular open) set BNeu-ROS) if $U_{1}^{\otimes}=B N_{e u} \approx \operatorname{BINT}\left(B N_{e u} \approx B C L\left(U_{1}^{\otimes}\right)\right),[1] ;$
(2) Bipolar Neutrosophic (_-open) set (BNeu-_ OS) if $U_{1}^{\otimes} \subseteq B N_{e u} \approx \operatorname{BINT}\left(B N_{e u} \approx B C L\left(B N_{e u} \approx B I N T\left(U_{1}^{\otimes}\right)\right)\right),[1] ;$
(3) Bipolar Neutrosophic (semi open) set (BNeu-SOS) if
$U_{1}^{\otimes} \subseteq B N_{e u} \approx B C L\left(B N_{e u} \approx \operatorname{BINT}\left(U_{1}^{\otimes}\right)\right)$,[7];
(4) Bipolar Neutrosophic (pre open) set (BNeu-POS) if $U_{1}^{\otimes} \subseteq B N_{e u} \approx \operatorname{BINT}\left(B N_{e u} \approx B C L\left(U_{1}^{\otimes}\right)\right),[15]$.

Definition 2.9. A bipolar Neutrosophic set U_{1}^{\otimes} of a BNTS $\left(B N_{u_{Y}^{\otimes}}, B N_{S \zeta}\right)$ is called
(1) Bipolar Neutrosophic (Bg-closed) if $B N_{e u} \approx B C L\left(U_{1}^{\otimes}\right) \subseteq B G_{1}^{\oplus}$ whenever $U_{1}^{\otimes} \subseteq B G_{1}^{\oplus}$ and $B G_{1}^{\oplus}$ is Bipolar Neutrosophic open, [3];
(2) Bipolar Neutrosophic (Bsg-closed) if $B N_{e u} \approx\left(B S_{g}\right) B C L\left(U_{1}^{\otimes}\right) \subseteq B G_{1}^{\oplus}$ whenever $U_{1}^{\otimes} \subseteq B G_{1}^{\oplus}$ and $B G_{1}^{\oplus}$ is Bipolar Neutrosophic semi open, [14];
(3) Bipolar Neutrosophic (Bg_-closed) if $B N_{e u} \approx B C L\left(U_{1}^{\otimes}\right) \subseteq B G_{1}^{\oplus}$ whenever $U_{1}^{\otimes} \subseteq B G_{1}^{\oplus}$ and $B G_{1}^{\oplus}$ is Bipolar Neutrosophic g-open, [2];
(4) Bipolar Neutrosophic (Bg-closed) if $B N_{e u} \approx(\alpha) B C L\left(U_{1}^{\otimes}\right) \subseteq B G$ whenever $U_{1}^{\otimes} \subseteq B G_{1}^{\oplus}$ and $B G_{1}^{\oplus}$ is bipolar Neutrosophic - open, [8];
(5) Bipolar Neutrosophic (Bg_-closed) if $B N_{e u} \approx(\alpha) B C L\left(U_{1}^{\otimes}\right) \subseteq B G_{1}^{\oplus} \quad$ whenever $U_{1}^{\otimes} \subseteq B G_{1}^{\oplus}$ and $B G_{1}^{\oplus}$ is bipolar Neutrosophic _- open, [4];
(6) Bipolar Neutrosophic (Bw-closed) if $B N_{e u} \approx B C L\left(U_{1}^{\otimes}\right) \subseteq B G$ whenever $U_{1}^{\otimes} \subseteq B G_{1}^{\oplus}$ and $B G_{1}^{\oplus}$ is Bipolar Neutrosophic semi open, [13];
(7) Bipolar Neutrosophic (BgP-closed) if $B N_{e u} \approx(P) B C L\left(U_{1}^{\otimes}\right) \subseteq B G_{1}^{\oplus} \quad$ whenever $U_{1}^{\otimes} \subseteq B G_{1}^{\oplus}$ and $B G_{1}^{\oplus}$ is Bipolar Neutrosophic open, [9];
(8) Bipolar Neutrosophic (Bgs-closed) if $B N_{e u} \approx(S) B C L\left(U_{1}^{\otimes}\right) \subseteq B G_{1}^{\oplus}$ whenever $U_{1}^{\otimes} \subseteq B G_{1}^{\oplus}$ and $B G_{1}^{\oplus}$ is bipolar Neutrosophic open, [14].

