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a b s t r a c t 

In the current year, the precise measurement of uncertainty and fluctuation exists in a complex fuzzy at- 

tributes is addressed as computationally and mathematically expensive tasks with regard to its graphical 

analytics. To deal with this problem the calculus of complex neutrosophic sets are recently introduced to 

characterize the uncertainty and its changes based on its truth, indeterminacy, and falsity membership–

value, independently. This given a way to represent the given data sets in form of complex neutrosophic 

matrix for further analysis towards knowledge processing tasks. In this process, a major problem arises 

when an expert wants to find some of the interesting patterns in the given complex neutrosophic data 

sets to solve the particular problem. To resolve this issue, the current paper proposes a method for step 

by step demonstration to investigate the complex neutrosophic concepts and their graphical structure vi- 

sualization based on their Lower Neighbors. One of the suitable examples of the proposed method is also 

given for precise measurement of uncertainty exists in Air Quality Index (AQI) and its pattern at given 

phase of time. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Recently, the calculus of complex vague set concept lattice

[25] and its properties [26–28,34,35] is introduced for measuring

the changes in uncertainty using amplitude and phase term of a

complex set. It has given a new mathematical way to character-

ize the uncertainty and vagueness in attributes more understand-

able manner when compared to approaches available in unipolar

fuzzy space [11,16,23,24] . The reason is that the calculus of com-

plex set [12,13] and concept lattice theory [15,24] provides a well-

established mathematical framework to measure the human cogni-

tive thought [14] . To measure the fluctuation in uncertainty exists

in fuzzy attributes the calculus of complex fuzzy sets [12,13] be-

come more helpful in its precise representation using amplitude

and phase term in bipolar [22–25] or three–way space [26,27] for

multi–decision process [28] . In this process, an important problem

was addressed while handling the three–way fuzzy attributes [26–

28] that how to measure their changes at given phase of time.

To achieve this goal, properties of complex neutrosophic sets [3–

5] and its graphs [10] are introduced for handling multi–decision

attributes [9,25,28,33] . This extensive version of complex fuzzy set

[1,2,29,30] and its properties in the neutrosophic or three–way po-

lar space [31–33] given a new orientation to analyze the data sets
E-mail addresses: premsingh.csjm@gmail.com , premsingh.csjm@yahoo.com 
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ased on applied abstract algebra [1,2,15,21,37–39] . Towards this

xtension recently, Singh [26–28] introduces properties of neutro-

ophic [26,27] and complex vague set [25] based concept lattice for

recise approximation of computational linguistics exists in three–

ay decision space [47,48] . In this process a problem is addressed

hile handling the changes in three–way fuzzy attributes based on

ts truth, indeterminacy and falsity membership–values [3–5,10] .

ne of the suitable example is 22 °C temperature used to con-

ider as a cool in summer seasons, warm in winter season whereas

air (or uncertain) in spring season. This interpretation of human

ognitive thought used to exists in several real life examples from

orning to evening while taking veg, non-veg or indeterminant

pices. The precise representation of these types of attributes us-

ng a mathematical model is rigorous tasks for the research com-

unities. This problem is dovetail which affect the human life di-

ectly in form of Air Quality Index (AQI) 1 or Bushfire. 2 All of these

ases characterizing the uncertainty and fluctuations based on its

cceptation, rejection and uncertain part is major concern. Second

roblem arises with their mathematical representation and graph-

cal analytics for further analysis. Hence the current paper focuses

n solving these issues of complex fuzzy attributes. The motiva-

ion is to provide a mathematical model for easier of understand-

ng the information contained in complex neutrosophic data sets
1 https://en.wikipedia.org/wiki/Air _ quality _ index . 
2 https://en.wikipedia.org/wiki/Bushfires _ in _ Australia . 
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Table 1 

Some necessary conditions for the uses of complex neutrosophic set. 

