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Abstract. Recently, the notions of neutrosophic triplet and neutrosophic triplet group
are introduced by Florentin Smarandache and Mumtaz Ali. The neutrosophic triplet is
a group of three elements that satisfy certain properties with some binary operations.
The neutrosophic triplet group is completely different from the classical group in the
structural properties. In this paper, we further study neutrosophic triplet group. First,
to avoid confusion, some new symbols are introduced, and several basic properties of
neutrosophic triplet group are rigorously proved (because the original proof is flawed),

∗. Corresponding author



354 X. ZHANG, F. SMARANDACHE, M. ALI and X. LIANG

and a result about neutrosophic triplet subgroup is revised. Second, some new proper-
ties of commutative neutrosophic triplet group are funded, and a new equivalent relation
is established. Third, based on the previous results, the following important proposi-
tions are proved: from any commutative neutrosophic triplet group, an Abel group can
be constructed; from any commutative neutrosophic triplet group, a BCI-algebra can
be constructed. Moreover, some important examples are given. Finally, by using any
neutrosophic triplet subgroup of a commutative neutrosophic triplet group, a new con-
gruence relation is established, and then the quotient structure induced by neutrosophic
triplet subgroup is constructed and the neutro-homomorphism basic theorem is proved.

Keywords: neutrosophic triplet, neutrosophic triplet group, Abel group, BCI-algebra,
neutro-homomorphism basic theorem.

1. Introduction

From a philosophical point of view, Florentin Smarandache introduced the con-
cept of a neutrosophic set (see [12, 13, 14]). The neutrosophic set theory is
applied to many scientific fields and also applied to algebraic structures (see
[1, 3, 7, 10, 11, 15, 17, 19]). Recently, Florentin Smarandache and Mumtaz Ali
in [16], for the first time, introduced the notions of neutrosophic triplet and neu-
trosophic triplet group. The neutrosophic triplet is a group of three elements
that satisfy certain properties with some binary operation. The neutrosophic
triplet group is completely different from the classical group in the structural
properties. In 2017, Florentin Smarandache has written the monograph [15]
which is present the last developments in neutrodophic theories (including neu-
trosophic triplet and neutrosophic triplet group).

In this paper, we further study neutrosophic triplet group. We discuss some
new properties of commutative neutrosophic triplet group, and investigate the
relationships among commutative neutrosophic triplet group, Abel group (that
is, commutative group) and BCI-algebra. Moreover, we establish the quotient
structure and neutro-homomorphism basic theorem.

As a guide, it is necessary to give a brief overview of the basic aspects
of BCI-algebra and related algebraic systems. In 1966, K. Iseki introduced the
concept of BCI-algebra as an algebraic counterpart of the BCI-logic (see [5, 24]).
The algebraic structures closely related to BCI algebra are BCK-algebra, BCC-
algebra, BZ-algebra, BE-algebra, and so on (see [2, 8, 20, 21, 22, 25]). As
a generalization of BCI-algebra, W. A. Dudek and Y. B. Jun [4] introduced
the notion of pseudo-BCI algebras. Moreover, pseudo-BCI algebra is also as a
generalization of pseudo-BCK algebra (which is close connection with various
non-commutative fuzzy logic formal systems, see [18, 22, 23, 24]). Recently,
some articles related filter theory of pseudo-BCI algebras are published (see
[26, 27, 28, 29]). As non-classical logic algebras, BCI-algebras are closely related
to Abel groups (see [9]); similarly, BZ-algebras (pseudo-BCI algebras) are closely
related general groups (see [20, 26]), and some results in [9, 20] will be applied
in this paper.
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2. Some basic concepts

2.1 On neutrosophic triplet group

Definition2.1 ([16]). Let N be a set together with a binary operation ∗. Then,
N is called a neutrosophic triplet set if for any a ∈ N , there exist a neutral of
“a” called neut(a), different from the classical algebraic unitary element, and an
opposite of “a” called anti(a), with neut(a) and anti(a) belonging to N , such
that:

a ∗ neut(a) = neut(a) ∗ a = a;
a ∗ anti(a) = anti(a) ∗ a = neut(a).

The elements a, neut(a) and anti(a) are collectively called as neutrosophic
triplet, and we denote it by (a, neut(a), anti(a)). By neut(a), we mean neu-
tral of a and apparently, a is just the first coordinate of a neutrosophic triplet
and not a neutrosophic triplet. For the same element “a” in N , there may be
more neutrals to it neut(a) and more opposites of it anti(a).

Definition2.2 ([16]). The element b in (N, ∗) is the second component, denoted
as neut(·), of a neutrosophic triplet, if there exist other elements a and c in N
such that a ∗ b = b ∗a = a and a ∗ c = c ∗a = b. The formed neutrosophic triplet
is (a, b, c).

Definition2.3 ([16]). The element c in (N, ∗) is the third component, denoted
as anti(·), of a neutrosophic triplet, if there exist other elements a and b in N
such that a ∗ b = b ∗a = a and a ∗ c = c ∗a = b. The formed neutrosophic triplet
is (a, b, c).

Definition2.4 ([16]). Let (N, ∗) be a neutrosophic triplet set. Then, N is called
a neutrosophic triplet group, if the following conditions are satisfied:

(1) If (N, ∗) is well-defined, i.e. for any a, b ∈ N , one has a ∗ b ∈ N .

(2) If (N, ∗) is associative, i.e. (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ N .

Definition 2.5 ([16]). Let (N, ∗) be a neutrosophic triplet group. Then, N
is called a commutative neutrosophic triplet group if for all a, b ∈ N , we have
a ∗ b = b ∗ a.

Definition 2.6 ([16]). Let (N, ∗) be a neutrosophic triplet group under ∗, and
let H be a subset of N . Then, H is called a neutrosophic triplet subgroup of N
if H itself is a neutrosophic triplet group with respect to ∗.

Remark 2.7. In order to include richer structure, the original concept of neu-
trosophic triplet is generalized to neutrosophic extended triplet by Florentin
Smarandache. A neutrosophic extended triplet is a neutrosophic triplet, de-
fined as above, but where the neutral of x (called “extended neutral”) is allowed
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to also be equal to the classical algebraic unitary element (if any). There-
fore, the restriction “different from the classical algebraic unitary element if
any” is released. As a consequence, the “extended opposite” of x, is also al-
lowed to be equal to the classical inverse element from a classical group. Thus,
a neutrosophic extended triplet is an object of the form (x, neut(x), anti(x)),
for x ∈ N , where neut(x) ∈ N is the extended neutral of x, which can be
equal or different from the classical algebraic unitary element if any, such that:
x ∗ neut(x) = neut(x) ∗ x = x, and anti(x) ∈ N is the extended opposite of x
such that: x ∗ anti(x) = anti(x) ∗ x = neut(x). In this paper, “neutrosophic
triplet” means that “neutrosophic extended triplet”.

2.2 On BCI-algebras

Definition2.8 ([5, 23]). A BCI-algebra is an algebra (X;→, 1) of type (2, 0) in
which the following axioms are satisfied:

(i) (x→ y)→ ((y → z)→ (x→ z)) = 1,
(ii) x→ x = 1,
(iii) 1→ x = x,
(iv) if x→ y = y → x = 1, then x = y.

In any BCI-algebra (X;→, 1) one can define a relation ≤ by putting x ≤ y
if and only if x→ y = 1, then ≤ is a partial order on X.