The complements of the above mentioned closed set are their respective open sets.
Definition 2.10. If U_{1}^{\otimes} is a Bipolar Neutrosophic set in $\operatorname{BNTS}\left(B N_{u_{\gamma}^{\otimes}}, B N_{S \zeta}\right)$ then
(1) $B N_{e u} \approx(S) B C_{L}\left(U_{1}^{\otimes}\right)=\cap\left\{K_{1}^{\otimes}: U_{1}^{\otimes} \subseteq K_{1}^{\otimes}, K_{1}^{\otimes}\right.$ is $\left.B N_{e u}(S) C_{s}\right\}$
(2) $B N_{e u} \approx(P) B C_{L}\left(U_{1}^{\otimes}\right)=\cap\left\{K_{1}^{\otimes}: U_{1}^{\otimes} \subseteq K_{1}^{\otimes}, K_{1}^{\otimes}\right.$ is $\left.B N_{e u}(P) C_{S}\right\}$
(3) $B N_{e u} \approx(\alpha) B C_{L}\left(U_{1}^{\otimes}\right)=\cap\left\{K_{1}^{\otimes}: U_{1}^{\otimes} \subseteq K_{1}^{\otimes}, K_{1}^{\otimes}\right.$ is $\left.B N_{e u}(\alpha) C_{s}\right\}$

Remark 2.1. (1) Every $B N_{e u} C_{S}$ is $B N_{e u}(g) C_{S}$.
(2) Every $B N_{e u}(\alpha) C_{S}$ is $B N_{e u}(\alpha g) C_{S}$.
(3) Every $B N_{e u}(g) C_{S}$ is $B N_{e u}(g \alpha) C_{S}$.
(4) Every $B N_{e u}(\alpha g) C_{S}$ is $B N_{e u}(g \alpha) C_{S}$.
(5) Every $B N_{e u}(w) C_{S}$ is $\mathrm{Nu}(\mathrm{g}) \mathrm{CS}$.
(6) Every $B N_{e u}(g) C_{S}$ is $B N_{e u}(w) C_{S}$.
(7) Every $B N_{e u}(s g) C_{S}$ is $B N_{e u}(s g) C_{S}$.

Lemma 2.1. Let U_{1}^{\otimes} and U_{2}^{\otimes} be any two BNSs of a $\operatorname{BNTS}\left(B N_{u_{\gamma}^{\otimes}}, B N_{S \zeta}\right)$. Then:
(a) U_{1}^{\otimes} is a $B N_{e u} C_{S}$ in $B N_{u_{r}^{\otimes}} \Leftrightarrow B N_{e u} \approx B C_{L}\left(U_{1}^{\otimes}\right)=\left(U_{1}^{\otimes}\right)$
(b) U_{1}^{\otimes} is a $B N_{e u} O_{S}$ in $B N_{u_{\gamma}^{\otimes}} \Leftrightarrow B N_{e u} \approx \operatorname{BINT}\left(U_{1}^{\otimes}\right)=\left(U_{1}^{\otimes}\right)$
(c) $B N_{e u} \approx B C L\left(U_{1}^{\otimes}\right)=\left(B N_{e u} \approx B I N T\left(U_{1}^{\otimes}\right)\right) C$.
(d) $B N_{e u} \approx \operatorname{BINT}\left(U_{1}^{\otimes}\right)=\left(B N_{e u} \approx B C L\left(U_{1}^{\otimes}\right)\right) C$
(e) $U_{1}^{\otimes} \subseteq U_{2}^{\otimes} \Rightarrow B N_{e u} \approx B I N T\left(U_{1}^{\otimes}\right) \subseteq B N_{e u} \approx B I N T\left(U_{2}^{\otimes}\right)$.
(f) $U_{1}^{\otimes} \subseteq U_{2}^{\otimes} \Rightarrow B N_{e u} \approx B C L\left(U_{1}^{\otimes}\right) \subseteq B N_{e u} \approx B C L\left(U_{2}^{\otimes}\right)$.
(g) $B N_{e u} \approx B C L\left(U_{1}^{\otimes} \cup U_{2}^{\otimes}\right)_{2}^{\otimes} \Rightarrow B N_{e u} \approx B C L\left(U_{1}^{\otimes}\right) \cup B N_{e u} \approx B C L\left(U_{2}^{\otimes}\right)$.
(h) $B N_{e u} \approx \operatorname{INT}\left(U_{1}^{\otimes} \cap U_{2}^{\otimes}\right)_{2}^{\otimes} \Rightarrow B N_{e u} \approx B I N T\left(U_{1}^{\otimes}\right) \cap B N_{e u} \approx B I N T\left(U_{2}^{\otimes}\right)$.