Complex Complex Complex 

fuzzy vague neutrosophic 

set set set 

Domain Universe of Universe of Universe of 

Discourse Discourse Discourse 

Co–domain Unipolar–value Bipolar–valued Three–valued 

in unit in unit in unit 

circle [0, 1] in circle [0, 1] circle [0, 1] 3 

Truth Yes in Yes in Yes 

membership [0, 1] [0, 1] 2 in [0, 1] 3 

False No Yes in Yes 

membership [0, 1] in [0, 1] 3 

Indeterminacy No 1–True Yes 

membership –false in [0, 1] 3 

Amplitude Yes in Yes in Yes in 

term [0, 1] [0, 1] 2 [0, 1] 3 

Phase term Yes Yes Yes 

measurement [0, 2 π ] [0, 2 π ] in [0, 2 π ] 

Uncertainty Yes in Yes in Yes 

measurement [0, 1] [0, 1] 2 in [0, 1] 3 

Fluctuation Yes Yes Yes 

measurement 

Graph Yes Yes Yes 
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Fig. 1. The motivation for introducing the complex neutrosophic concept lattice. 
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ased on its maximal acceptation, minimal rejection or uncertain

egions, independently. To achieve this goal, the current paper fo-

uses on depth analysis of complex neutrosophic context and its

raphical structure visualization based on applied abstract algebra.

Recently, some of the researchers started analyzing the inde-

erminacy based on their partial ordering [17–20] graphical visual-

zation [26–28] to approximate it more prominently via three–way

ecision space [40–42] . All of these approaches fail in precise mea-

urement of periodic changes in three–way or neutrosophic fuzzy

ttributes. One of the suitable example is Air Quality Index (AQI) of

ny country changes at each interval of time. In this case, measur-

ng the AQI based on its acceptation, rejection or uncertain regions

s a computationally expensive tasks for the researchers. The rea-

on is that the values of AQI used to change several times in a day

ue to change in level of PM 2.5 , PM 10 , NO 2 and other parameters.

n this case precise representation of uncertainty and its changes

ased on its acceptation, rejection and uncertain regions at given

hase of time is mathematically expensive tasks. To conquer this

roblem recently, some of the researchers tried to represent them

sing the calculus of complex neutrosophic sets [3–5] and its graph

heory [10] for multi–decision process [9,18,28,36] at δ–granulation

43–48] . However, none of the available approaches described any

ays to find some of the useful pattern exists in the complex neu-

rosophic contexts for knowledge processing tasks. Due to which,

he current paper focuses on introducing a method for finding

ome of the interesting pattern in complex neutrosophic contexts

ased on applied lattice theory. The reason is it provides a more

escriptive measurement of uncertainty and its changes in the

omplex fuzzy attributes based on its truth, indeterminacy and un-

ertain regions, independently when compared to other extensions

f neutrosophic sets as shown in Table 1 . To acquire this advan-

ages the calculus of applied lattice theory [11,15,16,38,39] and its

xtensive properties [22–28] is utilized in this paper for generat-

ng the complex neutrosophic concepts and its hierarchical order

isualization in the concept lattice using their Lower Neighbors.

he reason to utilize the Lower Neighbor method is that it pro-

ides an easier way to investigate the concepts within limited time

omplexity when compared to other approaches [6–8] . In this way,

he proposed method provides a basis of an algorithm for com-

ressed graphical visualization of complex neutrosophic context in

he concept lattice. The motivation is to provide a mathematical

odel to analyze the complex neutrosophic data sets more pre-

isely when compared to its numerical representation. The objec-
ive is to extract some of the useful pattern in the given complex

eutrosophic context for multi–decision process as shown in Fig. 1 .

t can be considered as one of the significant outputs of the pro-

osed method in the field of complex data set analysis. 

Remaining part of the paper is organized as follows:

ection 2 provides some basic preliminaries about complex neu-

rosophic sets. Section 3 provides a method for generating

he complex neutrosophic concepts using their Lower Neighbor.

ection 4 provides illustration of the proposed method with an ex-

mple. Section 5 contains discussions followed by conclusions, and

eferences. 

