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Abstract: In this article, we propose a novel concept of the single-valued neutrosophic fuzzy soft set
by combining the single-valued neutrosophic fuzzy set and the soft set. For possible applications,
five kinds of operations (e.g., subset, equal, union, intersection, and complement) on single-valued
neutrosophic fuzzy soft sets are presented. Then, several theoretical operations of single-valued
neutrosophic fuzzy soft sets are given. In addition, the first type for the fuzzy decision-making
based on single-valued neutrosophic fuzzy soft set matrix is constructed. Finally, we present the
second type by using the AND operation of the single-valued neutrosophic fuzzy soft set for fuzzy
decision-making and clarify its applicability with a numerical example.
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1. Introduction

Many areas (e.g., physics, social sciences, computer sciences, and medicine) work with vague data
that require fuzzy sets [1], intuitionistic fuzzy sets [2], picture fuzzy sets [3], and other mathematical
tools. Molodtsov [4] presented a novel approach termed “soft set theory”, which plays a very significant
role in different fields. Therefore, several researchers have developed some methods and operations
of soft set theory. For instance, Maji et al. [5] introduced some notions of and operations on soft
sets. In addition, Maji et al. [6] gave an application of soft sets to solve fuzzy decision-making.
Maji et al. [7] proposed the notion of fuzzy soft sets, followed by studies on inverse fuzzy soft sets [8],
belief interval-valued soft sets [9], interval-valued intuitionistic fuzzy soft sets [10], interval-valued
picture fuzzy soft sets [11], interval-valued neutrosophic soft sets [12], and generalized picture fuzzy
soft sets [13]. Furthermore, several expansion models of soft sets have been developed very quickly,
such as possibility Pythagorean fuzzy soft sets [14], possibility m-polar fuzzy soft sets [15], possibility
neutrosophic soft sets [16], and possibility multi-fuzzy soft sets [17]. Karaaslan and Hunu [18] defined
the notion of type-2 single-valued neutrosophic sets and gave several distance measure methods:
Hausdorff, Hamming, and Euclidean distances for Type-2 single-valued neutrosophic sets. Al-Quran
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et al. [19] presented the notion of fuzzy parameterized complex neutrosophic soft expert sets and
gave a novel approach by transforming from the complex case to the real case for decision-making.
Qamar and Hassan [20] proposed a novel approach to Q-neutrosophic soft sets and studied several
operations of Q-neutrosophic soft sets. Further, they generalized Q-neutrosophic soft expert sets
based on uncertainty for decision-making [21]. On the other hand, Uluçay et al. [22] presented the
concept of generalized neutrosophic soft expert sets and applied a novel algorithm for multiple-criteria
decision-making. Zhang et al. [23] gave novel algebraic operations of totally dependent neutrosophic
sets and totally dependent neutrosophic soft sets. In 2018, Smarandache [24] generalized the soft set to
the hypersoft set by transforming the function F into a multi-argument function.

Fuzzy sets are used to tackle uncertainty using the membership grade, whereas neutrosophic
sets are used to tackle uncertainty using the truth, indeterminacy, and falsity membership grades,
which are considered as independent. As the motivation of this article, we present a novel notion of
the single-valued neutrosophic fuzzy soft set, which can be seen as a novel single-valued neutrosophic
fuzzy soft set model, which gives rise to some new concepts. Since neutrosophic fuzzy soft sets
have some difficulties in dealing with some real-life problems due to the nonstandard interval
of neutrosophic components, we introduce the single-valued neutrosophic fuzzy soft set (i.e., the
single-valued neutrosophic set has a symmetric form, since the membership (T) and nonmembership
(F) are symmetric with each other, while indeterminacy (I) is in the middle), which is considered
as an instance of neutrosophic fuzzy soft sets. The structural operations (e.g., subset, equal, union,
intersection, and complement) on single-valued neutrosophic fuzzy soft sets, and several fundamental
properties of the five operations above are introduced. Lastly, two novel approaches (i.e., Algorithms 1
and 2) to fuzzy decision-making depending on single-valued neutrosophic fuzzy soft sets are discussed,
in addition to a numerical example to show the two approaches we have developed.

The rest of this article is arranged as follows. Section 2 briefly introduces several notions related to
fuzzy sets, neutrosophic sets, single-valued neutrosophic sets, neutrosophic fuzzy sets, single-valued
neutrosophic fuzzy sets, soft sets, fuzzy soft sets, and neutrosophic soft sets. Section 3 discusses
single-valued neutrosophic fuzzy soft sets (along with their basic operations and structural properties).
Section 4 gives two algorithms for single-valued neutrosophic fuzzy soft sets for decision-making.
Lastly, the conclusions are given in Section 5.

2. Preliminaries

In the following, we present a short survey of seven definitions which are necessary to this paper.

2.1. Fuzzy Set

Definition 1 (cf. [1]). Assume that X (i.e., X = {x1, x2, ..., xp}) is a set of elements and µ(xp) is a membership
function of element xp ∈ X. Then

(1) The following mapping (called fuzzy set), is given by

µ : X −→ [0, 1]

and [0, 1]X is a set of whole fuzzy subset over X.
(2) Let

µ =

{
µ(x1)

x1
,

µ(x2)

x2
, · · · ,

µ(xp)

xp

∣∣∣∣ xp ∈ X
}
∈ [0, 1]X

and

ν =

{
ν(x1)

x1
,

ν(x2)

x2
, · · · ,

ν(xp)

xp

∣∣∣∣ xp ∈ X
}
∈ [0, 1]X .

Then
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(1) The union µ ∪ ν, is defined as

µ ∪ ν =

{
µ(x1) ∨ ν(x1)

x1
,

µ(x2) ∨ ν(x2)

x2
, · · · ,

µ(xp) ∨ ν(xp)

xp

∣∣∣∣ xp ∈ X
}

.

(2) The intersection µ ∩ ν, is defined as

µ ∩ ν =

{
µ(x1) ∧ ν(x1)

x1
,

µ(x2) ∧ ν(x2)

x2
, · · · ,

µ(xp) ∧ ν(xp)

xp

∣∣∣∣ xp ∈ X
}

.

2.2. Neutrosophic Set and Single-Valued Neutrosophic Set

Definition 2 (cf. [25,26]). Assume that X (i.e., X = {x1, x2, ..., xp}) is a set of elements and

Φ =

{(
TΦ(xp), IΦ(xp), FΦ(xp)

)
xp

∣∣∣∣ xp ∈ X, 0 ≤ TΦ̂(xp) + IΦ̂(xp) + FΦ̂(xp) ≤ 3
}

.

(1) If TΦ(xp) ∈]0−, 1+[ (i.e., the degree of truth membership), IΦ(xp) ∈]0−, 1+[ (i.e., the degree of
indeterminacy membership), and FΦ(xp) (i.e., the degree of falsity membership), then Φ is called a
neutrosophic set on X, denoted by (NS)X .

(2) If TΦ(xp) ∈ [0, 1] (i.e., the degree of truth membership), IΦ(xp) ∈ [0, 1] (i.e., the degree of indeterminacy
membership), and FΦ(xp) ∈ [0, 1] (i.e., the degree of falsity membership), then Φ is called a single-valued
neutrosophic set on X, denoted by (SVNS)X .

2.3. Neutrosophic Fuzzy Set and Single-Valued Neutrosophic Fuzzy Set

Definition 3 (cf. [27]). Assume that X (i.e., X = {x1, x2, ..., xp}) is a set of elements and

Φ̂ =

{(
TΦ̂(xp), IΦ̂(xp), FΦ̂(xp), µ(xp)

)
xp

∣∣∣∣ xp ∈ X, 0 ≤ TΦ̂(xp) + IΦ̂(xp) + FΦ̂(xp) ≤ 3
}

.

(1) If TΦ̂(xp) ∈]0−, 1+[ (i.e., the degree of truth membership), IΦ̂(xp) ∈]0−, 1+[ (i.e., the degree of
indeterminacy membership), and FΦ̂(xp) (i.e., the degree of falsity membership), then Φ̂ is called
a neutrosophic fuzzy set on X, denoted by (NFS)X .

(2) If TΦ̂(xp) ∈ [0, 1] (i.e., the degree of truth membership), IΦ̂(xp) ∈ [0, 1] (i.e., the degree of indeterminacy
membership), and FΦ̂(xp) ∈ [0, 1] (i.e., the degree of falsity membership), then Φ̂ is called a single-valued
neutrosophic fuzzy set on X, denoted by (SVNFS)X .

