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a b s t r a c t 

Many different diseases can occur in the liver, including infections such as hepatitis, cirrhosis, cancer 

and over effect of medication or toxins. The foremost stage for computer-aided diagnosis of liver is the 

identification of liver region. Liver segmentation algorithms extract liver image from scan images which 

helps in virtual surgery simulation, speedup the diagnosis, accurate investigation and surgery planning. 

The existing liver segmentation algorithms try to extort exact liver image from abdominal Computed To- 

mography (CT) scan images. It is an open problem because of ambiguous boundaries, large variation in 

intensity distribution, variability of liver geometry from patient to patient and presence of noise. A novel 

approach is proposed to meet challenges in extracting the exact liver image from abdominal CT scan im- 

ages. The proposed approach consists of three phases: (1) Pre-processing (2) CT scan image transforma- 

tion to Neutrosophic Set (NS) and (3) Post-processing. In pre-processing, the noise is removed by median 

filter. The “new structure” is designed to transform a CT scan image into neutrosophic domain which is 

expressed using three membership subset: True subset (T), False subset (F) and Indeterminacy subset (I). 

This transform approximately extracts the liver image structure. In post processing phase, morphological 

operation is performed on indeterminacy subset (I) and apply Chan-Vese (C-V) model with detection of 

initial contour within liver without user intervention. This resulted in liver boundary identification with 

high accuracy. Experiments show that, the proposed method is effective, robust and comparable with 

existing algorithm for liver segmentation of CT scan images. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

The liver is a vital organ that has many roles in the body, in-

luding building proteins and blood clotting factors, manufactur-

ng triglycerides and cholesterol, glycogen synthesis and bile pro-

uction. The liver is the largest internal organ. Infections such as

epatitis, cirrhosis (scarring), cancer and over effect of medica-

ions are identified diseases within liver. The foremost stage for

omputer-aided diagnosis of liver is the identification of liver re-

ion. Liver segmentation algorithms extract liver image from scan

mages which helps in virtual surgery simulation, speedup the dis-

ase diagnosis, accurate investigation and surgery planning. 

The liver segmentation from CT scan images has gained a lot

f importance in medical image processing field because 1 in ev-

ry 94 men and 1 in every 212 women born are susceptible to

iver cancer in their life time [1,2] . Liver cancer is one of the most

ommon diseases, with increasing morbidity and high mortality
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3,4] . The Liver cancer treatment requires maximum radiation dose

o the tumour and minimum toxicity to the surrounding healthy

issues. This is the major challenge in clinical practice [5,6] . Se-

ective Internal Radiation Therapy (SIRT) with Yttrium-90 (Y-90)

icrospheres is an effective technique for liver-directed therapy

7] . SIRT dosimetry requires accurate determination of the relative

unctional tumour(s) volume(s) with respect to the anatomical vol-

mes of the liver in order to estimate the necessary Y-90 micro-

phere dose [8,9] . Clinically, accurate liver volume determination is

ccomplished through tedious manual segmentation of the entire

omputerized Tomography (CT) scan. A task is greatly dependent

n the skill of the operator. Manual segmentation is time consum-

ng. Thus many automatic or semiautomatic techniques are avail-

ble for segmentation and determine the volume of the liver ac-

urately. This facilitates the operational process from a physician’s

iewpoint. 

Extracting liver from CT scan or MRI scan images is of prime

mportance. Considerable work has been done in extracting liver

rom CT scan or MRI scan images; so a general solution has re-

ained as challenge. Failure in getting a reliable and accurate seg-

entation algorithm is due to (1) Neighbour organs of liver like

http://dx.doi.org/10.1016/j.cmpb.2017.08.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2017.08.020&domain=pdf
mailto:sangeeta_mk@rediffmail.com
mailto:sangeeta_mk@rediffmail.com
http://dx.doi.org/10.1016/j.cmpb.2017.08.020
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kidneys, heart, stomach, etc. have same intensity level. (2) There

is no definite shape, weight, size, volume or texture for a liver. All

these parameters are subjective. (3) Edges are weak (4) Presence

of artifacts in MRI images or CT scan images. (5) Variability of liver

geometry from patient to patient. (6) Large variation in pixel level

range throughout the liver section as well as from patient to pa-

tient. 

