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1. Introduction

Fuzzy graph models are advantageous mathematical tools for dealing with combinatorial problems
of various domains including operations research, optimization, social science, algebra, computer
science, environmental science and topology. Fuzzy graphical models are obviously better than
graphical models due to natural existence of vagueness and ambiguity. Initially, we needed fuzzy set
theory to cope with many complex phenomenons having incomplete information. Fuzzy set theory
[1] is a very strong mathematical tool for solving approximate reasoning related problems. These
notions describe complex phenomenons very well, which are not properly described using classical
mathematics. Atanassov [2] generalized the fuzzy set theory by introducing the notion of intuitionistic
fuzzy sets. The intuitionistic fuzzy sets have more describing possibilities as compared to fuzzy sets.
An intuitionistic fuzzy set is inventive and more useful due to the existence of non-membership degree.
In many situations like information fusion, indeterminacy is explicitly quantified. Smarandache [3]
introduced the concept of neutrosophic sets, and he combined the tricomponent logic, non-standard
analysis, and philosophy. It is a branch of philosophy which studies the origin, nature and scope
of neutralities as well as their interactions with different ideational spectra. Three independent
components of neutrosophic set are: truth value, indeterminacy value and falsity value [3]. For
convenient use of neutrosophic sets in real-life phenomena, Wang et al. [4] proposed single valued
neutrosophic sets, which is a generalization of intuitionistic fuzzy sets [2] and has three independent
components having values in a standard unit interval [0, 1]. Ye [5–8] proposed several multi criteria
decision-making methods based on neutrosophic sets. Bhowmik and Pal [9,10] introduced the notion of
intuitionistic neutrosophic sets.

Kauffman [11] introduced fuzzy graphs on the basis of Zadeh’s fuzzy relations [12]. Rosenfeld [13]
discussed fuzzy analogue of many graph-theoretic notions. Later on, Bhattacharya [14] gave
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some remarks on fuzzy graphs. The complement of a fuzzy graph was defined by Sunitha and
Vijayakumar [15]. Bhutani and Rosenfeld studied the notion of M-strong fuzzy graphs and their
properties in [16]. Parvathi et al. defined operations on intuitionistic fuzzy graphs in [17]. Akram and
Shahzadi [18] introduced neutrosophic soft graphs with applications. Dinesh and Ramakrishnan [19]
introduced the notion of fuzzy graph structures and discussed some related properties. Akram and
Akmal [20] introduced the concept of bipolar fuzzy graph structures. Recently, Akram and Sitara [21]
introduced the concept of intuitionistic neutrosophic graph structures. Several notions’ graph structures
have been studied by the same authors in [22–27]. In this research paper, we introduce certain notions
of intuitionistic neutrosophic graph structures and illustrate these notions by examples. We also present
an application of intuitionistic neutrosophic graph structures in decision-making. For other notations
and applications, readers are referred to [28–45] .

2. Intuitionistic Neutrosophic Graph Structures

Sampathkumar [46] introduced the graph structure, which is a generalization of an undirected
graph and is quite useful in studying some structures like graphs, signed graphs, labeled graphs and
edge colored graphs.

Definition 1. [46] A graph structure G = (V, R1, . . . , Rr) consists of a non-empty set V together with relations
R1, R2, . . . , Rr on V, which are mutually disjoint such that each Rh, 1 ≤ h ≤ r is symmetric and irreflexive.

One can represent a graph structure G = (V, R1, ..., Rr) in the plane, just like a graph where each
edge is labeled as Rh, 1 ≤ h ≤ r.

Definition 2. [3] An ordered triple < TN , IN , FN > in ]0−, 1+[ in the universe of discourse V is called
neutrosophic set, where TN , IN , FN : V → ]0−, 1+[, and their sum is without any restriction.

Definition 3. [4] An ordered triple < TN , IN , FN > in [0, 1] in a universe of discourse V is called single-valued
neutrosophic set, where TN , IN , FN : V → [0, 1], and their sum is restricted between 0 and 3.

Definition 4. [47] Let V be a fixed set. A generalized intuitionistic fuzzy set I of V is an object having the
form I={(u, µI(u), νI(u))|u ∈ V}, where the functions µI(u) :→ [0, 1] and νI(u) :→ [0, 1] define the degree of
membership and degree of nonmembership of an element u ∈ V, respectively, such that

min{µI(u), νI(u)} ≤ 0.5, for all u ∈ V.

Definition 5. [9,10] An intuitionistic neutrosophic set can be stated as a set having the form I =

{TI(u), II(u), FI(u) : u ∈ V}, where

min{TI(u), II(u)} ≤ 0.5,
min{FI(u), II(u)} ≤ 0.5,
min{TI(u), FI(u)} ≤ 0.5,

and 0 ≤ TI(u) + II(u) + FI(u) ≤ 2.

Definition 6. Let Ǧ = (P, P1, P2, . . . , Pr) be a graph structure(GS), and then Ǧi = (O, O1, O2and . . . , Or)

is called an intuitionistic neutrosophic graph structure (INGS), if O = < k, T(k), I(k), F(k) > and Oh =
< (k, l), Th(k, l), Ih(k, l), Fh(k, l) > are intuitionistic neutrosophic sets on P and Ph, respectively, such that

1. Th(k, l) ≤ T(k) ∧ T(l), Ih(k, l) ≤ I(k) ∧ I(l), Fh(k, l) ≤ F(k) ∨ F(l);
2. Th(k, l) ∧ Ih(k, l) ≤ 0.5, Th(k, l) ∧ Fh(k, l) ≤ 0.5, Ih(k, l) ∧ Fh(k, l) ≤ 0.5;
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3. 0 ≤ Th(k, l) + Ih(k, l) + Fh(k, l) ≤ 2, ∀ (k, l) ∈ Oh, h = 1, 2, . . . , r,

where O is an underlying vertex set of Ǧi and Oh (h = 1, 2, . . . , r ) are underlying h-edge sets of Ǧi.

Example 1. Consider a GS Ǧ = (P, P1, P2) such that O, O1,O2 are IN subsets of P, P1, P2, respectively, where

P = {k1, k2, k3, k4, k5, k6, k7, k8},
P1 = {k1k2, k3k4, k5k6, k3k7, k6k8},
P2 = {k2k3, k4k5, k1k6, k5k7, k2k8}.

Through direct calculations, it is easy to show that Ǧi = (O, O1, O2) is an INGS of Ǧ as represented in Figure 1.
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Figure 1. An intuitionistic neutrosophic graph structure.

Definition 7. Let Ǧi = (O, O1, O2, . . . , Or) be an INGS of Ǧ. If Ȟi = (O′, O′
1, O′

2, . . . , O′
r) is an INGS of Ǧ

such that

T′(k) ≤ T(k), I′(k) ≤ I(k), F′(k) ≥ F(k) ∀k ∈ P,

T′
h(k, l) ≤ Th(k, l), I′h(k, l) ≤ Ih(k, l), F′

h(k, l) ≥ Fh(k, l), ∀(k, l) ∈ Ph, h = 1, 2, ..., r.