Definition 4 (cf. [27]). Let Φ̂, Ψ̂ ∈ (SVNFS)X , where

Φ̂ =

{(
TΦ̂(xp), IΦ̂(xp), FΦ̂(xp), µ(xp)

)
xp

∣∣∣∣ xp ∈ X, 0 ≤ TΦ̂(xp) + IΦ̂(xp) + FΦ̂(xp) ≤ 3
}

and

Ψ̂ =

{(T′
Ψ̂
(xp), I′

Ψ̂
(xp), F′

Ψ̂
(xp), µ′(xp)

)
xp

∣∣∣∣ xp ∈ X, 0 ≤ TΨ̂(xp) + IΨ̂(xp) + FΨ̂(xp) ≤ 3
}

.

The following operations (i.e., complement, inclusion, equal, union, and intersection) are defined by

(1) Φ̂c =

{(
FΦ̂(xp), 1− IΦ̂(xp), TΦ̂(xp), 1− µ(xp)

)
xp

∣∣∣∣ xp ∈ X
}

.
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(2) Φ̂ ⊆ Ψ̂ ⇐⇒ TΦ̂(xp) ≤ T′
Ψ̂
(xp), IΦ̂(xp) ≥ I′

Ψ̂
(xp), FΦ̂(xp) ≥ F′

Ψ̂
(xp) and µ(xp) ≤

µ′(xp) (∀xp ∈ X).
(3) Φ̂ = Ψ̂⇐⇒ Φ̂ ⊆ Ψ̂ and Ψ̂ ⊆ Φ̂.

(4) Φ̂ ∪ Ψ̂ =

{(FΦ̂(xp) ∨ F′
Ψ̂
(xp), IΦ̂(xp) ∧ I′

Ψ̂
(xp), TΦ̂(xp) ∧ T′

Ψ̂
(xp), µ(xp) ∨ µ′(xp)

)
xp

∣∣∣∣ xp ∈ X
}

.

(5) Φ̂ ∩ Ψ̂ =

{(FΦ̂(xp) ∧ F′
Ψ̂
(xp), IΦ̂(xp) ∨ I′

Ψ̂
(xp), TΦ̂(xp) ∨ T′

Ψ̂
(xp), µ(xp) ∧ µ′(xp)

)
xp

∣∣∣∣ xp ∈ X
}

.

2.4. Soft Set, Fuzzy Soft Set, and Neutrosophic Soft Set

Definition 5 (cf. [4,7,28]). Assume that X (i.e., X = {x1, x2, ..., xp}) is a set of elements and I (i.e., I =

{i1, i2, ..., iq}) is a set of parameters, where (p, q ∈ N, N are natural numbers). Then
(1) The following mapping (called a soft set), is given by

S : I → P(X),

where P(X) is a set of all subsets over X.
(2) The following mapping (called a fuzzy soft set), is given by

S̃ : I → [0, 1]X ,

where [0, 1]X is a set of whole fuzzy subset over X.
(3) The following mapping (called a neutrosophic soft set), is given by

˜̂S : I → (NS)X ,

where (NS)X is a set of whole neutrosophic subset over X.

Example 1. Assume that the two brothers Mr. Z and Mr. M plan to go the car dealership office to purchase a new
car. Suppose that the car dealership office contains types of new cars X = {x1, x2, x3, x4} and I = {i1, i2, i3}
characterize three parameters, where i1 is “cheap”, i2 is “expensive”, and i3 is “beautiful”. Then

(1) By Definition 5(1) we can describe the soft sets as S(i1) = {x1, x3}, S(i2) = {x3, x4}, and S(i3) = {x2}.
Therefore,

S =

{
{x1, x3}

i1
,
{x3, x4}

i2
,
{x2}

i3

}
.

(2) It is obvious to replace the crisp number 0 or 1 by a membership of fuzzy information. Therefore,

by Definition 5(2) we can describe the fuzzy soft sets by S̃(i1) =
{

0.3
x1

, 0.4
x2

, 0.6
x3

, 0.5
x4

}
, S̃(i2) ={

0.6
x1

, 0.9
x2

, 0.1
x3

, 0.2
x4

}
, S̃(i3) =

{
0.7
x1

, 0.5
x2

, 0.2
x3

, 0.9
x4

}
. Then,

S̃ =


{

0.3
x1

, 0.4
x2

, 0.6
x3

, 0.5
x4

}
i1

,

{
0.6
x1

, 0.9
x2

, 0.1
x3

, 0.2
x4

}
i2

,

{
0.7
x1

, 0.5
x2

, 0.2
x3

, 0.9
x4

}
i3

 .

(3) By Definition 5(3) we can describe the neutrosophic soft sets as

˜̂S(i1) =

{
(0.3, 0.7, 0.5)

x1
,
(0.1, 0.8, 0.5)

x2
,
(0.2, 0.6, 0.8)

x3
,
(0.4, 0.7, 0.6)

x4

}
,

˜̂S(i2) =

{
(0.3, 0.7, 0.5)

x1
,
(0.1, 0.8, 0.5)

x2
,
(0.2, 0.6, 0.8)

x3
,
(0.5, 0.8, 0.3)

x4

}
,
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and ˜̂S(i3) =

{
(0.3, 0.7, 0.5)

x1
,
(0.1, 0.8, 0.5)

x2
,
(0.2, 0.6, 0.8)

x3
,
(0.8, 0.9, 0.2)

x4

}
.

3. Single-Valued Neutrosophic Fuzzy Soft Set

In the following, we propose the concept of a single-valued neutrosophic fuzzy soft set and study
some definitions, propositions, and examples.

Definition 6. Assume that X (i.e., X = {x1, x2, ..., xp}) is a set of elements, I (i.e., I = {i1, i2, ..., iq}) is a
set of parameters, and SXI is called a soft universe. A single-valued neutrosophic fuzzy soft set Φ̂(iq) over X,
denoted by (SVNFS)XI , is defined by

Φ̂(iq) =

{(TΦ̂(iq)
(xp), IΦ̂(iq)

(xp), FΦ̂(iq)
(xp), µ(xp)

)
xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ TΦ̂(iq)
(xp) + IΦ̂(iq)

(xp) + FΦ̂(iq)
(xp) ≤ 3

}
,

where p, q ∈ N (N are natural numbers) and µ(xp) ∈ [0, 1]. For each parameter iq ∈ I and for each xp ∈ X,
TΦ̂(iq)

(xp) ∈ [0, 1] (i.e., the degree of truth membership), IΦ̂(iq)
(xp) ∈ [0, 1] (i.e., the degree of indeterminacy

membership), and FΦ̂(iq)
(xp) ∈ [0, 1] (i.e., the degree of falsity membership).

Example 2. Assume that X = {x1, x2, x3} are three kinds of novel cars and I = {i1, i2, i3} are three parameters,
where i1 is “cheap”, i2 is “expensive”, and i3 is “beautiful”. Let µ ∈ [0, 1]X and Φ̂(iq) ∈ (SVNFS)XI are
defined as follows (q = 1, 2, 3):

Φ̂(i1) =

{
(0.3, 0.7, 0.5, 0.2)

x1
,
(0.1, 0.8, 0.5, 0.5)

x2
,
(0.2, 0.6, 0.8, 0.7)

x3

}
,

Φ̂(i2) =

{
(0.9, 0.4, 0.5, 0.7)

x1
,
(0.3, 0.7, 0.5, 0.4)

x2
,
(0.8, 0.2, 0.6, 0.8)

x3

}
,

Φ̂(i3) =

{
(0.6, 0.3, 0.5, 0.6)

x1
,
(0.3, 0.5, 0.6, 0.4)

x2
,
(0.7, 0.1, 0.6, 0.3)

x3

}
.

Additionally, we can write by matrix form as

Φ̂ =


I x1 x2 x3

i1 (0.3, 0.7, 0.5, 0.2) (0.1, 0.8, 0.5, 0.5) (0.2, 0.6, 0.8, 0.7)
i2 (0.9, 0.4, 0.5, 0.7) (0.3, 0.7, 0.5, 0.4) (0.8, 0.2, 0.6, 0.8)
i3 (0.6, 0.3, 0.5, 0.6) (0.3, 0.5, 0.6, 0.4) (0.7, 0.1, 0.6, 0.3)

 .