2. Related work 

Chen et al. [10] designed Chan-Vese model for liver segmen-

tation in which Gaussian function is used to find liver likelihood

image from CT scan images and obtaining the liver boundary us-

ing Chan-Vese model. They have used morphological operation to

improve the results. Song et al. [11] proposed an automatic liver

boundary marking method which is based on an adaptive Fast

Marching Method (FMM). The liver image is separated from CT

scan by manually fixing pixel intensity between 50 and 200. Me-

dian filter is applied to reduce noise and liver image is enhanced

by sigmoidal function. In this, the image is converted into binary

and FMM is applied to find liver boundary accurately. Wu et al.

[4] developed a novel method for automatic delineation of liver on

CT volume images using supervoxel-based graph cuts. This method

integrates histogram-based adaptive thresholding, Simple Linear It-

erative Clustering (SLIC) and graph cuts algorithm. Mehrdad et al.

[12] proposed random walker based framework. In this, liver dome

is automatically detected based on location of the right lung lobe

and rib caged area and liver is extracted utilising random walker

method. Xiaowei et al. [13] introduced a multi-atlas segmenta-

tion approach with local decision fusion for fast automated liver

(with/without abnormality) segmentation on Computational To-

mography Angiography (CTA). Zheng et al. [14] designed a feature-

learning-based random walk method for liver segmentation using

CT images. Four texture features are extracted and then classified

to determine the probability corresponding to the test images. In

this, seed points on the original test image are automatically se-

lected. Peng et al. [15] designed a novel multiregion-appearance

based approach with graph cuts to delineate the liver surface and

a geodesic distance based appearance selection scheme is intro-

duced to utilize proper appearance constraint for each subregion.

Platero et al. [16] proposed a new approach to segment liver from

CT scan which is combination of low-level operations, an affine

probabilistic atlas and a multiatlas-based segmentation. AlShaikhli

et al. [17] presented a novel fully automatic algorithm for 3D liver

segmentation in clinical 3D CT images based on Mahalanobis dis-

tance cost function using an active shape model implemented on

MICCAI-SLiver07 achieving in an accurate results. Li et al. [18] de-

veloped liver segmentation using 3D-convolutional neural network

and accuracy of initial segmentation is increased with graph cut

algorithm and the previously learned probability map. Li et al.

[19] developed a technique to detect the liver surface which in-

cludes construction of statistical shape model using the principal

component analysis; Euclidean distance transformation is used to

obtain a coarse position in a source image. And accurate detection

of the liver is obtained using deformable graph cut method. Zheng

et al. [20] designed a tree-like multiphase level set algorithm for

segmentation, based on the Chan-Vese model to detect objects in

an image. The algorithm is effective for images which have sub-

objects in the region. 

3. Neutrosophic Set (NS) 

Neutrosophic Set (NS) was introduced by Smarandache [21] . In

neutrosophic set theory, every event has not only a certain degree

of the truth but also a falsity degree with indeterminacy. These

parameters are considered independently from each other [21,22] .
n entity { S } is considered with opposite {Anti- S } and neutrality

Neut- S }. The {Neut- S } and {Anti- S } are referred to as {Non- S } [22] .

To apply the concept of NS to image processing, the image

hould be transformed into the neutrosophic domain. Image P of

ize X 

∗Y with K grey levels can be defined as three arrays of neu-

rosophic images described by three membership sets: T (true sub-

et), I (indeterminate subset) and F (false subset). Therefore, a pixel

 ( i, j ) in the image transferred into the neutrosophic domain can

e represented by P NS = { T ( i, j ), I ( i, j ), F ( i, j )} or P NS = P ( t, i, f ).

t means that the pixel is % t true, % i indeterminate and % f false.

ere, t varies in T (white pixel set), i varies in I (noise pixel set)

nd f varies in F (black pixel set) which are defined as follows [21–

4] . 