Then, Ȟi is said to be an intuitionistic neutrosophic (IN) subgraph structure of INGS Ǧi.

Example 2. Consider an INGS Ȟi = (O′, O′
1, O′

2) of GS Ǧ = (P, P1, P2) as represented in Figure 2. Through
routine calculations, it can be easily shown that Ȟi is an IN subgraph structure of INGS Ǧi.
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Figure 2. IN subgraph structure.

Definition 8. An INGS Ȟi = (O′, O′
1, O′

2, . . . , O′
r) is called an IN induced-subgraph structure of Ǧi by Q ⊆ P if

T′(k) = T(k), I′(k) = I(k), F′(k) = F(k), ∀k ∈ Q,

T′
h(k, l) = Th(k, l), I′h(k, l) = Ih(k, l), F′

h(k, l) = Fh(k, l), ∀k, l ∈ Q, h = 1, 2, . . . , r.

Example 3. The INGS in the given Figure 3 is an IN induced-subgraph structure of an INGS in Figure 1.
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Figure 3. An IN induced-subgraph structure.

Definition 9. An INGS Ȟi = (O′, O′
1, O′

2, . . . , O′
r) is said to be a IN spanning-subgraph structure of Ǧi if O′ =

O and

T′
h(k, l) ≤ Th(k, l), I′h(k, l) ≤ Ih(k, l), F′

h(k, l) ≥ Fh(k, l), h = 1, 2, . . . , r.

Example 4. An INGS shown in Figure 4 is an IN spanning-subgraph structure of an INGS in Figure 1.
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Definition 10. Let Ǧi = (O, O1, O2, . . . , Or) be an INGS. Then, kl ∈ Ph is named as a IN Oh-edge or shortly
Oh-edge, if Th(k, l) > 0 or Ih(k, l) > 0 or Fh(k, l) > 0 or all these conditions are satisfied. As a result, support of
Oh is:

supp(Oh) = {kl ∈ Oh : Th(k, l) > 0} ∪ {kl ∈ Oh : Ih(k, l) > 0} ∪ {kl ∈ Oh : Fh(k, l) > 0},

h = 1, 2, ..., r.

Definition 11. Oh-path in an INGS Ǧi = (O, O1, O2, . . . , Or) is a sequence k1, k2, ..., kr of distinct vertices
(except kr = k1) in P, such that kh−1kh is an IN Oh-edge ∀h = 2, ..., r.

Definition 12. An INGS Ǧi = (O, O1, O2, . . . , Or) is Oh-strong for any h ∈ {1, 2, ..., r} if

Th(k, l) = min{T(k), T(l)}, Ih(k, l) = min{I(k), I(l)}, Fh(k, l) = max{F(k), F(l)},

∀kl ∈ supp(Oh). If Ǧi is Oh-strong for all h ∈ {1, 2, . . . , r}, then Ǧi is a strong INGS.

Example 5. Consider an INGS Ǧi = (O, O1, O2) as represented in Figure 5. Then, Ǧi is strong INGS, as it is
O1− and O2 − strong.

b b

b

b

b

b

k6(0.1, 0.2, 0.4)

k 5
(0

.2
, 0

.4
, 0

.3
)

k4(0.3, 0.3, 0.4)

k
3 (0.2, 0.4, 0.5)

k2(0.3, 0.3, 0.3) k1(0.4, 0.3, 0.4)

O
2(

0.
1,

0.
2,

0.
4)

O 2
(0

.3,
0.3

, 0
.4
)

O
1(

0.
2,

0.
3,

0.
4)

O 2
(0

.1,
0.2

, 0
.4
)

O
1 (0.1, 0.2, 0.5)

O
1 (0.2, 0.3, 0.3)

O
2
(0

.2
, 0

.3
, 0

.5
)

O1(0.2, 0.3, 0.5)

O1(0.3, 0.3, 0.4)

Figure 5. A strong INGS.

Definition 13. An INGS Ǧi = (O, O1, O2, . . . , Or) is a complete INGS, if

1. Ǧi is strong INGS.
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2. supp(Oh) ̸= ∅, for all h = 1, 2, . . . , r.
3. For all k, l ∈ P, kl is a Oh − edge for some h.

Example 6. Let Ǧi = (O, O1, O2) be an INGS of GS Ǧ = (P, P1, P2), such that

P = {k1, k2, k3, k4, k5, k6},
P1 = {k1k6, k1k2, k2k4, k2k5, k2k6, k1k6},

P2 = {k2k6, k4k3, k5k6, k1k4},
P3 = {k1k5, k5k3, k2k3, k1k3, k4k6}.

By means of direct calculations, it is easy to show that Ǧi is strong INGS.
Moreover, supp(O1) ̸= ∅, supp(O2) ̸= ∅, supp(O3) ̸= ∅, and every pair khkq of vertices of P, is O1-edge or
O2-edge or an O3-edge. Hence, Ǧi is a complete INGS, that is, O1O2O3-complete INGS.

Definition 14. Let Ǧi = (O, O1, O2, . . . , Or) be an INGS. The truth strength T.POh , falsity strength F.POH , and
indeterminacy strength I.POh of an Oh-path, POh = k1, k2, . . . , kn is defined as:

T.POh =
n∧

i=2
[TP

Oh
(ki−1ki)],

I.POh =
n∧

i=2
[IP

Oh
(ki−1ki)],

F.POh =
n∨

i=2
[FP

Oh
(ki−1ki)].

Example 7. Consider an INGS Ǧi = (O, O1, O2, O3) as in Figure 6. We found an O1-path PO1 = k2, k1, k6. So,
T.PO1= 0.2, I.PO1= 0.1 and F.PO2= 0.5.
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Figure 6. A complete INGS.

Definition 15. Let Ǧi = (O, O1, O2, . . . , Or) be an INGS. Then,

• Oh-strength of connectedness of truth between k and l is defined as: T∞
Oh
(kl) =

∨
i≥1

{Ti
Oh
(kl)}, such that

Ti
Oh
(kl) = (Ti−1

Oh
◦ T1

Oh
)(kl) for i ≥ 2 and T2

Oh
(kl) = (T1

Oh
◦ T1

Oh
)(kl) =

∨
y
(T1

Oh
(ky) ∧ T1

Oh
)(yl).

• Oh-strength of connectedness of indeterminacy between k and l is defined as: I∞
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(kl) =

∨
i≥1

{Ii
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(kl)}, such

that Ii
Oh
(kl) = (Ii−1
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◦ I1
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Oh
◦ I1
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)(kl) =

∨
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• Oh-strength of connectedness of falsity between k and l is defined as: F∞
Oh
(kl) =

∧
i≥1

{Fi
Oh
(kl)}, such that

Fi
Oh
(kl) = (Fi−1

Oh
◦ F1

Oh
)(kl) for i ≥ 2 and F2

Qh
(kl) = (F1
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◦ F1

Oh
)(kl) =

∧
y
(F1

Oh
(ky) ∨ F1

Oh
)(yl).