Definition 7. Let Φ̂(iq), Ψ̂(iq) ∈ (SVNFS)XI over SXI and µ, µ′ ∈ [0, 1]X , where

Φ̂(iq) =

{(TΦ̂(iq)
(xp), IΦ̂(iq)

(xp), FΦ̂(iq)
(xp), µ(xp)

)
xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ TΦ̂(iq)
(xp) + IΦ̂(iq)

(xp) + FΦ̂(iq)
(xp) ≤ 3

}

and

Ψ̂(iq) =

{(T′
Ψ̂(iq)

(xp), I′
Ψ̂(iq)

(xp), F′
Ψ̂(iq)

(xp), µ′(xp)
)

xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ T′Ψ̂(iq)
(xp) + I′Ψ̂(iq)

(xp) + F′Ψ̂(iq)
(xp) ≤ 3

}
.

Then, Φ̂(iq) b Ψ̂(iq) (i.e., Φ̂(iq) is a single-valued neutrosophic fuzzy soft subset of Ψ̂(iq)) if

(1) µ(xp) ≤ µ′(xp) ∀xp ∈ X;
(2) For all iq ∈ I, xp ∈ X, TΦ̂(iq)

(xp) ≤ T′
Ψ̂(iq)

(xp), IΦ̂(iq)
(xp) ≥ I′

Ψ̂(iq)
(xp), FΦ̂(iq)

(xp) ≥ F′
Ψ̂(iq)

(xp).
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Example 3. (Continued from Example 2). Let Ψ̂(iq) ∈ (SVNFS)XI be defined as follows (q = 1, 2, 3):

Ψ̂ =


I x1 x2 x3

i1 (0.4, 0.6, 0.4, 0.4) (0.2, 0.7, 0.3, 0.5) (0.3, 0.4, 0.7, 1)
i2 (1, 0.3, 0.5, 0.8) (0.4, 0.6, 0.4, 0.6) (0.9, 0.2, 0.4, 0.9)
i3 (0.7, 0.2, 0.4, 0.7) (0.4, 0.5, 0.6, 0.6) (0.8, 0.1, 0.5, 0.5)

 .

Thus, Φ̂(iq) b Ψ̂(iq) (∀iq ∈ I).

Definition 8. Let Φ̂(iq), Ψ̂(iq) ∈ (SVNFS)XI over SXI and µ, µ′ ∈ [0, 1]X , where

Φ̂(iq) =

{(TΦ̂(iq)
(xp), IΦ̂(iq)

(xp), FΦ̂(iq)
(xp), µ(xp)

)
xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ TΦ̂(iq)
(xp) + IΦ̂(iq)

(xp) + FΦ̂(iq)
(xp) ≤ 3

}

and

Ψ̂(iq) =

{(T′
Ψ̂(iq)

(xp), I′
Ψ̂(iq)

(xp), F′
Ψ̂(iq)

(xp), µ′(xp)
)

xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ T′Ψ̂(iq)
(xp) + I′Ψ̂(iq)

(xp) + F′Ψ̂(iq)
(xp) ≤ 3

}
.

Then, Φ̂(iq) = Ψ̂(iq) (i.e., Φ̂(iq) is a single-valued neutrosophic fuzzy soft equal to Ψ̂(iq)) if Φ̂(iq) b Ψ̂(iq)

and Φ̂(iq) c Ψ̂(iq).

Definition 9. Let Φ̂(iq) ∈ (SVNFS)XI over SXI and µ ∈ [0, 1]X , where

Φ̂(iq) =

{(TΦ̂(iq)
(xp), IΦ̂(iq)

(xp), FΦ̂(iq)
(xp), µ(xp)

)
xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ TΦ̂(iq)
(xp) + IΦ̂(iq)

(xp) + FΦ̂(iq)
(xp) ≤ 3

}

over SXI . Then,

(1) Φ̂(iq) is called a single-valued neutrosophic fuzzy soft null set (denoted by ∅̂(iq)), defined as

∅̂(iq) =

{
(0, 1, 1, 0)

xp
|iq ∈ I, xp ∈ X

}
.

(2) Φ̂(iq) is called a single-valued neutrosophic fuzzy soft universal set (denoted by X̂(iq)), defined as

X̂(iq) =

{
(1, 0, 0, 1)

xp
|iq ∈ I, xp ∈ X

}
.

Example 4. (Continued from Example 2). Then, ∅̂(iq), X̂(iq) ∈ (SVNFS)XI are defined as follows:

∅̂ =


I x1 x2 x3

i1 (0, 1, 1, 0) (0, 1, 1, 0) (0, 1, 1, 0)
i2 (0, 1, 1, 0) (0, 1, 1, 0) (0, 1, 1, 0)
i3 (0, 1, 1, 0) (0, 1, 1, 0) (0, 1, 1, 0)


and

X̂ =


I x1 x2 x3

i1 (1, 0, 0, 1) (1, 0, 0, 1) (1, 0, 0, 1)
i2 (1, 0, 0, 1) (1, 0, 0, 1) (1, 0, 0, 1)
i3 (1, 0, 0, 1) (1, 0, 0, 1) (1, 0, 0, 1)

 .
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Definition 10. Let Φ̂(iq), Ψ̂(iq) ∈ (SVNFS)XI over SXI and µ, µ′ ∈ [0, 1]X , where

Φ̂(iq) =

{(TΦ̂(iq)
(xp), IΦ̂(iq)

(xp), FΦ̂(iq)
(xp), µ(xp)

)
xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ TΦ̂(iq)
(xp) + IΦ̂(iq)

(xp) + FΦ̂(iq)
(xp) ≤ 3

}

and

Ψ̂(iq) =

{(T′
Ψ̂(iq)

(xp), I′
Ψ̂(iq)

(xp), F′
Ψ̂(iq)

(xp), µ′(xp)
)

xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ T′Ψ̂(iq)
(xp) + I′Ψ̂(iq)

(xp) + F′Ψ̂(iq)
(xp) ≤ 3

}
.

Then,

(1) The union Φ̂(iq) d Ψ̂(iq) is defined as

Φ̂(iq) d Ψ̂(iq) =

{(TΦ̂(iq)
(xp) ◦ T′

Ψ̂(iq)
(xp), IΦ̂(iq)

(xp) ∗ I′
Ψ̂(iq)

(xp), FΦ̂(iq)
(xp) ∗ F′

Ψ̂(iq)
(xp), µ(xp) ◦ µ′(xp)

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
}

.

(2) The intersection Φ̂(iq) e Ψ̂(iq) is defined as

Φ̂(iq) e Ψ̂(iq) =

{(TΦ̂(iq)
(xp) ∗ T′

Ψ̂(iq)
(xp), IΦ̂(iq)

(xp) ◦ I′
Ψ̂(iq)

(xp), FΦ̂(iq)
(xp) ◦ F′

Ψ̂(iq)
(xp), µ(xp) ∗ µ′(xp)

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
}

.

Example 5. (Continued from Examples 2 and 3). For α, β ∈ [0, 1], let the t-norm (i.e., given as α ∗ β = α ∧ β)
and the t-conorm (i.e., given as α ◦ β = α ∨ β). Then,

Φ̂ d Ψ̂ =


I x1 x2 x3

i1 (0.4, 0.6, 0.4, 0.4) (0.2, 0.7, 0.3, 0.5) (0.3, 0.4, 0.7, 1)
i2 (1, 0.3, 0.5, 0.8) (0.4, 0.6, 0.4, 0.6) (0.9, 0.2, 0.4, 0.9)
i3 (0.7, 0.2, 0.4, 0.7) (0.4, 0.5, 0.6, 0.6) (0.8, 0.1, 0.5, 0.5)


and

Φ̂ e Ψ̂ =


I x1 x2 x3

i1 (0.3, 0.7, 0.5, 0.2) (0.1, 0.8, 0.5, 0.5) (0.2, 0.6, 0.8, 0.7)
i2 (0.9, 0.4, 0.5, 0.7) (0.3, 0.7, 0.5, 0.4) (0.8, 0.2, 0.6, 0.8)
i3 (0.6, 0.3, 0.5, 0.6) (0.3, 0.5, 0.6, 0.4) (0.7, 0.1, 0.6, 0.3)

 .

