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BOOLEAN EXPRESSION BASED ON HYPERGRAPHS WITH

ALGORITHM

MOHAMMAD HAMIDI∗, MARZIEH RAHMATI AND AKBAR REZAEI

Abstract. This paper introduces a novel concept of Boolean function–based hypergraph

with respect to any given T.B.T(total binary truth table). This study defines a notation

of kernel set on switching functions and proves that every T.B.T corresponds to a Minimum

Boolean expression via kernel set and presents some conditions on T.B.T to obtain a Minimum

irreducible Boolean expression from switching functions. Finally, we present an algorithm and

so Python programming(with complete and original codes) such that for any given T.B.T,

introduces a Minimum irreducible switching expression.

1. Introduction

The concept of hypergraph has been introduced by Berge as a generalization of graph around

1960 and one of the initial concerns was to extend some classical results of graph theory and

the notion of hypergraph has been considered as a useful tool to analyze the structure of a

system. Graphs and hypergraphs can be used to describe the network systems. Today, some

features of hypergraphs are used in computer science, notably in machine learning, and there

has been a lot of research about using hypergraphs in relational databases, which might be

MSC(2010): Primary: 05C65, 94C10

Keywords: Switching function, Boolean function–based hypergraph, switching kernel, T.B.T.

Received: 17 May 2020, Accepted: 04 July 2020.

∗Corresponding author

c⃝ 2020 Yazd University.

1



2 Alg. Struc. Appl. Vol. .. No. . (20..) ..-...

viewed as a sort of data mining. The reason why hypergraphs seem apt to depict relations in

information systems, social networks, document centered information processing, web infor-

mation systems and computer science, are the relationships among services within a service

oriented architecture[4, 5, 9]. With respect to the classical hypergraph, Smarandache (2019)

added the supervertices (a group of vertices put all together form a supervertex), in order

to form a superhypergraph (SHG). Therefore, each SHG-vertex and each SHG-edge belong

to P (V ), where V is the set of vertices, and P (V ) means the power set of V. Further on,

since in our world we encounter complex and sophisticated groups of individuals and complex

and sophisticated connections between them, Smarandache extended the superhypergraph to

n-superhypergraph, by extending P (V ) to Pn(V ) that is the n-power set of the set V (i.e.

power-set of the power-set of the powerset of V, n times)[10, 11]. Further materials regarding

graphs and hypergraphs are available in the literature too [1, 4, 5, 6, 7, 8]. Two major new

works on logic were published by prominent British mathematicians, formal logic by Augustus

De Morgan (1806–1871) and the mathematical analysis of Logic by George Boole (1815–1864).

Both authors sought to stretch the boundaries of traditional logic by developing a general

method for representing and manipulating logically valid inferences or to develop mechanical

modes of making transitions. Historically, propositional logic and electrical engineering have

been the main nurturing fields for the development of research on Boolean functions. However,

because they are such fundamental mathematical objects, Boolean functions have also been

used to model a large number of applications in a variety of areas. In most applications, how-

ever, more information is available regarding the process that generates the function of interest

asillus trated by Electrical engineering, Artificial neural networks, Reliability theory, Game

theory, Integer programming, Distributed computing systems, etc. In other view, Boolean

expressions have been widely used to represent a decision/predicate and a number of branch

testing and techniques have been reported in the literature[2, 3].

Regarding these points, this paper considers the concepts of, Boolean expression, hyper-

graphs and with respect to combination of these concepts, applies it in computer science. In

this paper we introduce the notation of switching functions and investigates the relation be-

tween hypergraphs and switching functions. This study, for any Boolean function constructs

a hyperdiagram which is called a hyperdiagram based on a given Boolean function and in-

vestigate some condition it be a hypergraph based on a given Boolean function. Also for

all arbitrary hypergraph, is extracted a Boolean function titled Boolean functionable hyper-

graph. There is a natural question that, do it correspond a switching expression from any

given T.B.T. The main our motivation from this paper is extraction an irreducible switching

expression from any T.B.T. So we define the concept of Boolean function–based hypergraph

and the notation of unitors set of Boolean functions. In final, we apply these concepts and
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prove that every T.B.T corresponds to a Minimum Boolean expression via kernels set and

presents some conditions on T.B.T to obtain a Minimum irreducible Boolean expression from

switching functions.

2. Preliminaries

In this section, we recall some definitions and results, which we need in what follows.

Let X be an arbitrary set. Then we denote P ∗(X) = P (X) r ∅, where P (X) is the power

set of X.

Definition 2.1. [1] Let G = {x1, x2, . . . , xn} be a finite set. A hypergraph on G is a pair

H = (G, {Ei}
m

i=1) such that for all 1 ≤ i ≤ m, ∅ ̸= Ei ⊆ G and

m∪
i=1

Ei = G. The ele-

ments x1, x2, . . . , xn of G are called vertices, and the sets E1, E2, . . . , Em are called the edges

(hyperedges) of the hypergraph H. For each 1 ≤ k ≤ m if |Ek| ≥ 2, then Ek is represented by

a continuous curve joining its vertices, if |Ek| = 1 by a cycle on the element (loop). If for all

1 ≤ k ≤ m |Ek| = 2, the hypergraph becomes an ordinary (undirected) graph.

Definition 2.2. [4] Let G = {x1, x2, . . . , xn} be a finite set. A hyperdiagram on G is a pair

H = (G, {Ek}
m

k=1) such that for all 1 ≤ k ≤ m,Ek ⊆ G and |Ek| ≥ 1. Clearly every hypergraph

is a hyperdiagram, while the converse is not necessarily true.