Definition 16. An INGS Ǧi = (O, O1, O2, . . . , Or) is called an Oh-cycle if (supp(O), supp(O1),
supp(O2), . . . , supp(Or)) is an Oh − cycle.

Definition 17. An INGS Ǧi = (O, O1, O2, . . . , Or) is an IN fuzzy Oh-cycle (for any h) if

1. Ǧi is an Oh-cycle.
2. There exists no unique Oh-edge kl in Ǧi such that

TOh(kl) = min{TOh(yz) : yz ∈ Ph = supp(Oh)} or IOh(kl) = min{IOh(yz) : yz ∈ Ph = supp(Oh)}
or FOh(kl) = max{FOh(yz) : yz ∈ Ph = supp(Oh)}.

Example 8. Consider an INGS Ǧi = (O, O1, O2) as in Figure 6. Then, Ǧi is an O1-cycle and IN fuzzy O1 −
cycle, since (supp(O), supp(O1), supp(O2)) is an O1-cycle and no unique O1-edge kl satisfies the condition:
TOh(kl) = min{TOh(yz) : yz ∈ Ph = supp(Oh)} or IOh(kl) = min{IOh(yz) : yz ∈ Ph = supp(Oh)} or
FOh(kl) = max{FOh(yz) : yz ∈ Ph = supp(Oh)}.

Definition 18. Let Ǧi = (O, O1, O2, . . . , Or) be an INGS and k a vertex in Ǧi. Let (O′, O′
1, O′

2, . . . , O′
r) be an

IN subgraph structure of Ǧi induced by P \ {k} such that ∀y ̸= k, z ̸= k.

TO′(k) = 0 = IO′(k) = FO′(k), TO′
h
(ky) = 0 = IO′

h
(ky) = FO′

h
(ky) ∀ edges ky ∈ Ǧi; TO′(y) = TO(y),

IO′(y) = IO(y), FO′(y) = FO(y), ∀y ̸= k;TO′
h
(yz) = TOh(yz), IO′

h
(yz) = IOh(yz), FO′

h
(yz) = FOh(yz).

Then, k is IN fuzzy Oh cut-vertex, for some h, if

T∞
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(yz) > T∞

O′
h
(yz), I∞
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(yz) > I∞

O′
h
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and

F∞
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(yz) > F∞

O′
h
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O′
h
(yz), IN fuzzy Oh − I cut-vertex, if I∞

Oh
(yz) >

I∞
O′

h
(yz) and IN fuzzy Oh − F cut-vertex, if F∞

Oh
(yz) > F∞

O′
h
(yz).

Example 9. Consider an INGS Ǧi = (O, O1, O2) as represented in Figure 7 and Ǧ′
h = (O′, O′

1, O′
2) is an IN

subgraph structure of an INGS Ǧi, and we found it by deleting the vertex k2. The vertex k2 is an IN fuzzy O1-I
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O1
(k2k5), I∞

O′
1
(k4k3) = 0.7 = I∞

O1
(k4k3) and I∞

O′
1
(k3k5) = 0.3 <

0.4 = I∞
O1
(k3k5).

b

b

b b

bb

k5(0.4, 0.5, 0.6)

k2(0.4, 0.7, 0.5)

k6(
0.3, 0.4, 0.4)

k4 (0.5, 0.5, 0.7)

k 3(
0.5

, 0
.7,

0.5
)

k1 (0.3, 0.6, 0.4)

O2(0.1, 0.4, 0.2)

O
1(

0.
4,

0.
4,

0.
5)

O
1(

0.
3,

0.
2,

0.
4)

O1(0.3, 0.5, 0.4)

O
1(

0.
5,

0.
7,

0.
5)

O1 (0.3, 0.3, 0.4)

O2(0.1, 0.4, 0.2)

O2(0.2, 0.4, 0.3)

O2 (0.3, 0.6, 0.4)

Figure 7. An INGS Ǧi = (O, O1, O2).
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Definition 19. Let Ǧi = (O, O1, O2, . . . , Or) be an INGS and kl an Oh − edge.

Let (O′, O′
1, O′

2, . . . , O′
r) be an IN fuzzy spanning-subgraph structure of Ǧi, such that

TO′
h
(kl) = 0 = IO′

h
(kl) = FO′

h
(kl), TO′

h
(qt) = TOh(qt), IO′

h
(qt) = IOh(qt), FO′

h
(qt) = FOh(qt),

∀ edges qt ̸= kl.

Then, kl is an IN fuzzy Oh-bridge if

T∞
Oh
(yz) > T∞

O′
h
(yz), I∞

Oh
(yz) > I∞

O′
h
(yz) and F∞

Oh
(yz) > F∞

O′
h
(yz), for some y, z ∈ P.

Note that kl is an IN fuzzy Oh − T bridge if T∞
Oh
(yz) > T∞

O′
h
(yz), IN fuzzy Oh − I bridge if I∞

Oh
(yz) > I∞

O′
h
(yz)

and IN fuzzy Oh − F bridge if F∞
Oh
(yz) > F∞

O′
h
(yz).

Example 10. Consider an INGS Ǧi = (O, O1, O2) as shown in Figure 7 and Ǧ′
H = (O′′, O′′

1 , O′′
2 ) is IN

spanning-subgraph structure of an INGS Ǧi found by the deletion of O1-edge (k2k5). Edge (k2k5) is
an IN fuzzy O1-bridge. As T∞

O′′
1
(k2k5)= 0.3 < 0.4 = T∞

O1
(k2k5), I∞

O′′
1
(k2k5)= 0.3 < 0.4= I∞

O1
(k2k5),

F∞
O′′

1
(k2k5)= 0.4 < 0.5 = F∞

O1
(k2k5).

Definition 20. An INGS Ǧi = (O, O1, O2, . . . , Or) is an Oh-tree, if (supp(O), supp(O1),
supp(O2), . . . , supp(Or)) is an Oh − tree. Alternatively, Ǧi is an Oh-tree, if there is a subgraph of Ǧi induced
by supp(Oh), which forms a tree.

Definition 21. An INGS Ǧi = (O, O1, O2, . . . , Or) is an IN fuzzy Oh-tree if Ǧi has an IN fuzzy
spanning-subgraph structure Ȟi = (O′′, O′′

1 , O′′
2 , . . . , O′′

r ), such that, for all Oh-edges kl not in Ȟi,
Ȟi is an O′′

h -tree, and TOh(kl) < T∞
O′′

h
(kl), IOh(kl) < I∞

O′′
h
(kl), FOh(kl) < F∞

O′′
h
(kl).

In particular, Ǧi is an IN fuzzy Oh-T tree if TOh(kl) < T∞
O′′

h
(kl), an IN fuzzy Oh-I tree if

IOh(kl) < I∞
O′′

h
(kl), and an IN fuzzy Oh-F tree if FOh(kl) > F∞

O′′
h
(kl).