Definition 2.9 ([9, 26]). Let (X;→, 1) be a BCI-algebra. The set {x|x ≤ 1} is
called the p-radical (or BCK-part) of X. A BCI-algebra X is called p-semisimple
if its p-radical is equal to {1}.

Proposition2.10 ([9]). Let (X;→, 1) be a BCI-algebra. Then the following are
equivalent:

(i) X is p-semisimple,
(ii) x→ 1 = 1⇒ x = 1,
(iii) (x→ 1)→ 1 = x, ∀x ∈ X,
(iv) (x→ 1)→ y = (y → 1)→ x for all x, y ∈ X.

Proposition 2.11 ([26]). Let (X;→, 1) be a BCI-algebra. Then the following
are equivalent:

(S1) X is p-semisimple,
(S2) x→ y = 1⇒ x = y for all x, y ∈ X,
(S3) (x→ y)→ (z → y) = z → x for all x, y, z ∈ X,
(S4) (x→ y)→ 1 = y → x for all x, y ∈ X,
(S5) (x→ y)→ (a→ b) = (x→ a)→ (y → b) for all x, y, a, b ∈ X.

Proposition 2.12 ([9, 26]). Let (X;→, 1) be p-semisimple BCI-algebra; define
+ and − as follows: for all x, y ∈ X,

x+ y
def
= (x→ 1)→ y, − x def

= x→ 1.

Then (X; +,−, 1) is an Abel group.
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Proposition 2.13 ([9, 26]). Let (X; +,−, 1) be an Abel group. Define (X;≤,
→, 1), where

x→ y = −x+ y, x ≤ y if and only if − x+ y = 1, ∀x, y ∈ X.

Then, (X;≤,→, 1) is a BCI-algebra.

3. Some properties of neutrosophic triplet group

As mentioned earlier, for a neutrosophic triplet group (N, ∗), if a ∈ N , then
neut(a) may not be unique, and anti(a) may not be unique. Thus, the symbolic
neut(a) sometimes means one and sometimes more than one, which is ambigu-
ous. To this end, this paper introduces the following notations to distinguish:

neut(a): denote any certain one of neutral of a;
{neut(a)}: denote the set of all neutral of a.
Similarly,
anti(a): denote any certain one of opposite of a;
{anti(a)}: denote the set of all opposite of a.

Remark 3.1. In order not to cause confusion, we always assume that: (1)
for the same a, when multiple neut(a) (or anti(a)) are present in the same
expression, they are always are consistent. Of course, if they are neutral (or
opposite) of different elements, they refer to different objects (for example, in
general, neut(a) is different from neut(b)). (2) if neut(a) and anti(a) are present
in the same expression, then they are match each other.

Proposition 3.2. Let (N, ∗) be a neutrosophic triplet group with respect to ∗
and a ∈ N . Then

neut(a) ∗ neut(a) ∈ {neut(a)}.
Proof. For any a ∈ N , by Definition 2.1 we have

a ∗ neut(a) = a, neut(a) ∗ a = a.

From this, using associative law, we can get

a ∗ (neut(a) ∗ neut(a)) = (neut(a) ∗ neut(a)) ∗ a = a.

By Definition 2.1, it follows that (neut(a) ∗ neut(a)) is a neutral of a. That is,
neut(a) ∗ neut(a) ∈ {neut(a)}.

Remark 3.3. This proposition is a revised version of Theorem 3.21(1) in [16].
If neut(a) is unique, then they are same. But, if neut(a) is not unique, they
are different. For example, assume {neut(a)} = {s, t}, then neut(a) denote any
one of s, t. Thus neut(a) ∗ neut(a) represents one of s ∗ s, and t ∗ t. Moreover,
Proposition 3.2 means that s ∗ s, t ∗ t ∈ {neut(a)} = {s, t}, that is,

s ∗ s = s, or s ∗ s = t; t ∗ t = s, or t ∗ t = t.

And, in this case, the equation neut(a)∗neut(a) = neut(a) means that s∗s = s,
t ∗ t = t. So, they are different.



358 X. ZHANG, F. SMARANDACHE, M. ALI and X. LIANG

Proposition 3.4. Let (N, ∗) be a neutrosophic triplet group with respect to ∗
and a ∈ N . If

neut(a) ∗ neut(a) = neut(a).

Then

neut(a) ∗ anti(a) ∈ {anti(a)};
anti(a) ∗ neut(a) ∈ {anti(a)}.

Proof. For any a ∈ N , by Definition 2.1 we have

a ∗ neut(a) = neut(a) ∗ a = a;
a ∗ anti(a) = anti(a) ∗ a = neut(a).

From this, using associative law, we can get

a ∗ (neut(a) ∗ anti(a)) = (a ∗ neut(a)) ∗ anti(a) = a ∗ anti(a) = neut(a).

And,

(neut(a) ∗ anti(a)) ∗ a = neut(a) ∗ (anti(a) ∗ a) = neut(a) ∗ neut(a) = neut(a).

By Definition 2.1, it follows that (neut(a) ∗ anti(a)) is a opposite of a. That is,
neut(a) ∗ anti(a) ∈ {anti(a)}. In the same way, we can get anti(a) ∗ neut(a) ∈
{anti(a)}.

Proposition 3.5. Let (N, ∗) be a neutrosophic triplet group with respect to ∗
and let a, b, c ∈ N . Then

(1) a ∗ b = a ∗ c if and only if neut(a) ∗ b = neut(a) ∗ c.

(2) b ∗ a = c ∗ a if and only if b ∗ neut(a) = c ∗ neut(a).

Proof. Assume a ∗ b = a ∗ c. Then anti(a) ∗ (a ∗ b) = anti(a) ∗ (a ∗ c). By
associative law, we have

(anti(a) ∗ a) ∗ b = (anti(a) ∗ a) ∗ c.

Using Definition 2.1 we get neut(a) ∗ b = neut(a) ∗ c.
Conversely, assume neut(a) ∗ b = neut(a) ∗ c. Then a ∗ (neut(a) ∗ b) =

a ∗ (neut(a) ∗ c). By associative law, we have

(a ∗ neut(a)) ∗ b = (a ∗ neut(a)) ∗ c.

Using Definition 2.1 we get a ∗ b = a ∗ c. That is, (1) holds.
Similarly, we can prove that (2) holds.

Proposition 3.6. Let (N, ∗) be a neutrosophic triplet group with respect to ∗
and let a, b, c ∈ N .

(1) If anti(a) ∗ b = anti(a) ∗ c, then neut(a) ∗ b = neut(a) ∗ c.
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(2) If b ∗ anti(a) = c ∗ anti(a), then b ∗ neut(a) = c ∗ neut(a).

Proof. Assume anti(a)∗b = anti(a)∗c. Then a∗(anti(a)∗b) = a∗(anti(a)∗c).
By associative law, we have

(a ∗ anti(a)) ∗ b = (a ∗ anti(a)) ∗ c.

Using Definition 2.1 we get neut(a) ∗ b = neut(a) ∗ c. It follows that (1) holds.
Similarly, we can prove that b ∗ anti(a) = c ∗ anti(a) ⇒ b ∗ neut(a) =

c ∗ neut(a).

Theorem 3.7. Let (N, ∗) be a neutrosophic triplet group with respect to ∗ and
a ∈ N . Then

neut(neut(a)) ∈ {neut(a)}.