We say that two hyperdiagrams H = (G, {Ek}
m

k=1) and H ′ = (G′, {E′
k}

m′

k=1) are isomorphic

if m = m′ and there exists a bijection φ : G → G′ and a permutation τ : {1, 2, . . . ,m} →
{1, 2, . . . ,m′} such that for all x, y ∈ G, if for some 1 ≤ i ≤ m,x, y ∈ Ei, then φ(x), φ(y) ∈
Eτ(i), if for all 1 ≤ i ≤ m,x, y ̸∈ Ei, then φ(x), φ(y) ̸∈ Eτ(i) and if for some 1 ≤ i ≤ m,x ∈ Ei,

for all 1 ≤ j ≤ m, y ̸∈ Ej , then φ(x) ∈ Eτ(i) and φ(y) ̸∈ Ej . Since every hypergraph is a

hyperdiagram, define an isomorphic hypergraphs in a similar a way.

3. Switching expression based on hypergraph

In this section, we apply the notation of total binary truth table(T.B.T) on Boolean variables

and introduce the concept of hypergraphable Boolean functions, Boolean functionable hyper-

graphs and investigate some of their properties. We consider every (switching)Boolean function

f : Bn → B = {0, 1} by f(x1, x2, . . . , xn) =
m∏
j=1

kj∑
i=1

xi, where for all 1 ≤ i ≤ n, xi is a literal

(Boolean variable or the complement of a Boolean variable) and m, j, kj ∈ N. Let n ∈ N,m ∈
N∗, x1, x2, . . . , xn be arbitrary Boolean variables and for all 0 ≤ j ≤ m, f (m)(x1, x2, . . . , xn)

be Boolean functions. We will denote a total binary truth table(T.B.T) on Boolean variables

x1, x2, . . . , xn by a set T (f (0), f (1), . . . , f (m), x1, . . . , xn) = {f (0), f (1), . . . , f (m), (x1, . . . , xn)},
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Table 1. T. B. T with n variables T (f (0), f (1), . . . , f (m), x1, x2, . . . , xn)

x1 x2 . . . xn f (0)(x1, . . . , xn) f (1)(x1, . . . , xn) . . . f (m)(x1, . . . , xn)

0 0 . . . 0 f
(0)
1 (x1, . . . , xn) f

(1)
1 (x1, . . . , xn) . . . f

(m)
1 (x1, . . . , xn)

0 0 . . . 1 f
(0)
2 (x1, . . . , xn) f

(1)
2 (x1, . . . , xn) . . . f

(m)
2 (x1, . . . , xn)

...
...

...
...

...
...

...

0 0 . . . 1 f
(0)
2n−1(x1, . . . , xn) f

(1)
2n−1(x1, . . . , xn) . . . f

(m)
2n−1(x1, . . . , xn)

1 1 . . . 1 f
(0)
2n (x1, . . . , xn) f

(1)
2n (x1, . . . , xn) . . . f

(m)
2n (x1, . . . , xn)

Table 2. T.B.T T (f, g, x1, x2, x3)

x1 x2 x3 f g f + g f.g c(f)

0 0 0 1 0 1 0 0

0 0 1 0 0 0 0 1

0 1 0 1 1 1 1 0

0 1 1 0 1 1 0 1

1 0 0 0 1 1 0 1

1 0 1 1 1 1 1 0

1 1 0 0 0 0 0 1

1 1 1 1 1 1 1 0

where for all 0 ≤ j ≤ m, f (m)(x1, x2, . . . , xn), are Boolean functions(see a Table 1) and for

m = 0, we will denote it by T (f, x1, x2, . . . , xn).

c(f(x1, . . . , xn)) = 1− f(x1, . . . , xn).

Example 3.1. Consider a T.B.T T (f, g, x1, x2, x3) in Table 2. The binary operations together

with a unary operation is computed in this Table.

Theorem 3.2. (T (f, f ′, x1, . . . , xn),+, ., c) is a Boolean algebra.

Definition 3.3. Let n ∈ N and T (f, x1, x2, . . . , xn) be a T.B.T. For all 1 ≤ j ≤ 2n define

Kernel(fj) = {(x1, x2, . . . , xn) | fj(x1, x2, . . . , xn) = 0} and will denote by Ker(fj), in a

similar a way Kernel(f) is defined and it is denoted by Ker(f).
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Theorem 3.4. Let n ∈ N, 1 ≤ j ≤ 2n and T (f, f ′, x1, x2, . . . , xn) be a T.B.T. Then

(i) Ker(f) =

2n∪
j=1

Ker(fj);

(ii) Ker(f ′) = Ker(f) if and only if f ∼ f ′;

(iii) If Ker(f) ⊆ Ker(f ′), then (f + f ′) ∼ f ;

(iv) If Ker(f ′) ⊆ Ker(f), then (f.f ′) ∼ f ;

(v) Ker(f + f ′) = Ker(f) ∩Ker(f ′);

(vi) Ker(f.f ′) = Ker(f) ∪Ker(f ′);

(vii) Ker(c(f)) = Bn \Ker(f).

Proof. Let n ∈ N and (x1, . . . , xn) ∈ Bn.

(i) Since Ker(f) = {(x1, . . . , xn) |
2n∏
j=1

fj(x1, . . . , xn) = 0}, we get

(x1, . . . , xn) ∈ Ker(f) ⇔ ∃ 1 ≤ j ≤ 2n such that fj(x1, . . . , xn) = 0

⇔ for some 1 ≤ j ≤ 2n, (x1, . . . , xn) ∈ Ker(fj) ⇔ (x1, . . . , xn) ∈
2n∪
j=1

Ker(fj).

(ii) Let (x1, x2, . . . , xn) ∈ Ker(f). Then f(x1, x2, . . . , xn) = 0 and because f ∼ f ′, we get that

f ′(x1, x2, . . . , xn) = 0. It follows that (x1, x2, . . . , xn) ∈ Ker(f ′) and Ker(f) ⊆ Ker(f ′) and in

a similar a way Ker(f ′) ⊆ Ker(f). Let Ker(f ′) = Ker(f). Then f(x1, x2, . . . , xn) = 0 implies

that f ′(x1, x2, . . . , xn) = 0 and f(x1, x2, . . . , xn) = 1 implies that f ′(x1, x2, . . . , xn) = 1. So

f ∼ f ′.

