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1 Introduction and Preliminaries
In 1965, Zadeh [19] introduced the useful notion of a fuzzy set
and Chang [6] three years later offered the notion of fuzzy topo-
logical space. Since then, several authors have generalized nu-
merous concepts of general topology to the fuzzy setting. The
concept of intuitionistic fuzzy set was introduced and studied
by Atanassov [1] and subsequently some important research pa-
pers published by him and his colleagues [2,3,4]. The concept
of fuzzy compact open topology was introduced by S.Dang and
A . Behera[9]. The concepts of intuitionistic evaluation maps by
R.Dhavaseelan et al[9]. After the introduction of the concepts
of neutrosophy and neutrosophic set by F. Smarandache [[11],
[12]], the concepts of neutrosophic crisp set and neutrosophic
crisp topological spaces were introduced by A. A. Salama and S.
A. Alblowi[10].

In this paper the notion of neutrosophic compact open topol-
ogy is introduced. Some interesting properties are discussed.
Moreover, neutrosophic local compactness and neutrosophic
product topology are developed. We have also utilized the no-
tion of fuzzy locally compactness due to Wong[17], Christoph
[8] and fuzzy product topology due to Wong [18].

Throughout this paper neutrosophic topological spaces
(X,T ),(Y, S) and (Z,R) will be replaced byX ,Y and Z respec-
tively.

Definition 1.1. Let T,I,F be real standard or non standard subsets
of ]0−, 1+[, with supT = tsup, infT = tinf
supI = isup, infI = iinf
supF = fsup, infF = finf
n− sup = tsup + isup + fsup
n−inf = tinf +iinf +finf . T,I,F are neutrosophic components.

Definition 1.2. Let X be a nonempty fixed set. A neutro-
sophic set [briefly NS] A is an object having the form A =
{〈x, µ

A
(x), σ

A
(x), γ

A
(x)〉 : x ∈ X}, where µ

A
(x), σ

A
(x)

and γ
A

(x) which represent the degree of membership function
(namely µ

A
(x)), the degree of indeterminacy (namely σ

A
(x))

and the degree of nonmembership (namely γ
A

(x)) respectively
of each element x ∈ X to the set A.

Remark 1.1. (1) A neutrosophic set A =
{〈x, µ

A
(x), σ

A
(x), γ

A
(x)〉 : x ∈ X} can be identi-

fied to an ordered triple 〈µ
A
, σ

A
, γ

A
〉 in ]0−, 1+[ on

X.

(2) For the sake of simplicity, we shall use the symbol
A = 〈µ

A
, σ

A
, γ

A
〉 for the neutrosophic set A =

{〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}.

We introduce the neutrosophic sets 0
N

and 1
N

in X as follows:

Definition 1.3. 0
N

= {〈x, 0, 0, 1〉 : x ∈ X} and 1
N

=
{〈x, 1, 1, 0〉 : x ∈ X}.

Definition 1.4. [8] A neutrosophic topology (NT) on a nonempty
set X consists of a family T of neutrosophic sets in X which
satisfies the following:

(i) 0
N
, 1

N
∈ T ,

(ii) G1 ∩G2 ∈ T for any G1, G2 ∈ T ,

(iii) ∪Gi ∈ T for arbitrary family {Gi | i ∈ Λ} ⊆ T .

In this case the ordered pair (X,T ) or simply X is called a neu-
trosophic topological space (NTS) and each neutrosophic set in
T is called a neutrosophic open set (NOS). The complement A
of a NOS A in X is called a neutrosophic closed set (NCS) in X .

Definition 1.5. [8] Let A be a neutrosophic subset of a neutro-
sophic topological space X . The neutrosophic interior and neu-
trosophic closure of A are denoted and defined by
Nint(A) =

⋃
{G | G is a neutrosophic open set in X and
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G ⊆ A};
Ncl(A) =

⋂
{G | G is a neutrosophic closed set in X and

G ⊇ A}.

2 Neutrosophic Locally Compact and
Neutrosophic Compact Open Topology

Definition 2 .1. L et X  b e a  n onempty s et a nd x  ∈  X  a  fixed 
element in X . If r, t ∈ I0 = (0, 1] and s ∈ I1 = [0, 1) are 
fixed real numbers such that 0 < r + t + s < 3, then xr,t,s = 〈x, 
r, t, s〉 is called a neutrosophic point (in short NP) in X, where r 
denotes the degree of membership of xr,t,s, t denotes the degree 
of indeterminacy and s denotes the degree of nonmembership of 
xr,t,s and x ∈ X the support of xr,t,s.