Proof. For any a ∈ N , by Definition 2.1 we have

neut(a) ∗ neut(neut(a)) = neut(a);
neut(neut(a)) ∗ neut(a) = neut(a).

Then

a ∗ (neut(a) ∗ neut(neut(a))) = a ∗ neut(a);
(neut(neut(a)) ∗ neut(a)) ∗ a = neut(a) ∗ a.

By associative law and Definition 2.1, we have

a ∗ neut(neut(a)) = a;
neut(neut(a)) ∗ a = a.

From this, by Definition 2.1, neut(neut(a)) ∈ {neut(a)}.

Theorem 3.8. Let (N, ∗) be a neutrosophic triplet group with respect to ∗ and
a ∈ N . Then

neut(anti(a)) ∈ {neut(a)}.

Proof. For any a ∈ N , by Definition 2.1 we have

anti(a) ∗ neut(anti(a)) = anti(a);
neut(anti(a)) ∗ anti(a) = anti(a).

Then

a ∗ (anti(a) ∗ neut(anti(a))) = a ∗ anti(a);
(neut(anti(a)) ∗ anti(a)) ∗ a = anti(a) ∗ a.

Using associative law and Definition 2.1,

neut(a) ∗ neut(anti(a)) = neut(a);
neut(anti(a)) ∗ neut(a) = neut(a).

It follows that a∗neut(anti(a)) = a, neut(anti(a))∗a = a. That is, neut(anti(a)) ∈
{neut(a)}.
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Theorem 3.9. Let (N, ∗) be a neutrosophic triplet group with respect to ∗ and
a ∈ N . Then

neut(a) ∗ anti(anti(a)) = a.

where, neut(a) ∈ {neut(a)}, anti(a) ∈ {anti(a)}, and neut(a) matches anti(a),
that is, a ∗ anti(a) = anti(a) ∗ a = neut(a).

Proof. For any a ∈ N , by Definition 2.1 we have

anti(a) ∗ anti(anti(a)) = neut(anti(a)).

Then

a ∗ (anti(a) ∗ anti(anti(a))) = a ∗ neut(anti(a)).
(a ∗ anti(a)) ∗ anti(anti(a)) = a ∗ neut(anti(a)).
neut(a) ∗ anti(anti(a)) = a ∗ neut(anti(a)).

On the other hand, by Theorem 3.8, neut(anti(a)) ∈ {neut(a)}. By Definition
2.1, it follows that a∗neut(anti(a))=a. Therefore, neut(a)∗anti(anti(a))=a.

Theorem 3.10. Let (N, ∗) be a neutrosophic triplet group with respect to ∗ and
a ∈ N . Then

anti(neut(a)) ∈ {neut(a)}.

Proof. For any a ∈ N , by Definition 2.1 we have

neut(a) ∗ anti(neut(a)) = neut(neut(a));
anti(neut(a)) ∗ neut(a) = neut(neut(a)).

Thus

a ∗ (neut(a) ∗ anti(neut(a))) = a ∗ neut(neut(a));
(anti(neut(a)) ∗ neut(a)) ∗ a = neut(neut(a)) ∗ a.

Applying associative law and Definition 2.1,

a ∗ anti(neut(a)) = a ∗ neut(neut(a));
anti(neut(a)) ∗ a = neut(neut(a)) ∗ a.

On the other hand, by Theorem 3.7, neut(neut(a)) ∈ {neut(a)}. It follows that

a ∗ neut(neut(a)) = neut(neut(a)) ∗ a = a.

Therefore,

a ∗ anti(neut(a))) = anti(neut(a)) ∗ a = a.

This means that anti(neut(a)) ∈ {neut(a)}.

Theorem 3.11. Let (N, ∗) be a neutrosophic triplet group with respect to ∗ and
a, b ∈ N . Then

neut(a ∗ a) ∈ {neut(a)}.
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Proof. For any a ∈ N , by Definition 2.1 we have

(a ∗ a) ∗ neut(a ∗ a) = a ∗ a.

From this and applying the associativity of operation ∗ and Definition 2.1 we
get

(anti(a) ∗ a) ∗ a ∗ neut(a ∗ a) = (anti(a) ∗ a) ∗ a.
neut(a) ∗ a ∗ neut(a ∗ a) = neut(a) ∗ a.

a ∗ neut(a ∗ a) = a.

Similarly, we can prove neut(a ∗ a) ∗ a = a. This means that neut(a ∗ a) ∈
{neut(a)}.

Now, we note that Proposition 3.18 in [16] is not true.

Example 3.12. Consider (Z10, ♯), where ♯ is defined as a ♯ b = 3ab(mod10).
Then, (Z10, ♯) is a neutrosophic triplet group under the binary operation ♯ with
Table 1.

Table 1 Cayley table of neutrosophic triplet group (Z10, ♯)
♯ 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 3 6 9 2 5 8 1 4 7

2 0 6 2 8 4 0 6 2 8 4

3 0 9 8 7 6 5 4 3 2 1

4 0 2 4 6 8 0 2 4 6 8

5 0 5 0 5 0 5 0 5 0 5

6 0 8 6 4 2 0 8 6 4 2

7 0 1 2 3 4 5 6 7 8 9

8 0 4 8 2 6 0 4 8 2 6

9 0 7 4 1 8 5 2 9 6 3

For each a ∈ Z10, we have neut(a) in Z10. That is,

neut(0) = 0, neut(1) = 7, neut(2) = 2, neut(3) = 7, neut(4) = 2,
neut(5) = 5, neut(6) = 2, neut(7) = 7, neut(8) = 2, neut(9) = 7.

Let H = {0, 2, 5, 7}, then (H, ♯) is a neutrosophic triplet subgroup of (Z10, ♯),
but

anti(5) ∈ {1, 3, 5, 7, 9} ̸⊂ H,
anti(0) ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} ̸⊂ H.

Therefore, Proposition 3.18 in [16] should be revised to the following form.

Proposition3.13. Let (N, ∗) be a neutrosophic triplet group and H be a subset
of N . Then H is a neutrosophic triplet subgroup of N if and only if the following
conditions hold:
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(1) a ∗ b ∈ H for all a, b ∈ H.

(2) there exists neut(a) ∈ H for all a ∈ H.

(3) there exists anti(a) ∈ H for all a ∈ H.

4. New properties of commutative neutrosophic triplet group

Theorem 4.1. Let (N, ) be a commutative neutrosophic triplet group with re-
spect to ∗ and a, b ∈ N . Then

{neut(a)} ∗ {neut(b)} ⊆ {neut(a ∗ b)}.

Proof. For any a, b ∈ N , by Definition 2.1 and 2.4 we have

a ∗ neut(a) ∗ neut(b) ∗ b = (a ∗ neut(a)) ∗ (neut(b) ∗ b) = a ∗ b.

From this and applying the commutativity and associativity of operation ∗ we
get

(neut(a) ∗ neut(b)) ∗ (a ∗ b) = (a ∗ b) ∗ (neut(a) ∗ neut(b)) = a ∗ b.

This means that neut(a)∗neut(b) ∈ {neut(a∗b)}, that is, {neut(a)}∗{neut(b)} ⊆
{neut(a ∗ b)}.