(iii) If (x1, x2, . . . , xn) ∈ Ker(f), then (f + f ′)(x1, x2, . . . , xn) = f(x1, x2, . . . , xn) +

f ′(x1, x2, . . . , xn) = 0 = f(x1, x2, . . . , xn). If (x1, x2, . . . , xn) ̸∈ Ker(f), then (f +

f ′)(x1, x2, . . . , xn) = f(x1, x2, . . . , xn) + f ′(x1, x2, . . . , xn) = 1 = f(x1, x2, . . . , xn).

(iv) If (x1, x2, . . . , xn) ∈ Ker(f),

then (f.f ′)(x1, x2, . . . , xn) = f(x1, x2, . . . , xn).f
′(x1, x2, . . . , xn) = 0 = f(x1, x2, . . . , xn). If

(x1, x2, . . . , xn) ̸∈ Ker(f), because Ker(f ′) ⊆ Ker(f), we get that (x1, . . . , xn)

̸∈ Ker(f ′) and so (f.f ′)(x1, x2, . . . , xn) = f(x1, x2, . . . , xn).f
′(x1, x2, . . . , xn) = 1 =

f(x1, x2, . . . , xn).

(v) By definition, (f + f ′)(x1, x2, . . . , xn) = 0 if and only if f(x1, x2, . . . , xn) +

f ′(x1, x2, . . . , xn) = 0 if and only if f(x1, x2, . . . , xn) = 0 and f ′(x1, x2, . . . , xn) = 0 if and

only if (x1, x2, . . . , xn) ∈ Ker(f) ∩Ker(f ′).

(vi) By definition, (f.f ′)(x1, x2, . . . , xn) = 0

if and only if f(x1, x2, . . . , xn).f
′(x1, x2, . . . , xn) = 0 if and only if f(x1, x2, . . . , xn) = 0 or

f ′(x1, x2, . . . , xn) = 0 if and only if (x1, x2, . . . , xn) ∈ Ker(f) ∪Ker(f ′).
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(vii) (x1, x2, . . . , xn) ∈ Ker(c(f)) if and only if c(f)(x1, x2, . . . , xn) = 0 if and only if

1− f(x1, x2, . . . , xn)

= 0 if and only if f(x1, x2, . . . , xn) = 1 if and only if (x1, x2, . . . , xn) ̸∈ Ker(f).

Example 3.5. Consider a T.B.T T (f, g, x1, x2, x3) in Table 2. Computations show that

Ker(f + g) = {(0, 0, 1), (1, 1, 0)} = Ker(f) ∩ Ker(g) = {(0, 0, 1), (1, 0, 0), (0, 1, 1), (1, 1, 0)} ∩
{(0, 0, 0), (0, 0, 1), (1, 1, 0)} and Ker(f.g) = {(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 1, 0)} =

Ker(f) ∪Ker(g).

Corollary 3.6. Let n ∈ N, 1 ≤ j ≤ n and T (f, f ′, x1, x2, . . . , xn) be a T.B.T. If (f + f ′) ∼ f ,

then |Ker(f)| ≤ |Ker(f ′)|.

Proof. Since (f + f ′) ∼ f , by Theorem 3.4, Ker(f + f ′) = Ker(f). It follows that Ker(f) ∩
Ker(f ′) = Ker(f + f ′) = Ker(f) and so Ker(f) ⊆ Ker(f ′).

Corollary 3.7. Let n ∈ N, 1 ≤ j ≤ n and T (f, f ′, x1, x2, . . . , xn) be a T.B.T. If (f.f ′) ∼ f ,

then |Ker(f ′)| ≤ |Ker(f)|.

Proof. Since (f.f ′) ∼ f , by Theorem 3.4, Ker(f.f ′) = Ker(f). It follows that Ker(f) ∪
Ker(f ′) = Ker(f.f ′) = Ker(f) and so Ker(f ′) ⊆ Ker(f).

In this section, consider any T.B.T and with respect to concept of Kernels set, try to extract

associated switching expression to given T.B.T.

Theorem 3.8. Let n ∈ N. Then every T (f ̸≡ 0, x1, x2, . . . , xn) corresponds to a hypergraph.

Proof. Let x1, x2, . . . , xn be arbitrary Boolean variables. Consider a total binary truth table

(T.B.T)T
(f, x1, x2, . . . , xn) in Table 1. Suppose that for k ∈ N and for all i ∈ {j1, j2, . . . , jk}, we have

Ker(fi) ̸= ∅. Since
n∑

j=1

xj = 0 if and only if for all 1 ≤ j ≤ n, xj = 0, for all j1 ≤ i ≤ jk define

fji(x1, x2, . . . , xn) = x1 + x2 + . . .+ xn, where

n∑
j=1

xj = 0. Now, for all j1 ≤ i ≤ jk, set

Ei = {x1, x2, . . . , xn |
n∑

j=1

xj = fj(x1, x2, . . . , xn)}.

Thus it is easy to see that H = (G =

jk∪
i=j1

Ei, {Ei}jki=j1
) is a hypergraph.
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Table 3. T. B. T with 3 variables T (f, x1, x2, x3)

x1 x2 x3 f(x1, x2, x3)

0 0 0 f1(x1, x2, x3) = 1

0 0 1 f2(x1, x2, x3) = 1

0 1 0 f3(x1, x2, x3) = 1

0 1 1 f4(x1, x2, x3) = 0

1 0 0 f5(x1, x2, x3) = 0

1 0 1 f6(x1, x2, x3) = 0

1 1 0 f7(x1, x2, x3) = 1

1 1 1 f8(x1, x2, x3) = 1

We will call the hypergraph H in Theorem 3.8, as Boolean function–based hypergraph and

will denote by (H, T ).