 ( i, j ) = 

Ḡ ( i, j ) − Ḡ min 

Ḡ max − Ḡ min 

(1)

 ( i, j ) = 

d ( i, j ) − d min 

d max − d min 

(2)

 ( i, j ) = 1 − T ( i, j ) (3)

Where Ḡ ( i, j ) is local mean value of the pixel of the window

nd given by following equation 

¯
 ( i, j ) = 

1 

w ∗ w 

m = i + w/ 2 ∑ 

m = i −w/ 2 

j+ w/ 2 ∑ 

n = i −w/ 2 

G ( m, n ) (4)

 ( i, j ) is absolute value of the difference between intensity G ( i, j )

nd its local mean value Ḡ ( i, j ) and given as 

 ( i, j ) = abs (G ( i, j ) − Ḡ ( i, j ) ) (5)

G ( i, j ) is intensity value of the pixel P ( i, j ), w is size of sliding

indow, Ḡ min and Ḡ max are minimum and maximum of the local

ean values of the image, respectively, d min and d max are minimum

nd maximum value of d ( i, j ) in whole image. 

. Basic Chan-Vese model 

All the classical snakes and active contour model depends on

he image gradient to stop curve evolution, so these models can

etect only objects with edges defined by gradient [25] . In biomed-

cal images, edges are fragile and image is noisy. Hence stopping

unction is never zero on edges and the curve evolution may pass

hrough the boundary. T.F. Chan and L.A. Vese have designed a new

ctive contour model for image segmentation based on region in-

tead of gradient, which is called Chan-Vese[C-V] model [26] . In

his section, summary of original C-V approach [25] is presented

or reader convenience. 

Let I ( x ) be the brightness function of input image. The image is

efined over a two-dimensional area, denoted by � . It is assumed

hat, the image contains objects and background which have con-

tant brightness, denoted by B o and B b respectively. Let C repre-

ents closed curve in the image that separates the objects and

ackground. In C-V model [26] , the following energy function is

inimised. 

f ( B o , B b , C) = μ · Length (C) + λ · Area (inside (C)) 

+ λo 

∫ 
insideC 

(I(x ) − B o ) 
2 
dx 

+ λb 

∫ 
outsideC 

(I(x ) − B b ) 
2 
dx (6)

Where λo , λb , μ, λ are parameters with suitably chosen values

nd are greater than or equal to zero. Eq. (6) can be minimised

y taking function φ( x ), x ∈ � , takes a value of greater than 0 in-

ide the object, less than 0 outside the object and equal to zero on
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Fig. 1. Bell function. 
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oundaries. Heaviside function is used and is defined by 

(z) = 

{
1 if z ≥ 0 

0 if z < 0 

(7) 

Applying Eq. (7) , on Eq. (6) 

f ( B o , B b , φ) = μ

∫ 
� 
| ∇H(φ) | dx + λ

∫ 
� 

H(φ) dx 

+ λo 

∫ 
� 
(I − B o ) 

2 
H(φ) dx 

+ λo 

∫ 
� 
(I − B o ) 

2 
(1 − H(φ)) dx (8) 

Keeping φ fixed and minimising the value of f ( B o ,B b ,C ) with re-

pect to the constants B o ,B b . The expressions for B o ,B b will be 

 o (φ) = 

∫ 
� I · H(x ) dx ∫ 

� H(x ) dx 
B b (φ) = 

∫ 
� I · (1 − H(x )) dx ∫ 

� (1 − H(x )) dx 
(9) 

It can be easily seen that the values of B o ( φ) and B b ( φ) have
he meaning of average brightness of original image over the ar-
as that are regarded as objects ( φ ≥ 0) and background ( φ < 0)
espectively in image segmentation. Keeping B o ,B b fixed and min-
mising f ( B o ,B b ,C ) with respect to φ, the associated Euler–Langrange
quation may be obtained as follows, 

(φ) 

[
μdi v 

( ∇φ

|∇φ| 
)

− λ − λo (I − B o ) 
2 + λb (I − B b ) 

2 

]
= 0 in � (10) 

For practical computation, the author introduce regularization

ersion of H and its derivation as follows 

 ε (z) = 

1 

2 

(
1 + 

2 

π
arctan 

(
z 

ε 

))
(11) 

δε (z) = H 

′ 
ε = 

1 
π · ε 

ε 2 + z 2 ε is suitably chosen value. 