Proposition 1. Let ∅̂(iq), X̂(iq), Φ̂(iq) ∈ (SVNFS)XI over SXI and µ ∈ [0, 1]X . Then the following hold:

(1) Φ̂(iq) d Φ̂(iq) = Φ̂(iq);

(2) Φ̂(iq) e Φ̂(iq) = Φ̂(iq);

(3) Φ̂(iq) d ∅̂(iq) = Φ̂(iq);

(4) Φ̂(iq) e ∅̂(iq) = ∅̂(iq);

(5) Φ̂(iq) d X̂(iq) = X̂(iq);

(6) Φ̂(iq) e X̂(iq) = Φ̂(iq).

Proof. Follows from Definitions 9 and 10.

Proposition 2. Let Φ̂(iq), Ψ̂(iq), Γ̂(iq) ∈ (SVNFS)XI over SXI and µ, µ′, µ′′ ∈ [0, 1]X . Then the following hold:

(1) Φ̂(iq) d Ψ̂(iq) = Ψ̂(iq) d Φ̂(iq);

(2) Φ̂(iq) e Ψ̂(iq) = Ψ̂(iq) e Φ̂(iq);

(3) Φ̂(iq) d (Ψ̂(iq) d Γ̂(iq)) = (Φ̂(iq) d Ψ̂(iq))d Γ̂(iq);
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(4) Φ̂(iq) e (Ψ̂(iq) e Γ̂(iq)) = (Φ̂(iq) e Ψ̂(iq))e Γ̂(iq);

(5) Φ̂(iq) e (Ψ̂(iq) d Γ̂(iq)) = (Φ̂(iq) e Ψ̂(iq))d (Φ̂(iq) e Γ̂(iq));

(6) Φ̂(iq) d (Ψ̂(iq) e Γ̂(iq)) = (Φ̂(iq) d Ψ̂(iq))e (Φ̂(iq) d Γ̂(iq)).

Proof. Follows from Definition 10.

Proposition 3. Let Φ̂(iq), Ψ̂(iq) ∈ (SVNFS)XI over SXI , µ, µ′ ∈ [0, 1]X, and Ψ̂(iq) b Φ̂(iq). Then the
following hold:

(1) Φ̂(iq) d Ψ̂(iq) = Φ̂(iq);
(2) Φ̂(iq) e Ψ̂(iq) = Ψ̂(iq).

Proof. Follows from Definitions 7 and 10.

Next, we propose a definition, example, remark, and two propositions on the complement of
(SVNFS)XI over SXI .

Definition 11. Let Φ̂(iq) ∈ (SVNFS)XI over SXI and µ ∈ [0, 1]X , where

Φ̂(iq) =

{(TΦ̂(iq)
(xp), IΦ̂(iq)

(xp), FΦ̂(iq)
(xp), µ(xp)

)
xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ TΦ̂(iq)
(xp) + IΦ̂(iq)

(xp) + FΦ̂(iq)
(xp) ≤ 3

}
.

Then, the complement Φ̂c
(iq)

of Φ̂(iq) is defined as

Φ̂c
(iq) =

{(FΦ̂(iq)
(xp), 1− IΦ̂(iq)

(xp), TΦ̂(iq)
(xp), 1− µ(xp)

)
xp

∣∣∣∣ iq ∈ I, xp ∈ X
}

.

Example 6. (Continued from Example 2). The complement Φ̂c
(iq)

of Φ̂(iq) is calculated by

Φ̂c =


I x1 x2 x3

i1 (0.5, 0.3, 0.3, 0.8) (0.5, 0.2, 0.1, 0.5) (0.8, 0.4, 0.2, 0.3)

i2 (0.5, 0.6, 0.9, 0.3) (0.5, 0.3, 0.3, 0.6) (0.6, 0.8, 0.8, 0.2)

i3 (0.5, 0.7, 0.6, 0.4) (0.6, 0.5, 0.3, 0.6) (0.6, 0.9, 0.7, 0.7)

 .

Proposition 4. Let ∅̂(iq), X̂(iq), Φ̂(iq) ∈ (SVNFS)XI over SXI , and µ ∈ [0, 1]X . Then, the following hold:

(1) ∅̂c
(iq)

= X̂(iq);

(2) X̂c
(iq)

= ∅̂(iq);

(3) (Φ̂c
(iq)

)c = Φ̂c
(iq)

.

Proof. Follows from Definitions 9 and 11.

Remark 1. The equality of Φ̂(iq) d Φ̂c
(iq)

= X̂(iq) and Φ̂(iq) e Φ̂c
(iq)

= ∅̂(iq) does not hold by
the following example.

Example 7. (Continued from Examples 2 and 6). Then, Φ̂c
(iq)

of Φ̂(iq) is calculated by

Φ̂ d Φ̂c =


I x1 x2 x3

i1 (0.5, 0.3, 0.3, 0.8) (0.5, 0.2, 0.1, 0.5) (0.8, 0.4, 0.2, 0.3)

i1 (0.5, 0.6, 0.9, 0.3) (0.5, 0.3, 0.3, 0.6) (0.6, 0.8, 0.8, 0.2)

i1 (0.5, 0.7, 0.6, 0.4) (0.6, 0.5, 0.3, 0.6) (0.6, 0.9, 0.7, 0.7)
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and

Φ̂ e Φ̂c =


I x1 x2 x3

i1 (0.3, 0.7, 0.5, 0.2) (0.1, 0.8, 0.5, 0.5) (0.2, 0.6, 0.8, 0.7)

i2 (0.9, 0.4, 0.5, 0.7) (0.3, 0.7, 0.5, 0.4) (0.8, 0.2, 0.6, 0.8)

i3 (0.6, 0.3, 0.5, 0.6) (0.3, 0.5, 0.6, 0.4) (0.7, 0.1, 0.6, 0.3)

 .

This shows that Φ̂(iq) d Φ̂c
(iq)
6= X̂(iq) and Φ̂(iq) e Φ̂c

(iq)
6= ∅̂(iq).

Proposition 5. Let Φ̂(iq), Ψ̂(iq) ∈ (SVNFS)XI over SXI and µ, µ′ ∈ [0, 1]X . Then, the following hold:

(1) (Φ̂(iq) d Ψ̂(iq))
c = Φ̂c

(iq)
e Ψ̂c

(iq)
;

(2) (Φ̂(iq) e Ψ̂(iq))
c = Φ̂c

(iq)
d Ψ̂c

(iq)
.

Proof. Consider a ∗ b = a ∧ b (t-norm) and α ◦ β = α ∨ β (t-conorm) (∀α, β ∈ [0, 1]). We have

(1) (Φ̂(iq) d Ψ̂(iq))
c(xp)

=

({(TΦ̂(iq)
(xp) ◦ T′

Ψ̂(iq)
(xp), IΦ̂(iq)

(xp) ∗ I′
Ψ̂(iq)

(xp), FΦ̂(iq)
(xp) ∗ F′

Ψ̂(iq)
(xp), µ(xp) ◦ µ′(xp)

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
})c

=

{(FΦ̂(iq)
(xp) ∗ F′

Ψ̂(iq)
(xp), 1− (IΦ̂(iq)

(xp) ∗ I′
Ψ̂(iq)

(xp)), TΦ̂(iq)
(xp) ◦ T′

Ψ̂(iq)
(xp), 1− (µ(xp) ◦ µ′(xp))

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
}

=

{(FΦ̂(iq )
(xp) ∧ F′

Ψ̂(iq )
(xp), 1− (IΦ̂(iq )

(xp) ∧ I′
Ψ̂(iq )

(xp)), TΦ̂(iq )
(xp) ∨ T′

Ψ̂(iq )
(xp), 1− (µ(xp) ∨ µ′(xp))

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
}

=

{(FΦ̂(iq )
(xp) ∧ F′

Ψ̂(iq )
(xp), 1− IΦ̂(iq )

(xp) ∨ 1− I′
Ψ̂(iq )

(xp), TΦ̂(iq )
(xp) ∨ T′

Ψ̂(iq )
(xp), 1− µ(xp) ∧ 1− µ′(xp)

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
}

=

{(FΦ̂(iq )
(xp) ∗ F′

Ψ̂(iq )
(xp), 1− IΦ̂(iq )

(xp) ◦ 1− I′
Ψ̂(iq )

(xp), TΦ̂(iq )
(xp) ◦ T′

Ψ̂(iq )
(xp), 1− µ(xp) ∗ 1− µ′(xp)

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
}

=

{(FΦ̂(iq)
(xp), 1− IΦ̂(iq)

(xp), TΦ̂(iq)
(xp), 1− µ(xp)

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
}
e
{(F′

Ψ̂(iq)
(xp), 1− I′

Ψ̂(iq)
(xp), T′

Ψ̂(iq)
(xp), 1− µ′(xp)

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
}

= Φ̂c
(iq)

(xp)e Ψ̂c
(iq)

(xp).

