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Abstract: The concept of neutrosophic set from philosophical point of view was first considered by
Smarandache. A single-valued neutrosophic set is a subclass of the neutrosophic set from a scientific
and engineering point of view and an extension of intuitionistic fuzzy sets. In this research article,
we apply the notion of single-valued neutrosophic sets to K-algebras. We introduce the notion of
single-valued neutrosophic topological K-algebras and investigate some of their properties. Further,
we study certain properties, including C5-connected, super connected, compact and Hausdorff,
of single-valued neutrosophic topological K-algebras. We also investigate the image and pre-image
of single-valued neutrosophic topological K-algebras under homomorphism.
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1. Introduction

A new kind of logical algebra, known as K-algebra, was introduced by Dar and Akram in [1].
A K-algebra is built on a group G by adjoining the induced binary operation on G. The group
G is particularly of the type in which each non-identity element is not of order 2. This algebraic
structure is, in general, non-commutative and non-associative with right identity element [1–3].
Akram et al. [4] introduced fuzzy K-algebras. They then developed fuzzy K-algebras with other
researchers worldwide. The concepts and results of K-algebras have been broadened to the fuzzy
setting frames by applying Zadeh’s fuzzy set theory and its generalizations, namely, interval-valued
fuzzy sets, intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets, bipolar fuzzy sets and
vague sets [5]. In handling information regarding various aspects of uncertainty, non-classical logic is
considered to be a more powerful tool than the classical logic. It has become a strong mathematical
tool in computer science, medical, engineering, information technology, etc. In 1998, Smarandache [6]
introduced neutrosophic set as a generalization of intuitionistic fuzzy set [7]. A neutrosophic set
is identified by three functions called truth-membership (T), indeterminacy-membership (I) and
falsity-membership (F) functions. To apply neutrosophic set in real-life problems more conveniently,
Smarandache [6] and Wang et al. [8] defined single-valued neutrosophic sets which takes the value
from the subset of [0, 1]. Thus, a single-valued neutrosophic set is an instance of neutrosophic set.

Algebraic structures have a vital place with vast applications in various areas of life. Algebraic
structures provide a mathematical modeling of related study. Neutrosophic set theory has also been
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applied to many algebraic structures. Agboola and Davazz introduced the concept of neutrosophic
BCI/BCK-algebras and discuss elementary properties in [9]. Jun et al. introduced the notion of (φ, ψ)

neutrosophic subalgebra of a BCK/BCI-algebra [10]. Jun et al. [11] defined interval neutrosophic sets
on BCK/BCI-algebra [11]. Jun et al. [12] proposed neutrosophic positive implicative N-ideals and
study their extension property [12] Several set theories and their topological structures have been
introduced by many researchers to deal with uncertainties. Chang [13] was the first to introduce the
notion of fuzzy topology. Later, Lowan [14], Pu and Liu [15], and Chattopadhyay and Samanta [16]
introduced other concepts related to fuzzy topology. Coker [17] introduced the notion of intuitionistic
fuzzy topology as a generalization of fuzzy topology. Salama and Alblowi [18] defined the topological
structure of neutrosophic set theory. Akram and Dar [19] introduced the concept of fuzzy topological
K-algebras. They extended their work on intuitionistic fuzzy topological K-algebras [20]. In this paper,
we introduce the notion of single-valued neutrosophic topological K-algebras and investigate some
of their properties. Further, we study certain properties, including C5-connected, super connected,
compact and Hausdorff, of single-valued neutrosophic topological K-algebras. We also investigate the
image and pre-image of single-valued neutrosophic topological K-algebras under homomorphism.

2. Preliminaries

The notion of K-algebra was introduced by Dar and Akram in [1].

Definition 1. [1] Let (G, ·, e) be a group in which each non-identity element is not of order 2. A K-algebra is a
structure K = (G, ·,�, e) over a particular group G, where � is an induced binary operation � : G× G → G
is defined by �(s, t) = s� t = s.t−1, and satisfy the following conditions:

(i) (s� t)� (s� u) = (s� ((e� u)� (e� t)))� s;
(ii) s�(s�t) = (s� (e� t)� s;
(iii) s� s = e;
(iv) s� e = s; and
(v) e� s = s−1

for all s, t, u ∈ G. The homomorphism between two K-algebras K1 and K2 is a mapping f : K1 → K2 such
that, for all u, v ∈ K1, f (u� v) = f (u)� f (v).

In [6], Smarandache initiated the idea of neutrosophic set theory which is a generalization of
intuitionistic fuzzy set theory. Later, Smarandache and Wang et al. introduced a single-valued
neutrosophic set (SNS) as an instance of neutrosophic set in [8].

Definition 2. [8] Let Z be a space of points with a general element s ∈ Z. A SNS A in Z is equipped with
three membership functions: truth membership function (TA), indeterminacy membership function (IA) and
falsity membership function(FA), where ∀ s ∈ Z, TA(s), IA(s), FA(s) ∈ [0, 1]. There is no restriction on the
sum of these three components. Therefore, 0 ≤ TA(s) + IA(s) +FA(s) ≤ 3.

Definition 3. [8] A single-valued neutrosophic empty set (∅SN) and single-valued neutrosophic whole set
(1SN) on Z is defined as:

• ∅SN(u) = {u ∈ Z : (u, 0, 0, 1)}.
• 1SN(u) = {u ∈ Z : (u, 1, 1, 0)}.