Introducing φ( T, x ) by parameterizing the descent direction by
ime T ≥ 0 and taking φ(0, x ) = φo ( x ) (chosen initial contour), a sys-
em is obtained for solving φ iteratively and can be written in the
orm of 

dφ

dt 
= δε (φ) 

(
μ · di v 

( ∇φ

|∇φ| 
)

− λ − λo (I − B o ) 
2 − λb (I − B b ) 

2 

)
in � 

(12) 

(0 , x ) = φo (x ) in � and 

[
δε (φ) 

|∇φ| 
∂ φ

∂ � n 

]
= 0 on � 

Where � n denotes exterior normal to the boundary ∂� of � and
∂φ
∂ � n 

denotes normal derivation of φ at the boundary. φo ( x ) is a

igned Distance Function(SDF) and initial contour is defined as a

urve satisfying φo ( x ) = 0. 

. Methodology 

.1. Pre-processing phase 

Abdominal CT scan image is with 1019 × 682 DICOM colour for-

at. First convert the CT scan image into grey scale image of size

12 × 512. Reduce the noise using median filter. 

.2. Map the CT scan image into NS domain 

Step1: Crop random section of liver image. 
Step2: Obtain true subset T and false subset F using bell function

 (x, y ) = π( C xy , a, b, c, d) 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 0 ≤ C xy < a 
( C xy −a ) 

2 

( d−a ) ( d−a ) 
a ≤ C xy < b 

1 − ( C xy −b ) 

( d−c ) ( d−c ) 
b ≤ C xy ≤ c 

( C xy −d) 
2 

( d−c ) ( d−c ) 
c ≤ C xy ≤ d 

0 C xy > d 

(13)

 ( x, y ) = 1 − T ( x, y ) (14) 

Where C xy is intensity value of pixel ( i, j ) in cropped image of

iver. Variables a , b , c and d are parameters that determine the

hape of bell function as shown in Fig 1 . 

Values of variables a , b , c and d are obtained using histogram-

ased method as follows: 

(a) Obtain histogram of the cropped liver section. 
(b) Find local maxima of the histogram 

P max ( g 1 ) , P max ( g 2 ) , P max ( g 3 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . .., P max ( g n ) 

(c) Calculate mean of local maxima 

P̄ max = 

∑ n 
i =1 P max ( g i ) 

n 

(15) 

(d) Find peak values greater than mean of local maxima P̄ max . 

b − initial peak v alue 

c − f inal peak v alue 

(e) Find standard deviation (std.div) of cropped section of liver 

std .d i v = 

( 

1 

n 

n ∑ 

i =1 

( x i − x̄ ) 
2 

) 1 / 2 

(16) 

where x̄ = 

1 
n 

∑ n 
i =1 x i 

(f) Find value of a and d as follows 

a = b − std .d i v 

d = c + std .d i v 

Step3: Convert T and F into binary [27,28] 

Tth and Fth are thresholds in true subset ( T ) and false subset ( F )

espectively. These are also required to obtain indeterminacy sub-

et ( I ). A heuristic approach is used to find the thresholds in T and

 . 

a) Select an initial threshold t o in T . 

b) Separate T by using t o and obtain two new groups of pixels: T 1,

T 2. 

c) ( mu 1 and mu 2 are the mean values of these two groups.) 
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Read the CT scan image

Use median filter to reduce noise

Crop random sec�on of Liver

Generate Neutrosophic Set of input image

Obtain thresholds of True subset and False subset

Convert True subset, False subset and 
indeterminacy subset into binary image

Perform morphological opera�on on Edge 

Select ini�al contour automa�cally within liver image 

Apply Chan-Vese model

T      I F
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Liver with boundary

PointsStart
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Fig. 2. Flowchart of the proposed method. 
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d) Compute new threshold value t 1 = 

mu 1+ mu 2 
2 

e) Repeat step b through step d until the difference of t n − t n − 1 is

smaller than ε ( ε = 0.001 in the experiment) in successive itera-

tions. Then, threshold Tth is calculated by following substitution

T th = t n 

f) Above steps are repeated for finding Fth in bset ( F ) . 