. Complex neutrosophic context and its graphical visualization

Recently, it seems that. handling complex neutrosophic data set

ike measuring the quality of AQI is mathematically rigorous tasks.

o deal with these types of complex or seasonal data sets one so-

ution is to represent them matrix format and try to visualize them

n the graph. The current section contains some useful definitions

o achieve this goal as given below: 

efinition 1 (Complex fuzzy set [21,29,30] ) . A complex fuzzy set

 can be defined over a universe of discourse U having a single

uzzy membership–value at given phase of time. The complex–

alued grade of membership of an element z ∈ U can be charac-

erized by μZ ( z ). The membership–values that μZ ( z ) may receive

ll values within the unit circle of a defined complex plane in the

orm μZ ( z ) = r z (x ) e iw z (x ) , where i = 

√ −1 , both r Z ( z ) and w Z ( z ) are

eal–valued and r Z ( z ) ∈ [0, 1]. The complex fuzzy set Z may be

epresented as the set of ordered pairs: 

Z = { (z, μZ (z)) : z ∈ U } = 

{
(z, r Z (z) e iw Z (z) ) : z ∈ U 

}
The union, intersection and other operator among complex

uzzy set can be studied in [1–3] with an illustrative example for

etter understanding. 

xample 1. Let us suppose, an expert wants to measure the level

f AQI index of the given geographical regions (i.e. object–x 1 )

ased on its saturation value of PM 10 (i.e. attribute y 1 ). The user

ollected the data and saw that the saturation value of PM 10 

hanges 50 percent in six to seven months. This complex fuzzy at-

ributes can be written using the properties of complex fuzzy set

s follows: 0.5 e i 1.2 π . In case the user want to represent the inde-

erminacy and falsity regions then properties of neutrosophic set

an be useful. 

efinition 2 (Neutrosophic set [32] ) . It provides a way to charac-

erize the uncertainty and vagueness in attributes y ∈ Y based on

ruth–membership function T ( y ), a indeterminacy–membership
N 
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Table 2 

A representation of PM 10 and its fluctu- 

ation at the given areas using complex 

neutrosophic set. 

Vertex y 1 

x 1 (0.5 e i 0.7 π , 0.3 e i 1.2 π , 0.2 e i 1.8 π ) 

x 2 (0.7 e i 0.2 π , 0.6 e i 1.6 π , 0.1 e i 0.4 π ) 

x 3 (0.4 e i 0.4 π , 0.5 e i 0.8 π , 0.6 e i 2 π ) 

x 4 (0.8 e i 0.3 π , 0.7 e i 1.7 π , 0.3 e i 0.7 π ) 

Table 3 

A complex neutrosophic relation among 

the given areas using their PM 10 . 

Edges y 1 

( x 1 , x 2 ) (0.5 e i 0.2 π , 0.3 e i 1.2 π , 0.1 e i 0.4 π ) 

( x 1 , x 3 ) (0.4 e i 0.4 π , 0.3 e i 0.8 π , 0.2 e i 1.8 π ) 

( x 2 , x 4 ) (0.7 e i 0.2 π , 0.6 e i 1.6 π , 0.1 e i 0.4 π ) 

( x 3 , x 4 ) (0.4 e i 0.3 π , 0.5 e i 0.8 π , 0.3 e i 0.7 π ) 
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function I N ( y ) and a falsity–membership function F N ( y ). The T N ( y ),

I N ( y ) and F N ( y ) are real standard or non-standard subsets of

]0 −, 1 + [ as given below: 

T N : Y → ]0 −, 1 + [ , 
I N : Y → ]0 −, 1 + [ , 
F N : Y → ]0 −, 1 + [ . 
The neutrosophic set can be represented as follows: 

N = { (x, T N (y ) , I N (x ) , F N (y )) : y ∈ Y } where 0 − ≤ T N (y ) + I N (y )

+ F N (y ) ≤ 3 + . 

It is noted that 0 − = 0 − ε where 0 is its standard part and ε
is its non-standard part. Similarly, 1 + = 1 + ε ( 3 + = 3 + ε) where

1 (or 3) is standard part and ε is its non-standard part. The real

standard (0, 1) or [0, 1] can be also used to represent the neutro-

sophic set. The union and intersection among neutrosophic sets N 1 

and N 2 can be computed as follows: 

•N 1 

⋃ 

N 2 = { (x, T N 1 (x ) ∨ T N 2 (x ) , I N 1 (x ) ∧ I N 2 (x ) , F N 1 (x ) 

∧ F N 2 (x )) : x ∈ X} 
The intersection of N 1 and N 2 can be defined as follows: 

•N 1 

⋂ 

N 2 = { (x, T N 1 (x ) ∧ T N 2 (x ) , I N 1 (x ) ∨ I N 2 (x ) , F N 1 (x ) 

