

Article Certain Notions of Neutrosophic Topological K-Algebras

Muhammad Akram^{1,*}, Hina Gulzar¹, Florentin Smarandache² and Said Broumi³

- ¹ Department of Mathematics, University of the Punjab, New Campus, Lahore 54590, Pakistan; hinagulzar5@gmail.com
- ² Department 705 Gurley Ave., University of New Mexico Mathematics & Science, Gallup, NM 87301, USA; fsmarandache@gmail.com
- ³ Laboratory of Information Processing, Faculty of Science Ben M'Sik, University Hassan II, B.P 7955, Sidi Othman, Casablanca 20000, Morocco; broumisaid78@gmail.com
- * Correspondence: m.akram@pucit.edu.pk

Received: 24 September 2018 ; Accepted: 29 October 2018; Published: 30 October 2018

Abstract: The concept of neutrosophic set from philosophical point of view was first considered by Smarandache. A single-valued neutrosophic set is a subclass of the neutrosophic set from a scientific and engineering point of view and an extension of intuitionistic fuzzy sets. In this research article, we apply the notion of single-valued neutrosophic sets to *K*-algebras. We introduce the notion of single-valued neutrosophic sets and investigate some of their properties. Further, we study certain properties, including C_5 -connected, super connected, compact and Hausdorff, of single-valued neutrosophic topological *K*-algebras. We also investigate the image and pre-image of single-valued neutrosophic topological *K*-algebras under homomorphism.

Keywords: *K*-algebras; single-valued neutrosophic sets; homomorphism; compactness; C_5 -connectedness

MSC: 06F35; 03G25; 03B52

1. Introduction

A new kind of logical algebra, known as *K*-algebra, was introduced by Dar and Akram in [1]. A K-algebra is built on a group G by adjoining the induced binary operation on G. The group *G* is particularly of the type in which each non-identity element is not of order 2. This algebraic structure is, in general, non-commutative and non-associative with right identity element [1-3]. Akram et al. [4] introduced fuzzy K-algebras. They then developed fuzzy K-algebras with other researchers worldwide. The concepts and results of *K*-algebras have been broadened to the fuzzy setting frames by applying Zadeh's fuzzy set theory and its generalizations, namely, interval-valued fuzzy sets, intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets, bipolar fuzzy sets and vague sets [5]. In handling information regarding various aspects of uncertainty, non-classical logic is considered to be a more powerful tool than the classical logic. It has become a strong mathematical tool in computer science, medical, engineering, information technology, etc. In 1998, Smarandache [6] introduced neutrosophic set as a generalization of intuitionistic fuzzy set [7]. A neutrosophic set is identified by three functions called truth-membership (T), indeterminacy-membership (I) and falsity-membership (F) functions. To apply neutrosophic set in real-life problems more conveniently, Smarandache [6] and Wang et al. [8] defined single-valued neutrosophic sets which takes the value from the subset of [0, 1]. Thus, a single-valued neutrosophic set is an instance of neutrosophic set.

Algebraic structures have a vital place with vast applications in various areas of life. Algebraic structures provide a mathematical modeling of related study. Neutrosophic set theory has also been

applied to many algebraic structures. Agboola and Davazz introduced the concept of neutrosophic *BCI/BCK*-algebras and discuss elementary properties in [9]. Jun et al. introduced the notion of (ϕ, ψ) neutrosophic subalgebra of a BCK/BCI-algebra [10]. Jun et al. [11] defined interval neutrosophic sets on BCK/BCI-algebra [11]. Jun et al. [12] proposed neutrosophic positive implicative N-ideals and study their extension property [12] Several set theories and their topological structures have been introduced by many researchers to deal with uncertainties. Chang [13] was the first to introduce the notion of fuzzy topology. Later, Lowan [14], Pu and Liu [15], and Chattopadhyay and Samanta [16] introduced other concepts related to fuzzy topology. Coker [17] introduced the notion of intuitionistic fuzzy topology as a generalization of fuzzy topology. Salama and Alblowi [18] defined the topological structure of neutrosophic set theory. Akram and Dar [19] introduced the concept of fuzzy topological K-algebras. They extended their work on intuitionistic fuzzy topological K-algebras [20]. In this paper, we introduce the notion of single-valued neutrosophic topological K-algebras and investigate some of their properties. Further, we study certain properties, including C₅-connected, super connected, compact and Hausdorff, of single-valued neutrosophic topological K-algebras. We also investigate the image and pre-image of single-valued neutrosophic topological K-algebras under homomorphism.

2. Preliminaries

The notion of *K*-algebra was introduced by Dar and Akram in [1].

Definition 1. [1] Let (G, \cdot, e) be a group in which each non-identity element is not of order 2. A K-algebra is a structure $\mathcal{K} = (G, \cdot, \odot, e)$ over a particular group G, where \odot is an induced binary operation $\odot : G \times G \to G$ is defined by $\odot(s,t) = s \odot t = s.t^{-1}$, and satisfy the following conditions:

(i) $(s \odot t) \odot (s \odot u) = (s \odot ((e \odot u) \odot (e \odot t))) \odot s;$ (ii) $s \odot (s \odot t) = (s \odot (e \odot t) \odot s;$ (iii) $s \odot s = e$; (iv) $s \odot e = s$; and (v) $e \odot s = s^{-1}$

for all *s*, *t*, $u \in G$. The homomorphism between two K-algebras \mathcal{K}_1 and \mathcal{K}_2 is a mapping $f : \mathcal{K}_1 \to \mathcal{K}_2$ such that, for all $u, v \in \mathcal{K}_1$, $f(u \odot v) = f(u) \odot f(v)$.

In [6], Smarandache initiated the idea of neutrosophic set theory which is a generalization of intuitionistic fuzzy set theory. Later, Smarandache and Wang et al. introduced a single-valued neutrosophic set (SNS) as an instance of neutrosophic set in [8].

Definition 2. [8] Let Z be a space of points with a general element $s \in Z$. A SNS A in Z is equipped with three membership functions: truth membership function (T_A), indeterminacy membership function (I_A) and *falsity membership function*($\mathcal{F}_{\mathcal{A}}$), where $\forall s \in \mathbb{Z}$, $\mathcal{T}_{\mathcal{A}}(s)$, $\mathcal{I}_{\mathcal{A}}(s)$, $\mathcal{F}_{\mathcal{A}}(s) \in [0,1]$. There is no restriction on the sum of these three components. Therefore, $0 \leq \mathcal{T}_{\mathcal{A}}(s) + \mathcal{I}_{\mathcal{A}}(s) + \mathcal{F}_{\mathcal{A}}(s) \leq 3$.

Definition 3. [8] A single-valued neutrosophic empty set (\emptyset_{SN}) and single-valued neutrosophic whole set (1_{SN}) on Z is defined as:

- $\mathcal{O}_{SN}(u) = \{u \in Z : (u, 0, 0, 1)\}.$ $1_{SN}(u) = \{u \in Z : (u, 1, 1, 0)\}.$

Definition 4. [8] If f is a mapping from a set Z_1 into a set Z_2 , then the following statements hold:

(i) Let \mathcal{A} be a SNS in Z_1 and \mathcal{B} be a SNS in Z_2 , then the pre-image of \mathcal{B} is a SNS in Z_1 , denoted by $f^{-1}(\mathcal{B})$, defined as:

 $f^{-1}(\mathcal{B}) = \{ z_1 \in Z_1 : f^{-1}(\mathcal{T}_{\mathcal{B}})(z_1) = \mathcal{T}_{\mathcal{B}}(f(z_1)), f^{-1}(\mathcal{I}_{\mathcal{B}})(z_1) = \mathcal{I}_{\mathcal{B}}(f(z_1)), f^{-1}(\mathcal{F}_{\mathcal{B}})(z_1) = \mathcal{T}_{\mathcal{B}}(f(z_1)), f^{-1}(f(z_1)), f^{-1}(f(z_1)),$ $\mathcal{F}_{\mathcal{B}}(f(z_1))\}.$

(ii) Let $\mathcal{A} = \{z_1 \in Z_1 : \mathcal{T}_{\mathcal{A}}(z_1), \mathcal{T}_{\mathcal{A}}(z_1), \mathcal{F}_{\mathcal{A}}(z_1)\}$ be a SNS in Z_1 and $\mathcal{B} = \{z_2 \in Z_2 :$ $\mathcal{T}_{\mathcal{B}}(z_2), \mathcal{I}_{\mathcal{B}}(z_2), \mathcal{F}_{\mathcal{B}}(z_2)\}$ be a SNS in Z₂. Under the mapping f, the image of A is a SNS in Z₂, denoted by $f(\mathcal{A})$, defined as: $f(\mathcal{A}) = \{z_2 \in Z_2 : f_{sup}(\mathcal{T}_{\mathcal{A}})(z_2), f_{sup}(\mathcal{I}_{\mathcal{A}})(z_2), f_{inf}(\mathcal{F}_{\mathcal{A}})(z_2)\}$, where for all $z_2 \in Z_2$.

$$f_{\sup}(\mathcal{T}_{\mathcal{A}})(z_{2}) = \begin{cases} \sup_{z_{1} \in f^{-1}(z_{2})} \mathcal{T}_{\mathcal{A}}(z_{1}), & \text{if } f^{-1}_{(z_{2})} \neq \emptyset, \\ 0, & \text{otherwise,} \end{cases}$$

$$f_{\sup}(\mathcal{I}_{\mathcal{A}})(z_{2}) = \begin{cases} \sup_{z_{1} \in f^{-1}(z_{2})} \mathcal{I}_{\mathcal{A}}(Z_{1}), & \text{if } f^{-1}_{(z_{2})} \neq \emptyset, \\ 0, & \text{otherwise,} \end{cases}$$

$$f_{\inf}(\mathcal{F}_{\mathcal{A}})(z_2) = \begin{cases} \inf_{z_1 \in f^{-1}(z_2)} \mathcal{F}_{\mathcal{A}}(z_1), & \text{if } f_{(z_2)}^{-1} \neq \emptyset, \\ 0, & \text{otherwise.} \end{cases}$$

We formulate the following proposition.