Step4: Find indeterminacy subset ( I ) [28] 

Homogeneity is related to local information and plays an im-

portant role in image segmentation. We can define homogeneity

by using the standard deviation and discontinuity of the inten-

sity. Standard deviation describes the contrast within a local re-

gion, while discontinuity represents the changes in grey levels. Ob-

jects and background are more uniform and blurry edges are grad-
ally changing from objects to background. The homogeneity value

f objects and background is larger than that of the edges. A ran-

omly identified size D X D window centered at (x, y) is used for

omputing the standard deviation of pixel (i, j): 

 d = 

√ ∑ x + ( D −1 ) / 2 
p= x −( D −1 ) / 2 

∑ y +( ( D −1 ) / 2 
q = y −( D −1 ) / 2 

( G xy − m u xy ) 
2 

D 

2 
(17)

Where mu xy is mean of intensity values within window and

iven by following equation 

 u xy = 

∑ x + ( D −1 ) / 2 
p= x −( D −1 ) / 2 

∑ y +( ( D −1 ) / 2 
q = y −( D −1 ) / 2 

G xy 

d 2 
(18)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 3. (a) Original CT scan image; (b) Median filter image; (c) Cropping random section of liver;(d) True subset image; (e) False subset image; (f) Indeterminate image; (g) 

Foreground image; (h) Background image; (i) Edge image; (j) Homogeneity image; (k) Speed function; (l) Initial contour in speed function; (m) Liver boundary; (n) Extraction 

of liver from CT scan image; (o) Liver with boundary in CT scan; (p) Ground truth image. 
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The discontinuity of pixel P ( i , j ) is described by the edge value.

e use Sobel operator to calculate the discontinuity. 

 g ( x, y ) = 

√ 

G x 
2 + G y 

2 (19) 

Where G x and G y are horizontal and vertical derivative approx-

mations. 

Normalize the standard deviation, discontinuity and define the

omogeneity as 

 ( x, y ) = 1 − S d ( x, y ) 

S dmax 

∗ E g ( x, y ) 

E gmax 
(20) 

Where S dmax = max{ S d ( x,y )} and E gmax = max{ E g ( x,y )} 

The indeterminacy I ( x, y ) is represented as 

 ( x, y ) = 1 − H ( x, y ) (21) 
The value of I ( x, y ) has a range of 0 to 1. The more uniform

he region surrounding a pixel results in minimum value of the

ndeterminate pixel. The window size should be big enough to in-

lude enough local information, but still be less than the distance

etween two objects. We chose D = 10 in all calculations. 

Step 5: Convert T , F , and I into binary image: 

a) Procedure to find value of ∝ 

(a1) min = minimum{maximum values of each column in inde-

terminacy image ( I ) 
 = 0}. 

(a2) ∝ is any value less than or equal to min. 

In this step, a given image is divided into three parts: object

Obj), edge(Edge) and Background (Bkg). T ( x, y ) represents the de-

ree of being an object pixel (Obj), I ( x, y ) is the degree of being an

dge pixel (Edge) and F ( x, y )is the degree of being a background
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(a) (b)                          (c)                        (d)                    (e)  
Fig. 4. Experimental results of proposed method. 
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pixel(Bkg) for pixel P ( x, y ). The three parts are defined as follows:

Ob j ( x, y ) = 

{
T rue T ( x, y ) ≥ T th, I ( x, y ) < ∝ 

F alse Others 
(22)

Edge ( x, y ) = 

{ 

T rue T ( x, y ) < T th, ∨ F ( x, y ) < F th , I ( x, y ) ≥∝ 

F alse Others 

(23)

Bkg ( x, y ) = 

{
True F ( x, y ) ≥ F th, I ( x, y ) < ∝ 

F alse Others 
(24)

The objects and background are mapped to 0 and the edges are

mapped to 1 in the binary image. The mapping function is as fol-

lows 

Binary ( x, y ) = 

{
0 Ob j ( x, y ) ∨ Bkg ( x, y ) ∨ Edge ( x, y ) = True 
1 Others 

(25)

5.3. Post processing phase 

Step 1: Perform morphological operation on indeterminacy set

(I). This is called as speed function. 

Step 2: Initial contour identification: Chan-Vese model requires

an initial contour from which evolution of contour starts

to detect the object boundary. In this paper, it is pro-

posed, an effective initialization approach for segmenta-

tion of liver for Chan-Vese model. Following steps are de-

signed. 
(a) Find centroid of liver as x cent , y cent , x 1 = 4 , y 1 = 4 and

an area of liver. 

(b) Take initial contour as ( y cent , y cent + y 1 ; x cent , x cent + x 1 ). 

(c) Initialize stop = 0. 