3. BIPOLAR NEUTROSOPHIC WEAKLY B g^{\otimes}-CLOSED

Definition 3.1. A bipolar Neutrosophic set U_{1}^{\otimes} of a $\operatorname{BNTS}\left(B N_{u_{\gamma}^{\otimes}}, B N_{S \zeta}\right)$ is called bipolar Neutrosophic weakly $B g^{\otimes}$-closed if $B N_{e u} \approx B C_{L}\left(B N_{e u} \approx B I N T\left(U_{1}^{\otimes}\right)\right) \subseteq P_{1}^{\oplus}$ whenever $U_{1}^{\otimes} \subseteq P_{1}^{\oplus}$ and P_{1}^{\oplus} is Bipolar Neutrosophic g-open in B $N_{u_{\gamma}^{\otimes}}$.

Theorem 3.1. Every $B N_{e u}(W) C_{S}$ set is $B N_{e u}\left(W_{g^{\otimes}}\right) C_{S}$.
Proof. Let U_{1}^{\otimes} is $B N_{e u}(W) C_{S}$. Let $U_{1}^{\otimes} \subseteq J_{1}^{\oplus}$ and $J_{1}^{\oplus} B N_{e u}(S) O_{S}$ in B $N_{u_{\gamma}^{\oplus}}$.
Since every $B N_{e u}(S) O_{S}$ is $B N_{e u}(g) O_{S} J_{1}^{\oplus}$ is $B N_{e u}(g) O_{S}$.
Using definition $B N_{e u}(W) C_{S} B N_{e u} \approx B C L\left(U_{1}^{\otimes}\right) \subseteq J_{1}^{\oplus}$.
But $B N_{e u} \approx B C L\left(B N_{e u} \approx B I N T\left(U_{1}^{\otimes}\right)\right) \subseteq B N_{e u} \approx B C L\left(U_{1}^{\otimes}\right) \subseteq J_{1}^{\oplus}$. We have
$B N_{e u} \approx B C L\left(B N_{e u} \approx B I N T\left(U_{1}^{\otimes}\right)\right) \subseteq J_{1}^{\oplus}$ whenever $U_{1}^{\otimes} \subseteq J_{1}^{\oplus}$ and $J_{1}^{\oplus} \quad$ is $B N_{e u}(S) O_{S}$ in $B N_{u_{\gamma}^{\otimes}}$. Therefore U_{1}^{\otimes} is $B N_{e u}\left(W_{g^{\otimes}}\right) C_{S}$.

Theorem 3.2. Every $B N_{e u}\left(g^{\otimes}\right) C_{S}$ is $B N_{e u}\left(W_{g^{\otimes}}\right) C_{S}$.
Proof. Let U_{1}^{\otimes} is $B N_{e u}\left(g^{\otimes}\right) C_{S}$. Let $U_{1}^{\otimes} \subseteq J_{1}^{\oplus}$ and J_{1}^{\oplus} is $B N_{e u}(g) O_{S}$ in $N_{u_{\gamma}^{\otimes}}$. using definition $B N_{e u}\left(g^{\otimes}\right) C_{S} B N_{e u} \approx B C L\left(U_{1}^{\otimes}\right) \subseteq J_{1}^{\oplus}$.But $B N_{e u} \approx B C L\left(B N_{e u} \approx B I N T\left(U_{1}^{\otimes}\right)\right) \subseteq B N_{e u} \approx B C L\left(U_{1}^{\otimes}\right) \subseteq J_{1}^{\oplus}$. We have $B N_{e u} \approx B C L\left(B N_{e u} \approx B I N T\left(U_{1}^{\otimes}\right)\right) \subseteq J_{1}^{\oplus}$ whenever $U_{1}^{\otimes} \subseteq J_{1}^{\oplus}$ and J_{1}^{\oplus} is $B N_{e u}(g) O_{S}$ in $N_{u_{r}^{\otimes}}$. Therefore U_{1}^{\otimes} is $B N_{e u}\left(W_{g^{\otimes}}\right) C_{S}$.