Example 11. Consider an INGS Ǧi = (O, O1, O2) as shown in Figure 8. It is an O2-tree, not an O1-tree but it
is IN fuzzy O1-tree because it has an IN fuzzy-spanning subgraph (O′, O′

1, O′
2) as an O′

1-tree, which is found by
the deletion of O1-edge k2k5 from Ǧi. Moreover, T∞

O′
1
(k2k5) = 0.3 > 0.2 = TO1(k2k5), I∞

O′
1
(k2k5) = 0.3 > 0.1 =

IO1(k2k5) and F∞
O′

1
(k2k5) = 0.4 < 0.5 = FO1(k2k5).

b

b b

b b

k1(0.3, 0.6, 0.5)

k2 (0.4, 0.7, 0.5)k3(
0.5, 0.7, 0.5)

k4 (0.6, 0.5, 0.5) k 5(
0.4, 0.5, 0.4

k6(0.3, 0.4, 0.3)

O
1
(0

.5
, 0

.5
, 0

.4
)

O1(0.3, 0.3, 0.4)

O
1(

0.
2,

0.
1,

0.
5)O1(0.3, 0.5, 0.5)

O2(0
.2, 0.4, 0.4)

O2(0.3, 0.2, 0.3)

O2(
0.1, 0.4, 0.4)

O
2 (0.2, 0.6, 0.2)

O
2 (0.1, 0.4, 0.1)

b

Figure 8. An IN fuzzy O1-tree.
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Definition 22. An INGS Ǧi1 = (O1, O11, O12, . . . , O1r) of graph structure Ǧ1 = (P1, P11, P12, . . . , P1r) is said
to be isomorphic to an INGS Ǧi2 = (O2, O21, O22, . . . , O2r) of the graph structure Ǧ2 = (P2, P21, P22, ..., P2r),
if there is a pair (g, ψ), where g : P1 → P2 is a bijective mapping and ψ is any permutation on this set {1, 2, . . . , r}
such that;

TO1(k) = TO2(g(k)), IO1(k) = IO2(g(k)), FO1(k) = FO2(g(k)), ∀k ∈ P1,

TO1h(kl) = TO2ϕ(h)
(g(k)g(l)), IO1h(kl) = IO2ϕ(h)

(g(k)g(l), FQ1h(kl) = FO2ϕ(h)
(g(k)g(l)),

∀kl ∈ P1h, h = 1,2,. . . ,r.

Example 12. Let Ǧi1 = (O, O1, O2) and Ǧi2 = (O′, O′
1, O′

2) be two INGSs as shown in the Figure 9.
Ǧi1 and Ǧi2 are isomorphic under (g, ψ), where g : P → P′ is a bijective mapping and ψ is the permutation on
{1, 2}, which is defined as ψ(1) = 2, ψ(2) = 1, and the following conditions hold:

TO(kh) = TO′(g(kh)),
IO(kh) = IO′(g(kh)),
FO(kh) = FO′(g(kh)),

∀kh ∈ P and

TOh(khkq) = TO′
ψ(h)

(g(kh)g(kq)),

IOh(khkq) = IO′
ψ(h)

(g(kh)g(kq)),

FOh(khkq) = FO′
ψ(h)

(g(kh)g(kq)),

∀khkq ∈ Ph, h = 1, 2.

b

b

b bk1(0.3, 0.4, 0.4)

k2(0.5, 0.5, 0.5)

k3(0.2, 0.7, 0.5)

k4(0.2, 0.2, 0.5)

O 1
(0

.1
, 0

.3
, 0

.4
)

O
1 (0.2, 0.3, 0.4)

O
2 (0.2, 0.2, 0.5)

O
2
(0

.1
, 0

.2
, 0

.5
)

b

b

b

b

b

l1(0.3, 0.3, 0.4)

l2(0.5, 0.5, 0.5)

l4(0.2, 0.2, 0.5)

l3(0.2, 0.7, 0.5)

O
′ 2
(0

.1
, 0

.3
, 0

.4
)

O
′2 (0.2, 0.3, 0.4)

O
′1 (0.2, 0.2, 0.5)

O
′ 1
(0

.1
, 0

.2
, 0

.5
)

O1(0.2, 0.2, 0.4) O′
2(0.2, 0.2, 0.4)

Figure 9. Two isomorphic INGSs.

Definition 23. An INGS Ǧi1 = (O1, O11, O12, . . . , O1r) of the graph structure Ǧ1 = (P1, P11, P12, ..., P1r) is
identical with an INGS Ǧi2 = (O2, O21, O22, ..., O2r) of the graph structure Ǧ2 = (P2, P21, P22, ..., P2r) if g : P1 →
P2 is a bijective mapping such that

TO1(k) = TO2(g(k)), IO1(k) = IO2(g(k)), FO1(k) = FO2(g(k)), ∀k ∈ P1,

TO1h(kl) = TO2h(g(k)g(l)), IO1h(kl) = IO2h(g(k)g(l)), FO1h(kl) = FO2(h)
(g(k)g(l)),
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∀kl ∈ P1h, h = 1, 2, . . . , r.

Example 13. Let Ǧi1 = (O, O1, O2) and Ǧi2 = (O′, O′
1, O′

2) be two INGSs of the GSs Ǧ1 = (P, P1, P2), Ǧ2 =
(P′, P′

1, P′
2), respectively, as they are shown in Figures 10 and 11.

SVINGSs Ǧi1 and Ǧi2 are identical under g : P → P′ is defined as :

g(k1) = l2, g(k2) = l1, g(k3) = l4, g(k4) = l3, g(k5) = l5, g(k6) = l8, g(k7) = l7, g(k8) = l6.

Moreover, TO(kh) = TO′((kh)), IO(kh) = IO′(g(kh)), FO(kh) = FO′(g(kh)), ∀kh ∈ P and TOh(khkq) =
TO′

h
(g(kh)g(kq)), IOh(khkq) = IO′

h
(g(kh)g(kq)), FOh(khkq) = FO′

h
(g(kh)g(kq)), ∀khkq ∈ Ph, h = 1, 2.

b

b

b

b

b

b

b

b

k7(0.5, 0.3, 0.6)

k 6(
0.4, 0.5, 0.2)

k5(0.5, 0.6, 0.5)

k 4(
0.6, 0.5, 0.4)

k 3(
0.5, 0.4, 0.3)

k2(0.3, 0.4, 0.5)
k1(0.2, 0.3, 0.4)

k 8(
0.4, 0.6, 0.3)

O1(0.3, 0.2, 0.5) O2(0.4, 0.3, 0.6)

O1(0.2, 0.3, 0.4)

O2(0.6, 0.5, 0.5)

O2(0.3, 0.3, 0.5)

O2(0.5, 0.4, 0.5)

O2(0.1, 0.3, 0.5) O1(0.3, 0.4, 0.2)

O1 (0.2, 0.2, 0.4) O2(0.1, 0.2, 0.3)

O1(0.2, 0.3, 0.4)

Figure 10. An INGS Ǧi1.

b

b

b

b

b

b

b

b
l7(0.5, 0.3, 0.6)

l5(0.5, 0.6, 0.5)

l8 (0.4, 0.5, 0.2) l 6
(0

.4,
0.6

, 0
.3)

l3 (0.6, 0.5, 0.4)
l 4(

0.5, 0.4, 0.3) l1(0.3, 0.4, 0.5)

l2(0.2, 0.3, 0.4)O ′
1 (0.3, 0.2, 0.5) O

′
2(

0.4, 0.3, 0.6)

O′
1(0.2, 0.3, 0.4)

O ′
2 (0.6, 0.5, 0.5)

O
′
2(

0.5, 0.4, 0.5)

O
′
2
(0.1, 0.3, 0.5) O ′

1 (0.3, 0.4, 0.2)
O ′

1 (0.2, 0.2, 0.4) O
′
2
(0.1, 0.2, 0.3)

O
′ 1
(0

.2
, 0

.3
, 0

.4
)

O′
2(0.3, 0.3, 0.5)

Figure 11. An INGS Ǧi2.