(d) Let � ∈ R 2 is a bounded domain. The Signed Distance

Function (SDF) to � is function of R 2 . 

x ∈ R 2 and x �→ 	�(x ) is SDF defined by 

	�(x ) = 

{ −d(x, ∂�) 
0 

+ d(x, ∂�) 

i f 
i f 
i f 

x ∈ �
x ∈ ∂�
x ∈ �c 

Interior − region 

On − boundary 
Exterior − region 

(26)

Where d ( •, ∂�) denotes the usual Euclidean distance

function to the set ∂ �. ∂ � represents boundary of an

object. 

(e) Generate the SDF from initial contour. 

(f) Get narrow band of initial contour and find interior and

exterior mean. 

(g) Find the value of force using equation 

F = (P − U) 2 + (P − V ) 2 (27)

Where U = interior mean, V = exterior mean and P = Pixel

coordinate value 

(h) If force (F) is less than 1 then increment x 1 , y 1 value and

go to step e else stop and take ( y cent , y cent + y 1 ; x cent ,

x cent + x 1 ) as initial contour. 

Step3: Apply Chan-Vese model which detects liver boundary in

CT scan. 

The complete process of proposed technique is depicted in

ig 2 . 
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Fig. 5. (a), (d), (g), (j) show initial contour in the liver image for original Chan- 

Vese model, LSE model, RSF model and proposed method respectively; (b), (e), (h), 

(k) show intermediate results of original Chan-Vese model, LSE model, RSF model 

and proposed method respectively; (c), (f), (i), (l) show final segmentation results of 

original Chan-Vese model, LSE model, RSF model and proposed method respectively. 
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. Segmentation algorithm evaluation metric 

In medical research, supervised evaluation is widely used [29] .

t computes the difference between the reference image and the

egmentation result using a given evaluation metric [30] . In this

aper, the manual segmentation is adopted to reflect the reference

mage [31] . Evaluation of segmentation algorithms can be done by

omparing the results obtained from algorithm-based segmented

mage against the same image being manually segmented by an

xpert. This is often referred to as ground truth or reference im-

ge [32] . The degree of similarity between the manually segmented

mage and machine segmented image reflect the accuracy of the

egmented images [29,32] . The accuracy measure is computed as

resented in Eq. (28) . 

eg. Accuracy = 

ACP 

T P 
(28) 

Where ACP = Number of Acceptably Classified Pixels in seg-

mented region 

TP = Totality of Pixels in machine segmented image. 

If segmentation accuracy is 1 then it is concluded as perfect

egmentation i.e. machine segmented image is same as that of

round truth image. As segmentation accuracy move away from 1

hat shows degree of deviation in segmentation. 

. Experimental results 

The experimental dataset contains 110 patient’s CT scan images

hich are provided by M/S CT scan Centre, Hubli, Karnataka, India.

ach slice of CT scan is a 1019 × 682 size colour image. 

The original CT scan image, filtered image and cropping of ran-

om section of liver are shown in Fig 3 (a), (b) and (c) respectively.

rue subset, false subset and indeterminacy subset are shown in

ig 3 (d), (e) and (f) respectively. The object image, background

mage and edge images are shown in Fig 3 (g), (h) and (i) re-

pectively. Homogeneity image, speed function and initial contour

ithin liver section are shown in Fig 3 (j), (k) and (l) respectively.

inal liver boundary at final iteration, extraction of liver from ab-

ominal CT scan and boundary of liver in CT scan image are shown

n Fig 3 (m), (n) and (o) respectively. The ground truth image is

hown in Fig 3 (p). Fig 4 illustrates Experimental results of pro-

osed method of 4 images, in column (a) Input image; (b) Edge

mage of liver image; (c) Speed function of liver image; (d) Liver

ith boundary in CT scan; (e) ground truth image. 

. Comparison with existing methods 

In this section, the performance of the proposed method is

ompared with original Chan-Vese(C-V) model of Chan et al.

25] with specifications: mu = 0.1, number of iterations = 170 and

nitial contour position = [330,310; 340,330]. 

“A level set method for image segmentation in the presence

f intensity inhomogeneities with application to MRI”, by Li et al.

33] , have demonstrated the segmentation process. The analy-

is was performed on the CT scan image with following spec-

fications: mu = 1.0, epsilon = 1.0, time step = 0.10, sigma = 4, ini-

ial contour position = [160,220;190,240], number of iterations = 10.

his is called as Level Set evolution (LSE) model. 