Definition 4. [8] If f is a mapping from a set Z1 into a set Z2, then the following statements hold:

(i) Let A be a SNS in Z1 and B be a SNS in Z2, then the pre-image of B is a SNS in Z1, denoted by f−1(B),
defined as:
f−1(B) = {z1 ∈ Z1 : f−1(TB)(z1) = TB( f (z1)), f−1(IB)(z1) = IB( f (z1)), f−1(FB)(z1) =

FB( f (z1))}.
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(ii) Let A = {z1 ∈ Z1 : TA(z1), IA(z1),FA(z1)} be a SNS in Z1 and B = {z2 ∈ Z2 :
TB(z2), IB(z2),FB(z2)} be a SNS in Z2. Under the mapping f , the image of A is a SNS in Z2,
denoted by f (A), defined as: f (A) = {z2 ∈ Z2 : fsup(TA)(z2), fsup(IA)(z2), finf(FA)(z2)}, where
for all z2 ∈ Z2.

fsup(TA)(z2) =

supz1∈ f−1
(z2)
TA(Z1)

, if f−1
(z2)
6= ∅,

0, otherwise,

fsup(IA)(z2) =

supz1∈ f−1
(z2)
IA(Z1)

, if f−1
(z2)
6= ∅,

0, otherwise,

finf(FA)(z2) =

infz1∈ f−1
(z2)
FA(Z1)

, if f−1
(z2)
6= ∅,

0, otherwise.

We formulate the following proposition.

Proposition 1. Let f : Z1 → Z2 and A, (Aj, j ∈ J) be a SNS in Z1 and B be a SNS in Z2. Then, f possesses
the following properties:

(i) If f is onto , then f (1SN) = 1SN .
(ii) f (∅SN) = ∅SN .
(iii) f−1(1SN) = 1SN .
(iv) f−1(∅SN) = ∅SN .
(v) If f is onto, then f ( f−1(B) = B.

(vi) f−1(
n⋃

i=1
Ai) =

n⋃
i=1

f−1(Ai).

3. Neutrosophic Topological K-algebras

Definition 5. Let Z be a nonempty set. A collection χ of single-valued neutrosophic sets (SNSs) in Z is called
a single-valued neutrosophic topology (SNT) on Z if the following conditions hold:

(a) ∅SN , 1SN ∈ χ
(b) If A,B ∈ χ, then A⋂B ∈ χ
(c) If Ai ∈ χ, ∀i ∈ I, then

⋃
i∈I Ai ∈ χ

The pair (Z, χ) is called a single-valued neutrosophic topological space (SNTS). Each member of χ is
said to be χ-open or single-valued neutrosophic open set (SNOS) and compliment of each open single-valued
neutrosophic set is a single-valued neutrosophic closed set (SNCS). A discrete topology is a topology which
contains all single-valued neutrosophic subsets of Z and indiscrete if its elements are only ∅SN , 1SN .

Definition 6. Let A = (TA, IA,FA) be a single-valued neutrosophic set in K. Then, A is called a
single-valued neutrosophic K-subalgebra of K if following conditions hold for A:

(i) TA(e) ≥ TA(s), IA(e) ≥ IA(s), FA(e) ≤ FA(s).
(ii) TA(s� t) ≥ min{TA(s), TA(t)},
IA(s� t) ≥ min{IA(s), IA(t)},
FA(s� t) ≤ max{FA(s),FA(t)} ∀ s, t ∈ K.
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Example 1. Consider a K-algebra K = (G, ·,�, e), where G = {e, x, x2, x3, x4, x5, x6, x7, x8} is the cyclic
group of order 9 and Caley’s table for � is given as:

� e x x2 x3 x4 x5 x6 x7 x8

e e x8 x7 x6 x5 x4 x3 x2 x
x x e x8 x7 x6 x5 x4 x3 x2

x2 x2 x e x8 x7 x6 x5 x4 x3

x3 x3 x2 x e x8 x7 x6 x5 x4

x4 x4 x3 x2 x e x8 x7 x6 x5

x5 x5 x4 x3 x2 x e x8 x7 x6

x6 x6 x5 x4 x3 x2 x e x8 x7

x7 x7 x6 x5 x4 x3 x2 x e x8

x8 x8 x7 x6 x5 x4 x3 x2 x e

If we define a single-valued neutrosophic set A,B in K such that:

A = {(e, 0.4, 0.5, 0.8), (s, 0.3, 0.4, 0.7)},
B = {(e, 0.3, 0.4, 0.8), (s, 0.2, 0.3, 0.6)}

∀ s 6= e ∈ G.
According to Definition 5, the family {∅SN , 1SN ,A,B} of SNSs of K-algebra is a SNT on K. We define

a SNS A = {TA, IA,FA} in K such that TA(e) = 0.7, IA(e) = 0.5,FA(e) = 0.2, TA(s) = 0.2, IA(s) =
0.4,FA(s) = 0.6. Clearly, A = (TA, IA,FA) is a SN K-subalgebra of K.

Definition 7. Let K = (G, ·,�, e) be a K-algebra and let χK be a topology on K. Let A be a SNS in K and let
χK be a topology on K. Then, an induced single-valued neutrosophic topology on A is a collection or family
of single-valued neutrosophic subsets of A which are the intersection with A and single-valued neutrosophic
open sets in K defined as χA = {A ∩ F : F ∈ χK}. Then, χA is called single-valued neutrosophic induced
topology on A or relative topology and the pair (A, χA) is called an induced topological space or single-valued
neutrosophic subspace of (K, χK).