Proposition 1. Let $f : Z_1 \to Z_2$ and A, $(A_j, j \in J)$ be a SNS in Z_1 and B be a SNS in Z_2 . Then, f possesses the following properties:

(i) If f is onto, then $f(1_{SN}) = 1_{SN}$.

(ii) $f(\emptyset_{SN}) = \emptyset_{SN}$.

- (ii) $f^{-1}(\mathbb{O}_{SN}) = \mathbb{O}_{SN}$. (iii) $f^{-1}(\mathbb{O}_{SN}) = \mathbb{O}_{SN}$. (iv) $f^{-1}(\mathbb{O}_{SN}) = \mathbb{O}_{SN}$. (v) If f is onto, then $f(f^{-1}(\mathcal{B}) = \mathcal{B}$. (vi) $f^{-1}(\bigcup_{i=1}^{n} \mathcal{A}_i) = \bigcup_{i=1}^{n} f^{-1}(\mathcal{A}_i)$.

3. Neutrosophic Topological K-algebras

Definition 5. Let Z be a nonempty set. A collection χ of single-valued neutrosophic sets (SNSs) in Z is called a single-valued neutrosophic topology (SNT) on Z if the following conditions hold:

(a) $\emptyset_{SN}, 1_{SN} \in \chi$ (b) If $\mathcal{A}, \mathcal{B} \in \chi$, then $\mathcal{A} \cap \mathcal{B} \in \chi$ (c) If $A_i \in \chi$, $\forall i \in I$, then $\bigcup_{i \in I} A_i \in \chi$

The pair (Z, χ) is called a single-valued neutrosophic topological space (SNTS). Each member of χ is said to be χ -open or single-valued neutrosophic open set (SNOS) and compliment of each open single-valued neutrosophic set is a single-valued neutrosophic closed set (SNCS). A discrete topology is a topology which contains all single-valued neutrosophic subsets of Z and indiscrete if its elements are only \emptyset_{SN} , 1_{SN} .

Definition 6. Let $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ be a single-valued neutrosophic set in \mathcal{K} . Then, \mathcal{A} is called a single-valued neutrosophic K-subalgebra of \mathcal{K} if following conditions hold for \mathcal{A} :

$$\begin{aligned} &(i) \quad \mathcal{T}_{\mathcal{A}}(e) \geq \mathcal{T}_{\mathcal{A}}(s), \mathcal{I}_{\mathcal{A}}(e) \geq \mathcal{I}_{\mathcal{A}}(s), \mathcal{F}_{\mathcal{A}}(e) \leq \mathcal{F}_{\mathcal{A}}(s). \\ &(ii) \quad \mathcal{T}_{\mathcal{A}}(s \odot t) \geq \min\{\mathcal{T}_{\mathcal{A}}(s), \mathcal{T}_{\mathcal{A}}(t)\}, \\ & \mathcal{I}_{\mathcal{A}}(s \odot t) \geq \min\{\mathcal{I}_{\mathcal{A}}(s), \mathcal{I}_{\mathcal{A}}(t)\}, \\ & \mathcal{F}_{\mathcal{A}}(s \odot t) \leq \max\{\mathcal{F}_{\mathcal{A}}(s), \mathcal{F}_{\mathcal{A}}(t)\} \; \forall \; s, t \in \mathcal{K}. \end{aligned}$$

Example 1. Consider a K-algebra $\mathcal{K} = (G, \cdot, \odot, e)$, where $G = \{e, x, x^2, x^3, x^4, x^5, x^6, x^7, x^8\}$ is the cyclic group of order 9 and Caley's table for \odot is given as:

\odot	е	x	x^2	x^3	x^4	x^5	x^6	x^7	x^8
е	е	<i>x</i> ⁸	<i>x</i> ⁷	<i>x</i> ⁶	<i>x</i> ⁵	x^4	<i>x</i> ³	x^2	x
x	x	е	x^8	x^7	x^6	x^5	x^4	x^3	x^2
x^2	x ²	x	е	x^8	x^7	x^6	x^5	x^4	x^3
x^3	<i>x</i> ³	x^2	x	е	x^8	x^7	x^6	x^5	x^4
x^4	<i>x</i> ⁴	x^3	x^2	x	е	x^8	x^7	x^6	x^5
x^5	x ⁵	x^4	x^3	x^2	x	е	x^8	x^7	x^6
x^6	<i>x</i> ⁶	x^5	x^4	x^3	x^2	x	е	x^8	x^7
x^7	x ⁷	x^6	x^5	x^4	x^3	x^2	x	е	x^8
x^8	x ⁸	<i>x</i> ⁷	x^6	x^5	x^4	x^3	x^2	x	е

If we define a single-valued neutrosophic set \mathcal{A}, \mathcal{B} in \mathcal{K} such that:

$$\mathcal{A} = \{(e, 0.4, 0.5, 0.8), (s, 0.3, 0.4, 0.7)\},\\ \mathcal{B} = \{(e, 0.3, 0.4, 0.8), (s, 0.2, 0.3, 0.6)\}$$

 $\forall s \neq e \in G.$

According to Definition 5, the family $\{ \emptyset_{SN}, 1_{SN}, \mathcal{A}, \mathcal{B} \}$ of SNSs of K-algebra is a SNT on \mathcal{K} . We define a SNS $\mathcal{A} = \{\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}}\}$ in \mathcal{K} such that $\mathcal{T}_{\mathcal{A}}(e) = 0.7, \mathcal{I}_{\mathcal{A}}(e) = 0.5, \mathcal{F}_{\mathcal{A}}(e) = 0.2, \mathcal{T}_{\mathcal{A}}(s) = 0.2, \mathcal{I}_{\mathcal{A}}(s) = 0.2, \mathcal{I}_{\mathcal{A}}$ 0.4, $\mathcal{F}_{\mathcal{A}}(s) = 0.6$. Clearly, $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ is a SN K-subalgebra of \mathcal{K} .

Definition 7. Let $\mathcal{K} = (G, \cdot, \odot, e)$ be a *K*-algebra and let $\chi_{\mathcal{K}}$ be a topology on \mathcal{K} . Let \mathcal{A} be a SNS in \mathcal{K} and let $\chi_{\mathcal{K}}$ be a topology on \mathcal{K} . Then, an induced single-valued neutrosophic topology on \mathcal{A} is a collection or family of single-valued neutrosophic subsets of A which are the intersection with A and single-valued neutrosophic open sets in \mathcal{K} defined as $\chi_{\mathcal{A}} = \{\mathcal{A} \cap F : F \in \chi_{\mathcal{K}}\}$. Then, $\chi_{\mathcal{A}}$ is called single-valued neutrosophic induced topology on A or relative topology and the pair (A, χ_A) is called an induced topological space or single-valued *neutrosophic subspace of* ($\mathcal{K}, \chi_{\mathcal{K}}$).

Definition 8. Let (\mathcal{K}_1, χ_1) and (\mathcal{K}_2, χ_2) be two SNTSs and let $f : (\mathcal{K}_1, \chi_1) \to (\mathcal{K}_2, \chi_2)$. Then, f is called single-valued neutrosophic continuous if following conditions hold:

(i) For each SNS A ∈ χ₂, f⁻¹(A) ∈ χ₁.
(ii) For each SN K-subalgebra A ∈ χ₂, f⁻¹(A) is a SN K-subalgebra ∈ χ₁.

Definition 9. Let (\mathcal{K}_1, χ_1) and (\mathcal{K}_2, χ_2) be two SNTSs and let $(\mathcal{A}, \chi_{\mathcal{A}})$ and $(\mathcal{B}, \chi_{\mathcal{B}})$ be two single-valued neutrosophic subspaces over (\mathcal{K}_1, χ_1) and (\mathcal{K}_2, χ_2) . Let f be a mapping from (\mathcal{K}_1, χ_1) into (\mathcal{K}_2, χ_2) , then f is a mapping from (A, χ_A) to (B, χ_B) if $f(A) \subset B$.

Definition 10. *Let* f *be a mapping from* (A, χ_A) *to* (B, χ_B) *. Then,* f *is relatively single-valued neutrosophic* continuous if for every SNOS $Y_{\mathcal{B}}$ in $\chi_{\mathcal{B}}$, $f^{-1}(Y_{\mathcal{B}}) \cap \mathcal{A} \in \chi_{\mathcal{A}}$.

Definition 11. Let f be a mapping from (A, χ_A) to (B, χ_B) . Then, f is relatively single-valued neutrosophic open if for every SNOS X_A in χ_A , the image $f(X_A) \in \chi_B$.

Proposition 2. Let $(\mathcal{A}, \chi_{\mathcal{A}})$ and $(\mathcal{B}, \chi_{\mathcal{B}})$ be single-valued neutrosophic subspaces of (\mathcal{K}_1, χ_1) and (\mathcal{K}_2, χ_2) , where \mathcal{K}_1 and \mathcal{K}_2 are K-algebras. If f is a single-valued neutrosophic continuous function from \mathcal{K}_1 to \mathcal{K}_2 and $f(\mathcal{A}) \subset \mathcal{B}$. Then, f is relatively single-valued neutrosophic continuous function from \mathcal{A} into \mathcal{B} .

Definition 12. Let (\mathcal{K}_1, χ_1) and (\mathcal{K}_2, χ_2) be two SNTSs. A mapping $f : (\mathcal{K}_1, \chi_1) \to (\mathcal{K}_2, \chi_2)$ is called a single-valued neutrosophic homomorphism if following conditions hold:

(i) f is a one-one and onto function.