“Minimization of Region-Scalable Fitting Energy for Image Seg-

entation”, by Li et al. [34] , have demonstrated the segmentation

rocess and the analysis was performed on the CT scan image with

ollowing specifications: Sigma = 3.0, epsilon = 1.0, mu = 1.0, time

tep = 0.1, lamda1 = 1.0, lamda2 = 1.0, number of iterations = 25,

nitial contour position = [160, 20 0; 180, 20 0]. This method is

alled as Region-Scalable Fitting (RSF) model. 
The initial contour in the liver section identified in C-V model;

SE model, RSF model and proposed method are shown in Fig 5 (a),

d), (g) and (j) respectively. The intermediate results of C-V model,

SE model, RSF model and proposed method are shown in Fig 5 (b),

e), (h) and (k) respectively. Final segmentation results of C-V

odel, LSE model, RSF model and proposed method are shown in

ig 5 (c), (f), (i) and (l) respectively. 

Liver and its neighbouring organs have same intensity level dis-

ribution, due to more noise and blurry edges, all three existing al-

orithms have limitations, resulting in inaccurate detection of exact

iver section. The proposed methodology fully exploits the intensity

istribution information by cropping random section of liver and

ts segmentation resulting in successful separation of liver image

rom its neighbouring organs. 

In C-V model, LSE model and RSF model, it is necessary to

dentify initial contour and number of iterations manually. These

arameters will affect the segmentation results. In the proposed

ethod, there is no need to identify number of iterations and ini-

ial contour. Once complete liver boundary is detected, results will

e displayed on computer screen. Initial contour is identified with-

ut user intervention. 

The proposed algorithm, the original Chan-Vese (C-V) model,

he LSE model and the RSF model have been tested for 110 im-

ges of CT scan. The average segmentation accuracy for original C-

 model, LSE model, RSF model and the proposed model is listed

n Table 1 . 
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Table 1 

Average Segmentation Accuracy for proposed model and existing algorithm. 

Original C-V model LSE model RSF model Proposed model 

Average Segmentation Accuracy 0.5228 ± 0.1655(SD) 0.4512 ± 0.1951(SD) 0.4030 ± 0.0.1807(SD) 0.9559 ± 0.0436(SD) 

Fig 6. Comparison of the proposed method. 
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Where SD-Standard Deviation 

On comparison of results, it is clear that, the accuracy is good

and acceptable for all practical intervention of image analysis. 

The proposed method has been simulated on processor specifi-

cation of Intel(R), CPU T5670@1.8 GHz, 32bit operating system and

RAM of 2.0GB with Matlab version of R2006a. 

9. Discussions 

The proposed design introduces a novel framework for liver

segmentation from CT scan images, based on Neutrosophic Set (NS)

and Chan-Vese model. A new scheme is designed to detect the ini-

tial contour within the liver section which is primary requirement

of Chan-Vese model. The initial contour evolves outwardly to de-

tect the exact liver boundary in CT scan image. The novel tech-

nique is proposed to convert an abdominal CT scan image to NS

domain. NS domain gives an approximate structure of liver, which

is verified and validated with practicing doctors. The results ob-

tained are compared with ground truth images or reference im-

ages and it is observed that the contour identification is result-

ing in good acceptable accuracy. Fig 6 illustrates comparison of the

proposed method. 

10. Conclusions 

Liver cancer treatment is complex and involves different ac-

tions, which include many times a surgical procedure. Medical

imaging provides important information for surgical planning, and
t usually demands an accurate liver segmentation from abdomi-

al CT scan. This study proposes a methodology to segment the

iver from abdominal CT scan images. A new scheme is proposed

o transform an abdominal CT scan image into Neutrosophic do-

ain which removes neighbouring structures of liver and provides

n approximate structure of liver. 

The new algorithm is designed to detect an initial contour

ithin the liver which evolves superficially to detect boundary of

iver using Chan-Vese model. This can be used for finding area

nd volume of liver which helps the physician diagnoses and liver

ransplantation. This can also be applied to detect other anatomical

tructures of abdomen like kidney, spleen, etc. with minor mod-

fications. The proposed framework attains highest accuracy rate

ince it exploits intensity distribution information by cropping ran-

om section of liver. 
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