∨ F N 2 (x )) : x ∈ X} . 
Example 2. Example 1 represents the acceptation part of PM 10 in

the given year. In case, the expert wants to measure the accepta-

tion, rejection or indeterminacy part exists in AQI then the prop-

erties of neutrosophic set can be useful. To illustrate the problem,

let us consider an expert founds that the level of PM 10 in the given

area is 60 percent accepted, 20 rejected and 10 percent uncertain

for the health of citizens. This neutrosophic value can be written

as (0.6, 0.2, 0.1) where 0.6 represents the truth–membership value,

0.2 indeterminacy–membership value, and 0.1 falsity–membership

value. Now suppose the user want to measure the changes on the

acceptation, rejection and uncertain regions of neutrosophic value

at the given year. In this case, the properties of complex neutro-

sophic set can be useful. 

Definition 3 (Complex neutrosophic set [3–5] ) . A complex neutro-

sophic set Z can be defined over a universe of discourse U . The un-

certainty in the attributes z ∈ U can be characterized by true −0 <

r T z < 1 + , indeterminacy −0 ≤ r I z < 1 + and falsity membership–

value −0 ≤ r F z < 1 + , independently with a given phase of time

(0, 2 π ). It can be observed that, the “amplitude” term in com-

plex neutrosophic set satisfies the property −0 ≤ r T z + r I z + r F z ≤ 3 + 

whereas the “phase” term can be characterized by w 

r 
T z 

, w 

r 
I z 

and

w 

r 
F z 

in real–valued interval [0, 2 π ]. It can be represented as Z ={ 

(z, (r T z e 
w 

r 
T z , r I z e 

w 

r 
I z , r F z e 

w 

r 
F z )) : z ∈ U 

} 

. 

Example 3. Let us extend the Example 1 , that the expert agreed

that quality of PM 10 (i.e. y 1 ) is accepted 60 percent at the end of

six to seven months, 20 percent rejected at the end of four to five

months whereas the user is uncertain 10 percent at the end of nine

to tenth month of a year. This complex query can be written using

the complex neutrosophic set as given below: 

x 1 = (0.6 e 1.2 π , 0.2 e 0.7 π , 0.1 e 1.6 π )/ y 1 where 2 π is considered as

phase term to represent the year. 

Definition 4 (Complex neutrosophic graph [10,25] ) . A com-

plex neutrosophic fuzzy graph G = ( V, μc , ρc ) is a non–

empty set in which the value of vertices μc : V →
(r T c (v ) .e iarg T c (v ) , r I c (v ) .e iarg I c (v ) , r F c (v ) .e iarg F c (v ) ) and edges ρc : V × V

→ (r T c (v × v ) .e iarg T c (v ×v ) , r I c (v × v ) .e iarg I c (v ×v ) , r F c (v × v ) .e iarg F c (v ×v ) ) . It

means the membership–values can be characterized by the truth,

indeterminate and falsity membership–values within the unit

circle [0, 1] at given period of time. It can be represented through

amplitude and phase term of defined complex neutrosophic set as

follows: 
r T c (v i × v j ) .e 
iarg T c (v i ×v j ) ≤ min 

(
r T c (v i ) , r T c (v i ) 

)
.e imin ( ar g T c (v i ) ,ar g T c (v j ) ) . 

r I c (v i × v j ) .e 
iarg I c (v i ×v j ) ≥ max 

(
r I c (v i ) , r I c (v i ) 

)
.e imax ( arg I c (v i ) ,arg I c (v j ) ) . 

r F c (v i × v j ) .e 
iarg F c (v i ×v j ) ≥ max 

(
r F c (v i ) , r F c (v i ) 

)
.e imax ( arg F c (v i ) ,arg F c (v j ) ) . 