Example 3.9. Consider a T.B.T T (f, x1, x2, x3) in Table 3. Computations show that

Ker(f4) = {(x1, x′2, x′3)},Ker(f5) = {(x′1, x2, x3)},Ker(f6) = {(x′1, x2, x′3)}. Now, it is ob-

tained a Boolean function–based hypergraph (H, T ) in Figure 1.

..x3. x2.

x′
1

. x′
3

. x′
2

.

x1

.x3. x2.

x′
1

. x′
3

. x′
2

.

x1

Figure 1. Hypergraph (H, T )

Define a relation ∼ on a T.B.T T (f, f ′, x1, x2, . . . , xn) by f ∼ f ′ if and only if for all

(x1, x2, . . . , xn) ∈ Bn, we have f(x1, x2, . . . , xn) = f ′(x1, x2, . . . , xn)(f ≡ f ′). It is clear that ∼
is a congruence equivalence relation on T (f, f ′, x1, x2, . . . , xn). For 0 ≤ j, j′ ≤ m, we say that

T (f (j), x1, x2, . . . , xn) and T ′(f (j′), x1, x2, . . . , xn) are equivalent, if f (j) ∼ f (j′).

Theorem 3.10. Let 0 ≤ j, j′ ≤ m. If T (f (j), x1, . . . , xn) and T ′(f (j′), x1, . . . , xn) are equiva-

lent, then their Boolean function–based hypergraph are isomorphic.

Proof. Let 0 ≤ j, j′ ≤ m. Since T (f (j), x1, . . . , xn) ∼ T ′(f (j′), x1, . . . , xn), for all 1 ≤ i ≤ 2n

we get that Ker(f
(j)
i ) = Ker(f

(j′)
i ). Using Theorem 3.8, T (f (j), x1, x2, . . . , xn) corresponds to
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(H, T ) if and only if T (f (j′), x1, x2, . . . , xn) corresponds to (H ′, T ′). Hence (H, T ) ∼= (H ′, T ′).

Definition 3.11. Let n ∈ N,m ∈ N∗, 1 ≤ k ≤ n and T (f (0), . . . , f (m), x1, . . . , xn) be a T.B.T,

where for 0 ≤ t ≤ m, f (t)(x1, . . . , xn) =

2n∏
i=1

f
(t)
i (x1, x2, . . . , xn). Then

(i) Z(n, f (t), 0) = {j | f (t)
j (x1, x2, . . . , xn) = 0, where 1 ≤ j ≤ 2n};

(ii) S(k, x1, x2, . . . , xk, 0) = {
n∑

i=1

xi |
k∑

i=1

xi +

n∑
i=k+1

xi = 0}.

Example 3.12. Consider a T.B.T T (f, x1, x2, x3) in Table 3. Simple computations show

Z(n, f, 0) = {j | fj(x1, x2, x3) = 0, where 1 ≤ j ≤ 8} = 3, S(3, x1, x2, x3, 0) = {x1 + x2 +

x3}, S(2, x1, x2, 0) = {x1+x2+x3, x1+x2+x′3}, S(1, x1, 0) = {x1+x2+x3, x1+x2+x′3, x1+

x′2 + x3, x1 + x′2 + x′3}, |S(3, x1, x2, x3, 0)| = 1, |S(2, x1, x2, 0)| = 2 and |S(1, x1, 0)| = 4.

Theorem 3.13. Let n ∈ N, 1 ≤ j ≤ n and T (f, x1, x2, . . . , xn) be a T.B.T. Then |S(k =

j, x1, x2, . . . , xk

, 0)| = 2n−j.

Proof. Let x1, x2, . . . , xj be j Boolean variables. Then

j∑
i=1

xi = 0 if and only if x1 = x2 =

. . . = xj = 0. So
n∑

i=j+1

xi = 0 or
n∑

i=j+1

xi = 1. Now,
n∑

i=j+1

xi = 1 if and only if for some

j + 1 ≤ t ≤ n we have xt = 1, where have 2n−j − 1 cases. In addition,

n∑
i=j+1

xi = 0 if and only

if for all j + 1 ≤ t ≤ n we have xt = 0. So |S(j, x1, x2, . . . , xj , 0)| = 2n−j .

Corollary 3.14. Let n ∈ N,m ∈ N∗ and T (f, x1, x2, . . . , xn) be a T.B.T. Then

(i) if k = 1, then |S(k, x1, x2, . . . , xk, 0)| = 2n−1;

(ii) if k = n− 1, then |S(k, x1, x2, . . . , xk, 0)| = 2;

(ii) if k = n− i, then |S(k, x1, x2, . . . , xk, 0)| = 2i;

(i) if k = n, then |S(k, x1, x2, . . . , xk, 0)| = 1.

Let n ∈ N and T (f (0), . . . , f (m), x1, . . . , xn) be a T.B.T, 1 ≤ k ≤ n, 0 ≤
t, t′ ≤ m. Define (f (t)f (t′))(x1, . . . , xn) = {f (s)(x1, . . . , xn) | f

(s)
j (x1, . . . , xn) =

f
(t)
j (x1, . . . , xn)f

(t′)
j (x1, . . . , xn) for all 1 ≤ j ≤ 2n} and (f (t) + f (t′))(x1, . . . , xn) =

{f (s)(x1, . . . , xn) | f (s)
j (x1, . . . , xn) = f

(t)
j (x1, . . . , xn) + f

(t′)
j (x1, . . . , xn) for all 1 ≤ j ≤ 2n}.

So we have the following Theorem.
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Theorem 3.15. Let n ∈ N and T (f (0), . . . , f (m), x1, . . . , xn) be a T.B.T, 1 ≤ k ≤ n, 0 ≤ t, t′ ≤
m. Then

(i) Z(n, xk, 0) = 2n−1;

(ii) Z(n, 0, 0) = 2n and Z(n, 1, 0) = 0;

(iii) Z(n, xk.f
(t), 0) = [Z(n, xk, 0) + Z(n, f (t), 0)]− Z(n, xk + f (t), 0).