(2) (Φ̂(iq) e Ψ̂(iq))
c(xp)

=

({(TΦ̂(iq )
(xp) ∗ T′

Ψ̂(iq )
(xp), IΦ̂(iq )

(xp) ◦ I′
Ψ̂(iq )

(xp), FΦ̂(iq )
(xp) ◦ F′

Ψ̂(iq )
(xp), µ(xp) ∗ µ′(xp)

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
})c

=

{(FΦ̂(iq )
(xp) ◦ F′

Ψ̂(iq )
(xp), 1− (IΦ̂(iq )

(xp) ◦ I′
Ψ̂(iq )

(xp)), TΦ̂(iq )
(xp) ∗ T′

Ψ̂(iq )
(xp), 1− (µ(xp) ∗ µ′(xp))

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
}

=

{(FΦ̂(iq )
(xp) ∨ F′

Ψ̂(iq )
(xp), 1− (IΦ̂(iq )

(xp) ∨ I′
Ψ̂(iq )

(xp)), TΦ̂(iq )
(xp) ∧ T′

Ψ̂(iq )
(xp), 1− (µ(xp) ∧ µ′(xp))

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
}

=

{(FΦ̂(iq )
(xp) ∨ F′

Ψ̂(iq )
(xp), 1− IΦ̂(iq )

(xp) ∧ 1− I′
Ψ̂(iq )

(xp), TΦ̂(iq )
(xp) ∧ T′

Ψ̂(iq )
(xp), 1− µ(xp) ∨ 1− µ′(xp)

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
}

=

{(FΦ̂(iq )
(xp) ◦ F′

Ψ̂(iq )
(xp), 1− IΦ̂(iq )

(xp) ∗ 1− I′
Ψ̂(iq )

(xp), TΦ̂(iq )
(xp) ∗ T′

Ψ̂(iq )
(xp), 1− µ(xp) ◦ 1− µ′(xp)

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
}

=

{(FΦ̂(iq)
(xp), 1− IΦ̂(iq)

(xp), TΦ̂(iq)
(xp), 1− µ(xp)

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
}
d
{(F′

Ψ̂(iq)
(xp), 1− I′

Ψ̂(iq)
(xp), T′

Ψ̂(iq)
(xp), 1− µ′(xp)

)
xp

∣∣∣∣iq ∈ I, xp ∈ X
}

= Φ̂c
(iq)

(xp)d Ψ̂c
(iq)

(xp).
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4. Two Algorithms of Single-Valued Neutrosophic Fuzzy Soft Sets for Decision-Making

Depending on single-valued neutrosophic fuzzy soft sets, in the following, we introduce two new
approaches for fuzzy decision-making problems.

Next, we construct Algorithm 1 as the first type for decision-making (i.e., the first application of
a single-valued neutrosophic fuzzy soft set).

Algorithm 1: Determine the optimal decision based on a single-valued neutrosophic fuzzy soft
set matrix.

First step: Input the single-valued neutrosophic fuzzy soft set Φ̂(iq) ∈ (SVNFS)XI as follows:

Φ̂(iq) =

{(TΦ̂(iq)
(xp), IΦ̂(iq)

(xp), FΦ̂(iq)
(xp), µ(xp)

)
xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ TΦ̂(iq)
(xp) + IΦ̂(iq)

(xp) + FΦ̂(iq)
(xp) ≤ 3

}
,

to be evaluated by a group of experts n to element x on parameter i, where TΦ̂(iq)
(xp) ∈ [0, 1]

(i.e., the degree of truth membership), IΦ̂(iq)
(xp) (i.e., the degree of indeterminacy

membership), FΦ̂(iq)
(xp) (i.e., the degree of falsity membership), and µ(xp) ∈ [0, 1].

Second step: Input the single-valued neutrosophic fuzzy soft set in matrix form (written as
Mq×p, p, q ∈ N):

Mq×p =



(
TΦ̂(i1)

(x1), IΦ̂(i1)
(x1), FΦ̂(i1)

(x1), µ(x1)
) (

TΦ̂(i1)
(x2), IΦ̂(i1)

(x2), FΦ̂(i1)
(x2), µ(x2)

)
· · ·

(
TΦ̂(i2)

(xp), IΦ̂(i2)
(xp), FΦ̂(i2)

(xp), µ(xp)
)(

TΦ̂(i2)
(x1), IΦ̂(i2)

(x1), FΦ̂(i2)
(x1), µ(x1)

) (
TΦ̂(i2)

(x2), IΦ̂(i2)
(x2), FΦ̂(i2)

(x2), µ(x2)
)
· · ·

(
TΦ̂(i2)

(xp), IΦ̂(i2)
(xp), FΦ̂(i2)

(xp), µ(xp)
)(

TΦ̂(i3)
(x1), IΦ̂(i3)

(x1), FΦ̂(i3)
(x1), µ(x1)

) (
TΦ̂(i3)

(x2), IΦ̂(i3)
(x2), FΦ̂(i3)

(x2), µ(x2)
)
· · ·

(
TΦ̂(i3)

(xp), IΦ̂(i3)
(xp), FΦ̂(i3)

(xp), µ(xp)
)

...
...

. . .
...(

TΦ̂(iq)
(x1), IΦ̂(iq)

(x1), FΦ̂(iq)
(x1), µ(x1)

) (
TΦ̂(iq)

(x2), IΦ̂(iq)
(x2), FΦ̂(iq)

(x2), µ(x2)
)
· · ·

(
TΦ̂(iq)

(xp), IΦ̂(iq)
(xp), FΦ̂(iq)

(xp), µ(xp)
)


.

Third step: Calculate the center matrix (i.e.,
δΦ̂(iq)

(xp) = (TΦ̂(iq)
(xp) + IΦ̂(iq)

(xp) + FΦ̂(iq)
(xp))− µ(xp)):

Cq×p =


δΦ̂(i1)

(x1) δΦ̂(i1)
(x2) · · · , δΦ̂(i1)

(xp)

δΦ̂(i2)
(x1) δΦ̂(i2)

(x2) · · · , δΦ̂(i2)
(xp)

...
...

. . .
...

δΦ̂(iq)
(x1) δΦ̂(iq)

(x2) · · · , δΦ̂(iq)
(xp)

 .

Fourth step: Calculate the dmax(xj) (maximum decision), dmin(xj) (minimum decision), and
S(xj) (score) of elements xj (j = 1, 2, · · · , p):

dmax(xj) =
q

∑
i=1

(
1− δΦ̂(iq)

(xj)
)2, dmin(xj) =

q

∑
i=1

(δΦ̂(iq)
(xj))

2

S(xj) = dmax(xj) + dmin(xj).

(to understand the motivation behind this method, let ρ be the Euclidean metric on Rq,
000 = (0, · · · , 0)T ∈ Rq, 111 = (1, · · · , 1)T ∈ Rq, and θθθ j = (θ1,xj , θ2,xj , · · · , θq,xj)

T ∈ Rq. Thus
S(xj) = [ρ(θθθ j, 111)]2 + [ρ(θθθ j, 000)]2 (j = 1, 2, · · · , p)).

Fifth step: Obtain the decision p satisfying

xp = max
{

S(x1), S(x2), · · · , S(xj)
}

.

Now, we show the principle and steps of the above Algorithm 1 by using the following example.
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Example 8. An investment company wants to choose some investment projects to make full use of idle funds.
There are five alternatives X = {z1, z2, z3, z4, z5} that can be selected: two internet education projects (denoted
as z1 and z2) and three film studio investments (represented as z3, z4, z5). According to the project investment
books, the decision-makers evaluate the five alternatives from the following three parameters I = {i1, i2, i3},
where i1 is “human resources”, i2 is “social benefits”, and i3 is “expected benefits”. The data of the single-valued
neutrosophic fuzzy soft set Φ̂(iq) ∈ (SVNFS)XI is given by

Φ̂ =


I z1 z2 z3 z4 z5

i1 (0.3, 0.7, 0.5, 0.2) (0.1, 0.8, 0.5, 0.5) (0.2, 0.6, 0.8, 0.7) (0.5, 0.6, 0.5, 0.2) (0.4, 0.7, 0.9, 0.1)

i2 (0.9, 0.4, 0.5, 0.7) (0.3, 0.7, 0.5, 0.4) (0.8, 0.2, 0.6, 0.8) (0.3, 0.7, 0.2, 0.5) (0.7, 0.8, 0.8, 0.3)

i3 (0.6, 0.3, 0.5, 0.6) (0.3, 0.5, 0.6, 0.4) (0.7, 0.1, 0.6, 0.3) (0.8, 0.9, 0.6, 0.4) (0.7, 0.8, 0.9, 0.6)

 .