Definition 8. Let (K1, χ1) and (K2, χ2) be two SNTSs and let f : (K1, χ1) → (K2, χ2). Then, f is called
single-valued neutrosophic continuous if following conditions hold:

(i) For each SNS A ∈ χ2 , f−1(A) ∈ χ1 .
(ii) For each SN K-subalgebra A ∈ χ2 , f−1(A) is a SN K-subalgebra ∈ χ1 .

Definition 9. Let (K1, χ1) and (K2, χ2) be two SNTSs and let (A, χA) and (B, χB) be two single-valued
neutrosophic subspaces over (K1, χ1) and (K2, χ2). Let f be a mapping from (K1, χ1) into (K2, χ2), then f is
a mapping from (A, χA) to (B, χB) if f (A) ⊂ B.

Definition 10. Let f be a mapping from (A, χA) to (B, χB). Then, f is relatively single-valued neutrosophic
continuous if for every SNOS YB in χB , f−1(YB) ∩A ∈ χA.

Definition 11. Let f be a mapping from (A, χA) to (B, χB). Then, f is relatively single-valued neutrosophic
open if for every SNOS XA in χA, the image f (XA) ∈ χB .

Proposition 2. Let (A, χA) and (B, χB) be single-valued neutrosophic subspaces of (K1, χ1) and (K2, χ2),
where K1 and K2 are K-algebras. If f is a single-valued neutrosophic continuous function from K1 to K2 and
f (A) ⊂ B. Then, f is relatively single-valued neutrosophic continuous function from A into B.

Definition 12. Let (K1, χ1) and (K2, χ2) be two SNTSs. A mapping f : (K1, χ1) → (K2, χ2) is called a
single-valued neutrosophic homomorphism if following conditions hold:
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(i) f is a one-one and onto function.
(ii) f is a single-valued neutrosophic continuous function from K1 to K2.
(iii) f−1 is a single-valued neutrosophic continuous function from K2 to K1.

Theorem 1. Let (K1, χ1) be a SNTS and (K2, χ2) be an indiscrete SNTS on K-algebras K1 and K2,
respectively. Then, each function f defined as f : (K1, χ1) → (K2, χ2) is a single-valued neutrosophic
continuous function from K1 to K2. If (K1, χ1) and (K2, χ2) be two discrete SNTSs K1 and K2, respectively,
then each homomorphism f : (K1, χ1)→ (K2, χ2) is a single values neutrosophic continuous function from K1

to K2.

Proof. Let f be a mapping defined as f : K1 → K2. Let χ1 be SNT on K1 and χ2 be SNT on K2, where
χ2 = {∅SN , 1SN}. We show that f−1(A) is a single-valued neutrosophic K-subalgebra of K1, i.e., for
each A ∈ χ2 , f−1(A) ∈ χ1 . Since χ2 = {∅SN , 1SN}, then for any u ∈ χ1 , consider ∅SN ∈ χ2 such that
f−1(∅SN)(u) = ∅SN( f (u)) = ∅SN(u).

Therefore, ( f−1(∅SN)) = ∅SN ∈ χ1 . Likewise, ( f−1(1SN)) = 1SN ∈ χ1 . Hence, f is a SN
continuous function from K1 to K2.

Now, for the second part of the theorem, where both χ1 and χ2 are SNTSs on K1 and K2,
respectively, and f : (K1, χ1)→ (K2, χ2) is a homomorphism. Therefore, for allA ∈ χ2 and f−1A ∈ χ1 ,
where f is not a usual inverse homomorphism. To prove that f−1(A) is a single-valued neutrosophic
K-subalgebra in of K1. Let for u, v ∈ K1,

f−1(TA)(u� v)=TA( f (u� v))
= TA( f (u)� f (v))
≥ min{TA( f (u))� T( f (v))}
= min{ f−1(TA)(u), f−1(TA)(v)},

f−1(IA)(u� v)=IA( f (u� v))
= IA( f (u)� f (v))
≥ min{IA( f (u))� I( f (v))}
= min{ f−1(IA)(u), f−1(IA)(v)},

f−1(FA)(u� v)=FA( f (u� v))
= FA( f (u)� f (v))
≤ max{FA( f (u))�F( f (v))}
= max{ f−1(FA)(u), f−1(FA)(v)}.

Hence, f is a single-valued neutrosophic continuous function from K1 to K2.

Proposition 3. Let χ1 and χ2 be two SNTSs on K. Then, each homomorphism f : (K, χ1) → (K, χ2) is a
single-valued neutrosophic continuous function.

Proof. Let (K, χ1) and (K, χ2) be two SNTSs, where K is a K-algebra. To prove the above result,
it is enough to show that result is false for a particular topology. Let A = (TA, IA,FA, ) and B =

(TB , IB ,FB) be two SNSs in K. Take χ1 = {∅SN , 1SN ,A} and χ2 = {∅SN , 1SN ,B}. If f : (K, χ1) →
(K, χ2), defined by f (u) = e� u, for all u ∈ K, then f is a homomorphism. Now, for u ∈ A, v ∈ χ2 ,
( f−1(B))(u) = B( f (u)) = B(e� u) = B(u),
∀ u ∈ K, i.e., f−1(B) = B. Therefore, ( f−1(B)) /∈ χ1 . Hence, f is not a single-valued neutrosophic
continuous mapping.