Definition 24. Let Ǧi = (O, O1, O2, ..., Or) be an INGS and ψ is any permutation on {O1, O2, ..., Or} and on
set {1, 2, ..., r}, that is, ψ(Oh) = Oq if and only if ψ(h) = q ∀h. If kl ∈ Oh, for any h and

TOψ
h
(kl) = TO(k) ∧ TO(l)−

∨
q ̸=h

Tψ(Oq)(kl), IOψ
h
(kl) = IO(k) ∧ IO(l)−

∨
q ̸=h

Iψ(Oq)(kl),

FOψ
h
(kl) = FO(k) ∨ FO(l)−

∧
q ̸=h

Tψ(Oq)(kl), h = 1, 2, ..., r, then, kl ∈ Oψ
t , where t is chosen such that

TOψ
t
(kl) ≥ TOψ

h
(kl), IOψ

t
(kl) ≥ IOψ

h
(kl), FOψ

t
(kl) ≥ FOψ

h
(kl) ∀h. In addition, INGS (O, Oψ

1 , Oψ
2 , . . . , Oψ

r ) is

called a ψ-complement of an INGS Ǧi, and it is symbolized as Ǧψc
i .

Example 14. Let O = {(k1, 0.3, 0.4, 0.7), (k2, 0.5, 0.6, 0.4), (k3, 0.7, 0.5, 0.3)}, O1 = {(k1k3, 0.3, 0.4, 0.3)},
O2 = {(k2k3, 0.5, 0.4, 0.3)}, O3 = {(k1k2, 0.3, 0.3, 0.4)} be IN subsets of P, P1, P2, P3, respectively.
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Thus, Ǧi = (O, O1, O2, O3) is an INGS of GS Ǧ = (P, P1, P2, P3). Let ψ(O1) = O2, ψ(O2) = O3, ψ(O3) = O1,
where ψ is permutation on {O1, O2, O3}. Now, for k1k3, k2k3, k1k2 ∈ O1, O2, O3, respectively:

TOψ
1
(k1k3) = 0, IOψ

1
(k1k3) = 0, FOψ

1
(k1k3) = 0.7, TOψ

2
(k1k3) = 0, IOψ

2
(k1k3) = 0, FOψ

2
(k1k3) = 0.7,

TOψ
3
(k1k3) = 0.3, IOψ

3
(k1k3) = 0.4, FOψ

3
(k1k3) = 0.7. So k1k3 ∈ Oψ

3 ,

TOψ
1
(k2k3) = 0.5, IOψ

1
(k2k3) = 0.5, FOψ

1
(k2k3) = 0.4, TOψ

2
(k2k3) = 0, IOψ

2
(k2k3) = 0.1, FOψ

2
(k2k3) = 0.4,

TOψ
3
(k2k3) = 0, IOψ

3
(k2k3) = 0.1, FOψ

3
(k2k3) = 0.4. So k2k3 ∈ Oψ

1 ,

TOψ
1
(k1k2) = 0, IOψ

1
(k1k2) = 0.1, FOψ

1
(k1k2) = 0.7, TOψ

2
(k1k2) = 0.3, IOψ

2
(k1k2) = 0.4, FOψ

2
(k1k2) = 0.7,

TOψ
3
(k1k2) = 0, IOψ

3
(k1k2) = 0.1, FOψ

3
(k1k2) = 0.7. This shows k1k2 ∈ Oψ

2 .

Hence, Ǧψc
i =(O, Oψ

1 , Oψ
2 , Oψ

3 ) is a ψ-complement of an INGS Ǧi as presented in Figure 12.

k3(0.7, 0.5, 0.3)k2(0.5, 0.6, 0.4)

k 3
(0

.7
, 0

.5
, 0

.3
)

k2(0.5, 0.6, 0.4)

k1(0.3, 0.4, 0.7)k1(0.3, 0.4, 0.7)

O2(0
.5, 0.4, 0.3)

O
1 (0.3, 0.4, 0.3)

O
3(

0.
3,

0.
3,

0.
4)

O
ψ

2
(0

.3,
0.4

, 0
.7)

Oψ
1 (0.5, 0.5, 0.4)

O
ψ 3
(0

.3
,0

.4
,0

.7
)

b

b

b

b

b b

Figure 12. INGSs Ǧi, Ǧψc
i .

Proposition 1. A ψ-complement of an INGS Ǧi = (O, O1, O2, . . . , Or) is a strong INGS. Moreover,
if ψ(h) = t, where h, t ∈ {1, 2, ..., r}; then, all Ot-edges in an INGS (O, O1, O2, . . . , Or) become Oψ

h -edges in
(O, Oψ

1 , Oψ
2 , ..., Oψ

r ).

Proof. By definition of ψ-complement,

TOψ
h
(kl) = TO(k) ∧ TO(l)−

∨
q ̸=h

Tψ(Oq)(kl), (1)

IOψ
h
(kl) = IO(k) ∧ IO(l)−

∨
q ̸=h

Iψ(Oq)(kl), (2)

FOψ
h
(kl) = FO(k) ∨ FO(l)−

∧
q ̸=h

Fψ(Oq)(kl), (3)

for h ∈ {1, 2, ..., r}. For Expression 1.
As TO(k) ∧ TO(l) ≥ 0,

∨
q ̸=h

Tψ(Oq)(kl) ≥ 0 and TOh(kl) ≤ TO(k) ∧ TO(l) ∀Oh.

⇒ ∨
q ̸=h

Tψ(Oq)(kl) ≤ TO(k) ∧ TO(l) ⇒ TO(k) ∧ TO(l)−
∨

q ̸=h
Tψ(Oq)(kl) ≥ 0.

Hence, TOψ
h
(kl) ≥ 0 ∀h.