Proposition 4.2. Let (N, ∗) be a commutative neutrosophic triplet group with
respect to ∗ and H = {neut(a) | a ∈ N}. Then H is a neutrosophic triplet
subgroup of N such that (∀a ∈ N) neut(a) ∈ H and unit(h) ∈ H for any
h ∈ N .

Proof. For any h1, h2 ∈ N , by the definition of H, there exists a, b ∈ N such
that h1 = neut(a), h2 = neut(b). Then, by Theorem 4.1 we have

h1 ∗ h2 = neut(a) ∗ neut(b) ∈ {neut(a ∗ b)} ⊆ H.

Moreover, applying Theorem 3.7 and 3.10,

neut(h1) = neut(neut(a)) ∈ {neut(a)} ⊆ H.
anti(h1) = anti(neut(a)) ∈ {neut(a)} ⊆ H.

Using Proposition 3.13 we know that H is a neutrosophic triplet subgroup of
N , and it satisfies

(∀a ∈ N) neut(a) ∈ H, and unit(h) ∈ H for any h ∈ N.

Theorem 4.3. Let (N, ∗) be a commutative neutrosophic triplet group with
respect to ∗ and a, b ∈ N . Then

{anti(a)} ∗ {anti(b)} ⊆ {anti(a ∗ b)}.
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Proof. For any a, b ∈ N , by Definition 2.1 and 2.4 we have

a ∗ anti(a) ∗ anti(b) ∗ b = (a ∗ anti(a)) ∗ (anti(b) ∗ b) = neut(a) ∗ neut(b).

From this and applying the commutativity and associativity of operation ∗ we
get

(anti(a) ∗ anti(b))(a ∗ b) = (a ∗ b) ∗ (anti(a) ∗ anti(b)) = neut(a) ∗ neut(b).

Applying Theorem 4.1, neut(a) ∗ neut(b) ∈ {neut(a ∗ b)}. Hence, by Definition
2.1, anti(a) ∗ anti(b) ∈ {anti(a ∗ b)}, that is, {anti(a)} ∗ {anti(b)} ⊆ {anti(a ∗
b)}.

Theorem 4.4. Let (N, ∗) be a commutative neutrosophic triplet group with
respect to ∗. Define binary relation ≈neut on N as following:

∀a, b ∈ N , a ≈neut b iff there exists anti(b) ∈ {anti(b)}, and p, q ∈ N , and
neut(p) ∈ {neut(p)} such that

a ∗ anti(b) ∗ neut(p) ∈ {neut(q)}.

Then ≈neut is reflexive and symmetric.

Proof. (1) For any a ∈ N , by Proposition 3.2, neut(a) ∗ neut(a) ∈ {neut(a)}.
Using Definition 2.1 we get

a ∗ anti(a) ∗ neut(a) = neut(a) ∗ neut(a) ∈ {neut(a)}.

Then, a ≈neut a.

(2) Assume a ≈neut b, then there exists p, q ∈ N such that

(C1) a ∗ anti(b) ∗ neut(p) = neut(q).

where anti(b) ∈ {anti(b)}, neut(p) ∈ neut(p), neut(q) ∈ {neut(q)}. Using
Theorem 3.10, anti(neut(p)) ∈ {neut(p)}. So, we denote anti(neut(p)) = x ∈
{neut(p)}. Thus,

b ∗ anti(a) ∗ x = b ∗ anti(a) ∗ anti(neut(p))
= anti(a) ∗ b ∗ anti(neut(p)) (by Definition 2.5)
= anti(a) ∗ (neut(b) ∗ anti(anti(b))) ∗ anti(neut(p)) (by Theorem 3.9)
= (anti(a) ∗ anti(anti(b)) ∗ anti(neut(p))) ∗ neut(b) (by Definition 2.4and 2.5)
∈ {anti(a ∗ anti(b) ∗ neut(p))} ∗ neut(b) (by Theorem 4.3)
⊆ {anti(neut(q))} ∗ neut(b) (by the above result (C1))
⊆ {neut(q)} ∗ neut(b) (by Theorem 3.10)
⊆ {neut(q ∗ b)} (by Theorem 4.1)

This means that b ≈neut a.
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Definition 4.5. Let (N, ∗) be a neutrosophic triplet group. Then, N is called
a neutrosophic triplet group with condition (AN) if for all a, b ∈ N , we have

(AN) {anti(a ∗ b)} ⊆ {anti(a)} ∗ {anti(b)}.
Proposition 4.6. Let (N, ∗) be a commutative neutrosophic triplet group with
condition (AN) and a, b ∈ N . Then

neut(a ∗ b) ∈ {neut(a)} ∗ {neut(b)}.

Proof. For any a, b ∈ N , by Definition 4.5, there exists anti(a) ∈ {anti(a)},
anti(b) ∈ {anti(b)} such that

anti(a ∗ b) = anti(a) ∗ anti(b).

Then

neut(a ∗ b) = (a ∗ b) ∗ anti(a ∗ b) = (a ∗ b) ∗ (anti(a) ∗ anti(b))
= (a ∗ anti(a)) ∗ (b ∗ anti(b)) = neut(a) ∗ neut(b).

This means that neut(a ∗ b) ∈ {neut(a)} ∗ {neut(b)}.

Lemma 4.7. Let (N, ∗) be a commutative neutrosophic triplet group with con-
dition (AN) and a, b ∈ N . If there exists anti(b) ∈ {anti(b)}, p, q ∈ N ,
neut(p) ∈ {neut(p)} and neut(q) ∈ {neut(q)} such that

a ∗ anti(b) ∗ neut(p) = neut(q).

Then for any x ∈ {anti(b)}, there exists p1, q1 ∈ N , neut(p1) ∈ {neut(p1)} and
neut(q1) ∈ {neut(q1)} such that

a ∗ x ∗ neut(p1) = neut(q1).

Proof. For any x ∈ {anti(b)}, there exists y ∈ {neut(b)} such that b ∗ x =
x ∗ b = y. Thus, from a ∗ anti(b) ∗ neut(p) = neut(q) we get

a ∗ x ∗ (neut(b) ∗ neut(p))
= a ∗ x ∗ (anti(b) ∗ b) ∗ neut(p)
= (a ∗ anti(b) ∗ neut(p)) ∗ (x ∗ b)
= neut(q) ∗ y
∈ neut(q) ∗ {neut(b)}
⊆ {neut(q ∗ b)} (by Theorem 4.1)

Therefore, there exists p1, q1 ∈ N , neut(p1) ∈ {neut(p1)} and neut(q1) ∈
{neut(q1)} such that a ∗ x ∗ neut(p1) = neut(q1).

Theorem 4.8. Let (N, ∗) be a commutative neutrosophic triplet group with
condition (AN). Define binary relation ≈neut on N as following:
∀a, b ∈ N , a ≈neut b iff there exists anti(b) ∈ {anti(b)}, p, q ∈ N , and

neut(p) ∈ {neut(p)} such that

a ∗ anti(b) ∗ neut(p) ∈ {neut(q)}.

Then ≈neut is an equivalent relation on N .
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Proof. By Theorem 4.4, we only prove that ≈neut is transitive. Assume that
a ≈neut b and b ≈neut c, then there exists p, q, r, s ∈ N such that

a ∗ anti(b) ∗ neut(p) = neut(q).(C1)

b ∗ anti(c) ∗ neut(r) = neut(s).(C2)

where anti(b) ∈ {anti(b)}, anti(c) ∈ {anti(c)}, neut(p) ∈ {neut(p)}, neut(q) ∈
{neut(q)}, neut(r) ∈ {neut(r)}, neut(s) ∈ {neut(s)}. Using Theorem 3.10 and
Theorem 4.1, we have

neut(p)∗neut(c)∗anti(neut(s))∈{neut(p)}∗{neut(c)}∗{neut(s)}⊆{neut(p∗s∗c)}.