Definition 13. LetK = (G, ·,�, e) be a K-algebra and χ be a SNT onK. LetA be a single-valued neutrosophic
K-algebra (K-subalgebra) of K and χA be a SNT on A. Then, A is said to be a single-valued neutrosophic
topological K-algebra (K-subalgebra) on K if the self mapping ρa : (A, χA) → (A, χA) defined as ρa(u) =
u� a, ∀a ∈ K, is a relatively single-valued neutrosophic continuous mapping.
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Theorem 2. Let χ1 and χ2 be two SNTSs on K1 and K2, respectively, and f : K1 → K2 be a homomorphism
such that f−1(χ2) = χ1. If A = {TA, IA,FA} is a single-valued neutrosophic topological K-algebra of K2,
then f−1(A) is a single-valued neutrosophic topological K-algebra of K1.

Proof. Let A = {TA, IA,FA} be a single-valued neutrosophic topological K-algebra of K2. To prove
that f−1(A) be a single-valued neutrosophic topological K-algebra of K1. Let for any u, v ∈ K1,

T f−1(A)(u� v) = TA( f (u� v))
≥ min{TA( f (u)), TA( f (v))}
= min{T f−1(A)(u), T f−1(A)(v)},

I f−1(A)(u� v) = IA( f (u� v))
≥ min{IA( f (u)), IA( f (v))}
= min{I f−1(A)(u), I f−1(A)(v)},

F f−1(A)(u� v) = FA( f (u� v))
≤ max{FA( f (u)),FA( f (v))}
= max{F f−1(A)(u),F f−1(A)(v)}.

Hence, f−1(A) is a single-valued neutrosophic K-algebra of K1.
Now, we prove that f−1(A) is single-valued neutrosophic topological K-algebra of K1. Since

f is a single-valued neutrosophic continuous function, then by proposition 3.1, f is also a relatively
single-valued neutrosophic continuous function which maps ( f−1(A), χ f−1(A)) to (A, χA).

Let a ∈ K1 and Y be a SNS in χA, and let X be a SNS in χ f−1(A) such that

f−1(Y) = X. (1)

We are to prove that ρa : ( f−1(A), χ f−1(A)) → ( f−1(A), χ f−1(A)) is relatively single-valued
neutrosophic continuous mapping, then for any a ∈ K1, we have

T
ρ−1

a (X)(u) = T(X)(ρa(u)) = T(X)(u� a)
= T f−1(Y)(u� a) = T(Y)( f (u� a))
= T(Y)( f (u)� f (a)) = T(Y)(ρ f (a)( f (u)))
= T ρ−1 f (a)Y( f (u)) = T f−1(ρ−1

f (a)(Y)(u)),

I
ρ−1

a (X)(u) = I(X)(ρa(u)) = I(X)(u� a)
= I f−1(Y)(u� a) = I(Y)( f (u� a))
= I(Y)( f (u)� f (a)) = I(Y)(ρ f (a)( f (u)))
= Iρ−1 f (a)Y( f (u)) = I f−1(ρ−1

f (a)(Y)(u)),

F
ρ−1

a (X)(u) = F(X)(ρa(u)) = F(X)(u� a)
= F f−1(Y)(u� a) = F(Y)( f (u� a))
= F(Y)( f (u)� f (a)) = F(Y)(ρ f (a)( f (u)))
= F ρ−1 f (a)Y( f (u)) = F f−1(ρ−1

f (a)(Y)(u)).

It concludes that ρ−1
a (X) = f−1(ρ−1

f (a)(Y)). Thus, ρ−1
a (X) ∩ f−1(A) = f−1(ρ−1

f (a)(Y)) ∩ f−1(A) is

a SNS in f−1(A) and a SNS in χ f−1(A). Hence, f−1(A) and a single-valued neutrosophic topological
K-algebra of K. Hence, the proof.

Theorem 3. Let (K1, χ1) and (K2, χ2) be two SNTSs on K1 and K2, respectively, and let f be a bijective
homomorphism of K1 into K2 such that f (χ1) = χ2. If A is a single-valued neutrosophic topological K-algebra
of K1, then f (A) is a single-valued neutrosophic topological K-algebra of K2.

Proof. Suppose that A = {TA, IA,FA} is a SN topological K-algebra of K1. To prove that f (A) is a
single-valued neutrosophic topological K-algebra of K2, let, for u, v ∈ K2,
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f (A) = ( fsup(TA)(v), fsup(IA)(v), finf(FA)(v)).

Let ao ∈ f−1(u), bo ∈ f−1(v) such that

supx∈ f−1(u) TA(x) = TA(ao), supx∈ f−1(v) TA(x) = TA(bo),
supx∈ f−1(u) IA(x) = IA(ao), supx∈ f−1(v) IA(x) = IA(bo),
infx∈ f−1(u) FA(x) = FA(ao), infx∈ f−1(v) FA(x) = FA(bo).

Now,

T f (A)(u� v) = sup
x∈ f−1(u�v)

TA(x)

≥ TA(ao, bo)

≥ min{TA(ao), TA(bo)}
= min{ sup

x∈ f−1(u)
TA(x), sup

x∈ f−1(v)
TA(x)}

= min{T f (A)(u), T f (A)(v)},

I f (A)(u� v) = sup
x∈ f−1(u�v)

IA(x)

≥ IA(ao, bo)

≥ min{IA(ao), IA(bo)}
= min{ sup

x∈ f−1(u)
IA(x), sup

x∈ f−1(v)
IA(x)}

= min{I f (A)(u), I f (A)(v)},

F f (A)(u� v) = inf
x∈ f−1(u�v)

FA(x)

≤ FA(ao, bo)

≤ max{FA(ao),FA(bo)}
= max{ inf

x∈ f−1(u)
FA(x), inf

x∈ f−1(v)
FA(x)}

= max{F f (A)(u),F f (A)(v)}.