(ii) *f* is a single-valued neutrosophic continuous function from \mathcal{K}_1 to \mathcal{K}_2 .

(iii) f^{-1} is a single-valued neutrosophic continuous function from \mathcal{K}_2 to \mathcal{K}_1 .

Theorem 1. Let (\mathcal{K}_1, χ_1) be a SNTS and (\mathcal{K}_2, χ_2) be an indiscrete SNTS on K-algebras \mathcal{K}_1 and \mathcal{K}_2 , respectively. Then, each function f defined as $f : (\mathcal{K}_1, \chi_1) \to (\mathcal{K}_2, \chi_2)$ is a single-valued neutrosophic continuous function from \mathcal{K}_1 to \mathcal{K}_2 . If (\mathcal{K}_1, χ_1) and (\mathcal{K}_2, χ_2) be two discrete SNTSs \mathcal{K}_1 and \mathcal{K}_2 , respectively, then each homomorphism $f : (\mathcal{K}_1, \chi_1) \to (\mathcal{K}_2, \chi_2)$ is a single values neutrosophic continuous function from \mathcal{K}_1 to \mathcal{K}_2 .

Proof. Let *f* be a mapping defined as $f : \mathcal{K}_1 \to \mathcal{K}_2$. Let χ_1 be SNT on \mathcal{K}_1 and χ_2 be SNT on \mathcal{K}_2 , where $\chi_2 = \{ \emptyset_{SN}, 1_{SN} \}$. We show that $f^{-1}(\mathcal{A})$ is a single-valued neutrosophic *K*-subalgebra of \mathcal{K}_1 , i.e., for each $\mathcal{A} \in \chi_2$, $f^{-1}(\mathcal{A}) \in \chi_1$. Since $\chi_2 = \{ \emptyset_{SN}, 1_{SN} \}$, then for any $u \in \chi_1$, consider $\emptyset_{SN} \in \chi_2$ such that $f^{-1}(\emptyset_{SN})(u) = \emptyset_{SN}(f(u)) = \emptyset_{SN}(u)$.

Therefore, $(f^{-1}(\mathcal{O}_{SN})) = \mathcal{O}_{SN} \in \chi_1$. Likewise, $(f^{-1}(1_{SN})) = 1_{SN} \in \chi_1$. Hence, f is a SN continuous function from \mathcal{K}_1 to \mathcal{K}_2 .

Now, for the second part of the theorem, where both χ_1 and χ_2 are SNTSs on \mathcal{K}_1 and \mathcal{K}_2 , respectively, and $f : (\mathcal{K}_1, \chi_1) \to (\mathcal{K}_2, \chi_2)$ is a homomorphism. Therefore, for all $\mathcal{A} \in \chi_2$ and $f^{-1}\mathcal{A} \in \chi_1$, where f is not a usual inverse homomorphism. To prove that $f^{-1}(\mathcal{A})$ is a single-valued neutrosophic K-subalgebra in of \mathcal{K}_1 . Let for $u, v \in \mathcal{K}_1$,

$$\begin{split} f^{-1}(\mathcal{T}_{\mathcal{A}})(u \odot v) = \mathcal{T}_{\mathcal{A}}(f(u \odot v)) \\ &= \mathcal{T}_{\mathcal{A}}(f(u) \odot f(v)) \\ &\geq \min\{\mathcal{T}_{\mathcal{A}}(f(u)) \odot \mathcal{T}_{(}f(v))\} \\ &= \min\{f^{-1}(\mathcal{T}_{\mathcal{A}})(u), f^{-1}(\mathcal{T}_{\mathcal{A}})(v)\}, \\ f^{-1}(\mathcal{I}_{\mathcal{A}})(u \odot v) = \mathcal{I}_{\mathcal{A}}(f(u \odot v)) \\ &= \mathcal{I}_{\mathcal{A}}(f(u) \odot f(v)) \\ &\geq \min\{\mathcal{I}_{\mathcal{A}}(f(u)) \odot \mathcal{I}_{(}f(v))\} \\ &= \min\{f^{-1}(\mathcal{I}_{\mathcal{A}})(u), f^{-1}(\mathcal{I}_{\mathcal{A}})(v)\}, \\ f^{-1}(\mathcal{F}_{\mathcal{A}})(u \odot v) = \mathcal{F}_{\mathcal{A}}(f(u \odot v)) \\ &= \mathcal{F}_{\mathcal{A}}(f(u) \odot f(v)) \\ &\leq \max\{\mathcal{F}_{\mathcal{A}}(f(u)) \odot \mathcal{F}_{(}f(v))\} \\ &= \max\{f^{-1}(\mathcal{F}_{\mathcal{A}})(u), f^{-1}(\mathcal{F}_{\mathcal{A}})(v)\}. \end{split}$$

Hence, *f* is a single-valued neutrosophic continuous function from \mathcal{K}_1 to \mathcal{K}_2 . \Box

Proposition 3. Let χ_1 and χ_2 be two SNTSs on \mathcal{K} . Then, each homomorphism $f : (\mathcal{K}, \chi_1) \to (\mathcal{K}, \chi_2)$ is a single-valued neutrosophic continuous function.

Proof. Let (\mathcal{K}, χ_1) and (\mathcal{K}, χ_2) be two SNTSs, where \mathcal{K} is a \mathcal{K} -algebra. To prove the above result, it is enough to show that result is false for a particular topology. Let $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ and $\mathcal{B} = (\mathcal{T}_{\mathcal{B}}, \mathcal{I}_{\mathcal{B}}, \mathcal{F}_{\mathcal{B}})$ be two SNSs in \mathcal{K} . Take $\chi_1 = \{\mathcal{O}_{SN}, 1_{SN}, \mathcal{A}\}$ and $\chi_2 = \{\mathcal{O}_{SN}, 1_{SN}, \mathcal{B}\}$. If $f : (\mathcal{K}, \chi_1) \to (\mathcal{K}, \chi_2)$, defined by $f(u) = e \odot u$, for all $u \in \mathcal{K}$, then f is a homomorphism. Now, for $u \in \mathcal{A}, v \in \chi_2$, $(f^{-1}(\mathcal{B}))(u) = \mathcal{B}(f(u)) = \mathcal{B}(e \odot u) = \mathcal{B}(u)$,

 $\forall u \in \mathcal{K}$, i.e., $f^{-1}(\mathcal{B}) = \mathcal{B}$. Therefore, $(f^{-1}(\mathcal{B})) \notin \chi_1$. Hence, f is not a single-valued neutrosophic continuous mapping. \Box

Definition 13. Let $\mathcal{K} = (G, \cdot, \odot, e)$ be a *K*-algebra and χ be a SNT on \mathcal{K} . Let \mathcal{A} be a single-valued neutrosophic *K*-algebra (*K*-subalgebra) of \mathcal{K} and $\chi_{\mathcal{A}}$ be a SNT on \mathcal{A} . Then, \mathcal{A} is said to be a single-valued neutrosophic topological *K*-algebra (*K*-subalgebra) on \mathcal{K} if the self mapping $\rho_a : (\mathcal{A}, \chi_{\mathcal{A}}) \to (\mathcal{A}, \chi_{\mathcal{A}})$ defined as $\rho_a(u) = u \odot a, \forall a \in \mathcal{K}$, is a relatively single-valued neutrosophic continuous mapping.

Theorem 2. Let χ_1 and χ_2 be two SNTSs on \mathcal{K}_1 and \mathcal{K}_2 , respectively, and $f : \mathcal{K}_1 \to \mathcal{K}_2$ be a homomorphism such that $f^{-1}(\chi_2) = \chi_1$. If $\mathcal{A} = \{\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}}\}$ is a single-valued neutrosophic topological K-algebra of \mathcal{K}_2 , then $f^{-1}(\mathcal{A})$ is a single-valued neutrosophic topological K-algebra of \mathcal{K}_1 .

Proof. Let $\mathcal{A} = \{\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}}\}$ be a single-valued neutrosophic topological *K*-algebra of \mathcal{K}_2 . To prove that $f^{-1}(\mathcal{A})$ be a single-valued neutrosophic topological *K*-algebra of \mathcal{K}_1 . Let for any $u, v \in \mathcal{K}_1$,

$$\begin{split} \mathcal{T}_{f^{-1}(\mathcal{A})}(u \odot v) &= \mathcal{T}_{\mathcal{A}}(f(u \odot v)) \\ &\geq \min\{\mathcal{T}_{\mathcal{A}}(f(u)), \mathcal{T}_{\mathcal{A}}(f(v))\} \\ &= \min\{\mathcal{T}_{f^{-1}(\mathcal{A})}(u), \mathcal{T}_{f^{-1}(\mathcal{A})}(v)\}, \\ \mathcal{I}_{f^{-1}(\mathcal{A})}(u \odot v) &= \mathcal{I}_{\mathcal{A}}(f(u \odot v)) \\ &\geq \min\{\mathcal{I}_{\mathcal{A}}(f(u)), \mathcal{I}_{\mathcal{A}}(f(v))\} \\ &= \min\{\mathcal{I}_{f^{-1}(\mathcal{A})}(u), \mathcal{I}_{f^{-1}(\mathcal{A})}(v)\}, \\ \mathcal{F}_{f^{-1}(\mathcal{A})}(u \odot v) &= \mathcal{F}_{\mathcal{A}}(f(u \odot v)) \\ &\leq \max\{\mathcal{F}_{\mathcal{A}}(f(u)), \mathcal{F}_{\mathcal{A}}(f(v))\} \\ &= \max\{\mathcal{F}_{f^{-1}(\mathcal{A})}(u), \mathcal{F}_{f^{-1}(\mathcal{A})}(v)\}. \end{split}$$

Hence, $f^{-1}(\mathcal{A})$ is a single-valued neutrosophic *K*-algebra of \mathcal{K}_1 .