Theorem 3.3. Every $B N_{e u}(g) C_{S}$ is $B N_{e u}\left(W_{g^{\otimes}}\right) C_{S}$.
Proof. U_{1}^{\otimes} is $B N_{e u}(g) C_{S} . U_{1}^{\otimes} \subseteq J_{1}^{\oplus}$ and $J_{1}^{\oplus} B N_{e u} O_{S}$ in $B N_{u_{\gamma}^{\otimes}}$. Since every $B N_{e u} O_{S}$ is $B N_{e u}(g) O_{S} J_{1}^{\oplus}$ is $B N_{e u}(g) O_{S}$.

Presently using definition $B N_{e u}(g) C_{S} B N_{e u} \approx B C L\left(U_{1}^{\otimes}\right) \subseteq J_{1}^{\oplus}$.

But $B N_{e u} \approx B C L\left(B N_{e u} \approx B I N T\left(U_{1}^{\otimes}\right)\right) \subseteq B N_{e u} \approx B C L\left(U_{1}^{\otimes}\right) \subseteq J_{1}^{\oplus}$. We have $B N_{e u} \approx B C L\left(B N_{e u} \approx B I N T\left(U_{1}^{\otimes}\right)\right) \subseteq J_{1}^{\oplus}$ whenever $U_{1}^{\otimes} \subseteq J_{1}^{\oplus}$ and J_{1}^{\oplus} is $B N_{e u}(g) O_{S}$ in $B N_{u_{\gamma}^{\otimes}}$. Therefore U_{1}^{\otimes} is $B N_{e u}\left(W_{g^{\otimes}}\right) C_{S}$ set.

Theorem 3.4. Every $B N_{e u}(\alpha g) C_{S}$ is $B N_{e u}\left(W_{g^{\otimes}}\right) C_{S}$.
Proof. Let U_{1}^{\otimes} is $B N_{e u}(\alpha g) C_{S}$. Let $U_{1}^{\otimes} \subseteq J_{1}^{\oplus}$ and $J_{1}^{\oplus} B N_{e u} O_{s}$ in $B N_{u_{r}^{\otimes}}$. Since every $B N_{e u} O_{S} \quad B N_{e u}(g) O_{S} J_{1}^{\oplus}$ is $B N_{e u}(g) O_{S}$.

Presently using definition $B N_{e u}(\alpha g) C_{S}, B N_{e u}(\alpha) \approx B C L\left(U_{1}^{\otimes}\right) \subseteq J_{1}^{\oplus}$.
But $B N_{e u} \approx(\alpha) B C L\left(U_{1}^{\otimes}\right) \subseteq B N_{e u} \approx B C L\left(U_{1}^{\otimes}\right)$
Therefore $B N_{e u} \approx B C L\left(U_{1}^{\otimes}\right) \subseteq U_{1}^{\otimes}$. Now
$B N_{e u} \approx B C L\left(B N_{e u} \approx B I N T\left(U_{1}^{\otimes}\right)\right) \subseteq B N_{e u} \approx B C L\left(U_{1}^{\otimes}\right) \subseteq J_{1}^{\oplus}$.
We have $B N_{e u} \approx B C L\left(B N_{e u} \approx B I N T\left(U_{1}^{\otimes}\right)\right) \subseteq J_{1}^{\oplus}$ whenever $U_{1}^{\otimes} \subseteq J_{1}^{\oplus}$ and J_{1}^{\oplus} is $B N_{e u}(g) O_{S}$ in $B N_{u_{\gamma}^{\otimes}}$. Therefore U_{1}^{\otimes} is $B N_{e u}\left(W_{g^{\otimes}}\right) C_{S}$.