Hence, f (A) is a single-valued neutrosophic K-subalgebra of K2. Now, we prove that the self
mapping ρb : ( f (A), χ f (A))→ ( f (A), χ f (A)), defined by ρb(v) = v� b, for all b ∈ K2, is a relatively
single-valued neutrosophic continuous mapping. Let YA be a SNS in χA, there exists a SNS “Y” in χ1

such that YA = Y ∩A. We show that for a SNS in χ f (A),

ρ−1
b(Yf (A)) ∩ f (A) ∈ χ f (A)

Since f is an injective mapping, then f (YA) = f (Y ∩A) = f (Y) ∩ f (A) is a SNS in χ f (A) which
shows that f is relatively single-valued neutrosophic open. In addition, f is surjective, then for all
b ∈ K2, a = f (b), where a ∈ K1.
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Now,

T f−1(ρ−1
b(Yf (A)))

(u) = T f−1(ρ−1
f (a)(Yf (A)))

(u)

= Tρ−1
f (a)(Yf (A))

( f (u))

= T(Yf (A))
(ρ f (a)( f (u)))

= T(Yf (A))
( f (u)� f (a))

= T f−1(Yf (A))
(u� a)

= T f−1(Yf (A))
(ρa(u))

= Tρ−1
(a)( f−1(Yf (A)))(u),

I f−1(ρ−1
b(Yf (A)))

(u) = I f−1(ρ−1
f (a)(Yf (A)))

(u)

= Iρ−1
f (a)(Yf (A))

( f (u))

= I(Yf (A))
(ρ f (a)( f (u)))

= I(Yf (A))
( f (u)� f (a))

= I f−1(Yf (A))
(u� a)

= I f−1(Yf (A))
(ρa(u))

= Iρ−1
(a)( f−1(Yf (A)))(u),

F f−1(ρ−1
b(Yf (A)))

(u) = F f−1(ρ−1
f (a)(Yf (A)))

(u)

= Fρ−1
f (a)(Yf (A))

( f (u))

= F(Yf (A))
(ρ f (a)( f (u)))

= F(Yf (A))
( f (u)� f (a))

= F f−1(Yf (A))
(u� a)

= F f−1(Yf (A))
(ρa(u))

= Fρ−1
(a)( f−1(Yf (A)))(u).

This implies that f−1(ρ−1
(b)((Yf (A)))) = ρ−1

(a)( f−1(Y(A))). Since ρa : (A, χA)→ (A, χA) is relatively
single-valued neutrosophic continuous mapping and f is relatively single-valued neutrosophic
continues mapping from (A, χA) into ( f (A), χ f (A)), f−1(ρ−1

(b)((Yf (A)))) ∩A = ρ−1
(a)( f−1(Y(A))) ∩A is

a SNS in χA. Hence, f ( f−1(ρ(b)((Yf (A)))) ∩A) = ρ−1
(b)(Yf (A)) ∩ f (A) is a SNS in χA, which completes

the proof.

Example 2. Let K = (G, ·,�, e) be a K-algebra, where G = {e, x, x2, x3, x4, x5, x6, x7, x8} is the cyclic group
of order 9 and Caley’s table for � is given in Example 1. We define a SNS as:

A = {(e, 0.4, 0.5, 0.8), (s, 0.3, 0.4, 0.6)},
B = {(e, 0.3, 0.4, 0.8), (s, 0.2, 0.3, 0.6)},

for all s 6= e ∈ G, where A,B ∈ [0, 1]. The collection χK = {∅SN , 1SN ,A,B} of SNSs of K is a SNT on K
and (K, χK) is a SNTS. Let C be a SNS in K, defined as:

C = {(e, 0.7, 0.5, 0.2), (s, 0.5, 0.4, 0.6)}, ∀s 6= e ∈ G.



Mathematics 2018, 6, 234 9 of 15

Clearly, C is a single-valued neutrosophic K-subalgebra of K. By direct calculations relative topology
χC is obtained as χC = {∅A, 1A,A}. Then, the pair (C, χC) is a single-valued neutrosophic subspace
of (K, χK). We show that C is a single-valued neutrosophic topological K-subalgebra of K, i.e., the self
mapping ρa : (C, χC) → (C, χC) defined by ρa(u) = u� a, ∀a ∈ K is relatively single-valued neutrosophic
continuous mapping, i.e., for a SNOS A in (C, χC), ρ−1

a (A) ∩ C ∈ χC . Since ρa is homomorphism, then
ρ−1

a (A) ∩ C = A ∈ χC . Therefore, ρa : (C, χC)→ (C, χC) is relatively single-valued neutrosophic continuous
mapping. Hence, C is a single-valued neutrosophic topological K-algebra of K.

Example 3. Let K = (G, ·,�, e) be a K-algebra, where G = {e, x, x2, x3, x4, x5, x6, x7, x8} is the cyclic group
of order 9 and Caley’s table for � is given in Example 3.1. We define a SNS as:

A = {(e, 0.4, 0.5, 0.8), (s, 0.3, 0.4, 0.6)},
B = {(e, 0.3, 0.4, 0.8), (s, 0.2, 0.3, 0.6)},
D = {(e, 0.2, 0.1, 0.3), (s, 0.1, 0.1, 0.5)},

for all s 6= e ∈ G, where A,B ∈ [0, 1]. The collection χ1 = {∅SN , 1SN ,D} and χ2 = {∅SN , 1SN ,A,B} of
SNSs of K are SNTs on K and (K, χ1), (K, χ2) be two SNTSs. Let C be a SNS in (K, χ2), defined as:

C = {(e, 0.7, 0.5, 0.2), (s, 0.5, 0.4, 0.6)}, ∀s 6= e ∈ G.