The neutrosophic point xr,t,s is contained in the neutrosophic
A(xr,t,s ∈ A) if and only if r < µA(x), t < σA(x), s > γA(x).

Definition 2.2. A neutrosophic set A = 〈x, µ
A
, σ

A
, γ

A
〉 in a

neutrosophic topological space (X,T ) is said to be a neutro-
sophic neighbourhood of a neotrosophic point xr,t,s, x ∈ X , if
there exists a neutrosophic open set B = 〈x, µ

B
, σ

B
, γ

B
〉 with

xr,t,s ⊆ B ⊆ A.

Definition 2.3. Let X and Y be neutrosophic topological
spaces.A mapping f : X → Y is said to be a neutrosophic
homeomorphism if f is bijective, neutrosophic continuous and
neutrosophic open.

Definition 2.4. An neutrosophic topological space (X,T ) is
called a neutrosophic Hausdorff space or T2-space if for any
pair of distinct neutrosophic points(i.e., neutrosophic points with
distinct supports) xr,t,s and yu,v,w,there exist neutrosophic open
sets U and V such that xr,t,s ∈ U ,yu,v,w ∈ V and U ∧ V = 0N

Definition 2.5. An neutrosophic topological space (X,T ) is said
to be neutrosophic locally compact if and only if for every neu-
trosophic point xr,t,s in X , there exists a neutrosophic open set
U ∈ T such that xr,t,s ∈ U and U is neutrosophic compact,i.e.,
each neutrosophic open cover of U has a finite subcover.

Definition 2.6. Let A = 〈x, µA(x), σA(x), γA(x)〉 and
B = 〈y, µB(y), σB(y), γB(y)〉 be neutrosophic sets of X and Y
respectively.The product of two neutrosophic sets A and B in a
neutrosophic topological space X is defined as
(A×B)(x, y) = 〈(x, y),min(µA(x), µB(y)),min(σA(x), σB(y)),
max(γA(x), γB(y))〉 for all (x, y) ∈ X × Y .

Definition 2.7. Let f1 : X1 → Y1 and f2 : X2 → Y2. The
product f1 × f2 : X1 × X2 → Y1 × Y2 is defined by: (f1 ×
f2)(x1, x2) = (f1(x1), f2(x2)) ∀(x1, x2) ∈ X1 ×X2.

Lemma 2.1. Let fi : Xi → Yi (i = 1, 2) be functions and
U , V are neutrosophic sets of Y1, Y2, respectively, then (f1 ×
f2)−1(U × V ) = f−1

1 (U)× f−1
2 (V ) ∀ U × V ∈ Y1 × Y2

Definition 2.8. A mapping f : X → Y is neutrosophic continu-
ous iff for each neutrosophic point xr,t,s in X and each neutro-
sophic neighbourhoodB of f(xr,t,s) in Y ,there is a neutrosophic
neighbourhood A of xr,t,s in X such that f(A) ⊆ B.

Definition 2.9. A mapping f : X → Y is said to be neutrosophic
homeomorphism if f is bijective ,neutrosophic continuous and
neutrosophic open.

Definition 2.10. A neutrosophic topological space X is called
a neutrosophic Hausdorff space or T2 space if for any distinct
neutrosophic points xr,t,s and yu,v,w,there exists neutrosophic
open sets G1 and G2, such that xr,t,s ∈ G1,yu,v,w ∈ G2 and
G1 ∩G2 = 0∼

Definition 2.11. A neutrosophic topological space X is said to
be a neutrosophic locally compact iff for any neutrosophic point
xr,t,s in X , there exists a neutrosophic open set U ∈ T such that
xr,t,s ∈ U and U is neutrosophic compact that is, each neutro-
sophic open cover of U has a finite subcover.

Proposition 2.1. In a neutrosophic Hausdorff topological space
X , the following conditions are equivalent.