Denote y = neut(p) ∗ neut(c) ∗ anti(neut(s)) ∈ {neut(p ∗ s ∗ c)}, then
a ∗ anti(c) ∗ y = a ∗ anti(c) ∗ neut(p) ∗ neut(c) ∗ anti(neut(s))
= a ∗ anti(c) ∗ neut(p) ∗ anti(neut(s)) ∗ neut(c) (by Definition 2.5)
= a ∗ anti(c) ∗ neut(p) ∗ anti(b ∗ anti(c) ∗ neut(r)) ∗ neut(c)

(by the above result (C2))
∈ a ∗ anti(c) ∗ neut(p) ∗ {anti(b) ∗ anti(anti(c)) ∗ anti(neut(r))} ∗ neut(c)

(by Definition 4.5)
⊆ a ∗ anti(c) ∗ neut(p) ∗ {anti(b) ∗ c ∗ anti(neut(r))}

(by Definition 2.4, 2.5 and Theorem 3.9)
⊆ a ∗ neut(p) ∗ {anti(b) ∗ neut(r) ∗ (anti(c) ∗ c)}

(by Theorem 3.10, Definition 2.4 and 2.5)
= a ∗ neut(p) ∗ {anti(b) ∗ neut(r) ∗ neut(c)} (by Definition 2.1)
⊆ {(a ∗ anti(b) ∗ neut(p)) ∗ neut(r) ∗ neut(c)} (by Definition 2.1)
⊆ {neut(q1)∗neut(r)∗neut(c)} (by the above result (C1) and Lemma 4.7)
⊆ {neut(q1 ∗ r ∗ c)} (by Theorem 4.1)

This means that a ≈neut c.

5. Commutative neutrosophic triplet group and Abel group with
BCI-algebra

Theorem 5.1. Let (N, ∗) be a commutative neutrosophic triplet group condition
(AN). Define binary relation ≈neut on N as Theorem 4.8. Then the following
statements are hold:

(1) a, b, c ∈ N , a ≈neut b⇒ a ∗ c ≈neut b ∗ c.

(2) a ≈neut b⇒ neut(a) ≈neut neut(b).

(3) a ≈neut b⇒ anti(a) ≈neut anti(b).

(4) a, b ∈ N , neut(a) ≈neut neut(b).

Proof. (1) Assume a ≈neut b, then there exists p, q ∈ N such that

(C1) a ∗ anti(b) ∗ neut(p) = neut(q),

where anti(b) ∈ {anti(b)}, neut(p) ∈ {neut(p)}, neut(q) ∈ {neut(q)}. Thus,
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(a ∗ c) ∗ anti(b ∗ c) ∗ neut(p)
∈ (a ∗ c) ∗ {anti(b)} ∗ {anti(c)} ∗ neut(p) (by Definition 4.5)
⊆ {a ∗ anti(b) ∗ neut(p)} ∗ {c ∗ anti(c)} (by Definition 2.4 and 2.5)
= {a ∗ anti(b) ∗ neut(p)} ∗ {neut(c)} (by Definition 2.1)
⊆ {neut(q1)} ∗ {neut(c)}(by the above result (C1) and Lemma 4.7)
⊆ {neut(q1 ∗ c)} (by Theorem 4.1)

It follows that a ∗ c ≈neut b ∗ c.
(2) Assume a ≈neut b, then there exists p, q ∈ N such that

a ∗ anti(b) ∗ neut(p) = neut(q).

where anti(b) ∈ {anti(b)}, neut(p) ∈ {neut(p)}, neut(q) ∈ {neut(q)}. Then,
applying Theorem 3.8 and Theorem 4.1 we have

neut(a)∗anti(neut(b))∗neut(p)∈{neut(a)}∗{neut(b)}∗{neut(p)}⊆{neut(a∗b∗p)}.

This means that neut(a) ≈neut neut(b).
(3) Assume a ≈neut b, then there exists p, q ∈ N such that

a ∗ anti(b) ∗ neut(p) = neut(q).

where anti(b) ∈ {anti(b)}, neut(p) ∈ {neut(p)}, neut(q) ∈ {neut(q)}. Using
Theorem 3.10,

anti(neut(p)) ∈ {neut(p)}, anti(neut(q)) ∈ {neut(q)}.

Applying Theorem 4.3 we have

anti(a) ∗ anti(anti(b)) ∗ anti(neut(p)) ∈ {anti(a ∗ anti(b) ∗ neut(p))}
⊆ {anti(neut(q))} ⊆ {neut(q)}.

It follows that anti(a) ≈neut anti(b).
(4) ∀a, b ∈ N , since

neut(a) ∗ anti(neut(b)) ∗ neut(a)
∈ neut(a) ∗ {neut(b)} ∗ neut(a) (by Theorem 3.10)
⊆ {neut(a ∗ b ∗ a)} (by Theorem 4.1)

This means that neut(a) ≈neut neut(b).

Theorem 5.2. Let (N, ∗) be a commutative neutrosophic triplet group with
condition (AN). Define binary relation ≈neut on N as Theorem 4.8. Then the
quotient N/ ≈neut is an Abel group with respect to the following operation:

∀ a, b ∈ N, [a]neut • [b]neut = [a ∗ b]neut.

where [a]neut is the equivalent class of a, the unit elment of (N/ ≈neut, •) is
1neut = [neut(a)]neut, ∀a ∈ N , neut(a) ∈ {neut(a)}.
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Proof. By Theorem 5.1 (1) ∼ (3) we know that the operation “•” is well
definition. Obviously, (N/ ≈neut, •) is a commutative neutrosophic triplet group.

Moreover, by Theorem 5.1 (4) we get

∀a, b ∈ N , [neut(a)]neut = [neut(b)]neut.
∀a, b ∈ N , neut([a]neut) = neut([b]neut).

This means that neut(·) is unique. Denote

1neut = [neut(a)]neut, ∀ a ∈ N, neut(a) ∈ {neut(a)}.

Then 1neut is the unit element of (N/ ≈neut, •). Moreover, by Theorem 5.1 (3)
we get that anti([a]neut) is unique, ∀a ∈ N . Therefore, (N/ ≈neut, •) is an Abel
group.

Theorem 5.3. Let (N, ∗) be a commutative neutrosophic triplet group with
condition (AN). Define binary relation ≈neut on N as Theorem 4.8. If define a
new operation “→” on the quotient N/ ≈neut as following:

∀a, b ∈ N, [a]neut → [b]neut = [a]neut • anti([b]neut).

Then (N/ ≈neut,→, 1neut) is a BCI-algebra, where 1neut=[neut(a)]neut, ∀a∈N .

Proof. By Theorem 5.2 and Proposition 2.13 we can get the result.

Example 5.4. Let N = {1, 2, 3, 4, 6, 7, 8, 9}. The operation ∗ on N is defined
as Tables 2. Then, (N, ∗) is a neutrosophic triplet group with condition (AN).
For each a ∈ N , we have neut(a) in N . That is,

neut(1) = 7, neut(2) = 2, neut(3) = 7, neut(4) = 2,
neut(6) = 2, neut(7) = 7, neut(8) = 2, neut(9) = 7.