The given complex fuzzy graph is complete iff: 

r c (v i × v j ) .e 
iarg c (v i ×v j ) = min ( r c (v i ) , r c (v i ) ) .e 

imin ( ar g c (v i ) ,ar g c (v j ) ) 

or the truth, indeterminacy and falsity membership functions,

ndependently. 

xample 4. Let us suppose, the expert wants to analyze the four

iven areas x 1 , x 2 , x 3 , x 4 based on the level of PM 10 and its changes

s shown in Table 2 . The corresponding relationship among them

s shown in Table 3 . The obtained complex neutrosophic contexts

hown in Tables 3 and 4 can be visualized in using the vertices V

nd edges E of a defined complex neutrosophic graph as shown in

ig. 2 . 

efinition 5 (Lattice structure of neutrosophic set [31,32] ) . Let N 1 

nd N 2 be neutrosophic sets in the universe of discourse X . Then

 1 ⊆N 2 iff T N 1 (x ) ≤ T N 2 (x ) , I N 1 (x ) ≥ I N 2 (x ) , F N 1 (x ) ≥ F N 2 (x ) for any

 ∈ X . ( N , ∧ , ∨ ) is bounded lattice. Also the structure ( N , ∧ , ∨ , (1, 0,

), (0, 1, 1), ¬) follow the D–Morgan algebra. Similarly, this lattice

tructure can be used to represent the three–way fuzzy concept

attice and their concept using Gödel logic. 

efinition 6 (Neutrosophic fuzzy concepts [26,27] ) . Let us sup-

ose, a set of attribute i.e. ( B ) = { y j , ( T B ( y j ), I B ( y j ), F N ( y j )) ∈ [0, 1] 3 :

 y j ∈ Y } where j ≤ m . For the selected three–polar attribute set find

heir covering objects set in the given fuzzy context i.e. 

( A ) = { x i , ( T A ( x i ), I A ( x i ), F A ( x i )) ∈ [0, 1] 3 : ∀ x i ∈ X } where i ≤ n . 

The obtain pair ( A, B ) is called as a neutrosophic fuzzy concept

ff: A 

↑ = B and B ↓ = A . It can be interpreted as neutrosophic set of

bjects having maximal truth membership value, minimum inde-

erminacy and minimum falsity membership value with respect to

ntegrating the information from the common set of neutrosophic

ttributes in the defined three–way fuzzy space [0, 1] 3 using the

omponent–wise Gödel residuated lattice. After that, none of the

eutrosophic set of objects (or attributes) can be found which can

ake the membership value of the obtained neutrosophic set of

ttributes (or objects) bigger. Then obtained pair of neutrosophic

et ( A, B ) is called as a formal concepts, where A is called as extent,

nd B is called as intent. In this process, a problem arises when the

ruth, falsity and indeterminacy value of a neutrosophic attributes

hanges at each given phase of time. To overcome from this issue,

 method is proposed in the next section for generating the com-

lex neutrosophic concepts based on their Lower Neighbors [6] as

t is considered as one of the easier and cost effective method. 
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Table 4 

A proposed algorithm for building the complex neutrosophic concept lattice. 

Input: A three–way complex fuzzy context K = ( X, Y , ˜ R ) 

where | X | = n , | Y | = m . 

Output: The set of three–way complex fuzzy concepts 

1. Find the maximal covering attributes for the objects set ( X ) using ( ↑ ): 
(i) 

(
x i , (r R x i e 

w r T x i , r I x i e 
w r I x i , r F x i e 

w r F x i ) 
)↑ 

= 

(
y j , (r R y j e 

w r T y j , r I y j e 
w r I y j , r F y j e 

w r F y j ) 
)

. 

(ii) Compute the neutrosophic membership–value for the obtained attributes: 

min ( y j , r T y j e 
w r T x j ) for true membership, 

max ( y j , r I y j e 
w r I y j ) for indeterminacy membership, 

max ( y j , r F y j e 
w r F y j ) for false membership, 

(iii) Apply the operator ( ↓ ) on the obtained attribute set: (
y j , (r R y j e 

w r T y j , r I y j e 
w r I y j , r F y j e 

w r F y j ) 
)↓ 

= 

(
x i , (r R x i e 

w r T x i , r I x i e 
w r x x i , r F x i e 

w r F x i ) 
)

(iv) This gives first complex neutrosophic concept ( A, B ). 