Now, Let f : (K, χ1)→ (K, χ2) be a homomorphism such that f−1(χ2) = χ1 (we have not consider K to
be distinct), then, by Proposition 3, f is a single-valued neutrosophic continuous function and f is also relatively
single-valued neutrosophic continues mapping from (K, χ1) into (K, χ2). Since C is a SNS in (K, χ2) and
with relative topology χC = {∅A, 1A,A} is also a single-valued neutrosophic topological K-algebra of (K, χ2).
We prove that f−1(C) is a single-valued neutrosophic topological K-algebra in (K, χ1). Since f is a continuous
function, then, by Definition 8, f−1(C) is a single-valued neutrosophic K-subalgebra in (K, χ1). To prove that
f−1(c) is a single-valued neutrosophic topological K-algebra, then for b ∈ K1 take

ρb : ( f−1(C), χ f−1(C))→ ( f−1(C), χ f−1(C)),

for A ∈ χ f−1(C), ρ−1
b (A) ∩ f−1(C) ∈ χ f−1(C) which shows that f−1(C) is a single-valued neutrosophic

topological K-algebra in (K, χ1). Similarly, we can show that f (C) is a a single-valued neutrosophic topological
K-algebra in (K, χ2) by considering a bijective homomorphism.

Definition 14. Let χ be a SNT on K and (K, χ) be a SNTS. Then, (K, χ) is called single-valued neutrosophic
C5-disconnected topological space if there exist a SNOS and SNCSH such thatH = (TH, IH,FH, ) 6= 1SN
andH = (TH, IH,FH, ) 6= ∅SN , otherwise (K, χ) is called single-valued neutrosophic C5-connected.

Example 4. Every indiscrete SNT space on K is C5-connected.

Proposition 4. Let (K1, χ1) and (K2, χ2) be two SNTSs and f : (K1, χ1) → (K2, χ2) be a surjective
single-valued neutrosophic continuous mapping. If (K1, χ1) is a single-valued neutrosophic C5-connected space,
then (K2, χ2) is also a single-valued neutrosophic C5-connected space.

Proof. Suppose on contrary that (K2, χ2) is a single-valued neutrosophic C5-disconnected space.
Then, by Definition 14, there exist both SNOS and SNCSH be such thatH 6= 1SN andH 6= ∅SN . Since
f is a single-valued neutrosophic continuous and onto function, so f−1(H) = 1SN or f−1(H) = ∅SN ,
where f−1(H) is both SNOS and SNCS. Therefore,

H = f ( f−1(H)) = f (1SN) = 1SN (2)

and
H = f ( f−1(H)) = f (∅SN) = ∅SN , (3)
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a contradiction. Hence, (K2, χ2) is a single-valued neutrosophic C5-connected space.

Corollary 1. Let χ be a SNT on K. Then, (K, χ) is called a single-valued neutrosophic C5-connected space if
and only if there does not exist a single-valued neutrosophic continuous map f : (K, χ)→ (FT , χT) such that
f 6= 1SN and f 6= ∅SN

Definition 15. Let A = {TA, IA,FA} be a SNS in K. Let χ be a SNT on K. The interior and closure of A in
K is defined as:

AInt: The union of SNOSs which contained in A.
AClo: The intersection of SNCSs for which A is a subset of these SNCSs.

Remark 1. Being union of SNOS AInt is a SNO and AClo being intersection of SNCS is SNC.

Theorem 4. Let A be a SNS in a SNTS (K, χ). Then, AInt is such an open set which is the largest open set of
K contained in A.

Corollary 2. A = (TA, IA,FA) is a SNOS in K if and only if AInt = A and A = (TA, IA,FA) is a SNCS
in K if and only if AClo = A.

Proposition 5. Let A be a SNS in K. Then, following results hold for A:

(i) (1SN)
Int = 1SN .

(ii) (∅SN)
Clo = ∅SN .

(iii) (A)Int
= (A)Clo.

(iv) (A)Clo
= (A)Int.

Definition 16. Let K be a K-algebra and χ be a SNT on K. A SNOS A in K is said to be single-valued
neutrosophic regular open if

A = (AClo)Int. (4)

Remark 2. Every SNOS which is regular is single-valued neutrosophic open and every single-valued
neutrosophic closed and open set is a single-valued neutrosophic regular open.

Definition 17. A single-valued neutrosophic super connected K-algebra is such a K-algebra in which there does
not exist a single-valued neutrosophic regular open set A = (TA, IA,FA) such that A 6= ∅SN and A 6= 1SN .
If there exists such a single-valued neutrosophic regular open set A = (TA, IA,FA) such that A 6= ∅SN and
A 6= 1SN , then K-algebra is said to be a single-valued neutrosophic super disconnected.

Example 5. Let K = (G, ·,�, e) be a K-algebra, where G = {e, x, x2, x3, x4, x5, x6, x7, x8} is the cyclic group
of order 9 and Caley’s table for � is given in Example 1 We define a SNS as:

A = {(e, 0.2, 0.3, 0.8), (s, 0.1, 0.2, 0.6)}.