Now, we prove that $f^{-1}(\mathcal{A})$ is single-valued neutrosophic topological *K*-algebra of \mathcal{K}_1 . Since *f* is a single-valued neutrosophic continuous function, then by proposition 3.1, *f* is also a relatively single-valued neutrosophic continuous function which maps $(f^{-1}(\mathcal{A}), \chi_{f^{-1}(\mathcal{A})})$ to $(\mathcal{A}, \chi_{\mathcal{A}})$.

Let $a \in \mathcal{K}_1$ and Y be a SNS in χ_A , and let X be a SNS in $\chi_{f^{-1}(A)}$ such that

$$f^{-1}(Y) = X.$$
 (1)

We are to prove that ρ_a : $(f^{-1}(\mathcal{A}), \chi_{f^{-1}(\mathcal{A})}) \rightarrow (f^{-1}(\mathcal{A}), \chi_{f^{-1}(\mathcal{A})})$ is relatively single-valued neutrosophic continuous mapping, then for any $a \in \mathcal{K}_1$, we have

$$\begin{split} \mathcal{T}_{\rho_{a}^{-1}(X)}(u) &= \mathcal{T}_{(X)}(\rho_{a}(u)) = \mathcal{T}_{(X)}(u \odot a) \\ &= \mathcal{T}_{f^{-1}(Y)}(u \odot a) = \mathcal{T}_{(Y)}(f(u \odot a)) \\ &= \mathcal{T}_{(Y)}(f(u) \odot f(a)) = \mathcal{T}_{(Y)}(\rho_{f(a)}(f(u))) \\ &= \mathcal{T}_{\rho^{-1}f(a)Y}(f(u)) = \mathcal{T}_{f^{-1}}(\rho_{f(a)}^{-1}(Y)(u)), \\ \mathcal{I}_{\rho_{a}^{-1}(X)}(u) &= \mathcal{I}_{(X)}(\rho_{a}(u)) = \mathcal{I}_{(X)}(u \odot a) \\ &= \mathcal{I}_{f^{-1}(Y)}(u \odot a) = \mathcal{I}_{(Y)}(f(u \odot a)) \\ &= \mathcal{I}_{(Y)}(f(u) \odot f(a)) = \mathcal{I}_{(Y)}(\rho_{f(a)}(f(u))) \\ &= \mathcal{I}_{\rho^{-1}f(a)Y}(f(u)) = \mathcal{I}_{f^{-1}}(\rho_{f(a)}^{-1}(Y)(u)), \\ \mathcal{F}_{\rho_{a}^{-1}(X)}(u) &= \mathcal{F}_{(X)}(\rho_{a}(u)) = \mathcal{F}_{(X)}(u \odot a) \\ &= \mathcal{F}_{f^{-1}(Y)}(u \odot a) = \mathcal{F}_{(Y)}(f(u \odot a)) \\ &= \mathcal{F}_{(Y)}(f(u) \odot f(a)) = \mathcal{F}_{(Y)}(\rho_{f(a)}(f(u))) \\ &= \mathcal{F}_{\rho^{-1}f(a)Y}(f(u)) = \mathcal{F}_{f^{-1}}(\rho_{f(a)}^{-1}(Y)(u)). \end{split}$$

It concludes that $\rho_a^{-1}(X) = f^{-1}(\rho_{f(a)}^{-1}(Y))$. Thus, $\rho_a^{-1}(X) \cap f^{-1}(\mathcal{A}) = f^{-1}(\rho_{f(a)}^{-1}(Y)) \cap f^{-1}(\mathcal{A})$ is a SNS in $f^{-1}(\mathcal{A})$ and a SNS in $\chi_{f^{-1}(\mathcal{A})}$. Hence, $f^{-1}(\mathcal{A})$ and a single-valued neutrosophic topological K-algebra of \mathcal{K} . Hence, the proof. \Box

Theorem 3. Let (\mathcal{K}_1, χ_1) and (\mathcal{K}_2, χ_2) be two SNTSs on \mathcal{K}_1 and \mathcal{K}_2 , respectively, and let f be a bijective homomorphism of \mathcal{K}_1 into \mathcal{K}_2 such that $f(\chi_1) = \chi_2$. If \mathcal{A} is a single-valued neutrosophic topological K-algebra of \mathcal{K}_1 , then $f(\mathcal{A})$ is a single-valued neutrosophic topological K-algebra of \mathcal{K}_2 .

Proof. Suppose that $\mathcal{A} = \{\mathcal{T}_{\mathcal{A}}, \mathcal{T}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}}\}$ is a SN topological *K*-algebra of \mathcal{K}_1 . To prove that $f(\mathcal{A})$ is a single-valued neutrosophic topological *K*-algebra of \mathcal{K}_2 , let, for $u, v \in \mathcal{K}_2$,

$$f(\mathcal{A}) = (f_{\sup}(\mathcal{T}_{\mathcal{A}})(v), f_{\sup}(\mathcal{I}_{\mathcal{A}})(v), f_{\inf}(\mathcal{F}_{\mathcal{A}})(v)).$$

Let $a_o \in f^{-1}(u)$, $b_o \in f^{-1}(v)$ such that

$$\begin{aligned} \sup_{x \in f^{-1}(u)} \mathcal{T}_{\mathcal{A}}(x) &= \mathcal{T}_{\mathcal{A}}(a_o), \sup_{x \in f^{-1}(v)} \mathcal{T}_{\mathcal{A}}(x) = \mathcal{T}_{\mathcal{A}}(b_o), \\ \sup_{x \in f^{-1}(u)} \mathcal{I}_{\mathcal{A}}(x) &= \mathcal{I}_{\mathcal{A}}(a_o), \sup_{x \in f^{-1}(v)} \mathcal{I}_{\mathcal{A}}(x) = \mathcal{I}_{\mathcal{A}}(b_o), \\ \inf_{x \in f^{-1}(u)} \mathcal{F}_{\mathcal{A}}(x) &= \mathcal{F}_{\mathcal{A}}(a_o), \inf_{x \in f^{-1}(v)} \mathcal{F}_{\mathcal{A}}(x) = \mathcal{F}_{\mathcal{A}}(b_o). \end{aligned}$$

Now,

$$\begin{aligned} \mathcal{T}_{f(\mathcal{A})}(u \odot v) &= \sup_{x \in f^{-1}(u \odot v)} \mathcal{T}_{\mathcal{A}}(x) \\ &\geq \mathcal{T}_{\mathcal{A}}(a_o, b_o) \\ &\geq \min\{\mathcal{T}_{\mathcal{A}}(a_o), \mathcal{T}_{\mathcal{A}}(b_o)\} \\ &= \min\{\sup_{x \in f^{-1}(u)} \mathcal{T}_{\mathcal{A}}(x), \sup_{x \in f^{-1}(v)} \mathcal{T}_{\mathcal{A}}(x)\} \\ &= \min\{\mathcal{T}_{f(\mathcal{A})}(u), \mathcal{T}_{f(\mathcal{A})}(v)\}, \end{aligned}$$

$$\begin{split} \mathcal{I}_{f(\mathcal{A})}(u \odot v) &= \sup_{x \in f^{-1}(u \odot v)} \mathcal{I}_{\mathcal{A}}(x) \\ &\geq \mathcal{I}_{\mathcal{A}}(a_o, b_o) \\ &\geq \min\{\mathcal{I}_{\mathcal{A}}(a_o), \mathcal{I}_{\mathcal{A}}(b_o)\} \\ &= \min\{\sup_{x \in f^{-1}(u)} \mathcal{I}_{\mathcal{A}}(x), \sup_{x \in f^{-1}(v)} \mathcal{I}_{\mathcal{A}}(x)\} \\ &= \min\{\mathcal{I}_{f(\mathcal{A})}(u), \mathcal{I}_{f(\mathcal{A})}(v)\}, \end{split}$$

$$\begin{split} \mathcal{F}_{f(\mathcal{A})}(u \odot v) &= \inf_{x \in f^{-1}(u \odot v)} \mathcal{F}_{\mathcal{A}}(x) \\ &\leq \mathcal{F}_{\mathcal{A}}(a_o, b_o) \\ &\leq \max\{\mathcal{F}_{\mathcal{A}}(a_o), \mathcal{F}_{\mathcal{A}}(b_o)\} \\ &= \max\{\inf_{x \in f^{-1}(u)} \mathcal{F}_{\mathcal{A}}(x), \inf_{x \in f^{-1}(v)} \mathcal{F}_{\mathcal{A}}(x)\} \\ &= \max\{\mathcal{F}_{f(\mathcal{A})}(u), \mathcal{F}_{f(\mathcal{A})}(v)\}. \end{split}$$

Hence, $f(\mathcal{A})$ is a single-valued neutrosophic *K*-subalgebra of \mathcal{K}_2 . Now, we prove that the self mapping $\rho_b : (f(\mathcal{A}), \chi_f(\mathcal{A})) \to (f(\mathcal{A}), \chi_f(\mathcal{A}))$, defined by $\rho_b(v) = v \odot b$, for all $b \in \mathcal{K}_2$, is a relatively single-valued neutrosophic continuous mapping. Let $Y_{\mathcal{A}}$ be a SNS in $\chi_{\mathcal{A}}$, there exists a SNS "Y" in χ_1 such that $Y_{\mathcal{A}} = Y \cap \mathcal{A}$. We show that for a SNS in $\chi_{f(\mathcal{A})}$,

$$\rho^{-1}{}_b(Y_{f(\mathcal{A})}) \cap f(\mathcal{A}) \in \chi_{f(\mathcal{A})}$$

Since *f* is an injective mapping, then $f(Y_A) = f(Y \cap A) = f(Y) \cap f(A)$ is a SNS in $\chi_{f(A)}$ which shows that *f* is relatively single-valued neutrosophic open. In addition, *f* is surjective, then for all $b \in \mathcal{K}_2$, a = f(b), where $a \in \mathcal{K}_1$.