2. Find its Lower Neighbor: 

3. for ( k = 0 to m ) 

Y k = Y − y j where j, k ≤ m 

(i). New attribute set: y k = { y j , y k } 

(ii). Set maximal acceptance for the complex neutrosophic attributes 

i.e. Amplitude = (1.0, 0.0, 0.0) and Phase = (0, 2 π ) 

(iii). Apply the operator ( ↓ ) on the attributes (
y j , (r R y j e 

w r T y j , r I y j e 
w r I y j , r F y j e 

w r F y j ) 
)↓ 

= 

(
x i , (r R x i e 

w r T x i , r I x i e 
w r x x i , r F x i e 

w r F x i ) 
)

(iv). Compute the membership of the obtained objects using Step 1 (ii): 

(v). Apply the operator ( ↑ ) on the constituted set of objects: (
x i , (r R x i e 

w r T x i , r I x i e 
w r x x i , r F x i e 

w r F x i ) 
)↑ 

= 

(
y j , (r R y j e 

w r T y j , r I y j e 
w r I y j , r F y j e 

w r F y j ) 
)

. 

(vi). Compute the membership of obtained attributes as per Step 1 (ii). 

End for . 

4. Distinct Lower Neighbor is considered as Next Neighbor. 

5. Similarly, generate all the Next Neighbor using uncovered attributes. 

6. Build the complex neutrosophic concept lattice for knowledge extraction. 

Fig. 2. A three–way complex neutrosophic graph visualization of Tables 2 and 3 . 
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. A proposed method for generating the complex 

eutrosophic concept 

Generating the complex neutrosophic concepts is addressed as

ne of the major issues for precise analysis of complex data sets

ased on its acceptation, rejection, and uncertain regions. To deal

ith this problem recently subset based algorithms are introduced

o handle the neutrosophic context [25–28] . This paper focuses

n generating the complex neutrosophic concepts based on their

ower neighbor algorithm. One of the most suitable reason behind

his method is that it provides an easier way to understand the

oncept generation when compared to other algorithms. The steps

f the proposed method are as follows: 

Step (1) The first complex neutrosophic concepts can be inves-

igated by exploring all the objects set ↑ i.e. 

(
x i , (r R x i 

e 
w 

r 
T x i , r I x i 

e 
w 

r 
I x i , r F x i 

e 
w 

r 
F x i ) 

)↑ 

 

(
y j , (r R y j 

e 
w 

r 
T y j , r I y j 

e 
w 

r 
I y j , r F y j 

e 
w 

r 
F y j ) 

)
. 
The membership–value for the complex neutrosophic set of at-

ributes can be computed as follows: 

Amplitude: 

min ( y j , r T y j 
) for true membership, 

max ( y j , r I y j 
) for indeterminacy membership, 

max ( y j , r F y j 
) for false membership, 

Phase term: 

min (y j , e 
w 

r 
T x j ) for true phase term, 

max ( y j , e 
w 

r 
I y j ) for indeterminacy phase term. 

max ( y j , e 
w 

r 
F y j ) for false phase term. 

Step (2) The Lower Neighbor of the complex fuzzy concepts

enerated at Step (1) can be investigated using uncovered at-

ributes i.e.: y k = Y − y j where j ≤ m and k ≤ m |. 

Step (3) The obtained complex neutrosophic set of attributes set

an be explored using the Galois connection ( ↓ ) on Amplitude =
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Table 5 

A truth complex membership value for 

the PM 10 , PM 2.5 and NO 2 . 

y 1 y 2 y 3 

x 1 0.5 e i 0.7 π 0.8 e i 1.7 π 0.4 e i 0.4 π

x 2 0.3 e i 0.5 π 0.4 e i 0.3 π 0.5 e i 0.4 π

x 3 0.4 e i 1.5 π 0.6 e i 1.6 π 0.3 e i 0.5 π

x 4 0.4 e i 0.2 π 0.2 e i 0.9 π 0.7 e i 1.2 π

Table 6 

An indeterminacy complex membership 

value for the PM 10 , PM 2.5 and NO 2 . 