Let χK = {∅SN , 1SN ,A} be a SNT on K and let B = {(e, 0.3, 0.3, 0.8), (s, 0.2, 0.2, 0.6)} be a SNS in
K. here

SNOSs : ∅SN = {0, 0, 1}, 1SN = {1, 1, 0},A = {(e, 0.2, 0.3, 0.8), (s, 0.1, 0.2, 0.6)}.
SNCSs : (∅SN)

c = ({0, 0, 1})c = ({1, 1, 0}) = 1SN , (1SN)
c = ({1, 1, 0})c = ({0, 0, 1}) = ∅SN ,

(A)c = ({(e, 0.2, 0.3, 0.8), (s, 0.1, 0.2, 0.6)})c = ({(e, 0.8, 0.3, 0.2), (s, 0.6, 0.2, 0.1)}) = A′(say).
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Then, closure of B is the intersection of closed sets which contain B. Therefore,

A′ = BClo. (5)

Now, interior of B is the union of open sets which contain in B. Therefore,

∅SN
⋃
A = A

A = B Int. (6)

Note that (BClo)Clo = BClo. Now, if we consider a SNS A = {(e, 0.2, 0.3, 0.8), (s, 0.1, 0.2, 0.6)} in a
K-algebra K and if χK = {∅SN , 1SN ,A} is a SNT on K. Then, (A)Clo = A and (A)Int = A. Consequently,

A = (AClo)Int, (7)

which shows that A is a SN regular open set in K-algebra K. Since A is a SN regular open set in K and
A 6= ∅SN ,A 6= 1SN , then, by Definition 17, K-algebra K is a single-valued neutrosophic supper disconnected
K-algebra.

Proposition 6. Let K be a K-algebra and let A be a SNOS. Then, the following statements are equivalent:

(i) A K-algebra is single-valued neutrosophic super connected.
(ii) (A)Clo = 1SN , for each SNOS A 6= ∅SN .
(iii) (A)Int = ∅SN , for each SNCS A 6= 1SN .
(iv) There do not exist SNOSs A,F such that A ⊆ F and A 6= ∅SN 6= F in K-algebra K.

Definition 18. Let (K, χ) be a SNTS, where K is a K-algebra. Let S be a collection of SNOSs in K denoted by
S = {(TAj , IAj ,FAj) : j ∈ J}. Let A be a SNOS in K. Then, S is called a single-valued neutrosophic open
covering of A if A ⊆ ⋃

S.

Definition 19. Let K be a K-algebra and (K, χ) be a SNTS. Let L be a finite sub-collection of S. If L is also
a single-valued neutrosophic open covering of A , then it is called a finite sub-covering of S and A is called
single-valued neutrosophic compact if each single-valued neutrosophic open covering S ofA has a finite sub-cover.
Then, (K, χ) is called compact K-algebra.

Remark 3. If either K is a finite K-algebra or χ is a finite topology on K, i.e., consists of finite number
of single-valued neutrosophic subsets of K, then the SNT (K, χ) is a single-valued neutrosophic compact
topological space.

Proposition 7. Let (K1, χ1) and (K2, χ2) be two SNTSs and f be a single-valued neutrosophic continuous
mapping fromK1 into K2. LetA be a SNS in (K1, χ1) . IfA is single-valued neutrosophic compact in (K1, χ1),
then f (A) is single-valued neutrosophic compact in (K2, χ2).

Proof. Let f : (K1, χ1)→ (K2, χ2) be a single-valued neutrosophic continuous function. Let
Ś = ( f−1(Aj : j ∈ J)) be a single-valued neutrosophic open covering ofA sinceA be a SNS in (K1, χ1).
Let Ĺ = (Aj : j ∈ J) be a single-valued neutrosophic open covering of f (A). Since A is compact, then

there exists a single-valued neutrosophic finite sub-cover
n⋃

j=1
f−1(Aj) such that

A ⊆
n⋃

j=1
f−1(Aj)

We have to prove that there also exists a finite sub-cover of Ĺ for f (A) such that
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f (A) ⊆
n⋃

j=1
(Aj)

Now,

A ⊆
n⋃

j=1

f−1(Aj)

f (A) ⊆ f (
n⋃

j=1

f−1(Aj))

f (A) ⊆
n⋃

j=1

( f ( f−1(Aj)))

f (A) ⊆
n⋃

j=1

(Aj).

Hence, f (A) is single-valued neutrosophic compact in (K2, χ2).

Definition 20. A single-valued neutrosophic set A in a K-algebra K is called a single-valued neutrosophic
point if

TA(v)=
{

α ∈ (0, 1], if v=u
0, otherwise,

IA(v)=
{

β ∈ (0, 1], if v=u
0, otherwise,

FA(v)=
{

γ ∈ [0, 1), if v=u
0, otherwise,

with support u and value (α, β, γ), denoted by u(α, β, γ). This single-valued neutrosophic point is said
to “belong to" a SNS A, written as u(α, β, γ) ∈ A if TA(u) ≥ α, IA(u) ≥ β,FA(u) ≤ γ and said to be

“quasi-coincident with" a SNSA, written as u(α, β, γ) qA if TA(u)+ α > 1, IA(u)+ β > 1,FA(u)+γ < 1.

Definition 21. Let K be a K-algebra and let (K, χ) be a SNTS. Then, (K, χ) is called a single-valued
neutrosophic Hausdorff space if and only if, for any two distinct single-valued neutrosophic points u1, u2 ∈ K,
there exist SNOSs B1 = (TB1 , IB1 ,FB1),B2 = (TB2 , IB2 ,FB2) such that u1 ∈ B1, u2 ∈ B2, i.e.,

TB1(u1) = 1, IB1(u1) = 1,FB1(u1) = 0,
TB2(u2) = 1, IB2(u2) = 1,FB2(u2) = 0

and satisfy the condition that B1 ∩ B2 = ∅SN . Then, (K, χ) is called single-valued neutrosophic Hausdorff
space and K-algebra is said to ba a Hausdorff K-algebra. In fact, (K, χ) is a Hausdorff K-algebra.