Now,

$$\begin{split} \mathcal{T}_{f^{-1}(\rho^{-1}{}_{b}(Y_{f(\mathcal{A})}))}(u) &= \mathcal{T}_{f^{-1}(\rho^{-1}{}_{f}(a)(Y_{f(\mathcal{A})}))}(u) \\ &= \mathcal{T}_{\rho^{-1}{}_{f}(a)(Y_{f(\mathcal{A})})}(f(u)) \\ &= \mathcal{T}_{(Y_{f(\mathcal{A})})}(\rho_{f(a)}(f(u))) \\ &= \mathcal{T}_{(Y_{f(\mathcal{A})})}(f(u) \odot f(a)) \\ &= \mathcal{T}_{f^{-1}(Y_{f(\mathcal{A})})}(u \odot a) \\ &= \mathcal{T}_{f^{-1}(Y_{f(\mathcal{A})})}(\rho_{a}(u)) \\ &= \mathcal{T}_{\rho^{-1}{}_{(a)}}(f^{-1}(Y_{f(\mathcal{A})}))(u), \end{split}$$
$$\begin{aligned} \mathcal{I}_{f^{-1}(\rho^{-1}{}_{b}(Y_{f(\mathcal{A})}))}(u) &= \mathcal{I}_{f^{-1}(\rho^{-1}{}_{f}(a)(Y_{f(\mathcal{A})}))}(u) \\ &= \mathcal{I}_{\rho^{-1}{}_{f}(a)(Y_{f(\mathcal{A})})}(f(u)) \\ &= \mathcal{I}_{(Y_{f(\mathcal{A})})}(\rho_{f(a)}(f(u))) \\ &= \mathcal{I}_{(Y_{f(\mathcal{A})})}(\rho_{f(a)}(f(u))) \\ &= \mathcal{I}_{f^{-1}(Y_{f(\mathcal{A})})}(u \odot a) \\ &= \mathcal{I}_{f^{-1}(Y_{f(\mathcal{A})})}(\rho_{a}(u)) \\ &= \mathcal{I}_{\rho^{-1}{}_{(a)}}(f^{-1}(Y_{f(\mathcal{A})}))(u), \end{split}$$
$$\begin{aligned} \mathcal{F}_{f^{-1}(\rho^{-1}(Y_{f(\mathcal{A})}))(u) &= \mathcal{F}_{f^{-1}(\rho^{-1}(\mathcal{A})}(Y_{f(\mathcal{A})}))(u), \end{split}$$

$$\begin{split} \mathcal{F}_{f^{-1}(\rho^{-1}{}_{b}(\mathbf{Y}_{f(\mathcal{A})}))}(u) &= \mathcal{F}_{f^{-1}(\rho^{-1}{}_{f}(a)(\mathbf{Y}_{f(\mathcal{A})}))}(u) \\ &= \mathcal{F}_{\rho^{-1}{}_{f}(a)(\mathbf{Y}_{f(\mathcal{A})})}(f(u)) \\ &= \mathcal{F}_{(Y_{f(\mathcal{A})})}(\rho_{f(a)}(f(u))) \\ &= \mathcal{F}_{(Y_{f(\mathcal{A})})}(f(u) \odot f(a)) \\ &= \mathcal{F}_{f^{-1}(Y_{f(\mathcal{A})})}(u \odot a) \\ &= \mathcal{F}_{f^{-1}(Y_{f(\mathcal{A})})}(\rho_{a}(u)) \\ &= \mathcal{F}_{\rho^{-1}{}_{a}}(f^{-1}(Y_{f(\mathcal{A})}))(u). \end{split}$$

This implies that $f^{-1}(\rho_{(b)}^{-1}((Y_{f(\mathcal{A})}))) = \rho_{(a)}^{-1}(f^{-1}(Y_{(\mathcal{A})}))$. Since $\rho_a : (\mathcal{A}, \chi_{\mathcal{A}}) \to (\mathcal{A}, \chi_{\mathcal{A}})$ is relatively single-valued neutrosophic continuous mapping and f is relatively single-valued neutrosophic continues mapping from $(\mathcal{A}, \chi_{\mathcal{A}})$ into $(f(\mathcal{A}), \chi_{f(\mathcal{A})}), f^{-1}(\rho_{(b)}^{-1}((Y_{f(\mathcal{A})}))) \cap \mathcal{A} = \rho_{(a)}^{-1}(f^{-1}(Y_{(\mathcal{A})})) \cap \mathcal{A}$ is a SNS in $\chi_{\mathcal{A}}$. Hence, $f(f^{-1}(\rho_{(b)}((Y_{f(\mathcal{A})}))) \cap \mathcal{A}) = \rho_{(b)}^{-1}(Y_{f(\mathcal{A})}) \cap f(\mathcal{A})$ is a SNS in $\chi_{\mathcal{A}}$, which completes the proof. \Box

Example 2. Let $\mathcal{K} = (G, \cdot, \odot, e)$ be a K-algebra, where $G = \{e, x, x^2, x^3, x^4, x^5, x^6, x^7, x^8\}$ is the cyclic group of order 9 and Caley's table for \odot is given in Example 1. We define a SNS as:

$$\mathcal{A} = \{(e, 0.4, 0.5, 0.8), (s, 0.3, 0.4, 0.6)\},\$$

$$\mathcal{B} = \{(e, 0.3, 0.4, 0.8), (s, 0.2, 0.3, 0.6)\},\$$

for all $s \neq e \in G$, where $\mathcal{A}, \mathcal{B} \in [0, 1]$. The collection $\chi_{\mathcal{K}} = \{ \emptyset_{SN}, 1_{SN}, \mathcal{A}, \mathcal{B} \}$ of SNSs of \mathcal{K} is a SNT on \mathcal{K} and $(\mathcal{K}, \chi_{\mathcal{K}})$ is a SNTS. Let \mathcal{C} be a SNS in \mathcal{K} , defined as:

$$\mathcal{C} = \{(e, 0.7, 0.5, 0.2), (s, 0.5, 0.4, 0.6)\}, \forall s \neq e \in G.$$

Clearly, C is a single-valued neutrosophic K-subalgebra of K. By direct calculations relative topology χ_C is obtained as $\chi_C = \{ \oslash_A, 1_A, A \}$. Then, the pair (C, χ_C) is a single-valued neutrosophic subspace of (K, χ_K) . We show that C is a single-valued neutrosophic topological K-subalgebra of K, i.e., the self mapping $\rho_a : (C, \chi_C) \to (C, \chi_C)$ defined by $\rho_a(u) = u \odot a, \forall a \in K$ is relatively single-valued neutrosophic continuous mapping, i.e., for a SNOS A in (C, χ_C) , $\rho_a^{-1}(A) \cap C \in \chi_C$. Since ρ_a is homomorphism, then $\rho_a^{-1}(A) \cap C = A \in \chi_C$. Therefore, $\rho_a : (C, \chi_C) \to (C, \chi_C) \to (C, \chi_C) \to (C, \chi_C)$ is relatively single-valued neutrosophic continuous mapping. Hence, C is a single-valued neutrosophic topological K-algebra of K.

Example 3. Let $\mathcal{K} = (G, \cdot, \odot, e)$ be a K-algebra, where $G = \{e, x, x^2, x^3, x^4, x^5, x^6, x^7, x^8\}$ is the cyclic group of order 9 and Caley's table for \odot is given in Example 3.1. We define a SNS as:

 $\mathcal{A} = \{(e, 0.4, 0.5, 0.8), (s, 0.3, 0.4, 0.6)\},\$ $\mathcal{B} = \{(e, 0.3, 0.4, 0.8), (s, 0.2, 0.3, 0.6)\},\$ $\mathcal{D} = \{(e, 0.2, 0.1, 0.3), (s, 0.1, 0.1, 0.5)\},\$

for all $s \neq e \in G$, where $\mathcal{A}, \mathcal{B} \in [0, 1]$. The collection $\chi_1 = \{ \emptyset_{SN}, 1_{SN}, \mathcal{D} \}$ and $\chi_2 = \{ \emptyset_{SN}, 1_{SN}, \mathcal{A}, \mathcal{B} \}$ of SNSs of \mathcal{K} are SNTs on \mathcal{K} and $(\mathcal{K}, \chi_1), (\mathcal{K}, \chi_2)$ be two SNTSs. Let \mathcal{C} be a SNS in (\mathcal{K}, χ_2) , defined as:

$$\mathcal{C} = \{(e, 0.7, 0.5, 0.2), (s, 0.5, 0.4, 0.6)\}, \forall s \neq e \in G.$$

Now, Let $f : (\mathcal{K}, \chi_1) \to (\mathcal{K}, \chi_2)$ be a homomorphism such that $f^{-1}(\chi_2) = \chi_1$ (we have not consider \mathcal{K} to be distinct), then, by Proposition 3, f is a single-valued neutrosophic continuous function and f is also relatively single-valued neutrosophic continues mapping from (\mathcal{K}, χ_1) into (\mathcal{K}, χ_2) . Since \mathcal{C} is a SNS in (\mathcal{K}, χ_2) and with relative topology $\chi_{\mathcal{C}} = \{ \emptyset_{\mathcal{A}}, 1_{\mathcal{A}}, \mathcal{A} \}$ is also a single-valued neutrosophic topological K-algebra of (\mathcal{K}, χ_2) . We prove that $f^{-1}(\mathcal{C})$ is a single-valued neutrosophic topological K-algebra in (\mathcal{K}, χ_1) . Since f is a continuous function, then, by Definition 8, $f^{-1}(\mathcal{C})$ is a single-valued neutrosophic K-subalgebra in (\mathcal{K}, χ_1) . To prove that $f^{-1}(c)$ is a single-valued neutrosophic topological K-algebra, in (\mathcal{K}, χ_1) . To prove that $f^{-1}(c)$ is a single-valued neutrosophic topological K-algebra, in (\mathcal{K}, χ_1) .

$$\rho_b: (f^{-1}(\mathcal{C}), \chi_{f^{-1}(\mathcal{C})}) \to (f^{-1}(\mathcal{C}), \chi_{f^{-1}(\mathcal{C})}),$$

for $\mathcal{A} \in \chi_{f^{-1}(C)}, \rho_b^{-1}(\mathcal{A}) \cap f^{-1}(\mathcal{C}) \in \chi_{f^{-1}(C)}$ which shows that $f^{-1}(C)$ is a single-valued neutrosophic topological K-algebra in (\mathcal{K}, χ_1) . Similarly, we can show that $f(\mathcal{C})$ is a single-valued neutrosophic topological K-algebra in (\mathcal{K}, χ_2) by considering a bijective homomorphism.