Theorem 3.5. Every $B N_{e u}(\alpha g) C_{S}$ is $B N_{e u}\left(W_{g^{\otimes}}\right) C_{S}$.
Proof. From theorem 3.4 we get every $B N_{e u}(\alpha g) C_{S}$ is $B N_{e u}\left(W_{g^{\otimes}}\right) C_{S}$
Theorem 3.6 Every $B N_{e u}(g P) C_{S}$ is $B N_{e u}\left(W_{g^{\otimes}}\right) C_{S}$.
Proof. Let U_{1}^{\otimes} is $B N_{e u}(g P) C_{S}$. Let $U_{1}^{\otimes} \subseteq J_{1}^{\oplus} J_{1}^{\oplus} B N_{e u} O_{S}$ in $B N_{u_{\gamma}^{\oplus}}$. Since every $B N_{e u} O_{s}$ is $B N_{e u}(g) O_{S} J_{1}^{\oplus}$ is $B N_{e u}(g) O_{S}$.

Presently using definition $B N_{e u}(P g) C_{S} B N_{e u}(P) \approx B C L\left(U_{1}^{\otimes}\right) \subseteq J_{1}^{\oplus}$.
But $B N_{e u} \approx(P) B C L\left(U_{1}^{\otimes}\right) \subseteq B N_{e u} \approx B C L\left(U_{1}^{\otimes}\right)$
Therefore $B N_{e u} \approx B C L\left(U_{1}^{\otimes}\right) \subseteq U_{1}^{\otimes}$.
Now $B N_{e u} \approx B C L\left(B N_{e u} \approx B I N T\left(U_{1}^{\otimes}\right)\right) \subseteq B N_{e u} \approx B C L\left(U_{1}^{\otimes}\right) \subseteq J_{1}^{\oplus}$.

We have $B N_{e u} \approx B C L\left(B N_{e u} \approx B I N T\left(U_{1}^{\otimes}\right)\right) \subseteq J_{1}^{\oplus}$ whenever $U_{1}^{\otimes} \subseteq J_{1}^{\oplus}$ and J_{1}^{\oplus} is $B N_{e u}(g) O_{S}$ in $B N_{u_{\gamma}^{\otimes}}$. Therefore U_{1}^{\otimes} is $B N_{e u}\left(W_{g^{\otimes}}\right) C_{S}$

Corollary 3.1.

(1) Every $B N_{e u} C_{S}$ is $B N_{e u}\left(W_{g^{\otimes}}\right) C_{S}$.
(2) Every $B N_{e u}(\alpha) C_{S}$ is $B N_{e u}\left(W_{g^{\varnothing}}\right) C_{S}$.
(3) Every $B N_{e u}(P) C_{S}$ is $B N_{e u}\left(W_{g^{\otimes}}\right) C_{S}$.
(4) Every $B N_{e u}(R) C_{S}$ is $B N_{e u}\left(W_{g^{\otimes}}\right) C_{S}$.

Proof. Obvious.
Theorem 3.7 Let U_{1}^{\otimes} is $B N_{e u}\left(W_{g^{\otimes}}\right) C_{S}$ is a BNTS $\left(B N_{u_{\gamma}^{\otimes}}, B N_{S \zeta}\right)$ and $U_{1}^{\otimes} \subseteq U_{2}^{\otimes} \subseteq B N_{e u} \approx B C L\left(B N_{e u} \approx B I N T\left(U_{1}^{\otimes}\right)\right)$. Then U_{2}^{\otimes} is $B N_{e u}\left(W_{g^{\otimes}}\right) C_{S}$ in $B N_{u_{Y}^{\otimes}}$.

Proof.

Let P_{1}^{\oplus} is $B N_{e u}(g) O_{S}$ in $B N_{u_{\gamma}^{\otimes}}$ such that $U_{2}^{\otimes} \subseteq P_{1}^{\oplus}$. Then $U_{1}^{\otimes} \subseteq P_{1}^{\oplus}$ and since U_{1}^{\otimes} is $B N_{e u}\left(W_{g^{\otimes}}\right) C_{S}, B N_{e u} \approx B C L\left(B N_{e u} \approx B I N T\left(U_{1}^{\otimes}\right)\right) \subseteq P_{1}^{\oplus}$.