Now, we will explain the practical meaning of alternatives X by taking the alternative z1 as an example:
the single-valued neutrosophic fuzzy soft set Φ̂(i1)(z1) = (0.3, 0.7, 0.5, 0.2) is the evaluation by four expert
groups; the single-valued neutrosophic fuzzy soft value 0.3 (meaning that 30% say yes in the first expert group)
in Φ̂(i1)(z1), the single-valued neutrosophic fuzzy soft value 0.7 (meaning 70% say no in the second expert
group) in Φ̂(i1)(z1), the single-valued neutrosophic fuzzy soft value 0.5 (meaning 50% say yes in the third
expert group) in Φ̂(i1)(z1), and fuzzy value 0.2 (meaning 20% say no in the fourth expert group) in Φ̂(i1)(z1).
Then, the single-valued neutrosophic fuzzy soft set in matrix formM3×5 in the second step of Algorithm 1 is
given by

M3×5 =



(0.3, 0.7, 0.5, 0.2) (0.9, 0.4, 0.5, 0.7) (0.6, 0.3, 0.5, 0.6)

(0.1, 0.8, 0.5, 0.5) (0.3, 0.7, 0.5, 0.4) (0.3, 0.5, 0.6, 0.4)

(0.2, 0.6, 0.8, 0.7) (0.8, 0.2, 0.6, 0.8) (0.7, 0.1, 0.6, 0.3)

(0.5, 0.6, 0.5, 0.2) (0.3, 0.7, 0.2, 0.5) (0.8, 0.9, 0.6, 0.4)

(0.4, 0.7, 0.9, 0.1) (0.7, 0.8, 0.8, 0.3) (0.7, 0.8, 0.9, 0.6)


.

Thus, we obtain the following center matrix C3×5 ofM3×5 in the third step of Algorithm 1:

C3×5 =


1.3 1.1 0.8
0.9 1.1 1
0.9 0.8 1.1
1.4 0.7 1.9
1.9 2 1.8

 .

By calculating, we get dmax(zj), dmin(zj), and S(zj) of elements zj (j = 1, 2, 3, 4, 5):

dmax(z1) = 0.14, dmax(z2) = 0.02, dmax(z3) = 0.06, d1(z4) = 1.06, dmax(z5) = 2.45;

dmin(z1) = 3.54, dmin(z2) = 3.02, dmin(z3) = 2.66, dmin(z4) = 6.06, dmin(z5) = 10.85;

S(z1) = 3.68, S(z2) = 3.04, S(z3) = 2.72, S(z4) = 7.12, S(z5) = 13.3.

Finally, we can see from the fifth step that z5 is the best decision.

Now, we present Algorithm 2 as a second type for a decision-making problem (i.e., a second
application of the single-valued neutrosophic fuzzy soft set) as follows:
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Algorithm 2: Determine the optimal decision based on AND operation of two single-valued
neutrosophic fuzzy soft sets.

First step: Input the single-valued neutrosophic fuzzy soft sets Φ̂(iq) ∈ (SVNFS)XI and
Ψ̂(jq) ∈ (SVNFS)XJ , defined, respectively, as follows:

Φ̂(iq) =

{(TΦ̂(iq)
(xp), IΦ̂(iq)

(xp), FΦ̂(iq)
(xp), µ(xp)

)
xp

∣∣∣∣ iq ∈ I, xp ∈ X, 0 ≤ TΦ̂(iq)
(xp) + IΦ̂(iq)

(xp) + FΦ̂(iq)
(xp) ≤ 3

}
,

to be evaluated by a group of experts n to element x on parameter i, where TΦ̂(iq)
(xp) ∈ [0, 1]

(i.e., the degree of truth membership), IΦ̂(iq)
(xp) (i.e., the degree of indeterminacy

membership), FΦ̂(iq)
(xp) (i.e., the degree of falsity membership), and µ(xp) ∈ [0, 1],

Ψ̂(jq) =

{(T′
Ψ̂(jq)

(xp), I′
Ψ̂(jq)

(xp), F′
Ψ̂(jq)

(xp), µ′(xp)
)

xp

∣∣∣∣ jq ∈ J, xp ∈ X, 0 ≤ T′Ψ̂(jq)
(xp) + I′Ψ̂(jq)

(xp) + F′Ψ̂(jq)
(xp) ≤ 3

}
to be evaluated by a group of experts n to element x on parameter j, where TΨ̂′

(jq)
(xp) ∈ [0, 1]

(i.e., the degree of truth membership), IΨ̂′
(jq)

(xp) (i.e., the degree of indeterminacy membership),

FΨ̂′
(jq)

(xp) (i.e., the degree of falsity membership), and µ(xp) ∈ [0, 1].

Second step: Define and calculate the AND operation of two single-valued neutrosophic
fuzzy soft sets Φ̂(iq) ∈ (SVNFS)XI and Ψ̂(jq) ∈ (SVNFS)XJ , denoted by
(Φ̂∧Ψ̂)(iq ,jq) (∀i ∈ I, j ∈ J), defined as

(Φ̂∧Ψ̂)(iq ,jq) =

{(TΦ̂(iq)
(xp) ∧ T′

Ψ̂(jq)
(xp), IΦ̂(iq)

(xp) ∨ I′
Ψ̂(jq)

(xp), FΦ̂(iq)
(xp) ∨ F′

Ψ̂(jq)
(xp), µ(xp) ∧ µ′(xp)

)
xp

∣∣∣∣iq ∈ I, jq ∈ J, xp ∈ X
}

.

Third step: Define and write the truth membership (Φ̂∧Ψ̂)T
(iq ,jq)

, the indeterminacy

membership (Φ̂∧Ψ̂)I
(iq ,jq)

, and the falsity membership (Φ̂∧Ψ̂)F
(iq ,jq)

, respectively, as follows:

(Φ̂∧Ψ̂)T
(iq ,jq) =

{(TΦ̂(iq)
(xp) ∧ T′

Ψ̂(jq)
(xp), µ(xp) ∧ µ′(xp)

)
xp

∣∣∣∣iq ∈ I, jq ∈ J, xp ∈ X
}

,

(Φ̂∧Ψ̂)I
(iq ,jq) =

{(IΦ̂(iq)
(xp) ∨ I′

Ψ̂(jq)
(xp), µ(xp) ∧ µ′(xp)

)
xp

∣∣∣∣iq ∈ I, jq ∈ J, xp ∈ X
}

,

and

(Φ̂∧Ψ̂)F
(iq ,jq) =

{(FΦ̂(iq)
(xp) ∨ F′

Ψ̂(jq)
(xp), µ(xp) ∧ µ′(xp)

)
xp

∣∣∣∣iq ∈ I, jq ∈ J, xp ∈ X
}

.