(a) X is a neutrosophic locally compact

(b) for each neutrosophic point xr,t,s in X , there exists a neu-
trosophic open set G in X such that xr,t,s ∈ G and Ncl(G)
is neutrosophic compact

Proof. (a) ⇒ (b) By hypothesis for each neutrosophic point
xr,t,s in X , there exists a neutrosophic open set G which is neu-
trosophic compact.Since X is neutrosophic Hausdorff (neutro-
sophic compact subspace of neutrosophic Hausdorff space is neu-
trosophic closed), G is neutrosophic closed, thus G = Ncl(G).
Hence xr,t,s ∈ G and Ncl(G) is neutrosophic compact.
(b)⇒ (a) Proof is simple.

Proposition 2.2. Let X be a neutrosophic Hausdorff topological
space.Then X is neutrosophic locally compact at a neutrosophic
point xr,t,s in X iff for every neutrosophic open setG containing
xr,t,s there exists a neutrosophic open set V such that xr,t,s ∈ V ,
Ncl(V ) is neutrosophic compact and Ncl(V ) ⊆ G.

Proof. Suppose that X is neutrosophic locally compact at a
neutrosophic point xr,t,s. By Definition 2.11, there exists
a neutrosophic open set G such that xr,t,s ∈ G and G is
neutrosophic compact. Since X is a neutrosophic Hausdorff
space,(neutrosophic compact subspace of neutrosophic Haus-
dorff space is neutrosophic closed), G is neutrosophic closed.
Thus G = Ncl(G). Consider a neutrosophic point xr,t,s ∈ G.
Since X is neutrosophic Hausdorff space, by Definition 2.10,
there exist neutrosophic open sets C and D such that xr,t,s ∈ C,
yu,v,w ∈ D and C ∩ D = 0∼. Let V = C ∩ G. Hence
V ⊆ G implies Ncl(V ) ⊆ Ncl(G) = G. Since Ncl(V ) is
neutrosophic closed and G is neutrosophic compact, (every neu-
trosophic closed subset of a neutrosophic compact space is neu-
trosophic compact) it follows that Ncl(V ) is neutrosophic com-
pact. Thus xr,t,s ∈ Ncl(V ) ⊆ G and Ncl(G) is neutrosophic
compact.
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The converse follows from Proposition 2.1(b).

Definition 2.12. Let X and Y be two neutrosophic topological
spaces.The function T : X × Y → Y ×X defined by T (x, y) =
(y, x) for each (x, y) ∈ X × Y is called a switching map.

Proposition 2.3. The switching map T : X × Y → Y × X
defined as above is neutrosophic continuous.

We now introduce the concept of a neutrosophic compact open
topology in the set of all neutrosophic continuous functions from
a neutrosophic topological spaceX to a neutrosophic topological
space Y .

Definition 2.13. Let X and Y be two neutrosophic topological
spaces and let Y X = {f : X → Y such that f is neutrosophic
continuous}. We give this class Y X a topology called the neutro-
sophic compact open topology as follows: Let K = {K ∈ IX :
K is neutrosophic compact on X} and V = {V ∈ IY : V
is neutrosophic open in Y }.For any K ∈ K and V ∈ V ,let
S

K,V
= {f ∈ Y X : f(K) ⊆ V }.

The collection of all such {S
K,V

: K ∈ K, V ∈ V} is a neutro-
sophic subbase to generate a neutrosophic topology on the class
Y X . The class Y X with this topology is called a neutrosophic
compact open topological space.

3 Neutrosophic Evaluation Map and Ex-
ponential Map

We now consider the neutrosophic product topological space
Y X×X and define a neutrosophic continuous map from Y X×X
into Y .

Definition 3.1. The mapping e : Y X × X → Y defined by
e(f, xr,t,s) = f(xr,t,s) for each neutrosophic point xr,t,s ∈ X
and f ∈ Y X is called the neutrosophic evaluation map.

Definition 3.2. Let X ,Y ,Z be neutrosophic topological spaces
and f : Z × X → Y be any function. Then the induced map
f̂ : X → Y Z is defined by (f̂(xr,t,s))(zt,u,v) = f(zt,u,v, xr,t,s)
for neutrosophic point xr,t,s ∈ X and zt,u,v ∈ Z.
Conversely, given a function f̂ : X → Y Z , a corresponding
function f can also be defined by the same rule.

Proposition 3.1. LetX be a neutrosophic locally compact Haus-
dorff space. Then the neutrosophic evaluation map e : Y X ×
X → Y is neutrosophic continuous.