Moreover, for each a ∈ N , anti(a) in N . That is,

anti(1) = 9, anti(2) ∈ {2, 7}, anti(3) = 3, anti(4) ∈ {1, 6},
anti(6) ∈ {4, 9}, anti(7) = 7, anti(8) ∈ {3, 8}, anti(9) = 1.

It is easy to verify thatN/ ≈neut= {[2]neut, [1]neut, [3]neut, [4]neut} and (N/ ≈neut,
•) is isomorphism to (Z4,+), where

[2]neut = {2, 7}, [1]neut = {1, 6}, [3]neut = {3, 8}, [4]neut = {4, 9}.

Table 2 Cayley table of neutrosophic triplet group (N, ∗)
∗ 1 2 3 4 6 7 8 9

1 3 6 9 2 8 1 4 7

2 6 2 8 4 6 2 8 4

3 9 8 7 6 4 3 2 1

4 2 4 6 8 2 4 6 8

6 8 6 4 2 8 6 4 2

7 1 2 3 4 6 7 8 9

8 4 8 2 6 4 8 2 6

9 7 4 1 8 2 9 6 3
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Table 3 Cayley table of Abel group ((N/ ≈neut, •)
• [2]neut [1]neut [3]neut [4]neut

[2]neut [2]neut [1]neut [3]neut [4]neut
[1]neut [1]neut [3]neut [4]neut [2]neut
[3]neut [3]neut [4]neut [2]neut [1]neut
[4]neut [4]neut [2]neut [1]neut [3]neut

Table 4 Cayley table of Abel group (Z4,+)
+ 0 1 3 4

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

Example 5.5. Consider (Z10, ♯), where ♯ is defined as a ♯ b = 3ab(mod10).
Then, (Z10, ♯) is a neutrosophic triplet group with condition (AN), the binary
operation ♯ is defined in Table 1. For each ∈ Z10, we have neut(a) in Z10. That
is,

neut(0) = 0, neut(1) = 7, neut(2) = 2, neut(3) = 7, neut(4) = 2,
neut(5) = 5, neut(6) = 2, neut(7) = 7, neut(8) = 2, neut(9) = 7.

Moreover, for each a ∈ Z10, anti(a) in Z10. That is,

anti(0) ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, anti(1) = 9, anti(2) ∈ {2, 7},
anti(3) = 3, anti(4) ∈ {1, 6}, anti(5) ∈ {1, 3, 5, 7, 9},

anti(6) ∈ {4, 9}, anti(7) = 7, anti(8) ∈ {3, 8}, anti(9) = 1.

It is easy to verify that N/ ≈neut= {1neut = [0]neut} and (N/ ≈neut, •) is iso-
morphism to {1},where

[0]neut = 1neut = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

6. Quotient structure and neutro-homomorphism basic theorem

Definition 6.1 ([16]). Let (N1, ∗1) and (N2, ∗2) be two neutrosophic triplet
groups. Let f : N1 → N2 be a mapping. Then, f is called neutro-homomorphism
if for all a, b ∈ N1, we have:

(1) f(a ∗1 b) = f(a) ∗2 f(b);
(2) f(neut(a)) = neut(f(a));
(3) f(anti(a)) = anti(f(a)).

Theorem 6.2. Let (N, ∗) be a commutative neutrosophic triplet group with
respect to ∗, H be a neutrosophic triplet subgroup of N such that (∀a ∈ N)
neut(a) ∈ H and (∀a ∈ H) anti(a) ∈ H. Define binary relation ≈H on N as
following:
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∀a, b ∈ N , a ≈H b iff there exists anti(b) ∈ {anti(b)}, p ∈ N , and neut(p) ∈
{neut(p)} such that

a ∗ anti(b) ∗ neut(p) ∈ H.

Then ≈H is reflexive and symmetric.

Proof. (1) For any a ∈ N , by Proposition 3.2 and the hypothesis (neut(a) ∈ H
for any a ∈ N), we have

neut(a) ∗ neut(a) ∈ {neut(a)} ⊆ H.

By Definition 2.1 we get

a ∗ anti(a) ∗ neut(a) = neut(a) ∗ neut(a) ∈ H.

Then, a ≈H a.

(2) Assume a ≈H b, then there exists p ∈ N such that

(C2) a ∗ anti(b) ∗ neut(p) ∈ H.

where anti(b) ∈ {anti(b)}, neut(p) ∈ {neut(p)}. Moreover, by the hypothesis
(anti(a) ∈ H for any a ∈ H), we have

(C3) anti(a ∗ anti(b) ∗ neut(p)) ∈ H.

Using Theorem 3.10, anti(neut(p)) ∈ {neut(p)}. So, we denote anti(neut(p)) =
x ∈ {neut(p)}. Thus,

b ∗ anti(a) ∗ x
= b ∗ anti(a) ∗ anti(neut(p))
= anti(a) ∗ b ∗ anti(neut(p)) (by Definition 2.5)
= anti(a) ∗ (neut(b) ∗ anti(anti(b))) ∗ anti(neut(p)) (by Theorem 3.9)
= (anti(a)∗anti(anti(b))∗anti(neut(p)))∗neut(b)(by Definition 2.4 and 2.5)
∈ {anti(a ∗ anti(b) ∗ neut(p))} ∗ neut(b) (by Theorem 4.3)
⊆ H (by (C3), the hypothesis and Proposition 3.13 (1))

This means that b ≈H a.

Lemma 6.3. Let (N, ∗) be a commutative neutrosophic triplet group with con-
dition (AN), a, b ∈ N , and H be a neutrosophic triplet subgroup of N such
that (∀a ∈ N) neut(a) ∈ H and (∀a ∈ H) anti(a) ∈ H. If there exists
anti(b) ∈ {anti(b)}, p ∈ N , and neut(p) ∈ {neut(p)} such that

a ∗ anti(b) ∗ neut(p) ∈ H.

Then for any x ∈ {anti(b)}, there exists p1 ∈ N , and neut(p1) ∈ {neut(p1)}
such that

a ∗ x ∗ neut(p1) ∈ H.
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Proof. For any x ∈ {anti(b)}, there exists y ∈ {neut(b)} such that b∗x = x∗b =
y. Since (∀a ∈ N) neut(a) ∈ H, then y ∈ H. Thus, from a∗anti(b)∗neut(p) ∈ H
we get

a ∗ x ∗ (neut(b) ∗ neut(p))
= a ∗ x ∗ (anti(b) ∗ b) ∗ neut(p)
= (a ∗ anti(b) ∗ neut(p)) ∗ (x ∗ b)
= (a ∗ anti(b ∗ neut(p)) ∗ y
∈ H (by Proposition 3.13)

Theorem 6.4. Let (N, ∗) be a commutative neutrosophic triplet group with
condition (AN), H be a neutrosophic triplet subgroup of N such that (∀a ∈ N)
neut(a) ∈ H and (∀a ∈ H) anti(a) ∈ H. Define binary relation ≈H on N as
following:

∀a, b ∈ N , a ≈H b iff there exists anti(b) ∈ {anti(b)}, p ∈ N , and neut(p) ∈
{neut(p)} such that

a ∗ anti(b) ∗ neut(p) ∈ H.