Fourth step: Define and compute the max-matrices of (Φ̂∧Ψ̂)T
(iq ,jq)

, (Φ̂∧Ψ̂)I
(iq ,jq)

, and

(Φ̂∧Ψ̂)F
(iq ,jq)

, respectively, for every xp ∈ X as follows (p = 1, 2, · · · , N):

(Φ̂∧Ψ̂)T
(iq ,jq)(xp) =

1
2

(
(TΦ̂(iq)

(xp) ∧ T′Ψ̂(jq)
(xp)) + (µ(xp) ∧ µ′(xp))

)
,

(Φ̂∧Ψ̂)I
(iq ,jq)(xp) =

(
(IΦ̂(iq)

(xp) ∨ I′Ψ̂(jq)
(xp))× (µ(xp) ∧ µ′(xp))

)
,

and

(Φ̂∧Ψ̂)F
(iq ,jq)(xp) =

(
(FΦ̂(iq)

(xp) ∨ F′Ψ̂(jq)
(xp))− (µ(xp) ∧ µ′(xp)

)2

.
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Algorithm 2: Cont.
Fifth step: Calculate and write the max-decision τT (i.e., τT : X → R), τI (i.e., τI : X → R),
and τF (i.e., τF : X → R) of (Φ̂∧Ψ̂)T

(iq ,jq)
, (Φ̂∧Ψ̂)I

(iq ,jq)
, and (Φ̂∧Ψ̂)F

(iq ,jq)
, respectively, for

every xp ∈ X as follows (p = 1, 2, · · · , N):

τT(xp) = ∑
(i,j)∈I×J

δT(xp)(i, j), τI(xp) = ∑
(i,j)∈I×J

δF(xp)(i, j), and ∑
(i,j)∈I×J

δF(xp)(i, j),

where

δT(xp)(i, j) =


(Φ̂∧Ψ̂)T

(iq ,jq)
(xp), (Φ̂∧Ψ̂)T

(iq ,jq)
(xp) = max{(Φ̂∧Ψ̂)T

(uq ,vq)
(xp) : (u, v) ∈ I × J}

0, otherwise
,

δI(xp)(i.j) =


(Φ̂∧Ψ̂)I

(iq ,jq)
(xp), (Φ̂∧Ψ̂)I

(iq ,jq)
(xp) = max{(Φ̂∧Ψ̂)I

(uq ,vq)
(xp) : (u, v) ∈ I × J}

0, otherwise
,

δF(xp)(i.j) =


(Φ̂∧Ψ̂)F

(iq ,jq)
(xp), (Φ̂∧Ψ̂)F

(iq ,jq)
(xp) = max{(Φ̂∧Ψ̂)F

(uq ,vq)
(xp) : (u, v) ∈ I × J}

0, otherwise
.

Sixth step: Calculate the score S(xp) of element xp as follows (p = 1, 2, · · · , N):

S(xp) = τT(xp) + τI(xp) + τF(xp).

Seventh step: Obtain the decision p satisfying

xp = max
{

S(x1), S(x2), · · · , S(xj)
}

.

Now, we show the principle and steps of the above Algorithm 2 using the following example.

Example 9. (Continued from Example 11). Suppose that an investment company also adds three different
parameters J = {j1, j2, j3}, where j1 is “marketing management”, j2 is “productivity of capital”, and j3 is
“interest rates”. The data of the single-valued neutrosophic fuzzy soft set Ψ̂(jq) ∈ (SVNFS)XJ is given by

Ψ̂ =


J z1 z2 z3 z4 z5

j1 (0.5, 0.6, 0.7, 0.4) (0.3, 0.2, 0.7, 0.8) (0.6, 0.9, 0.4, 0.3) (0.8, 0.8, 0.2, 0.1) (0.9, 0.5, 0.4, 0.2)

j2 (0.8, 0.4, 0.5, 0.2) (0.7, 0.9, 0.2, 0.1) (0.3, 0.3, 0.9, 0.4) (0.9, 0.4, 0.5, 0.5) (0.7, 0.8, 0.7, 0.2)

j3 (0.9, 0.9, 0.5, 0.3) (0.5, 0.9, 0.2, 0.1) (0.6, 0.6, 0.1, 0.5) (0.5, 0.7, 0.8, 0.8) (0.6, 0.2, 0.4, 0.7)

 .

Now, we explain the practical meaning of alternatives X by taking the alternative z1 as an example:
the single-valued neutrosophic fuzzy soft set Ψ̂(j1)(z1) = (0.5, 0.6, 0.7, 0.4) is the evaluation by four expert
groups; the single-valued neutrosophic fuzzy soft value 0.5 (meaning 50% say yes in the first expert group)
in Ψ̂(j1)(z1), the single-valued neutrosophic fuzzy soft value 0.6 (meaning 60% say no in the second expert
group) in Ψ̂(j1)(z1), the single-valued neutrosophic fuzzy soft value 0.7 (meaning 70% say yes in the third
expert group) in Ψ̂(j1)(z1), and fuzzy value 0.4 (meaning 40% say no in the fourth expert group) in Ψ̂(j1)(z1).
Then, by computing (Φ̂∧Ψ̂)(iq ,jq) (q = 1, 2, 3) in the second step of Algorithm 2, we obtain the following:
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Φ̂∧Ψ̂ z1 z2 z3 z4 z5

(i1, j1) (0.3, 0.7, 0.7, 0.2) (0.1, 0.8, 0.7, 0.5) (0.2, 0.9, 0.8, 0.3) (0.5, 0.8, 0.5, 0.1) (0.4, 0.7, 0.9, 0.1)

(i1, j2) (0.3, 0.7, 0.5, 0.2) (0.1, 0.9, 0.5, 0.1) (0.2, 0.6, 0.9, 0.4) (0.5, 0.6, 0.5, 0.2) (0.4, 0.8, 0.9, 0.1)

(i1, j3) (0.3, 0.9, 0.5, 0.2) (0.1, 0.9, 0.5, 0.1) (0.2, 0.6, 0.8, 0.5) (0.5, 0.7, 0.8, 0.2) (0.4, 0.7, 0.9, 0.1)

(i2, j1) (0.5, 0.6, 0.7, 0.4) (0.3, 0.7, 0.7, 0.4) (0.6, 0.9, 0.6, 0.3) (0.3, 0.8, 0.2, 0.1) (0.7, 0.8, 0.8, 0.2)

(i2, j2) (0.8, 0.4, 0.5, 0.2) (0.3, 0.9, 0.5, 0.1) (0.3, 0.3, 0.9, 0.4) (0.3, 0.7, 0.5, 0.5) (0.7, 0.8, 0.8, 0.2)

(i2, j3) (0.9, 0.9, 0.5, 0.3) (0.3, 0.9, 0.5, 0.1) (0.6, 0.6, 0.6, 0.5) (0.3, 0.7, 0.8, 0.5) (0.6, 0.8, 0.8, 0.3)

(i3, j1) (0.5, 0.6, 0.7, 0.4) (0.3, 0.5, 0.6, 0.4) (0.7, 0.8, 0.6, 0.1) (0.8, 0.9, 0.6, 0.1) (0.7, 0.8, 0.9, 0.2)

(i3, j2) (0.6, 0.4, 0.5, 0.2) (0.3, 0.9, 0.6, 0.1) (0.3, 0.3, 0.9, 0.3) (0.8, 0.9, 0.6, 0.4) (0.7, 0.8, 0.9, 0.2)

(i3, j3) (0.6, 0.9, 0.5, 0.3) (0.3, 0.9, 0.6, 0.1) (0.6, 0.6, 0.6, 0.3) (0.5, 0.9, 0.8, 0.4) (0.6, 0.8, 0.9, 0.6)


.

By calculating in the third step of Algorithm 2, we get the truth membership (Φ̂∧Ψ̂)T
(iq ,jq)

,

the indeterminacy membership (Φ̂∧Ψ̂)I
(iq ,jq)

, and the falsity membership (Φ̂∧Ψ̂)F
(iq ,jq)

, respectively, as follows:
(q = 1, 2, 3): 

(Φ̂∧Ψ̂)T z1 z2 z3 z4 z5

(i1, j1) (0.3, 0.2) (0.1, 0.5) (0.2, 0.3) (0.5, 0.1) (0.4, 0.1)
(i1, j2) (0.3, 0.2) (0.1, 0.1) (0.2, 0.4) (0.5, 0.2) (0.4, 0.1)
(i1, j3) (0.3, 0.2) (0.1, 0.1) (0.2, 0.5) (0.5, 0.2) (0.4, 0.1)
(i2, j1) (0.5, 0.4) (0.3, 0.4) (0.6, 0.3) (0.3, 0.1) (0.7, 0.2)
(i2, j2) (0.8, 0.2) (0.3, 0.1) (0.3, 0.4) (0.3, 0.5) (0.7, 0.2)
(i2, j3) (0.9, 0.3) (0.3, 0.1) (0.6, 0.5) (0.3, 0.5) (0.6, 0.3)
(i3, j1) (0.5, 0.4) (0.3, 0.4) (0.7, 0.1) (0.8, 0.1) (0.7, 0.2)
(i3, j2) (0.6, 0.2) (0.3, 0.1) (0.3, 0.3) (0.8, 0.4) (0.7, 0.2)
(i3, j3) (0.6, 0.3) (0.3, 0.1) (0.6, 0.3) (0.5, 0.4) (0.6, 0.6)