Now $U_{2}^{\otimes} \subseteq B N_{e u} \approx B C L\left(B N_{e u} \approx B I N T\left(U_{1}^{\otimes}\right)\right)$
$\Rightarrow B N_{e u} \approx B C L\left(B N_{e u} \approx B I N T\left(U_{2}^{\otimes}\right)\right) \subseteq B N_{e u} \approx B C L\left(B N_{e u} \approx B I N T\left(B N_{e u} \approx C L\left(B N_{e u} \approx \operatorname{INT}\left(U_{1}^{\otimes}\right)\right)\right)\right)=B N_{e u} \approx B C L\left(B N_{e u} \approx \operatorname{BINT}\left(U_{1}^{\otimes}\right)\right)$
,$B N_{e u} \approx B C L\left(B N_{e u} \approx \operatorname{BINT}\left(U_{2}^{\otimes}\right)\right) \subseteq B N_{e u} \approx B C L\left(B N_{e u} \approx \operatorname{BINT}\left(U_{1}^{\otimes}\right)\right) \subseteq P_{1}^{\oplus}$.
Consequently U_{2}^{\otimes} is $B N_{e u}\left(W_{g^{\otimes}}\right) C_{S}$.
Definition 3.8 A Bipolar Neutrosophic set U_{1}^{\otimes} of a BNTS $\left(B N_{u_{\gamma}^{\otimes}}, B N_{S \zeta}\right)$ is called $B N_{e u}\left(g^{\otimes}\right) O_{S}$ iff $U_{1}^{\otimes C}$ is $B N_{e u}\left(g^{\otimes}\right) C_{S}$.

Remark 3.9 Every $B N_{e u}(W) O_{S}$ is $B N_{e u}\left(W g^{\otimes}\right) O_{S}$.

Theorem 3.8. A Bipolar Neutrosophic set U_{1}^{\otimes} of a $\operatorname{BNTS}\left(B N_{u_{\gamma}^{\ominus}}, B N_{S \zeta}\right), B N_{e u}\left(W_{g^{\otimes}}\right) O_{S}$ if $M_{1}^{\otimes} \subseteq B N_{e u} \approx B C L\left(B N_{e u} \approx \operatorname{BINT}\left(U_{1}^{\otimes}\right)\right)$ whenever M_{1}^{\otimes} is $B N_{e u}(g) C_{S}$ and $M_{1}^{\otimes} \subseteq U_{1}^{\otimes}$.

Proof: Follows from Definition 3.8.
Theorem 3.9. U_{1}^{\otimes} is $B N_{e u}\left(W_{g^{\ominus}}\right) O_{S}$ of a $\operatorname{BNTS}\left(B N_{u_{\gamma}^{\ominus}}, B N_{S \zeta}\right)$ and $B N_{e u} \approx B C L\left(B N_{e u} \approx B I N T\left(U_{1}^{\otimes}\right)\right) \subseteq U_{2}^{\otimes} \subseteq U_{1}^{\otimes}$. Then U_{2}^{\otimes} is $B N_{e u}\left(W_{g^{\otimes}}\right) O_{S}$.

Proof. Suppose U_{1}^{\otimes} is a $B N_{e u}\left(W_{g^{\otimes}}\right) O_{S}$ in $B N_{u_{\gamma}^{\otimes}}$ and
$B N_{e u} \approx B C L\left(B N_{e u} \approx B I N T\left(U_{1}^{\otimes}\right)\right) \subseteq U_{2}^{\otimes} \subseteq U_{1}^{\otimes}$
$\Rightarrow U_{1}^{\otimes C} \subseteq U_{2}^{\otimes C} \subseteq\left(B N_{e u} \approx B C L\left(B N_{e u} \approx B I N T\left(U_{1}^{\otimes}\right)\right)\right)^{C}$
$\Rightarrow U_{1}^{\otimes C} \subseteq U_{2}^{\otimes C} \subseteq B N_{e u} \approx B C L\left(B N_{e u} \approx B I N T\left(U_{1}^{\otimes C}\right)\right)$ and $U_{1}^{\otimes C}$ is $B N_{e u}\left(W_{g^{\otimes}}\right) C_{S}$ it follows from theorem 3.8 that $U_{2}^{\otimes C}$ is $B N_{e u}\left(W_{g^{\otimes}}\right) C_{S}$. Hence $U_{2}^{\otimes C}$ is $B N_{e u}\left(W_{g^{\otimes}}\right) O_{S}$.