Proof. (i) Let 1 ≤ k ≤ n. Then by Corollary 3.14, we obtain that Z(n, xk, 0) =

|S(1, x1, x2, . . . , xk, 0)| = 2n−1.

(ii) In a similar way it is obtained from Corollary 3.14.

(iii) Let 1 ≤ k ≤ n, 1 ≤ j ≤ 2n. Because xk ∼ 0 or xk ∼ 1, for all 1 ≤ j ≤ 2n, we get that

(xk.f
(t)
j ) ∼ 0 or (xk.f

(t)
j ) ∼ f

(t)
j . If (xk.f

(t)
j ) ∼ 0, since for all 1 ≤ j ≤ 2n, 0 + f

(t)
j = f

(t)
j by

item (ii), we get that

Z(n, xk.f
(t)
j , 0) = 2n = 2n + Z(n, f

(t)
j , 0)− Z(n, f

(t)
j , 0)

= [Z(n, xk, 0) + Z(n, f
(t)
j , 0)]− Z(n, xk + f

(t)
j , 0).

If (xk.f
(t)
j ) ∼ f

(t)
j , then Z(n, xk.f

(t)
j , 0) = 0 + Z(n, f

(t)
j , 0).

Theorem 3.16. Let n ∈ N and T (f (0), . . . , f (m), x1, . . . , xn) be a T.B.T, 1 ≤ k ≤ n, 1 ≤ i ≤
2n, 0 ≤ t, t′ ≤ m. Then

(i) Z(n, f (t).f (t′), 0) = [Z(n, f (t), 0) + Z(n, f (t′), 0)]− Z(n, f (t) + f (t′), 0);

(ii) Z(n, f (t) + f (t′), 0) ≤ min{Z(n, f (t), 0), Z(n, f (t′), 0)}.

Proof. (i) Because for all 1 ≤ j ≤ 2n and 1 ≤ t ≤ m we have f
(t)
j =

n∑
i=1

xi and

n∑
i=1

xi ∼

0,

n∑
i=1

xi ∼ 1 or there exists 1 ≤ j ≤ 2n such that

n∑
i=1

xi ∼ xj , so by Theorem 3.15(iii), the

proof is obtained.

(ii) By definition, for all 1 ≤ j, j ≤ 2n, f
(t)
j (x1, x2, . . . , xn) + f

(t′)
j (x1, x2, . . . , xn) = 0 if and

only if f
(t)
j (x1, x2, . . . , xn) = f

(t′)
j (x1, x2, . . . , xn) = 0, so

Z(n, f (t) + f (t′), 0) = {j | f (t)
j (x1, x2, . . . , xn) = f

(t′)
j (x1, x2, . . . , xn) = 0, where 1 ≤ j ≤ 2n}

≤ {j | f (t)
j (x1, x2, . . . , xn) = 0, where 1 ≤ j ≤ 2n}

and

Z(n, f (t) + f (t′), 0) = {j | f (t)
j (x1, x2, . . . , xn) = f

(t′)
j (x1, x2, . . . , xn) = 0, where 1 ≤ j ≤ 2n}

≤ {j | f (t′)
j (x1, x2, . . . , xn) = 0, where 1 ≤ j ≤ 2n}.

Hence Z(n, f (t) + f (t′), 0) ≤ min{Z(n, f (t), 0), Z(n, f (t′), 0)}.
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Corollary 3.17. Let n ∈ N and T (f, f ′, x1, x2, . . . , xn) be a T.B.T. Then (f.f ′) ∼ f if and

only if Z(n, f.f ′, 0) = Z(n, f, 0).

Theorem 3.18. Let n ∈ N, 1 ≤ j ≤ n and T (f, f ′, x1, x2, . . . , xn) be a T.B.T. If there exists

some 1 ≤ i1, i2, . . . , ik ≤ n such that f ′ ∼
k∑

j=1

xij , then Z(n, f.f ′, 0) > 2n−k.

Proof. Let 1 ≤ i1, i2, . . . , ik ≤ n and f ′ ∼
k∑

j=1

xij . By Theorem 3.16,

Z(n, f (t).f (t′), 0) = [Z(n, f (t), 0) + Z(n, f (t′), 0)]− Z(n, f (t) + f (t′), 0)

= [Z(n, f (t), 0) + Z(n,
k∑

j=1

xij , 0)]− Z(n, (f (t)) +
k∑

j=1

xij , 1)

> Z(n, f (t), 0) + 2n−k − Z(n, f (t), 0) = 2n−k.

Theorem 3.19. Let n ∈ N, 1 ≤ j ≤ n and T (f, f ′, x1, x2, . . . , xn) be a T.B.T and f ′ ∼
k∑

j=1

xij ,

where 1 ≤ i1, i2, . . . , ik ≤ n.

(i) If Z(n, f, 0) < 2n−1, then (f.f ′) ̸∼ f ;

(ii) If Z(n, f ′, 0) = Z(n, f, 0) and Ker(f ′) ⊆ Ker(f) imply that f ′ ∼ f ;

Proof. (i) Let (f.f ′) ∼ f . Using Theorem 3.16, Z(n, f.f ′, 0) = Z(n, f, 0) + Z(n, f ′, 0) −
Z(n, f+f ′, 0). Because Z(n, f+f ′, 0) ≤ min{Z(n, f, 0), Z(n, f ′, 0)}, we get that Z(n, f.f ′, 0) ≥
Z(n, f, 0) + 2n−k − Z(n, f, 0) = 2n−k, which is a contradiction.

(ii) Let f ′(x1, . . . , xn) = 0. Then Ker(f ′) ⊆ Ker(f) implies that (x1, . . . , xn) ∈ Ker(f)

and so f(x1, . . . , xn) = 0. Suppose that f ′(x1, . . . , xn) = 1, then Ker(f ′) ⊆ Ker(f) implies

that (x1, . . . , xn) ∈ Ker(f) \Ker(f ′) or (x1, . . . , xn) ̸∈ Ker(f). If (x1, . . . , xn) ̸∈ Ker(f), then

f(x1, . . . , xn) = 1 and in this case f ∼ f ′. If (x1, . . . , xn) ∈ Ker(f), then f(x1, . . . , xn) = 0

and it follows that Z(n, f ′, 0) < Z(n, f, 0), which is a contradiction.