Proof. Consider (f, xr,t,s) ∈ Y X × X ,where f ∈ Y X and
xr,t,s ∈ X .Let V be a neutrosophic open set containing
f(xr,t,s) = e(f, xr,t,s) in Y . Since X is neutrosophic lo-
cally compact and f is neutrosophic continuous, by Proposi-
tion 2.2, there exists a neutrosophic open set U in X such that
xr,t,s ∈ Ncl(U) is neutrosophic compact and f(Ncl(U)) ⊆ V .

Consider the neutrosophic open set S
Ncl(U),V

×U in Y X ×X .
Clearly (f, xr,t,s) ∈ SNcl(U),V

×U .Let (g, xt,u) ∈ S
Ncl(U),V

×U

be arbitrary. Thus g(Ncl(U)) ⊆ V . Since xt,u ∈ U ,we have
g(xt,u) ∈ V and e(g, xt,u) = g(xt,u) ∈ V .Thus e(S

Ncl(U),V
×

U) ⊆ V .Hence e is neutrosophic continuous.

Proposition 3.2. Let X and Y be two neutrosophic topological
spaces with Y being neutrosophic compact. Let xr,t,s be any
neutrosophic point in X and N be a neutrosophic open set in the
neutrosophic product spaceX×Y containing {xr,t,s}×Y . Then
there exists some neutrosophic neighbourhood W of xr,t,s in X
such that {xr,t,s} × Y ⊆W × Y ⊆ N .

Proposition 3.3. Let Z be a neutrosophic locally compact
Hausdorff space and X,Y be arbitrary neutrosophic topological
spaces. Then a map f : Z ×X → Y is neutrosophic continuous
iff f̂ : X → Y Z is neutrosophic continuous,where f̂ is defined
by the rule (f̂(xr,t,s))(zt,u,v) = f(zt,u,v, xr,t,s).

Proposition 3.4. LetX and Z be a neutrosophic locally compact
Hausdorff spaces. Then for any neutrosophic topological space
Y ,the function E : Y

Z×X → (Y Z)
X

defined by E(f) = f̂ (that
is E(f)(xr,t,s)(zt,u,v) = f(zt,u,v, xr,t,s) = (f̂(xr,t,s)(zt,u,v)))
for all f : Z ×X → Y is a neutrosophic homeomorphism.

Proof. (a) Clearly E is onto.

(b) For E to be injective, let E(f) = E(g) for f, g : Z ×X →
Y . Thus f̂ = ĝ, where f̂ and ĝ are the induced map of f and
g, respectively. Now for any neutrosophic point xr,t,s in X
and any neutrosophic point zt,u,v in Z, f(zt,u,v, xr,t,s) =

(f̂(xr,t,s)(zt,u,v)) = (ĝ(xr,t,s)(zt,u,v)) = g(zt,u,v, xr,t,s).
Thus f = g.

(c) For proving the neutrosophic continuity of E, consider any
neutrosophic subbasis neighbourhood V of f̂ in (Y Z)

X

, i.e
V is of the form S

K,W
where K is a neutrosophic compact

subset of X and W is neutrosophic open in Y Z . Without
loss of generality, we may assume that W = S

L,U
, where

L is a neutrosophic compact subset of Z and U is a neu-
trosophic open set in Y . Then f̂(K) ⊆ S

L,U
= W and this

implies that f̂(K)(L) ⊆ U . Thus for any neutrosophic point
xr,t,s in K and for every neutrosophic point zt,u,v in L, we
have (f̂(xr,t,s))(zt,u,v) ∈ U , that is f(zt,u,v, xr,t,s) ∈ U
and therefore f(L × K) ⊆ U . Now since L is a neutro-
sophic compact in Z and K is a neutrosophic compact in
X , L×K is also a neutrosophic compact in Z ×X[7] and
since U is a neutrosophic open set in Y , we conclude that
f ∈ S

L×K,U
⊆ Y

Z×X

. We assert that E(S
L×K,U

) ⊆ S
K,W

.
Let g ∈ S

L×K,U
be arbitrary. Thus g(L × K) ⊆ U ,

i.e g(zt,u,v, xr,t,s) = (ĝ(xr,t,s))(zt,u,v) ∈ U for all neu-
trosophic points zt,u,v ∈ L ⊆ Z and for every neutro-
sophic point xr,t,s ∈ L ⊆ X . So (ĝ(xr,t,s))(L) ⊆ U
for every neutrosophic point xr,t,s ∈ K ⊆ X , that is
(ĝ(xr,t,s)) ∈ S

L,U
= W for every neutrosophic points

xr,t,s ∈ K ⊆ X , that is ĝ(xr,t,s) ∈ S
L,U

= W for ev-
ery neutrosophic point xr,t,s ∈ K ⊆ U . Hence we have
ĝ(K) ⊆ W , that is ĝ = E(g) ∈ S

K,W
for any g ∈ S

L×K,U
.