Example 6. Let K = (G, ·,�, e) be a K-algebra and let (K, χK) be a SNTS on K, where
G = {e, x, x2, x3, x4, x5, x6, x7, x8} is the cyclic group of order 9 and Caley’s table for � is given in Example 1.
We define two SNSs as A = {(e, 1, 1, 0), (s, 0, 0, 1)}. B = {(e, 0, 0, 1), (s, 1, 1, 0)}. Consider a single-valued
neutrosophic point for e ∈ K such that

TA(e)=
{

0.3, if e=u
0, otherwise,

IA(e)=
{

0.2, if e=u
0, otherwise,
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FA(e)=
{

0.4, if e=u
0, otherwise.

Then, e(0.3, 0.2, 0.4) is a single-valued neutrosophic point with support e and value (0.3, 0.2, 0.4).
This single-valued neutrosophic point belongs to SNS “A” but not SNS “B”.

Now, for all s 6= e ∈ K

TB(s)=
{

0.5, if s=u
0, otherwise,

IB(s)=
{

0.4, if s=u
0, otherwise,

FB(s)=
{

0.3, if s=u
0, otherwise.

Then, s(0.5, 0.4, 0.3) is a single-valued neutrosophic point with support s and value (0.5, 0.4, 0.3). This
single-valued neutrosophic point belongs to SNS “B” but not SNS “A”. Thus, e(0.3, 0.2, 0.4) ∈ A and
e(0.3, 0.2, 0.4) /∈ B, s(0.5, 0.4, 0.3) ∈ B and s(0.5, 0.4, 0.3) /∈ A and A⋂B = ∅SN . Thus, K-algebra is a
Hausdorff K-algebra and (K, χK) is a Hausdorff topological space.

Theorem 5. Let (K1, χ1), (K2, χ2) be two SNTSs. Let f be a single-valued neutrosophic homomorphism from
(K1, χ1) into (K2, χ2). Then, (K1, χ1) is a single-valued neutrosophic Hausdorff space if and only if (K2, χ2)

is a single-valued neutrosophic Hausdorff K-algebra.

Proof. Let (K1, χ1), (K2, χ2) be two SNTSs. Let K1 be a single-valued neutrosophic Hausdorff space,
then, according to the Definition 21, there exist two SNOSs X and Y for two distinct single-valued
neutrosophic points u1, u2 ∈ χ2 also a, b ∈ K1(a 6= b) such that X

⋂
Y = ∅SN .

Now, for w ∈ K1, consider ( f−1(u1))(w) = u1( f−1(w)), where u1( f−1(w)) = s ∈ (0, 1] if w = f−1(a),
otherwise 0. That is, ( f−1(u1))(w) = (( f−1(u))1(w)). Therefore, we have f−1(u1) = ( f−1(u))1.
Similarly, f−1(u2) = ( f−1(u))2. Now, since f−1 is a single-valued neutrosophic continuous mapping
from K2 into K1, there exist two SNOSs f (X) and f (Y) of u1 and u2, respectively, such that
f (X)

⋂
f (Y) = f (∅SN) = ∅SN . This implies that K2 is a single-valued neutrosophic Hausdorff

K-algebra. The converse part can be proved similarly.

Theorem 6. Let f be a single-valued neutrosophic continuous function which is both one-one and onto, where
f is a mapping from a single-valued neutrosophic compact K-algebra K1 into a single-valued neutrosophic
Hausdorff K-algebra K2. Then, f is a homomorphism.

Proof. Let f : K1 → K2 be a single-valued neutrosophic continuous bijective function from
single-valued neutrosophic compact K-algebra K1 into a single-valued neutrosophic Hausdorff
K-algebra K2. Since f is a single-valued neutrosophic continuous mapping from K1 into K2, f is
a homomorphism. Since f is bijective, we only prove that f is single-valued neutrosophic closed.
Let D = (TD , ID ,FD) be a single-valued neutrosophic closed in K1. If D = ∅SN is single-valued
neutrosophic closed in K1, then f (D) = ∅SN is single-valued neutrosophic closed in K2. However,
if D 6= ∅SN , then D will be a single-valued neutrosophic compact, being subset of a single-valued
neutrosophic compact K-algebra. Then, f (D), being single-valued neutrosophic continuous image of a
single-valued neutrosophic compact K-algebra, is also single-valued neutrosophic compact. Therefore,
K2 is closed, which implies that mapping f is closed. Thus, f is a homomorphism.
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4. Conclusions

Non-classical logic is considered as a powerful tool for inspecting uncertainty and indeterminacy
found in real world problems. Being a great extension of classical logic, neutrosophic set theory
is considered as a useful mathematical tool to cope up with uncertainties in science, technology,
and computer science. We have used this mathematical model with a topological structure to
investigate the uncertainty in K-algebras. We have introduced the notion of single-valued neutrosophic
topological K-algebras and presented certain concepts, including continuous function between
two topological on K-algebras, relatively continuous function and homomorphism. We have
investigated the image and pre-image of single-valued neutrosophic topological K-algebras under
this homomorphism. We have proposed some conclusive concepts, including single-valued
neutrosophic compact K-algebras and single-valued neutrosophic Hausdorff K-algebras. We plan
to extend our study to: (i) single-valued neutrosophic soft topological K-algebras; and (ii) bipolar
neutrosophic soft topological K-algebras.

For other notations and terminologies, readers are referred to [21–26].
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