y 1 y 2 y 3 

x 1 0.3 e i 1.6 π 0.7 e i 1.1 π 0.5 e i 0.2 π

x 2 0.5 e i 1.3 π 0.1 e i 0.8 π 0.4 e i 1.4 π

x 3 0.6 e i 1.9 π 0.6 e i 1.2 π 0.3 e i 1.4 π

x 4 0.7 e i 0.2 π 0.1 e i 0.5 π 0.2 e i 0.7 π

4

m

 

u  

[  

c  

p  

o  

a  

s  

p  

i  

o  

s  

o  

a

5  

b  

i  

T  

i  

p  

g  

c  

N  

p  

c

E  

A  

x  

P  

p  

m  

c  

l  

r  

s  

u  

a  

p

=  

3 http://indianexpress.com/article/india/india-news-india/ 
(1.0, 0.0, 0.0) and Phase = (0, 2 π ) term. The covering objects set can

be found by ( ↓ ) as follows: 

(
y j , (r R y j 

e 
w 

r 
T y j , r I y j 

e 
w 

r 
I y j , r F y j 

e 
w 

r 
F y j ) 

)↓ 

= 

(
x i , (r R x i 

e 
w 

r 
T x i , r I x i 

e 
w 

r 
x x i , r F x i 

e 
w 

r 
F x i ) 

)
. 

Compute the membership–values for the obtained objects: 

Amplitude: 

min ( x i , r T x i 
) for true membership, 

max( x i , r I x i 
) for Indeterminacy membership, 

max( x i , r F x i 
) for false membership, 

Phase term: 

min (x i , e 
w 

r 
T x i ) for true phase term, 

max ( x i , e 
w 

r 
I x i ) for indeterminacy phase term. 

max ( x i , e 
w 

r 
F x i ) for false phase term. 

Step (4). Apply the up operator ↑ on the constituted objects set:

(
x i , (r R x i 

e 
w 

r 
T x i , r I x i 

e 
w 

r 
x x i , r F x i 

e 
w 

r 
F x i ) 

)↑ 

= 

(
y j , (r R y j 

e 
w 

r 
T y j , r I y j 

e 
w 

r 
I y j , r F y j 

e 
w 

r 
F y j ) 

)
. 

Compute the neutrosophic membership–value for the obtained

attributes: 

Amplitude: 

min ( y j , r T y j 
) for true membership, 

max ( y j , r I y j 
) for indeterminacy membership, 

max ( y j , r F y j 
) for false membership, 

Phase term: 

min (y j , e 
w 

r 
T x j ) for true phase term, 

max ( y j , e 
w 

r 
I y j ) for indeterminacy phase term, 

max ( y j , e 
w 

r 
F y j ) for false phase term. 

Step (5) The obtained pair of complex neutrosophic set of ob-

jects and attributes ( A, B ) represents the Lower Neighbor of given

concept. The distinct Lower Neighbors having maximal acceptance

of complex neutrosophic membership value while integrating the

information among objects and attributes set can be considered as

Next Neighbor. 

Step (6) Similarly, all the complex neutrosophic concepts can be

discovered using the uncovered attributes. 

Step (7) The complex neutrosophic concepts lattice can be build

using their Next Neighbor. 

Step (8) Extract some of the meaningful information from the

obtained lattice. The pseudo code for the proposed algorithm is

shown in Table 4 . 

Complexity : Let us suppose, the number of objects and the

number of attributes in the given three–way complex fuzzy con-

text is n and m , respectively. To discover the Lower Neighbor of

three–way complex fuzzy attributes takes O( n 3 . m ) time complex-

ity for the amplitude and phase term, respectively. The removal

of similar Lower Neighbor takes at most O( n 3 ∗m 

3 ) time complex-

ity for the amplitude and phase term, independently. This com-

putation gives the proposed method takes O(| C |. n 6 . m 

6 ) where, C

is Lower Neighbor. In this way the proposed method shown in

Table 4 takes less computation when compared to any of the avail-

able approaches for processing the complex neutrosophic data sets.

d

. Complex neutrosophic concept lattice in context of AQI 

easurement 

Recently, Singh [25–28] has paid attention towards analysis of

ncertainty in data beyond the unipolar [23] or bipolar fuzzy space

22] . In this process, a major problem was addressed when the un-

ertainty and vagueness in the attributes changes at each given

hase of time. In this case, characterization of uncertainty based

n its acceptation, rejection and uncertain regions is computation-

lly expensive tasks. One of the most suitable example to under-

tand this situation is Air Quality Index. It used to change each

hase of time which effect the human life directly in India. 3 Hence

t is a major problem for the researchers to measure the pattern

f AQI to control or reduce its effect on human life via providing

ome guidelines. To deal with this type of data sets recently one

f the researcher tried to measure the uncertainty and its fluctu-

tions based on its acceptation, rejection and uncertain part [3–

] . This method gives a way to characterize the complex data set

ased on its truth, falsity and indeterminacy–membership–values,

ndependently with their periodic phase of time in the graphs [10] .