Definition 14. Let χ be a SNT on \mathcal{K} and (\mathcal{K}, χ) be a SNTS. Then, (\mathcal{K}, χ) is called single-valued neutrosophic C_5 -disconnected topological space if there exist a SNOS and SNCS \mathcal{H} such that $\mathcal{H} = (\mathcal{T}_{\mathcal{H}}, \mathcal{I}_{\mathcal{H}}, \mathcal{F}_{\mathcal{H}},) \neq 1_{SN}$ and $\mathcal{H} = (\mathcal{T}_{\mathcal{H}}, \mathcal{I}_{\mathcal{H}}, \mathcal{F}_{\mathcal{H}},) \neq \emptyset_{SN}$, otherwise (\mathcal{K}, χ) is called single-valued neutrosophic C_5 -connected.

Example 4. Every indiscrete SNT space on \mathcal{K} is C₅-connected.

Proposition 4. Let (\mathcal{K}_1, χ_1) and (\mathcal{K}_2, χ_2) be two SNTSs and $f : (\mathcal{K}_1, \chi_1) \to (\mathcal{K}_2, \chi_2)$ be a surjective single-valued neutrosophic continuous mapping. If (\mathcal{K}_1, χ_1) is a single-valued neutrosophic C_5 -connected space, then (\mathcal{K}_2, χ_2) is also a single-valued neutrosophic C_5 -connected space.

Proof. Suppose on contrary that (\mathcal{K}_2, χ_2) is a single-valued neutrosophic C_5 -disconnected space. Then, by Definition 14, there exist both SNOS and SNCS \mathcal{H} be such that $\mathcal{H} \neq 1_{SN}$ and $\mathcal{H} \neq \emptyset_{SN}$. Since f is a single-valued neutrosophic continuous and onto function, so $f^{-1}(\mathcal{H}) = 1_{SN}$ or $f^{-1}(\mathcal{H}) = \emptyset_{SN}$, where $f^{-1}(\mathcal{H})$ is both SNOS and SNCS. Therefore,

$$\mathcal{H} = f(f^{-1}(\mathcal{H})) = f(1_{SN}) = 1_{SN}$$
 (2)

and

$$\mathcal{H} = f(f^{-1}(\mathcal{H})) = f(\mathcal{O}_{SN}) = \mathcal{O}_{SN},\tag{3}$$

a contradiction. Hence, (\mathcal{K}_2, χ_2) is a single-valued neutrosophic C_5 -connected space. \Box

Corollary 1. Let χ be a SNT on \mathcal{K} . Then, (\mathcal{K}, χ) is called a single-valued neutrosophic C_5 -connected space if and only if there does not exist a single-valued neutrosophic continuous map $f : (\mathcal{K}, \chi) \to (\mathcal{F}_T, \chi_T)$ such that $f \neq 1_{SN}$ and $f \neq \emptyset_{SN}$

Definition 15. Let $\mathcal{A} = \{\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}}\}$ be a SNS in \mathcal{K} . Let χ be a SNT on \mathcal{K} . The interior and closure of \mathcal{A} in \mathcal{K} is defined as:

 \mathcal{A}^{Int} : The union of SNOSs which contained in \mathcal{A} . \mathcal{A}^{Clo} : The intersection of SNCSs for which \mathcal{A} is a subset of these SNCSs.

Remark 1. Being union of SNOS \mathcal{A}^{Int} is a SNO and \mathcal{A}^{Clo} being intersection of SNCS is SNC.

Theorem 4. Let \mathcal{A} be a SNS in a SNTS (\mathcal{K}, χ) . Then, \mathcal{A}^{Int} is such an open set which is the largest open set of \mathcal{K} contained in \mathcal{A} .

Corollary 2. $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ is a SNOS in \mathcal{K} if and only if $\mathcal{A}^{Int} = \mathcal{A}$ and $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ is a SNCS in \mathcal{K} if and only if $\mathcal{A}^{Clo} = \mathcal{A}$.

Proposition 5. Let A be a SNS in K. Then, following results hold for A:

 $\begin{array}{l} (i) \ (\mathbf{1}_{SN})^{Int} = \mathbf{1}_{SN}. \\ (ii) \ (\oslash_{SN})^{Clo} = \oslash_{SN}. \\ (iii) \ \overline{(\mathcal{A})}^{Int} = \overline{(\mathcal{A})^{Clo}}. \\ (iv) \ \overline{(\mathcal{A})}^{Clo} = \overline{(\mathcal{A})^{Int}}. \end{array}$

Definition 16. Let \mathcal{K} be a \mathcal{K} -algebra and χ be a SNT on \mathcal{K} . A SNOS \mathcal{A} in \mathcal{K} is said to be single-valued neutrosophic regular open if

$$\mathcal{A} = (\mathcal{A}^{Clo})^{Int}.$$
(4)

Remark 2. Every SNOS which is regular is single-valued neutrosophic open and every single-valued neutrosophic closed and open set is a single-valued neutrosophic regular open.

Definition 17. A single-valued neutrosophic super connected K-algebra is such a K-algebra in which there does not exist a single-valued neutrosophic regular open set $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ such that $\mathcal{A} \neq \emptyset_{SN}$ and $\mathcal{A} \neq 1_{SN}$. If there exists such a single-valued neutrosophic regular open set $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ such that $\mathcal{A} \neq \emptyset_{SN}$ and $\mathcal{A} \neq 1_{SN}$, then K-algebra is said to be a single-valued neutrosophic super disconnected.

Example 5. Let $\mathcal{K} = (G, \cdot, \odot, e)$ be a K-algebra, where $G = \{e, x, x^2, x^3, x^4, x^5, x^6, x^7, x^8\}$ is the cyclic group of order 9 and Caley's table for \odot is given in Example 1 We define a SNS as:

$$\mathcal{A} = \{(e, 0.2, 0.3, 0.8), (s, 0.1, 0.2, 0.6)\}.$$

Let $\chi_{\mathcal{K}} = \{ \emptyset_{SN}, 1_{SN}, \mathcal{A} \}$ *be a SNT on* \mathcal{K} *and let* $\mathcal{B} = \{ (e, 0.3, 0.3, 0.8), (s, 0.2, 0.2, 0.6) \}$ *be a SNS in* \mathcal{K} . *here*

$$SNOSs: \emptyset_{SN} = \{0, 0, 1\}, 1_{SN} = \{1, 1, 0\}, \mathcal{A} = \{(e, 0.2, 0.3, 0.8), (s, 0.1, 0.2, 0.6)\}.$$

$$SNCSs: (\emptyset_{SN})^c = (\{0, 0, 1\})^c = (\{1, 1, 0\}) = 1_{SN}, (1_{SN})^c = (\{1, 1, 0\})^c = (\{0, 0, 1\}) = \emptyset_{SN}, (\mathcal{A})^c = (\{(e, 0.2, 0.3, 0.8), (s, 0.1, 0.2, 0.6)\})^c = (\{(e, 0.8, 0.3, 0.2), (s, 0.6, 0.2, 0.1)\}) = \mathcal{A}'(say).$$

Then, closure of \mathcal{B} is the intersection of closed sets which contain \mathcal{B} . Therefore,

$$\mathcal{A}' = \mathcal{B}^{Clo}.$$
 (5)

Now, interior of \mathcal{B} is the union of open sets which contain in \mathcal{B} . Therefore,

$$\mathcal{D}_{SN} \bigcup \mathcal{A} = \mathcal{A}$$

 $\mathcal{A} = \mathcal{B}^{Int}.$ (6)

Note that $(\mathcal{B}^{Clo})^{Clo} = \mathcal{B}^{Clo}$. Now, if we consider a SNS $\mathcal{A} = \{(e, 0.2, 0.3, 0.8), (s, 0.1, 0.2, 0.6)\}$ in a *K*-algebra \mathcal{K} and if $\chi_{\mathcal{K}} = \{\mathcal{O}_{SN}, 1_{SN}, \mathcal{A}\}$ is a SNT on \mathcal{K} . Then, $(\mathcal{A})^{Clo} = \mathcal{A}$ and $(\mathcal{A})^{Int} = \mathcal{A}$. Consequently,

$$\mathcal{A} = (\mathcal{A}^{Clo})^{Int},\tag{7}$$

which shows that A is a SN regular open set in K-algebra K. Since A is a SN regular open set in K and $A \neq \emptyset_{SN}, A \neq 1_{SN}$, then, by Definition 17, K-algebra K is a single-valued neutrosophic supper disconnected K-algebra.