Theorem 3.20. Every T.B.T corresponds to a Boolean expression.

Proof. Let n ∈ N and T (f, x1, x2, . . . , xn) be a T.B.T. If for all 1 ≤ j ≤ 2n, fj(x1, x2, . . . , xn) =

0, then consider g(x1, x2, . . . , xn) ≡ 0. In a similar a way that, if for all 1 ≤ j ≤
2n, fj(x1, x2, . . . , xn) = 1, then consider g(x1, x2, . . . , xn) ≡ 1. Now, if there exist k ∈ N
and 1 ≤ j1, j2, . . . , jk ≤ 2n such that fjk(x1, x2, . . . , xn) = 0, then consider fj(x1, x2, . . . , xn) =
n∑

i=1

xi in such a way that for all 1 ≤ i ≤ n, xi = 0. Applying Theorem 3.8, H = (G =
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k∪
j=1

Ej , {Ej}kj=1) is a hypergraph, where for all 1 ≤ j ≤ k, Ej = {x1, x2, . . . , xn |
n∑

j=1

xj =

fj(x1, x2, . . . , xn) = 0} and for all 1 ≤ i ̸= j ≤ k we set Fij = Ei ∩ Ej . If for all

1 ≤ i ̸= j ≤ k, Fij = ∅, then consider g(x1, . . . , xn) =
∏

1≤j≤k

∑
α∈Ej

α. In this case, since

for all 1 ≤ j ≤ k,Ker(fj) = Ker(
∑
α∈Ej

α), by Theorem 3.4, Ker(f) = Ker(g) and so

f(x1, x2, . . . , xn) = g(x1, x2, . . . , xn). If there exist 1 ≤ r ≤ k and i ̸= j ∈ {i1, i2, . . . , ir} such

that Fij ̸= ∅, consider gij(x1, x2, . . . , xn) =
∑
α∈Fij

α. Clearly for all i1 ≤ i, j ≤ ir,Ker(gij) ⊆

Ker(f), so if Z(n,
∏

i1≤i≤ir
i1≤j≤is

gij , 0) = Z(n, f, 0), thus by Theorems 3.4 and 3.19, g ∼ f , where

g(x1, x2, . . . , xn) =
∏

i1≤i≤ir
i1≤j≤is

gij(x1, . . . , xn). But if Z(n,
∏

i1≤i≤ir
i1≤j≤is

gij , 0) < Z(n, f, 0), consider

1 ≤ s ≤ k, j ∈ {j1, j2, . . . , js} and fj(x1, x2, . . . , xn) =
∑
β∈Ej

β such that Ker(
∏

i1≤i≤ir
i1≤j≤is

gij) ̸=

Ker(fj) ⊆ Ker(f) and Z(n, (
∏

i1≤i≤ir
i1≤j≤is

gij).(

js∏
j=j1

fj), 0) = Z(n, f, 0). Thus by Theorem 3.19, we

get that g ∼ f , where g(x1, x2, . . . , xn) = (

js∏
j=j1

fj(x1, . . . , xn)).(
∏

i1≤i≤ir
i1≤j≤is

gij(x1, . . . , xn)).

Consider a T.B.T T (f, x1, x2, . . . , xn) and E(f) = {g = g1.g2 . . . gm | g ∼ f}. Clearly

f ∼ f , and so E(f) ̸= ∅. We say that f has a Minimum Boolean expression if, there exists

g ̸= f ∈ E(f) such that m is the Minimum natural in such a way that g = g1.g2 . . . gm.

Theorem 3.21. Every T.B.T corresponds to a Minimum Boolean expression.

Proof. Let n ∈ N and T (f, x1, x2, . . . , xn) be a T.B.T. Using Theorem 3.20, E(f) ̸= ∅

and there exists a hypergraph H = (G =

k∪
j=1

Ej , {Ej}kj=1), where for all 1 ≤ j ≤ k,

Ej = {x1, x2, . . . , xn |
n∑

j=1

xj = 0}. Thus there exist m ∈ N and Boolean functions

g1, g2, . . . , gm in such a way that f ∼ (g1.g2 . . . gm), where for all 1 ≤ i ≤ m, there exist

1 ≤ j, j′ ≤ k in such a way that x1, x2, . . . , xn ∈ Fjj′ ̸= ∅ and gi(x1, x2, . . . , xn) =

n∑
l=1

xl. In ad-

dition, if for all 1 ≤ j, j′ ≤ k, Fjj′ = ∅, we consider k = m and gi(x1, x2, . . . , xn) =

n∑
l=1

xl, where

x1, x2, . . . , xn ∈ Ei. If there exist 1 ≤ j, j′ ≤ k in such a way that x1, x2, . . . , xn ∈ Fjj′ ̸= ∅,
we choice 1 ≤ j, j′ ≤ k such that |Fjj′ | = n − 1 and M = {1 ≤ j, j′ ≤ k | |Fjj′ | = n − 1}.
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Clearly |M| ≤ k, so if Z(n, f, 0) = Z(n, g1.g2 . . . g|M|, 0), then f ∼ g. But if Z(n, f, 0) >

Z(n, g1.g2 . . . g|M|, 0), we consider the Minimum 1 ≤ i ≤ k, and Boolean functions fi such

that g′ =
∏
i

fi,Ker(g) ̸= Ker(g′) ⊆ Ker(f) and Z(n, f, 0) = Z(n, g′.(

|M|∏
j=1

gj), 0). Because

Ker(g′.(

|M|∏
j=1

gj)) ⊆ Ker(f), by Theorem 3.19, we get that (g.g′) ∼ f .