Furthermore, TOψ
h
(kl) gets a maximum value, when

∨
q ̸=h

Tψ(Oq)(kl) is zero. Clearly, when ψ(Oh) = Ot

and kl is an Ot-edge, then
∨

q ̸=h
Tψ(Oq)(kl) attains zero value. Hence,

TOψ
h
(kl) = TO(k) ∧ TO(l), f or (kl) ∈ Ot, ψ(Oh) = Ot. (4)
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Similarly, for I, the results are:
Since IO(k) ∧ IO(l) ≥ 0,

∨
q ̸=h

Iψ(Oq)(kl) ≥ 0 and IOh(kl) ≤ IO(k) ∧ IO(l) ∀Oh.

⇒ ∨
q ̸=h

Iψ(Oq)(kl) ≤ IO(k) ∧ IO(l) ⇒ IO(k) ∧ IO(l)−
∨

q ̸=h
Iψ(Oq)(kl) ≥ 0.

Therefore, IOψ
h
(kl) ≥ 0 ∀ i.

Value of the IOψ
h
(kl) is maximum when

∨
q ̸=h

Iψ(Oq)(kl) gets zero value. Clearly, when ψ(Oh) = Ot and kl

is an Ot-edge, then
∨

q ̸=h
Iψ(Oq)(kl) is zero. Thus,

IOψ
h
(kl) = IO(k) ∧ IO(l), f or (kl) ∈ Ot, ψ(Oh) = Ot. (5)

On a similar basis for F in ψ-complement, the results are:

Since FO(k) ∨ FO(l) ≥ 0,
∧

q ̸=h
Fψ(Oq)(kl) ≥ 0 and FOh(kl) ≤ FO(k) ∨ FO(l) ∀Oh.

⇒ ∧
q ̸=h

Fψ(Oq)(kl) ≤ FO(k) ∨ FO(l) ⇒ FO(k) ∨ FO(l)−
∧

q ̸=h
Fψ(Oq)(kl) ≥ 0.

Hence, FOψ
h
(kl) ≥ 0 ∀h.

Furthermore, FOψ
h
(kl) is maximum, when

∧
q ̸=h

Fψ(Oq)(kl) is zero. Definitely, when ψ(Oh) = Ot and kl is

an Ot-edge, then
∧

q ̸=h
Fψ(Oq)(kl) is zero. Hence,

FOψ
h
(kl) = FO(k) ∨ FO(l), f or (kl) ∈ Ot, ψ(Oh) = Ot. (6)

Expressions (4)–(6) give the required proof.

Definition 25. Let Ǧi = (O, O1, O2, ..., Or) be an INGS and ψ be any permutation on {1, 2, ..., r}. Then,

(i) Ǧi is a self-complementary INGS if Ǧi is isomorphic to Ǧψc
i ;

(ii) Ǧi is a strong self-complementary INGS if Ǧi is identical to Ǧψc
i .

Definition 26. Let Ǧi = (O, O1, O2, . . . , Or) be an INGS. Then,

(i) Ǧi is a totally self-complementary INGS if Ǧi is isomorphic to Ǧψc
i , ∀ permutations ψ on {1, 2, . . . , r};

(ii) Ǧi is a totally-strong self-complementary INGS if Ǧi is identical to Ǧψc
i , ∀ permutations ψ on {1, 2, . . . , r}.

Example 15. INGS Ǧi = (O, O1, O2, O3) in Figure 13 is totally-strong self-complementary INGS.

b

b bk 7(
0.2, 0.3, 0.4)

k6(0.4, 0.5, 0.6) k5(0.2, 0.3, 0.3) k4(0.4, 0.5, 0.5)

k3 (0.2, 0.3, 0.4)
k2(0.4, 0.5, 0.6)

k1(0.7, 0.4, 0.5)

O 3(
0.2, 0.3, 0.5)

O 3(
0.

4,
0.

4,
0.

6)
O

2
(0

.2
, 0

.3
, 0

.5
)

O
2 (0.4, 0.4, 0.5)

O
1 (0.2, 0.3, 0.5)

O
1 (0.4, 0.4, 0.6)

b b b
b

Figure 13. Totally-strong self-complementary INGS.

Theorem 1. A strong INGS is a totally self-complementary INGS and vice versa.
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Proof. Consider any strong INGS Ǧi and Permutation ψ on {1,2, . . . , r}. By proposition 1, ψ-complement
of an INGS Ǧi = (O, O1, O2, . . . , Or) is a strong INGS. Moreover, if ψ−1(t) = h, where h, t ∈ {1, 2, ..., r},
then all Ot-edges in an INGS (O, O1, O2, ..., Or) become Oψ

h -edges in (O, Oψ
1 , Oψ

2 , ..., Oψ
r ), this leads

TOt(kl) = TO(k) ∧ TO(l) = TOψ
h
(kl), IOt(kl) = IO(k) ∧ IO(l) = IOψ

h
(kl),

FOt(kl) = FO(k) ∨ FO(l) = FOψ
h
(kl).

Therefore, under g : P → P (identity mapping), Ǧi and Ǧψ
i are isomorphic, such that

TO(k) = TO(g(k)), IO(k) = IO(g(k)), FO(k) = FO(g(k))

and

TOt(kl) = TOψ
h
(g(k)g(l)) = TOψ

h
(kl),

IOt(kl) = IOψ
h
(g(k)g(l)) = IOψ

h
(kl) ,

FOt(kl) = FOψ
h
(g(k)g(l)) = FOψ

h
(kl),

∀kl ∈ Pt, for ψ−1(t) = h; h,t = 1, 2, . . . , r.
For each permutation ψ on {1, 2, ..., r}, this holds. Hence, Ǧi is a totally self-complementary INGS.
Conversely, let Ǧi is isomorphic to Ǧψ

i for each permutation ψ on {1, 2, ..., r}. Then, by definitions of
ψ-complement of INGS and isomorphism of INGS, we have

TOt(kl) = TOψ
h
(g(k)g(l)) = TO(g(k)) ∧ TO(g(l)) = TO(k) ∧ TO(l),

IOt(kl) = IOψ
h
(g(k)g(l)) = IO(g(k)) ∧ IO(g(l)) = TO(k) ∧ IO(l),

FOt(kl) = FOψ
h
(g(k)g(l)) = FO(g(k)) ∨ FO(g(l)) = FO(k) ∨ FO(l),

∀kl ∈ Pt, t = 1,2,...,r. Hence, Ǧi is strong INGS.

Remark 1. Each self-complementary INGS is a totally self-complementary INGS.

Theorem 2. If Ǧ = (P, P1, P2, . . . , Pr) is a totally strong self-complementary GS and O = (TO, IO, FO) is an
IN subset of P, where TO, IO, FO are the constant functions, then any strong INGS of Ǧ with IN vertex set O is
necessarily totally-strong self-complementary INGS.

Proof. Let u ∈ [0, 1], v ∈ [0, 1] and w ∈ [0, 1] be three constants, and

TO(k) = u, IO(k) = v, FO(k) = w ∀k ∈ P.