Proposition 6. Let \mathcal{K} be a K-algebra and let \mathcal{A} be a SNOS. Then, the following statements are equivalent:

- (*i*) A K-algebra is single-valued neutrosophic super connected.
- (*ii*) $(\mathcal{A})^{Clo} = 1_{SN}$, for each SNOS $\mathcal{A} \neq \emptyset_{SN}$.
- (*iii*) $(\mathcal{A})^{Int} = \emptyset_{SN}$, for each SNCS $\mathcal{A} \neq 1_{SN}$.
- (iv) There do not exist SNOSs \mathcal{A}, \mathcal{F} such that $\mathcal{A} \subseteq \overline{\mathcal{F}}$ and $\mathcal{A} \neq \emptyset_{SN} \neq \mathcal{F}$ in K-algebra \mathcal{K} .

Definition 18. Let (\mathcal{K}, χ) be a SNTS, where \mathcal{K} is a \mathcal{K} -algebra. Let S be a collection of SNOSs in \mathcal{K} denoted by $S = \{(\mathcal{T}_{\mathcal{A}_j}, \mathcal{I}_{\mathcal{A}_j}, \mathcal{F}_{\mathcal{A}_j}) : j \in J\}$. Let \mathcal{A} be a SNOS in \mathcal{K} . Then, S is called a single-valued neutrosophic open covering of \mathcal{A} if $\mathcal{A} \subseteq \bigcup S$.

Definition 19. Let \mathcal{K} be a K-algebra and (\mathcal{K}, χ) be a SNTS. Let L be a finite sub-collection of S. If L is also a single-valued neutrosophic open covering of \mathcal{A} , then it is called a finite sub-covering of S and \mathcal{A} is called single-valued neutrosophic compact if each single-valued neutrosophic open covering S of \mathcal{A} has a finite sub-cover. Then, (\mathcal{K}, χ) is called compact K-algebra.

Remark 3. If either \mathcal{K} is a finite K-algebra or χ is a finite topology on \mathcal{K} , i.e., consists of finite number of single-valued neutrosophic subsets of \mathcal{K} , then the SNT (\mathcal{K}, χ) is a single-valued neutrosophic compact topological space.

Proposition 7. Let (\mathcal{K}_1, χ_1) and (\mathcal{K}_2, χ_2) be two SNTSs and f be a single-valued neutrosophic continuous mapping from \mathcal{K}_1 into \mathcal{K}_2 . Let \mathcal{A} be a SNS in (\mathcal{K}_1, χ_1) . If \mathcal{A} is single-valued neutrosophic compact in (\mathcal{K}_1, χ_1) , then $f(\mathcal{A})$ is single-valued neutrosophic compact in (\mathcal{K}_2, χ_2) .

Proof. Let $f : (\mathcal{K}_1, \chi_1) \to (\mathcal{K}_2, \chi_2)$ be a single-valued neutrosophic continuous function. Let $\dot{S} = (f^{-1}(\mathcal{A}_j : j \in J))$ be a single-valued neutrosophic open covering of \mathcal{A} since \mathcal{A} be a SNS in (\mathcal{K}_1, χ_1) . Let $\dot{L} = (\mathcal{A}_j : j \in J)$ be a single-valued neutrosophic open covering of $f(\mathcal{A})$. Since \mathcal{A} is compact, then there exists a single-valued neutrosophic finite sub-cover $\bigcup_{j=1}^n f^{-1}(\mathcal{A}_j)$ such that

$$\mathcal{A} \subseteq \bigcup_{j=1}^n f^{-1}(\mathcal{A}_j)$$

We have to prove that there also exists a finite sub-cover of \hat{L} for $f(\mathcal{A})$ such that

11 of 15

$$f(\mathcal{A}) \subseteq \bigcup_{j=1}^{n} (\mathcal{A}_j)$$

Now,

$$\mathcal{A} \subseteq \bigcup_{j=1}^{n} f^{-1}(\mathcal{A}_{j})$$
$$f(\mathcal{A}) \subseteq f(\bigcup_{j=1}^{n} f^{-1}(\mathcal{A}_{j}))$$
$$f(\mathcal{A}) \subseteq \bigcup_{j=1}^{n} (f(f^{-1}(\mathcal{A}_{j})))$$
$$f(\mathcal{A}) \subseteq \bigcup_{j=1}^{n} (\mathcal{A}_{j}).$$

Hence, f(A) is single-valued neutrosophic compact in (\mathcal{K}_2, χ_2) . \Box

Definition 20. A single-valued neutrosophic set A in a K-algebra K is called a single-valued neutrosophic point if

$$\begin{aligned} \mathcal{T}_{\mathcal{A}}(v) &= \left\{ \begin{array}{ll} \alpha \in (0,1], & \text{if } v = u \\ 0, & \text{otherwise,} \end{array} \right. \\ \\ \mathcal{I}_{\mathcal{A}}(v) &= \left\{ \begin{array}{ll} \beta \in (0,1], & \text{if } v = u \\ 0, & \text{otherwise,} \end{array} \right. \\ \\ \\ \mathcal{F}_{\mathcal{A}}(v) &= \left\{ \begin{array}{ll} \gamma \in [0,1), & \text{if } v = u \\ 0, & \text{otherwise,} \end{array} \right. \end{aligned}$$

with support u and value (α, β, γ) , denoted by $u(\alpha, \beta, \gamma)$. This single-valued neutrosophic point is said to "belong to" a SNS A, written as $u(\alpha, \beta, \gamma) \in A$ if $\mathcal{T}_{A}(u) \geq \alpha, \mathcal{I}_{A}(u) \geq \beta, \mathcal{F}_{A}(u) \leq \gamma$ and said to be "quasi-coincident with" a SNS A, written as $u(\alpha, \beta, \gamma) q A$ if $\mathcal{T}_{A}(u) + \alpha > 1, \mathcal{I}_{A}(u) + \beta > 1, \mathcal{F}_{A}(u) + \gamma < 1$.

Definition 21. Let \mathcal{K} be a \mathcal{K} -algebra and let (\mathcal{K}, χ) be a SNTS. Then, (\mathcal{K}, χ) is called a single-valued neutrosophic Hausdorff space if and only if, for any two distinct single-valued neutrosophic points $u_1, u_2 \in \mathcal{K}$, there exist SNOSs $\mathcal{B}_1 = (\mathcal{T}_{\mathcal{B}_1}, \mathcal{I}_{\mathcal{B}_1}, \mathcal{F}_{\mathcal{B}_1}), \mathcal{B}_2 = (\mathcal{T}_{\mathcal{B}_2}, \mathcal{I}_{\mathcal{B}_2}, \mathcal{F}_{\mathcal{B}_2})$ such that $u_1 \in \mathcal{B}_1, u_2 \in \mathcal{B}_2$, i.e.,

$$\mathcal{T}_{\mathcal{B}_1}(u_1) = 1, \mathcal{I}_{\mathcal{B}_1}(u_1) = 1, \mathcal{F}_{\mathcal{B}_1}(u_1) = 0,$$

 $\mathcal{T}_{\mathcal{B}_2}(u_2) = 1, \mathcal{I}_{\mathcal{B}_2}(u_2) = 1, \mathcal{F}_{\mathcal{B}_2}(u_2) = 0$

and satisfy the condition that $\mathcal{B}_1 \cap \mathcal{B}_2 = \emptyset_{SN}$. Then, (\mathcal{K}, χ) is called single-valued neutrosophic Hausdorff space and K-algebra is said to be a Hausdorff K-algebra. In fact, (\mathcal{K}, χ) is a Hausdorff K-algebra.

Example 6. Let $\mathcal{K} = (G, \cdot, \odot, e)$ be a *K*-algebra and let $(\mathcal{K}, \chi_{\mathcal{K}})$ be a SNTS on \mathcal{K} , where $G = \{e, x, x^2, x^3, x^4, x^5, x^6, x^7, x^8\}$ is the cyclic group of order 9 and Caley's table for \odot is given in Example 1. We define two SNSs as $\mathcal{A} = \{(e, 1, 1, 0), (s, 0, 0, 1)\}$. $\mathcal{B} = \{(e, 0, 0, 1), (s, 1, 1, 0)\}$. Consider a single-valued neutrosophic point for $e \in \mathcal{K}$ such that

$$\mathcal{T}_{\mathcal{A}}(e) = \begin{cases} 0.3, & \text{if } e=u \\ 0, & \text{otherwise,} \end{cases}$$
$$\mathcal{I}_{\mathcal{A}}(e) = \begin{cases} 0.2, & \text{if } e=u \\ 0, & \text{otherwise,} \end{cases}$$

Then, e(0.3, 0.2, 0.4) is a single-valued neutrosophic point with support e and value (0.3, 0.2, 0.4). This single-valued neutrosophic point belongs to SNS "A" but not SNS "B".

Now, for all $s \neq e \in \mathcal{K}$

$$\mathcal{T}_{\mathcal{B}}(s) = \begin{cases} 0.5, & \text{if } s = u \\ 0, & \text{otherwise,} \end{cases}$$
$$\mathcal{I}_{\mathcal{B}}(s) = \begin{cases} 0.4, & \text{if } s = u \\ 0, & \text{otherwise,} \end{cases}$$
$$\mathcal{F}_{\mathcal{B}}(s) = \begin{cases} 0.3, & \text{if } s = u \\ 0, & \text{otherwise.} \end{cases}$$

Then, s(0.5, 0.4, 0.3) is a single-valued neutrosophic point with support s and value (0.5, 0.4, 0.3). This single-valued neutrosophic point belongs to SNS "B" but not SNS "A". Thus, $e(0.3, 0.2, 0.4) \in A$ and $e(0.3, 0.2, 0.4) \notin B$, $s(0.5, 0.4, 0.3) \in B$ and $s(0.5, 0.4, 0.3) \notin A$ and $A \cap B = \emptyset_{SN}$. Thus, K-algebra is a Hausdorff K-algebra and $(\mathcal{K}, \chi_{\mathcal{K}})$ is a Hausdorff topological space.