REFERENCES

1. A. ATKINSWESTLEY, S. CHANDRASEKAR: Neutrosophic g_- closed sets (Communicated)
2. A. A. SALAMA, S. A. ALBLOWI: Generalized Neutrosophic Set and Generalized NTSs, Journal computer Sci. Engineering, 2(7) (2012), 129-132.
3. A. A. SALAMA, S. A. ALBLOWI: Neutrosophic set and NTS, ISOR J. Mathematics, 3(4)(2012), 31-35.
4. F. SMARANDACHE: Neutrosophic and Neutrosophic Logic, First International Conference On Neutrosophic, Neutrosophic Logic, Set, Probability, and Statistics University of New Mexico, Gallup, NM 87301, USA, 2002.
5. R. DHAVASEELAN, S. JAFARI: Generalized Neutrosophic closed sets, New trends in Neutrosophic theory and applications, 2 (2018), 261-273.
6. R. DHAVASEELAN, S. JAFARI, M. HANIF PAGE: Neutrosophic Generalized _contracontinuity, Creat. Math. Inform., 27(2) (2018), 1-6.
7. F. SMARANDACHE: Neutrosophic and Neutrosophic Logic, First International Conference On Neutrosophic, Neutrosophic Logic, Set, Probability, and Statistics University of New Mexico, Gallup, NM 87301, USA, 2002.
8. F. SMARADACHE: Neutrosophic Set: - A Generalization of Neutrosophic set, Journal ofDefense Resourses Management, 1 (2010), 107-114.
9. Ch. Shashi Kumar,T. Siva NageswaraRao,Y. SrinivasaRao,V. VenkateswaraRao, Interior and Boundary vertices of BSV Neutrosophic Graphs, Jour. of Adv. Research in Dynamical \& Control Systems,12(6),2020, PP: 1510-1515.
10. S. Broumi, A. Bakali, M. Talea, F.Smarandache and V. Venkateswara Rao, Interval Complex Neutrosophic Graph of Type 1, Neutrosophic Operational Research Volume III, V sub division, pp:88-107, 2018.
11. S. Broumi, A. Bakali, M. Talea, F.Smarandache and V. Venkateswara Rao, Bipolar Complex Neutrosophic Graphs of Type 1, New Trends in Neutrosophic Theory and Applications. Volume II, pp:189-208, 2018.
12. S. Broumi, M. Talea, A. Bakali, F.Smarandache, Prem Kumar Singh, M. Murugappan, and V. Venkateswara Rao, Neutrosophic Technique Based Efficient Routing Protocol For MANET Based On Its Energy And Distance. Neutrosophic Sets and Systems, vol. 24, pp. 61-69, Mar 2019.
13. S. Broumi, P. K. Singh, M. Talea, A. Bakali, F. Smarandache and V.Venkateswara Rao, Single-valued neutrosophic techniques for analysis of WIFI connection, Advances in Intelligent Systems and Computing Vol. 915, pp. 405-512,DOI: 10.1007/978-3-030-11928-7_36.
14. Smarandache, F., Broumi, S., Singh, P. K., Liu, C., Venkateswara Rao, V., Yang, H.L.Elhassouny, A. (2019). Introduction to neutrosophy and neutrosophic environment. In Neutrosophic Set in Medical Image Analysis, 3-29.
15. T. Siva Nageswara Rao, Ch. Shashi Kumar,,Y. SrinivasaRao, V. VenkateswaraRao, Detour Interior and Boundary vertices of BSV Neutrosophic Graphs, International Journal of Advanced Science and Technology,29(8),2020, PP: 2382-2394.
16. V. Venkateswara Rao, Y. Srinivasa Rao, Neutrosophic Pre-open Sets and Pre-closed Sets in Neutrosophic Topology, International Journal of ChemTech Research, Vol. 10 No.10, pp 449-458, 2017.
17. Y. Srinivasa Rao, Ch. Shashi Kumar, T. Siva Nageswara Rao, V. Venkateswara Rao,(2020)"Single Valued Neutrosophic detour distance" Journal of critical reviews, Vol 7, Issue 8, pp.810-812