Since Ǧ is a totally strong self-complementary GS, so, for each permutation ψ−1 on {1, 2, . . . , r}, there
exists a bijective mapping g : P → P, such that, for each Pt-edge (kl), (g(k)g(l)) [a Ph-edge in Ǧ ] is a

Pt-edge in Ǧψ−1c. Thus, for every Ot-edge (kl), (g(k)g(l)) [an Oh-edge in Ǧi ] is an Oψ
t -edge in Ǧi

ψ−1c.
Moreover, Ǧi is a strong INGS, so

TO(k) = u = TO(g(k)), IO(k) = v = IO(g(k)), FO(k) = w = FO(g(k)) ∀k ∈ P

and
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TOt(kl) = TO(k) ∧ TO(l) = TO(g(k)) ∧ TO(g(l)) = TOψ
h
(g(k)g(l)),

IOt(kl) = IO(k) ∧ IO(l) = IO(g(k)) ∧ IO(g(l)) = IOψ
h
(g(k)g(l)),

FOt(kl) = FO(k) ∨ IO(l) = FO(g(k)) ∨ FO(g(l)) = FOψ
h
(g(k)g(l)),

∀kl ∈ Ph, h = 1, 2, . . . , r.
This shows that Ǧi is a strong self-complementary INGS. This exists for each permutation ψ and ψ−1

on set {1, 2, . . . , r}, thus Ǧi is a totally strong self-complementary INGS. Hence, required proof is
obtained.

Remark 2. Converse of the Theorem 2 may or may not true, as an INGS shown in Figure 2 is totally strong
self-complementary INGS, and it is also a strong INGS with a totally strong self-complementary underlying GS
but TO, IO, FO are not the constant-valued functions.

3. Application

First, we explain the general procedure of this application by the following algorithm.
Algorithm: Crucial interdependence relations

Step 1. Input vertex set P = {B1, B2, . . . , Bn} and IN set O defined on P.
Step 2. Input IN set of interdependence relations of any vertex with all other vertices and calculate

T, F, and I of every pair of vertices by using, T(BiBj) ≤ min(T(Bi), T(Bj)), F(BiBj) ≤
max(F(Bi), F(Bj)), I(BiBj) ≤ min(I(Bi), I(Bj)).

Step 3. Repeat the Step 2 for every vertex in P.
Step 4. Define relations P1, P2, . . . , Pn on set P such that (P, P1, P2, . . . , Pn) is a GS.
Step 5. Consider an element of that relation, for which its value of T is comparatively high, and its

values of F and I are lower than other relations.
Step 6. Write down all elements in relations with T, F and I values, corresponding relations

O1, O2, . . . , On are IN sets on P1, P2, P3, . . . , Pn, respectively, and (O, O1, O2, . . . , On) is an INGS.

Human beings, the main creatures in the world, depend on many things for their survival.
Interdependence is a very important relationship in the world. It is a natural phenomenon that nobody
can be 100% independent, and the whole world is relying on interdependent relationships. Provinces
or states of any country, especially of a progressive country, can not be totally independent, more or
less they have to depend on each other. They depend on each other for many things, that is, there are
many interdependent relationships among provinces or states of a progressive country—for example,
education, natural energy resources, agricultural items, industrial products, and water resources, etc.
However, all of these interdependent relationships are not of equal importance. Some are very important
to run the system of a progressive country. Between any two provinces, all interdependent relationships
do not have the same strength. Some interdependent relationships are like the backbone for the
country. We can make an INGS of provinces or states of a progressive country, and can highlight those
interdependent relationships, due to which the system of the country is running properly. This INGS
can guide the government as to which interdependent relationships are very crucial, and they must try
to make them strong and overcome the factors destroying or weakening them.

We consider a set P of provinces and states of Pakistan:
P = {Punjab, Sindh, Khyber Pakhtunkhawa(KPK), Balochistan, Gilgit-Baltistan, Azad Jammu and

Kashmir(AJK) }. Let O be the IN set on P, as defined in Table 1.
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Table 1. IN set O of provinces of Pakistan.

Provinces or States T I F

Punjab 0.5 0.3 0.3
Sindh 0.5 0.4 0.4

Khyber Pakhtunkhawa(KPK) 0.4 0.4 0.4
Balochistan 0.3 0.4 0.4

Gilgit-Baltistan 0.3 0.4 0.4
Azad Jammu and Kashmir 0.3 0.4 0.3

In Table 1, symbol T demonstrates the positive role of that province or state for the strength of
the Federal Government, and symbol F indicates its negative role, whereas I denotes the percentage of
ambiguity of its role for the strength of the Federal Government. Let us use the following alphabets for
the provinces’ names:

PU = Punjab, SI = Sindh, KPK = Khyber Pakhtunkhwa, BA = Balochistan, GB = Gilgit-Baltistan, AJK
= Azad Jammu and Kashmir. For every pair of provinces of Pakistan in set P, different interdependent
relationships with their T, I and F values are demonstrated in Tables 2–6.

Table 2. IN set of interdependent relations between Punjab and other provinces.

Type of Interdependent Relationships (PU, SI) (PU, KPK) (PU, BA)

Education (0.5, 0.1, 0.1) (0.4, 0.3, 0.2) (0.3, 0.2, 0.2)
Natural energy resources (0.3, 0.2, 0.3) (0.4, 0.2, 0.2) (0.3, 0.2, 0.1)

Agricultural items (0.3, 0.2, 0.2) (0.4, 0.2, 0.1) (0.3, 0.2, 0.1)
Industrial products (0.4, 0.2, 0.1) (0.4, 0.1, 0.1) (0.3, 0.1, 0.1)

Water resources (0.3, 0.1, 0.1) (0.4, 0.3, 0.2) (0.2, 0.2, 0.2)

Table 3. IN set of interdependent relationships between Sindh and other provinces.

Type of Interdependent Relationships (SI, KPK) (SI, BA) (SI, GB)

Education (0.3, 0.2, 0.1) (0.3, 0.2, 0.3) (0.3, 0.2, 0.4)
Natural energy resources (0.3, 0.2, 0.3) (0.3, 0.1, 0.0) (0.2, 0.2, 0.4)

Agricultural items (0.4, 0.1, 0.1) (0.3, 0.1, 0.2) (0.3, 0.1, 0.1)
Industrial products (0.4, 0.2, 0.1) (0.3, 0.2, 0.2) (0.3, 0.2, 0.2)

Water resources (0.3, 0.2, 0.2) (0.2, 0.3, 0.2) (0.2, 0.2, 0.3)

Table 4. IN set of interdependent relationships between KPK and other provinces.

Type of Interdependent Relationships (KPK, BA) (KPK, GB) (KPK, AJK)

Education (0.1, 0.4, 0.3) (0.1, 0.4, 0.3) (0.1, 0.4, 0.4)
Natural energy resources (0.3, 0.2, 0.1) (0.3, 0.2, 0.2) (0.3, 0.3, 0.2)

Agricultural items (0.1, 0.2, 0.4) (0.1, 0.4, 0.4) (0.1, 0.3, 0.3)
Industrial products (0.1, 0.3, 0.4) (0.1, 0.4, 0.3) (0.1, 0.2, 0.2)

Water resources (0.3, 0.2, 0.2) (0.3, 0.3, 0.2) (0.3, 0.2, 0.2)
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Table 5. IN set of interdependent relationships between AJK and other provinces.