Then ≈H is an equivalent relation on N .

Proof. By Theorem 6.2, we only prove that ≈H is transitive. Assume that
a ≈H b and b ≈H c, then there exists p, r ∈ N and q, s ∈ N such that

a ∗ anti(b) ∗ neut(p) = q ∈ H.(C3)

b ∗ anti(c) ∗ neut(r) = s ∈ H.(C4)

where anti(b) ∈ {anti(b)}, anti(c) ∈ {anti(c)}, neut(p) ∈ {neut(p)}, neut(r) ∈
{neut(r)}. Using Theorem 4.1 and the hypothesis (neut(a) ∈ H for any a ∈ N),
we have

neut(p) ∗ neut(s) ∗ neut(c) ∈ neut(p ∗ s ∗ c) ⊆ H.

Denote y = neut(p) ∗ neut(s) ∗ neut(c) ∈ neut(p ∗ s ∗ c), then

a ∗ anti(c) ∗ y
= a ∗ anti(c) ∗ neut(p) ∗ neut(s) ∗ neut(c)
= a ∗ anti(c) ∗ neut(p) ∗ (s ∗ anti(s)) ∗ neut(c) (by Definition 2.1)
= a ∗ anti(c) ∗ neut(p) ∗ s ∗ anti(b ∗ anti(c) ∗ neut(r)) ∗ neut(c)

(by the above result (C4))
∈ a∗anti(c)∗neut(p)∗s∗{anti(b)}∗{anti(anti(c))}∗{anti(neut(r))}neut(c)

(by Definition 4.5)
= a ∗ anti(c) ∗ neut(p) ∗ s ∗ {anti(b)} ∗ c ∗ {anti(neut(r))} (by Theorem 3.9)
⊆ a ∗ anti(c) ∗ neut(p) ∗ s ∗ {anti(b)} ∗ c ∗ {neut(r)} (by Theorem 3.10)
⊆ {a ∗ anti(b) ∗ neut(p)} ∗ s ∗ (anti(c) ∗ c) ∗ {neut(r)} (by Definition 2.4 and

2.5)
⊆ H ∗ s ∗ neut(c) ∗ {neut(r)}



COMMUTATIVE NEUTROSOPHIC TRIPLET GROUP ... 371

(by Definition 2.1, the above result (C3) and Lemma 6.3)
⊆ H (by (C4), the hypothesis and Proposition 3.13 (1))

It follows that a ≈H c.

Theorem 6.5. Let (N, ∗) be a commutative neutrosophic triplet group with
condition (AN), H be a neutrosophic triplet subgroup of N such that (∀a ∈ N)
neut(a) ∈ H and (∀a ∈ H) anti(a) ∈ H. Define binary relation ≈H on N as
following:
∀a, b ∈ N , a ≈H b iff there exists anti(b) ∈ {anti(b)}, p ∈ N , and neut(p) ∈

{neut(p)} such that
a ∗ anti(b) ∗ neut(p) ∈ H.

Then the following statements are hold:
(1) a, b, c ∈ N , a ≈H b⇒ a ∗ c ≈H b ∗ c.
(2) a ≈H b⇒ neut(a) ≈H neut(b).
(3) a ≈H b⇒ anti(a) ≈H anti(b).

Proof. (1) Assume a ≈H b, then there exists p ∈ N such that

(C2) a ∗ anti(b) ∗ neut(p) ∈ H.

where anti(b) ∈ {anti(b)}, neut(p) ∈ {neut(p)}. We have
(a ∗ c) ∗ anti(b ∗ c) ∗ neut(p)
∈ (a ∗ c) ∗ {anti(b)} ∗ {anti(c)} ∗ neut(p) (by Definition 4.5)
⊆ {a ∗ anti(b) ∗ neut(p)} ∗ {c ∗ anti(c)} (by Definition 2.4 and 2.5)
= {a ∗ anti(b) ∗ neut(p)} ∗ neut(c) (by Definition 2.1)
∈ H. (by (C2), the hypothesis, Lemma 6.3 and Proposition 3.13 (1))

It follows that a ∗ c ≈H b ∗ c.
(2) Assume a ≈H b, then there exists p ∈ N such that a∗anti(b)∗neut(p) ∈

H, where anti(b) ∈ {anti(b)}, neut(p) ∈ {neut(p)}. Applying Theorem 3.8 and
Theorem 4.1 we have

neut(a) ∗ anti(neut(b)) ∗ neut(p) ∈ neut(a) ∗ {neut(b)} ∗ neut(p)
⊆ {neut(a∗b∗p)} ⊆ H. (by the hypothesis, neut(a) ∈ H for any a ∈ N)

It follows that neut(a) ≈H neut(b).
Assume a ≈H b, then there exists p ∈ N such that

a ∗ anti(b) ∗ neut(p) ∈ H.

where anti(b) ∈ {anti(b)}, neut(p) ∈ {neut(p)}. Applying the hypothesis ((∀a ∈
N) neut(a) ∈ H and (∀a ∈ H) anti(a) ∈ H) and Theorem 3.10,

anti(a ∗ anti(b) ∗ neut(p)) ∈ H.
anti(neut(p)) ∈ {neut(p)} ⊆ H.

Moreover, by Theorem 4.3 we have

anti(a) ∗ anti(anti(b)) ∗ anti(neut(p)) ∈ {anti(a ∗ anti(b) ∗ neut(p))} ⊆ H.

Hence, anti(a) ≈H anti(b).
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Theorem 6.6. Let (N, ∗) be a commutative neutrosophic triplet group with
condition (AN), H be a neutrosophic triplet subgroup of N such that (∀a ∈ N)
neut(a) ∈ H and (∀a ∈ H) anti(a) ∈ H. Define binary relation ≈H on N as
Theorem 6.5. Then the quotient N/ ≈H is a commutative neutrosophic triplet
group with respect to the following operation:

∀a, b ∈ N, [a]H • [b]H = [a ∗ b]H .

where [a]H is the equivalent class of a with respect to ≈H . Moreover, (N, ∗) is
neutron-homomorphism to (N/ ≈H , •) with respect to the following mapping:

f : N → N/ ≈H ; and ∀a ∈ N, f(a) = [a]H .

Proof. By Theorem 6.5 we know that the operation “•” is well definition.
Obviously, (N/ ≈H , •) is a commutative neutrosophic triplet group.

By the definitions of operation “•” and mapping f we have

∀a, b ∈ N, f(a ∗ b) = [a ∗ b]H = [a]H • [b]H = f(a) • f(b).

Moreover, by Theorem 6.5 (2) and (3) we get

∀a ∈ N, f(neut(a)) = [neut(a)]H = neut([a]H) = neut(f(a)).
∀a ∈ N, f(anti(a)) = [anti(a)]H = anti([a]H) = anti(f(a)).

Therefore, (N, ∗) is neutron-homomorphism to (N/ ≈H , •) with respect to the
mapping f .

Theorem 6.7. Let (N, ∗) be a commutative neutrosophic triplet group with
condition (AN), H be a neutrosophic triplet subgroup of N such that (∀a ∈ N)
neut(a) ∈ H and (∀a ∈ H) anti(a) ∈ H. Define binary relation ≈H on N
as Theorem 6.5. If define a new operation “→” on the quotient N/ ≈H as
following: ∀a, b ∈ N , [a]H → [b]H = [a]H • anti([b]H). Then (N/ ≈H ,→, 1H) is
a BCI-algebra, where 1H = [neut(a)]H , ∀a ∈ N .