Let n, k, λ ∈ N∗. A hypergraph H = (G, {Ej}kj=1) is called a λ-intersection hypergraph, if

for all 1 ≤ i, j ≤ k, we have |Ei ∩ Ej | = λ.

Theorem 3.22. Let n ∈ N and T (f, x1, x2, . . . , xn) be a T.B.T. If (H, T ) is a 0-intersection

hypergraph, then the T.B.T corresponds to an irreducible Boolean expression.

Proof. Using Theorem 3.20, E(f) ̸= ∅ and there exists a hypergraph (H, T ) = (G =
k∪

j=1

Ej , {Ej}kj=1), where for all 1 ≤ j ≤ k, Ej = {x1, x2, . . . , xn |
n∑

j=1

xj = 0}. Thus there

exist m ∈ N and Boolean functions g1, g2, . . . , gm in such a way that f ∼ (g1.g2 . . . gm). Since

(H, T ) is an 0-intersection hypergraph, for all 1 ≤ j, j′ ≤ m we get that |Fjj′ | = 0. It follows

that gj(x1, . . . , xn) =
∑
α∈Ej

α and so

{x1, x2, . . . , xn |
n∑

j=1

xj = gj(x1, x2, . . . , xn) = 0} ∩

{x1, x2, . . . , xn |
n∑

j=1

xj = gj′(x1, x2, . . . , xn) = 0} = ∅

and so f(x1, x2, . . . , xn) is an irreducible Boolean expression.

The following Example shows that the converse of Theorem 3.22, is not necessarily true.

Example 3.23. (i) Consider a T. B. T T (f, x, y, z) in Table 4. Clearly (H, T ) is an 2-

intersection hypergraph, while the T.B.T corresponds to a reducible Boolean expression.

(ii) Consider a T. B. T T (f ′, x, y, z) in Table 4. Obviously, (H, T ) is an 1-intersection

hypergraph, while the T.B.T corresponds to an reducible Boolean expression.

Let n, k, λ ∈ N∗. A hypergraph H = (G, {Ej}kj=1) is called a strong λ-intersection hyper-

graph, if for some 1 ≤ i, j ≤ k, we have 1 ≤ |Ei ∩ Ej | ≤ λ.

The method for the construction of a Boolean expression from an T.B.T is explained in

Table 5, Algorithm 1 based on Theorem 3.21.
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Table 4. T. B. T T (f, x, y, z)

x y z f(x, y, z) f ′(x, y, z)

0 0 0 0 1

0 0 1 1 1

0 1 0 1 0

0 1 1 1 1

1 0 0 0 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 0

Example 3.24. (i)Consider a T. B. T T (f, x, y, z) in Table 6. Let H = {x, y, z, x′, y′, z′}.
Consider the undirected hypergraph H′ = (H,E1, E2, E3, E4) in Figure 2, where E1 =

{x, y, z′}, E2 = {x, y′, z}, E3 = {x′, y, z} and E4 = {x′, y′, z′}.

..z . x. y′.

y

.

z′

.

x′

.z . x. y′.

y

.

z′

.

x′

Figure 2. Undirected hypergraph H′ = (H,E1, E2, E3, E4)

Since E1 ∩ E2 = {x}, E1 ∩ E3 = {y}, E1 ∩ E4 = {z′}, E2 ∩ E3 = {z}, E2 ∩ E4 = {y′} and

E3 ∩ E4 = {x′} we get that f(x, y, z) = (x+ y + z′)(x+ y′ + z)(x′ + y + z)(x′ + y′ + z′).

(ii) Consider a T. B. T T (f, x, y, z) in Table 7. Let H = {x, y, z, x′, y′, z′}. Consider

the undirected hypergraph H′ = (H,E1, E2, E3, E4) in Figure 3, where E1 = {x, y′, z}, E2 =

{x, y′, z′}, E3 = {x′, y, z′} and E4 = {x′, y′, z′}.
Since E1 ∩ E2 = {x, y′}, E1 ∩ E3 = ∅, E1 ∩ E4 = {y′}, E2 ∩ E3 = {z′}, E2 ∩ E4 = {y′, z′} and

E3 ∩ E4 = {x′, z′}, we get that f(x, y) = (x+ y′)(y′ + z′)(x′ + z′).

3.1. Irreducible Switching Expression Based on a Program.

In this subsection, we present a program(Python programming) to accesses of Irreducible

Boolean expression for any given T.B.T, based on the Algorithm 1, Table 5.
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Table 5. Algorithm 1

Begin:

1. Input a T.B.T T (f, x1, x2, . . . , xn).

2. If f ≡ 0 or f ≡ 1, then consider g ≡ 0 or g ≡ 1, respectively.

3. If there exists j ∈ {1 ≤ j1, j2, . . . , js ≤ 2n}, such that fj(x1, x2, . . . , xn) = 0, then

consider Ej = {x1, x2, . . . , xn |
n∑

j=1

xj = fj(x1, x2, . . . , xn) = 0}.

With respect to step 3 consider the following:

4. For all 1 ≤ i ̸= j ≤ k and k ∈ N, set Fij = Ei ∩ Ej .

5. If for all 1 ≤ i ̸= j ≤ k, Fij = ∅ or |Fij | < n− 1, then consider g(x1, x2, . . . , xn) =
∏

1≤i≤k

∑
α∈Ei

α.

6. If there exists 1 ≤ r ≤ k, and i ̸= j ∈ {i1, i2, . . . , ir} such that Fij ̸= ∅ and

|Fij | ≥ n− 1, then put gij(x1, x2, . . . , xn) =
∑
α∈Fij

α.

7. If Z(n,
∏

i1≤i≤ir
i1≤j≤is

gij , 0) = Z(n, f, 0), then consider g(x1, x2, . . . , xn) =

∏
i1≤i≤ir
i1≤j≤is

gij(x1, . . . , xn) that Ker(gij) ⊆ Ker(f).