,



(Φ̂∧Ψ̂)I z1 z2 z3 z4 z5

(i1, j1) (0.7, 0.2) (0.8, 0.5) (0.9, 0.3) (0.8, 0.1) (0.7, 0.1)
(i1, j2) (0.7, 0.2) (0.9, 0.1) (0.6, 0.4) (0.6, 0.2) (0.8, 0.1)
(i1, j3) (0.9, 0.2) (0.9, 0.1) (0.6, 0.5) (0.7, 0.2) (0.7, 0.1)
(i2, j1) (0.6, 0.4) (0.7, 0.4) (0.9, 0.3) (0.8, 0.1) (0.8, 0.2)
(i2, j2) (0.4, 0.2) (0.9, 0.1) (0.3, 0.4) (0.7, 0.5) (0.8, 0.2)
(i2, j3) (0.9, 0.3) (0.9, 0.1) (0.6, 0.5) (0.7, 0.5) (0.8, 0.3)
(i3, j1) (0.6, 0.4) (0.5, 0.4) (0.8, 0.1) (0.9, 0.1) (0.8, 0.2)
(i3, j2) (0.4, 0.2) (0.9, 0.1) (0.3, 0.3) (0.9, 0.4) (0.8, 0.2)
(i3, j3) (0.9, 0.3) (0.9, 0.1) (0.6, 0.3) (0.9, 0.4) (0.8, 0.6)


,



(Φ̂∧Ψ̂)F z1 z2 z3 z4 z5

(i1, j1) (0.7, 0.2) (0.7, 0.5) (0.8, 0.3) (0.5, 0.1) (0.9, 0.1)
(i1, j2) (0.5, 0.2) (0.5, 0.1) (0.9, 0.4) (0.5, 0.2) (0.9, 0.1)
(i1, j3) (0.5, 0.2) (0.5, 0.1) (0.8, 0.5) (0.8, 0.2) (0.9, 0.1)
(i2, j1) (0.7, 0.4) (0.7, 0.4) (0.6, 0.3) (0.2, 0.1) (0.8, 0.2)
(i2, j2) (0.5, 0.2) (0.5, 0.1) (0.9, 0.4) (0.5, 0.5) (0.8, 0.2)
(i2, j3) (0.5, 0.3) (0.5, 0.1) (0.6, 0.5) (0.8, 0.5) (0.8, 0.3)
(i3, j1) (0.7, 0.4) (0.6, 0.4) (0.6, 0.1) (0.6, 0.1) (0.9, 0.2)
(i3, j2) (0.5, 0.2) (0.6, 0.1) (0.9, 0.3) (0.6, 0.4) (0.9, 0.2)
(i3, j3) (0.5, 0.3) (0.6, 0.1) (0.6, 0.3) (0.8, 0.4) (0.9, 0.6)


.
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By calculating in the fourth step of Algorithm 2, we obtain the max-matrices of (Φ̂∧Ψ̂)T
(iq ,jq)

, (Φ̂∧Ψ̂)I
(iq ,jq)

,

and (Φ̂∧Ψ̂)F
(iq ,jq)

(p = 1, 2, 3, 4, 5; q = 1, 2, 3), respectively, for every zp ∈ X as follows:

(Φ̂∧Ψ̂)T z1 z2 z3 z4 z5

(i1, j1) 0.25 0.3 0.25 0.3 0.25
(i1, j2) 0.25 0.1 0.3 0.35 0.25
(i1, j3) 0.25 0.1 0.35 0.35 0.25
(i2, j1) 0.45 0.35 0.45 0.2 0.45
(i2, j2) 0.5 0.2 0.35 0.4 0.45
(i2, j3) 0.6 0.2 0.55 0.4 0.45
(i3, j1) 0.45 0.35 0.4 0.45 0.45
(i3, j2) 0.4 0.2 0.3 0.6 0.45
(i3, j3) 0.45 0.2 0.45 0.45 0.6


,



(Φ̂∧Ψ̂)I z1 z2 z3 z4 z5

(i1, j1) 0.14 0.4 0.27 0.08 0.07
(i1, j2) 0.14 0.09 0.24 0.12 0.08
(i1, j3) 0.18 0.09 0.3 0.14 0.07
(i2, j1) 0.24 0.28 0.27 0.08 0.16
(i2, j2) 0.08 0.08 0.12 0.35 0.16
(i2, j3) 0.27 0.09 0.3 0.35 0.24
(i3, j1) 0.24 0.2 0.08 0.09 0.16
(i3, j2) 0.08 0.09 0.09 0.36 0.16
(i3, j3) 0.27 0.09 0.18 0.36 0.48


,



(Φ̂∧Ψ̂)F x1 z2 z3 z4 z5

(i1, j1) 0.25 0.04 0.25 0.16 0.64
(i1, j2) 0.09 0.16 0.25 0.09 0.64
(i1, j3) 0.09 0.16 0.09 0.36 0.64
(i2, j1) 0.09 0.09 0.09 0.01 0.36
(i2, j2) 0.09 0.16 0.25 0 0.36
(i2, j3) 0.04 0.16 0.01 0.09 0.25
(i3, j1) 0.09 0.04 0.25 0.25 0.49
(i3, j2) 0.09 0.25 0.36 0.04 0.49
(i3, j3) 0.04 0.25 0.09 0.16 0.09


.

By calculating in the fifth step of Algorithm 2, we obtain the max-decision τT , τI , and τF of elements zp,
respectively, as follows (p = 1, 2, 3, 4, 5):

τT(z1) = 2, τT(z2) = 0.3, τT(z3) = 0.8, τT(z4) = 2.05, τT(z5) = 1.5;

τI(z1) = 0.24, τI(z2) = 0.68, τI(z3) = 0.54, τI(z4) = 1.06, τI(z5) = 0.48;

τF(z1) = 0, τF(z2) = 0.25, τF(z3) = 0, τF(z4) = 0, τF(z5) = 3.87.

By calculating in the sixth step of Algorithm 2, the scores S(zp) of elements zp(p = 1, 2, 3, 4, 5), respectively,
are as follows:

S(z1) = 2.24, S(z2) = 1.23, S(z3) = 1.34, S(z4) = 3.11, S(z5) = 5.85.
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Finally, we know from the seventh step that z5 has a high value. Therefore, the experts should select z5 as
the best choice.

Remark 2.
(1) By means of Algorithms 1 and 2, we can see that the final results are in agreement. Thus, x5 is the most

accurate and refinable.
(2) By comparing the steps in Algorithms 1 and 2, we can see that step 4 and step 5 in Algorithm 2

are complicated in their process compared to step 2 and step 3 in Algorithm 1, respectively. So, if we take
the complexity of these steps into consideration, Algorithm 2 gives its decision concisely.

(3) Algorithms 1 and 2 that we have elaborated here arrive at their decisions by combining the concept of
single-valued neutrosophic fuzzy set theory and soft set theory. As result, we can apply Algorithm 1 to picture
fuzzy soft sets [29], generalized picture fuzzy soft sets [13], and interval-valued neutrosophic soft sets [12].
Further, Algorithm 2 can be applied to possibility m-polar fuzzy soft sets [15] and possibility multi-fuzzy soft
sets [17].

5. Conclusions

We introduced the notion of the single-valued neutrosophic fuzzy soft set as a novel neutrosophic
soft set model. We discussed the five operations of the single-valued neutrosophic fuzzy soft set, such
as subset, equal, union, intersection, and complement. The structure properties of the single-valued
neutrosophic fuzzy soft set are explained. Then, a novel approach (i.e., Algorithm 1) is presented as
a single-valued neutrosophic fuzzy soft set decision method. Lastly, an application (i.e., Algorithm 2)
of a single-valued neutrosophic fuzzy soft set for fuzzy decision-making is constructed, and the
two approaches (i.e., Algorithms 1 and 2) introduce an important contribution to further research
and relevant applications. Therefore, in the future, we will provide a real application with a real
dataset or we will apply the two approaches (i.e., Algorithms 1 and 2) to lung cancer disease [30]
and coronary artery disease [31]. In addition, we will describe in more detail in order to clarify if the
methods (i.e., Algorithms 1 and 2) converge or diverge from standard approaches such as fuzzy sets
[1], intuitionistic fuzzy sets [2], picture fuzzy sets [3].
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