Theorem 5. Let (\mathcal{K}_1, χ_1) , (\mathcal{K}_2, χ_2) be two SNTSs. Let f be a single-valued neutrosophic homomorphism from (\mathcal{K}_1, χ_1) into (\mathcal{K}_2, χ_2) . Then, (\mathcal{K}_1, χ_1) is a single-valued neutrosophic Hausdorff space if and only if (\mathcal{K}_2, χ_2) is a single-valued neutrosophic Hausdorff K-algebra.

Proof. Let (\mathcal{K}_1, χ_1) , (\mathcal{K}_2, χ_2) be two SNTSs. Let \mathcal{K}_1 be a single-valued neutrosophic Hausdorff space, then, according to the Definition 21, there exist two SNOSs *X* and *Y* for two distinct single-valued neutrosophic points $u_1, u_2 \in \chi_2$ also $a, b \in \mathcal{K}_1 (a \neq b)$ such that $X \cap Y = \emptyset_{SN}$. Now, for $w \in \mathcal{K}_1$, consider $(f^{-1}(u_1))(w) = u_1(f^{-1}(w))$, where $u_1(f^{-1}(w)) = s \in (0,1]$ if $w = f^{-1}(a)$, otherwise 0. That is, $(f^{-1}(u_1))(w) = ((f^{-1}(u))_1(w))$. Therefore, we have $f^{-1}(u_1) = (f^{-1}(u))_1$. Similarly, $f^{-1}(u_2) = (f^{-1}(u))_2$. Now, since f^{-1} is a single-valued neutrosophic continuous mapping from \mathcal{K}_2 into \mathcal{K}_1 , there exist two SNOSs f(X) and f(Y) of u_1 and u_2 , respectively, such that

Theorem 6. Let f be a single-valued neutrosophic continuous function which is both one-one and onto, where f is a mapping from a single-valued neutrosophic compact K-algebra \mathcal{K}_1 into a single-valued neutrosophic Hausdorff K-algebra \mathcal{K}_2 . Then, f is a homomorphism.

 $f(X) \cap f(Y) = f(\emptyset_{SN}) = \emptyset_{SN}$. This implies that \mathcal{K}_2 is a single-valued neutrosophic Hausdorff

K-algebra. The converse part can be proved similarly. \Box

Proof. Let $f : \mathcal{K}_1 \to \mathcal{K}_2$ be a single-valued neutrosophic continuous bijective function from single-valued neutrosophic compact *K*-algebra \mathcal{K}_1 into a single-valued neutrosophic Hausdorff *K*-algebra \mathcal{K}_2 . Since *f* is a single-valued neutrosophic continuous mapping from \mathcal{K}_1 into \mathcal{K}_2 , *f* is a homomorphism. Since *f* is bijective, we only prove that *f* is single-valued neutrosophic closed. Let $\mathcal{D} = (\mathcal{T}_{\mathcal{D}}, \mathcal{I}_{\mathcal{D}}, \mathcal{F}_{\mathcal{D}})$ be a single-valued neutrosophic closed in \mathcal{K}_1 . If $\mathcal{D} = \emptyset_{SN}$ is single-valued neutrosophic closed in \mathcal{K}_2 . However, if $\mathcal{D} \neq \emptyset_{SN}$, then \mathcal{D} will be a single-valued neutrosophic compact, being subset of a single-valued neutrosophic compact *K*-algebra. Then, $f(\mathcal{D})$, being single-valued neutrosophic continuous image of a single-valued neutrosophic compact *K*-algebra, is also single-valued neutrosophic compact. Therefore, \mathcal{K}_2 is closed, which implies that mapping *f* is closed. Thus, *f* is a homomorphism. \Box

4. Conclusions

Non-classical logic is considered as a powerful tool for inspecting uncertainty and indeterminacy found in real world problems. Being a great extension of classical logic, neutrosophic set theory is considered as a useful mathematical tool to cope up with uncertainties in science, technology, and computer science. We have used this mathematical model with a topological structure to investigate the uncertainty in *K*-algebras. We have introduced the notion of single-valued neutrosophic topological on *K*-algebras, relatively continuous function and homomorphism. We have investigated the image and pre-image of single-valued neutrosophic topological *K*-algebras under this homomorphism. We have proposed some conclusive concepts, including single-valued neutrosophic compact *K*-algebras and single-valued neutrosophic Hausdorff *K*-algebras. We plan to extend our study to: (i) single-valued neutrosophic soft topological *K*-algebras.

For other notations and terminologies, readers are referred to [21–26].

Author Contributions: M.A., H.G., F.S. and S.B. conceived of and designed the experiments. M.A. and H.G. wrote the paper

Acknowledgments: The author is highly thankful to anonymous referees for their valuable comments and suggestions for improving the paper.

Conflicts of Interest: The authors declare that they have no competing interests.

References

- 1. Dar, K.H.; Akram, M. On a K-algebra built on a group. Southeast Asian Bull. Math. 2005, 29, 41–49.
- 2. Dar, K.H.; Akram, M. Characterization of a K(G)-algebra by self maps. *Southeast Asian Bull. Math.* **2004**, *28*, 601-610.
- 3. Dar, K.H.; Akram, M. On K-homomorphisms of K-algebras. Int. Math. Forum 2007, 46, 2283–2293.
- Akram, M.; Dar, K.H.; Jun, Y.B.; Roh, E.H. Fuzzy structures of K(G)-algebra. Southeast Asian Bull. Math. 2007, 31, 625–637.
- Akram, M.; Dar, K.H. Generalized Fuzzy K-Algebras; VDM Verlag: Saarbrücken, Gernamy, 2010; p. 288, ISBN 978-3-639-27095-2.
- 6. Smarandache, F. *Neutrosophy Neutrosophic Probability, Set, and Logic*; Amer Res Press: Rehoboth, MA, USA, 1998.
- 7. Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96.
- 8. Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic sets. *Multispace Multistruct* **2010**, *4*, 410–413.
- Agboola, A.A.A.; Davvaz, B. Introduction to neutrosophic BCI/BCK-algebras. Int. J. Math. Math. Sci. 2015, 6, doi:10.1155/2015/370267.
- June, Y.B. Neutrosophic subalgebras of several types in *BCK/BCI*-algebras. *Annl. Fuzzy Math. Inform.* 2017, 14, 75–86.
- 11. June, Y.B.; Kim, S.J.; Smarandache, F. Interval neutrosophic sets with applications in *BCK/BCI*-algebra. *Axioms* **2018**, *7*, 23, doi:10.3390/axioms7020023.
- 12. Jun, Y.B.; Smarandache, F.; Song, S.Z.; Khan, M. Neutrosophic positive implicative *N*-ideals in *BCK*-algebras. *Axioms* **2018**, *7*, 3, doi:10.3390/axioms7010003.
- 13. Chang, C.L. Fuzzy topological spaces. J. Math. Anal. Appl. 1968, 24, 182–190.
- 14. Lowen, R. Fuzzy topological spaces and fuzzy compactness. J. Math. Anal. Appl. 1976, 56, 621–633, doi:10.1016/0022-247X(76)90029-9.
- 15. Pu, P.M.; Liu, Y.M. Fuzzy topology, I. Neighbourhood structure of a fuzzy point and Moore-Smith convergence. *J. Math. Anal. Appl.* **1980**, *76*, 571–599.
- Chattopadhyay, K.C.; Samanta, S.K. Fuzzy topology: Fuzzy closure operator, fuzzy compactness and fuzzy connectedness. *Fuzzy Sets Syst.* 1993, 54, 207–212, doi:10.1016/0165-0114(93)90277-O.

- 17. Coker, D. An introduction to intuitionistic fuzzy topological spaces. *Fuzzy Sets Syst.* **1997**, *88*, 81–89, doi:10.1016/S0165-0114(96)00076-0.
- 18. Salama, A.A.; Alblowi, S.A. Neutrosophic set and neutrosophic topological spaces. *IOSR-JM* **2012**, *3*, 31–35, doi:10.9790/5728-0343135.
- 19. Akram, M.; Dar, K.H. On fuzzy topological K-algebras. Int. Math. Forum 2006, 23, 1113–1124.
- 20. Akram, M.; Dar, K.H. Intuitionistic fuzzy topological K-algebras. J. Fuzzy Math. 2009, 17, 19–34.
- 21. Lupianez, F.G. Hausdorffness in intuitionistic fuzzy topological spaces. Mathw. Soft Comput. 2003, 10, 17–22.
- Hanafy, I.M. Completely continuous functions in intuitionistic fuzzy topological spaces. *Czechoslovak Math. J.* 2003, 53, 793–803, doi:10.1023/B:CMAJ.0000024523.64828.31.
- 23. Jun, Y.B.; Song, S.Z.; Smarandache, F.; Bordbar, H. Neutrosophic quadruple *BCK/BCI*-algebras. *Axioms* **2018**, 7, 41, doi:10.3390/axioms7020041.
- 24. Elias, J.; Rossi, M.E. The structure of the inverse system of Gorenstein *K*-algebras. *Adv. Math.* **2017**, *314*, 306–327, doi:10.1016/j.aim.2017.04.025.
- 25. Masuti, S.K.; Tozzo, L. The structure of the inverse system of level *K*-algebras. *Collect. Math.* **2017**, 1–27, doi:10.1007/s13348-018-0212-3.
- 26. Borzooei, R.; Zhang, X.; Smarandache, F.; Jun, Y. Commutative generalized neutrosophic ideals in BCK-algebras. *Symmetry* **2018**, *10*, 350, doi:10.3390/sym10080350.

 \odot 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).