8. If Z(n,
∏

i1≤i≤ir
i1≤j≤is

gij , 0) < Z(n, f, 0), then consider 1 ≤ s ≤ k, j ∈ {j1, j2, . . . , js},

fj(x1, x2, . . . , xn) =
∑
β∈Ej

β such that Ker(
∏

i1≤i≤ir
i1≤j≤is

gij) ̸= Ker(fj) ⊆ Ker(f) and

Z(n, (
∏

i1≤i≤ir
i1≤j≤is

gij).(

js∏
j=j1

fj), 0) = Z(n, f, 0).

End.

1 import x l rd

2 import re

3

4 shee t = x l rd . open workbook ( ” input . x l sx ” ) . shee t by index (0 )

5

6 element names = sheet . row values ( 0 ) [ : −1 ]

7 e lements = [ ]
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Table 6. T. B. T T (f, x, y)

x y z f(x, y, z)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

Table 7. T. B. T T (f, x, y, z)

x y z f(x, y, z)

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

..x . y′. z.

z′

.

x′

.

y

.x . y′. z.

z′

.

x′

.

y

Figure 3. Undirected hypergraph H′ = (H,E1, E2, E3, E4)

8 for i in range (1 , shee t . nrows ) :

9 e lements . append ( shee t . row va lues ( i ) )
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10

11 i f l en ( e lements ) != pow(2 , l en ( element names ) ) :

12 print ( ”Error in input f i l e , rows count i s n ’ t equal to 2ˆn . ” )

13 e x i t (0 )

14

15 E i = [ ]

16 for i , elm in enumerate ( e lements ) :

17 i f ( elm [−1] == 0 ) :

18 E = [ ]

19 for c in range (0 , l en ( elm )−1):

20 i f ( elm [ c ] == 1 ) :

21 E. append ( element names [ c ]+” ’ ” )

22 else :

23 E. append ( element names [ c ] )

24 E i . append ( [ i , E ] )

25

26 def p r i n t g ( g expr ) :

27 print ( ”g ( ”+” , ” . j o i n ( element names)+” ) = ”+g expr )

28 input ( ”” )

29 e x i t (0 )

30

31 F i j = [ ]

32 for i in E i :

33 F = [ ]

34 for j in E i :

35 i f ( i != j ) :

36 i n t e r s e c t i o n = [ x for x in i [ 1 ] i f x in j [ 1 ] ]

37 i f ( l en ( i n t e r s e c t i o n ) >= ( len ( element names )−1)) :

38 F . append ( [ j [ 0 ] , i n t e r s e c t i o n ] )

39 i f (F ) :

40 F i j . append ( [ i [ 0 ] , F ] )

41
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42 F i j l e n = True

43 for i in F i j :

44 i f l en ( i ) >= len ( element names )−1:

45 F i j l e n = False

46

47 i f ( F i j == [ ] or F i j l e n ) :

48 g = [ ]

49 for i in E i :

50 g . append ( ” ( ”+”+” . j o i n ( i [ 1 ] )+ ” ) ” )

51 p r i n t g ( ”” . j o i n ( g ) )

52

53

54 g i j = [ ]

55 for i in F i j :

56 for j in i [ 1 ] :

57 g i j . append ( ” ( ”+”+” . j o i n ( j [ 1 ] )+ ” ) ” )

58 g i j = l i s t ( d i c t . fromkeys ( g i j ) )

59 s i gma g i j = ”” . j o i n ( g i j )

60

61

62 def ca l c mul t and ( expr ) :

63 expr = re . f i n d a l l ( ’ \ ( ( . ∗ ? ) \ ) ’ , expr )

64 for i in expr :

65 v = i . s p l i t ( ”+” )

66 i f ”1” not in v :

67 return 0

68 return 1

69

70 f a l s e g i j = [ ]

71 for elm in e lements :

72 tmp g = s i gma g i j

73 for c in range (0 , l en ( elm )−1):
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74 i f ( elm [ c ] == 1 ) :

75 tmp g = tmp g . r ep l a c e ( element names [ c ]+” ’ ” , ”0” )

76 tmp g = tmp g . r ep l a c e ( element names [ c ] , ”1” )

77 else :

78 tmp g = tmp g . r ep l a c e ( element names [ c ]+” ’ ” , ”1” )

79 tmp g = tmp g . r ep l a c e ( element names [ c ] , ”0” )

80 f a l s e g i j . append ( ca l c mul t and ( tmp g ) )

81

82 f j = [ ]

83 for i , elm in enumerate ( e lements ) :

84 i f ( elm [−1] == 0 and f a l s e g i j [ i ] == 1 ) :

85 f j . append ( ” ( ”+”+” . j o i n ( [ x for x in E i i f x [ 0 ] == i ] [ 0 ] [ 1 ] ) + ” ) ” )

86

87 p r i n t g ( ”” . j o i n ( g i j + f j ) )

Remark 3.25. We take n as number of variables in table, and k as number of elements of

Ej . Then

(i) T (Ej) = O(n× 2n), because one outer loop through rows and one inner loop through

columns.

(ii) T (Fij) = O(k2 × n), because two nested loops through elements of Ej and one inner

loop for getting intersection.

(iii) If for 1 ≤ j ≤ 2n , Fj(x1, ..., xn) = 0 or Fj(x1, ..., xn) = 1 complexity is O(2n) for one

loop through rows.

(iv) Others complexity is T (Ej) + T (Fij) = O(n× (k2 + 2n)).

4. Conclusion

The current paper has defined and considered the notion of Boolean function–based hyper-

graph, also is shown that every T.B.T corresponds to a Boolean expression. It investigated

to correspond every T.B.T to a Minimum and irreducible Boolean expression. For simplifying

the complex computations, we introduce an Algorithm and based on this algorithm we ex-

tracted a Python programming. We hope that these results are helpful for further studies in

Boolean function theory. In our future studies, we hope to obtain more results regarding irre-

ducible Boolean function, graphs, hypergraphs, decision tree based on Boolean function–based

hypergraph and their applications.
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