37Neutrosophic Sets and Systems, Vol. 16, 2017

R. Dhavaseelan, S. Jafari, F. Smarandache. Compact Open Topology and Evaluation Map via Neutrosophic Sets



Thus E(S
L×K,U

) ⊆ S
K,W

. This proves that E is a neutro-
sophic continuous.

(d) For proving the neutrosophic continuity of E−1,we con-
sider the following neutrosophic evaluation maps: e1 :

(Y Z)X × X → Y Z defined by e1(f̂ , xr,t,s) = f̂(xr,t,s)

where f̂ ∈ (Y Z)
X

and xr,t,s is any neutrosophic point in X
and e2 : Y Z × Z → Y defined by e2(g, zt,u,v) = g(zt,u,v),
where g ∈ Y Z and zt,u,v is a neutrosophic point in Z. Let ψ
denote the composition of the following neutrosophic con-
tinuous functions ψ : (Z×X)× (Y Z)

X T−→ (Y Z)
X × (Z×

X)
i×t−−→ (Y Z)

X × (X ×Z)
=−→ ((Y Z)

X ×X)×Z e1×iZ−−−−→
(Y Z)×Z e2−→ Y , where i, iZ denote the neutrosophic iden-
tity maps on (Y Z)

X

and Z, respectively and T, t denote
the switching maps. Thus ψ : (Z × X) × (Y Z)

X →
Y , that is ψ ∈ Y (Z×X)×(Y Z)

X

. We consider the map

Ẽ : Y (Z×X)×(Y Z)
X

→ (Y (Z×X))(Y
Z)

X

(as defined in the
statement of the Proposition 3.4 in fact it is E). So Ẽ(ψ) :

(Y Z)
X → Y (Z×X). Now for any neutrosophic points

zt,u,v ∈ Z, xr,t,s ∈ X and f ∈ Y (Z×X), again we have
that (Ẽ(ψ) ◦ E)(f)(zt,u,v, xr,t,s) = f(zt,u,v, xr,t,s);hence
Ẽ(ψ) ◦ E=identity. Similarly for any ĝ ∈ (Y Z)

X

and neu-
trosophic points xr,t,s ∈ X, zt,u,v ∈ Z, so we have that
(E ◦ Ẽ(ψ))(ĝ)(xr,t,s, zt,u,v) = (ĝ(xr,t,s))(zt,u,v);hence
E ◦ Ẽ(ψ)=identity. Thus E is a neutrosophic homeomor-
phism.

Definition 3.3. The map E in Proposition 3.4 is called the expo-
nential map.

As easy consequence of Proposition 3.4 is as follows.

Proposition 3.5. Let X,Y, Z be neutrosophic locally compact
Hausdorff spaces. Then the map N : Y X × ZY → ZX defined
by N(f, g) = g ◦ f is neutrosophic continuous.

Proof. Consider the following compositions: X×Y X ×ZY T−→
Y X×ZY ×X t×iX−−−→ ZY ×Y X×X =−→ ZY ×(Y X×X)

i×e2−−−→
ZY × Y

e2−→ Z, where T, t denote the switching maps, iX , i
denote the neutrosophic identity functions on X and ZY , re-
spectively and e2 denotes the neutrosophic evaluation maps. Let
ϕ = e2 ◦ (i × e2) ◦ (t × iX) ◦ T . By proposition 3.4, we have
an exponential map E : ZX×Y X×ZY → (ZX)Y

X×ZY

. Since
ϕ ∈ ZX×Y X×ZY

, E(ϕ) ∈ (ZX)Y
X×ZY

. Let N = E(ϕ)
that is, N : Y X × ZY → ZX is neutrosophic continuous. For
f ∈ Y X , g ∈ ZY and for any neutrosophic point xr,t,s ∈ X ,it
easy to see that N(f, g)(xr,t,s) = g(f(xr,t,s)).
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