Proof. By Theorem 6.7 and Proposition 2.13 we can get the result.

Example 6.8. Let N = {1, 2, 3, 4, 6, 7, 8, 9}. The operation ∗ on N is defined
as Tables 2. Then, (N, ∗) is a neutrosophic triplet group with condition (AN).
We can get the following equation

neut(1) = 7, neut(2) = 2, neut(3) = 7, neut(4) = 2,
neut(6) = 2, neut(7) = 7, neut(8) = 2, neut(9) = 7;

anti(1) = 9, anti(2) ∈ {2, 7}, anti(3) = 3, anti(4) ∈ {1, 6},
anti(6) ∈ {4, 9}, anti(7) = 7, anti(8) ∈ {3, 8}, anti(9) = 1.

Denote H = {2, 3, 7, 8}, it is easy to verify that H is a neutrosophic triplet
subgroup of N such that (∀a ∈ N) neut(a) ∈ H and (∀a ∈ H) anti(a) ∈ H.
Moreover, N/ ≈H= {H = [2]H , [1]H} and (N/ ≈H , •) is isomorphism to (Z2,+),
where

[2]H = {2, 3, 7, 8}, [1]H = {1, 4, 6, 9}.
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Table 5 Cayley table of Abel group (N/ ≈H , •)
• [2]H [1]H

[2]H [2]H [1]H
[1]H [1]H [2]H

Table 6 Cayley table of Abel group (Z2,+)
+ 0 1

0 0 1

1 1 0

The following example shows that the basic theorem of neutro-homomorphism
(Theorem 6.7) is a natural and substantial generalization of the basic theorem
of group-homomorphism.

Example 6.9. Let (N, ∗) be a commutative group. Then, (N, ∗) is a neutro-
sophic triplet group with condition (AN). Obviously, if H is a subgroup of N ,
then binary relation ≈H on N is the relation induced by subgroup H, that is,

∀a, b ∈ N, a ≈H b if and only if a ∗ b−1 ∈ H.

Thus, (N, ∗) is group-homomorphism to (N/ ≈H , •) = (N/H, •).

7. Conclusion

This paper is focus on neutrosophic triplet group. We proved some new proper-
ties of (commutative) neutrosophic triplet group, and constructed a new equiv-
alent relation on any commutative neutrosophic triplet group with condition
(AN). Based on these results, for the first time, we have described the inner
link between commutative neutrosophic triplet group with condition (AN) and
Abel group with BCI-algebra. Furthermore, we establish the quotient struc-
ture by neutrosophic triplet subgroup, and prove the basic theorem of neutro-
homomorphism, which is a natural and substantial generalization of the basic
theorem of group-homomorphism. Obviously, these results will play an impor-
tant role in the further study of neutrosophic triplet group.
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[5] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad.,
42(1966), 26-29.

[6] Y. B. Jun, H.S. Kim, J. Neggers, On pseudo-BCI ideals of pseudo-BCI
algebras, Matematicki Vesnik, 58(2006), 39-46.

[7] Y. B. Jun, Neutrosophic subalgebras of several types in BCK/BCI-algebras,
Annals of Fuzzy Mathematics and Informatics, 14(2017), 75-86.

[8] H. S. Kim, Y. H. Kim, On BE-algebras, Sci. Math. Japon., 66(2007), 113-
116.

[9] T. D. Lei, C. C. Xi, p-radical in BCI-algebras, Mathematica Japanica,
30(1985), 511-517.

[10] A. Rezaei, A.B. Saeid, F. Smarandache, Neutrosophic filters in BE-algebras,
Ratio Mathematica, 29(2015), 65-79.

[11] A. B. Saeid, Y. B. Jun, Neutrosophic subalgebras of BCK/ BCI-algebras
based on neutrosophic points, Annals of Fuzzy Mathematics and Informat-
ics, 14(2017), 87-97.

[12] F. Smarandache, Neutrosophy, Neutrosophic Probability, Set, and Logic,
Amer. Res. Press, Rehoboth, USA, 1998.

[13] F. Smarandache, Neutrosophy and Neutrosophic Logic, Information Sci-
ences First International Conference on Neutrosophy, Neutrosophic Logic,
Set, Probability and Statistics University of New Mexico, Gallup, USA,
2002.

[14] F. Smarandache, Neutrosophic setCa generialization of the intuituionis-
tics fuzzy sets, International Journal of Pure and Applied Mathematics,
24(2005), 287-297.

[15] F. Smarandache, Neutrosophic Perspectives: Triplets, Duplets, Multisets,
Hybrid Operators, Modal Logic, Hedge Algebras. And Applications, Pons
Publishing House, Brussels, 2017.

[16] F. Smarandache, M. Ali, Neutrosophic triplet group, Neural Computing and
Applications, 2017, DOI 10.1007/ s00521-016-2535-x



COMMUTATIVE NEUTROSOPHIC TRIPLET GROUP ... 375

[17] H. Wang, F. Smarandache, Y.Q. Zhang et al, Single valued neutro-
sophic sets, Multispace and Multistructure. Neutrosophic Transdisciplinar-
ity, 4(2010), 410-413.

[18] X. L. Xin, Y. J. Li, Y. L. Fu, States on pseudo-BCI algebras, European
Journal of Pure And Applied Mathematics, 10(2017), 455-472.

[19] J. Ye, Single valued neutrosophic cross-entropy for multicriteria decision
making problems, Applied Mathematical Modelling, 38(2014), 1170-1175.

[20] X. H. Zhang, R. F. Ye, BZ-algebra and group, J. Math. Phys. Sci., 29(1995),
223-233.

[21] X. H. Zhang, Y. Q. Wang, W. A. Dudek, T-ideals in BZ-algebras and T-
type BZ-algebras, Indian Journal Pure and Applied Mathematics, 34(2003),
1559-1570.

[22] X. H. Zhang, W. H. Li, On pseudo-BL algebras and BCC-algebra, Soft
Computing, 10(2006), 941-952.

[23] X. H. Zhang, Fuzzy Logics and Algebraic Analysis, Science Press, Beijing,
2008.

[24] X. H. Zhang, W. A. Dudek, BIK+-logic and non-commutative fuzzy logics,
Fuzzy Systems and Mathematics, 23(2009), 8-20.

[25] X. H. Zhang, BCC-algebras and residuated partially-ordered groupoid,
Mathematica Slovaca, 63(2013), 397-410.

[26] X. H. Zhang, Y. B. Jun, Anti-grouped pseudo-BCI algebras and anti-grouped
pseudo-BCI filters, Fuzzy Systems and Mathematics, 28(2014), 21-33.

[27] X. H. Zhang, Fuzzy anti-grouped filters and fuzzy normal filters in pseudo-
BCI algebras, Journal of Intelligent and Fuzzy Systems, 33(2017), 1767-
1774.

[28] X. H. Zhang, Y. T. Wu, X. H. Zhai, Neutrosophic filters in pseudo-BCI
algebras, submitted, 2017.

[29] X. H. Zhang, Y. C. Ma, F. Smarandache, Neutrosophic regular filters and
fuzzy regular filters in pseudo-BCI algebras, Neutrosophic Sets and Systems,
17(2017), 10-15.

Accepted: 27.10.2017