Type of Interdependent Relationships (AJK, PU) (AJK, SI) (AJK, BA)

Education (0.3, 0.1, 0.1) (0.1, 0.4, 0.3) (0.1, 0.3, 0.4)
Natural energy resources (0.1, 0.2, 0.3) (0.2, 0.4, 0.3) (0.3, 0.3, 0.3)

Agricultural items (0.3, 0.2, 0.1) (0.3, 0.3, 0.2) (0.3, 0.2, 0.2)
Industrial products (0.3, 0.2, 0.2) (0.3, 0.2, 0.2) (0.3, 0.2, 0.3)

Water resources (0.3, 0.2, 0.1) (0.3, 0.3, 0.2) (0.3, 0.0, 0.1)

Table 6. IN set of interdependent relationships of Gilgit-Baltistan with other provinces.

Type of Interdependent Relationships (GB, PU) (GB, BA) (GB, AJK)

Education (0.3, 0.2, 0.1) (0.1, 0.4, 0.4) (0.2, 0.1, 0.4)
Natural energy resources (0.1, 0.3, 0.4) (0.3, 0.1, 0.0) (0.2, 0.2, 0.4)

Agricultural items (0.3, 0.2, 0.2) (0.1, 0.3, 0.3) (0.1, 0.4, 0.4)
Industrial products (0.3, 0.3, 0.2) (0.2, 0.4, 0.4) (0.1, 0.4, 0.2)

Water resources (0.2, 0.3, 0.3) (0.2, 0.3, 0.2) (0.3, 0.1, 0.1)

Many relations can be defined on the set P, we define following relations on set P as:
P1 = Education, P2 = Natural energy resources , P3 = Agricultural items, P4 = Industrial products,

P5 = Water resources, such that (P, P1, P2, P3, P4, P5) is a GS. Any element of a relation demonstrates
a particular interdependent relationship between these two provinces. As (P, P1, P2, P3, P4, P5) is GS;
this is why any element can appear in only one relation. Therefore, any element will be considered in
that relationship, whose value of T is high, and values of I, F are comparatively low, using the data of
above tables.

Write down T, I and F values of the elements in relations according to the above data, such that O1,
O2, O3, O4, O5 are IN sets on relations P1, P2, P3, P4, P5, respectively.

Let P1 = {(Punjab, Sindh), (Gilgit − Baltistan, Punjab), (AzadJammuandKashmir, Punjab)};
P2 = {(Sindh, Balochistan), (Khyber Pakhtunkhawa, Balochistan), (Balochistan, Gilgit-Baltistan), (Khyber
Pakhtunkhawa, Gilgit-Baltistan)};
P3 = {(Sindh, Khyber Pakhtunkhwa), (Gilgit-Baltistan, Sindh) };
P4 = {(Punjab, KhyberPakhtunkhwa), (Sindh, AzadJammuandKashmir), (Balochistan, Punjab)};
P5 = {(KheberPakhtunkhwa, AzadJammuandKashmir), (Balochistan, AzadJammuandKashmir),
(Gilgit − Baltistan, Azad Jammu and Kashmir)}.

Let O1 = {((PU, SI), 0.5, 0.1, 0.1), ((GB, PU), 0.3, 0.2, 0.1), ((AJK, PU), 0.3, 0.1, 0.1)},
O2 = {((SI, BA), 0.3, 0.1, 0.0), ((KPK, BA), 0.3, 0.2, 0.1), ((BA, GB), 0.3, 0.1, 0.0),
((KPK, GB), 0.3, 0.2, 0.2)},
O3 = {((SI, KPK), 0.4, 0.1, 0.1), ((GB, SI), 0.3, 0.1, 0.1), },
O4 = {((PU, KPK), 0.4, 0.1, 0.1), ((SI, AJK), 0.3, 0.2, 0.2), ((BA, PU), 0.3, 0.1, 0.1)},
O5 = {((KPK, AJK), 0.3, 0.2, 0.2), ((BA, AJK), 0.3, 0.0, 0.1), ((GB, AJK), 0.3, 0.1, 0.1)}.

Obviously, (O, O1, O2, O3, O4, O5) is an INGS as shown in Figure 14.



Information 2017, 8, 154 17 of 19

AzadKhyber

Balochistan

Punjab

(0.3, 0.1, 0.0)

(0.3, 0.2, 0.2)

(0.5, 0.1, 0.1)

(0.4, 0.1, 0.1)

(0.4, 0.1, 0.1)

(0.3, 0.0, 0.1)

(0.3, 0.1, 0.1)(0.3, 0.2, 0.1)

GilgitIndustria
l products (0.3, 0.2, 0.2)

(0.3, 0.2, 0.1)

(0.3, 0.1, 0.1)

(0.3, 0.1, 0.1)
(0.3, 0.1, 0.0)

Natural energy resources

Sindh

Pakhtun
Khwa

Baltistan

Jammu
Kashmir

Water resources

Education

Education

Education

Natural energy resources

Natural energy resources

Natural energy resources

Agricultural items

Agricultural items

(0.3, 0.1, 0.1)

Industrial products

Industrial products

(0.3, 0.2, 0.2)

Wate
r res

ource
s

Water resources

Figure 14. INGS identifying crucial interdependence relation between any two provinces.

Every edge of this INGS demonstrates the most dominating interdependent relationship between
those two provinces—for example, the most dominating interdependent relationship between Punjab
and Gilgit-Baltistan is education, and its T, F and I values are 0.3, 0.2 and 0.1, respectively. It shows
that education is the strongest connection bond between Punjab and Gilgit-Baltistan; it is 30% stable,
10% unstable, and 20% unpredictable or uncertain. Using INGS, we can also elaborate the strength of
any province, e.g., Punjab has the highest vertex degree for interdependent relationship education, and
Balochistan has the highest vertex degree for the interdependent relationship natural energy resources.
This shows that the strength of Punjab is education, and the strength of Balochistan is the natural energy
resources. This INGS can be very helpful for Provincial Governments, and they can easily estimate
which kind of interdependent relationships they have with other provinces, and what is the percentage
of its stability and instability. It can also guide the Federal Government in regards to, between any two
provinces, which relationships are crucial and what is their status. The Federal Government should be
conscious of making decisions such that the most crucial interdependent relationships of its provinces
are not disturbed and need to overcome the counter forces that are trying to destroy them.

4. Conclusions

Graph theory is a useful tool for solving combinatorial problems of different fields, including
optimization, algebra, computer science, topology and operations research. An intuitionistic
neutrosophic set constitutes a generalization of an intuitionistic fuzzy set. In this research paper, we have
introduced the notion of intuitionistic neutrosophic graph structure. We have discussed a real-life
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application of intuitionistic neutrosophic graph structure in decision-making. Our aim is to extend
our research work to (1) fuzzy rough graph structures; (2) rough fuzzy graph structures; (3) soft rough
graph structures; and (4) roughness in graph structures.
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