his paper put forward effort to extract some meaningful pattern

n the complex neutrosophic data sets using the properties of ap-

lied lattice theory as shown previously [26,27] . To achieve this

oal, the current paper introduces a method in Section 3 for dis-

overy of complex neutrosophic concepts based on properties of

ext Neighbor algorithm as shown in Table 4 . To illustrate the

roposed method one of the real–life examples for measuring the

hanges in AQI and its pattern is illustrated below: 

xample 5. Let us suppose, an expert wants to analyze the

ir Quality Index (AQI) of four geographical regions ( x 1 , x 2 , x 3 ,

 4 ) based on periodic changes in several parameters like PM 10 ,

M 2.5 , NO 2 , Carbon monoxide ( Co ), Lead ( Pb ), Ozone ( O 3 ), Sul-

hur dioxide( So 2 ), Ammonia ( NH 3 ) etc. 4 To illustrate the proposed

ethod first three parameters PM 10 ( y 1 ), PM 2.5 ( y 2 ), NO 2 ( y 3 ) is

onsidered in this paper. The expert can write the changes in the

evel of these parameters at the given year based on acceptation,

ejection and indeterminacy regions as shown in Tables 5–7 , re-

pectively. Table 8 represents the compact form of these contexts

sing the properties of complex neutrosophic sets. It can be called

s three–way complex fuzzy context which is central notion of this

aper. To understand the entries in Table 8 let us suppose: ˜ R (x 1 ,y 1 ) 

 (0.5 e i 0.7 π , 0.3 e i 1.6 π , 0.3 e i 1.4 π ). This entry shows that the saturation
elhi- air- pollution- smog- health- effects- 3739848/ . 
4 https://www.dpcc.delhigovt.nic.in/indexdup.php . 

http://indianexpress.com/article/india/india-news-india/delhi-air-pollution-smog-health-effects-3739848/
https://www.dpcc.delhigovt.nic.in/indexdup.php
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Table 7 

A falsity complex membership value for 

the PM 10 , PM 2.5 and NO 2 . 

y 1 y 2 y 3 

x 1 0.3 e i 1.4 π 0.2 e i 0.5 π 0.4 e i 0.7 π

x 2 0.4 e i 1.3 π 0.4 e i 1.7 π 0.3 e i 0.5 π

x 3 0.5 e i 0.2 π 0.8 e i 0.9 π 0.4 e i 1.5 π

x 4 0.2 e i 0.5 π 0.9 e i 1.9 π 0.4 e i 0.2 π

Fig. 3. The three–way complex neutrosophic line diagram build at Step 2 using the 

proposed algorithm. 
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Fig. 4. A three–way complex neutrosophic concept lattice generated from Table 8 . 
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alues of PM 10 is 50 percent acceptable in third to fourth months,

0 percent unacceptable in ninth to tenth months whereas it is 30

ercent unpredictable in sixth to the seventh month of the given

ear. Similarly, other entries of three–way complex fuzzy matrix

an be interpreted. Fig. 3 represents its graphical visualization us-

ng the proposed method. 

Step 1. The proposed algorithm shown in Section 3 starts

he investigation for three–way complex fuzzy concepts using

hose attributes which covers the objects set maximally. The at-

ribute which covers objects set maximally i.e. { (1 . 0 , 1 . 0) /x 1 +
(1 . 0 , 1 . 0) /x 2 + (1 . 0 , 1 . 0) /x 3 + (1 . 0 , 1 . 0) /x 4 } can be found using the

perator ( ↑ ) as shown below: 

{ (1 . 0 e i 2 π , 0 . 0 e i 2 π , 0 . 0 e i 2 π ) /x 1 + (1 . 0 e i 2 π , 0 . 0 e i 2 π , 0 . 0 e i 2 π ) /x 2 
 (1 . 0 e i 2 π , 0 . 0 e i 2 π , 0 . 0 e i 2 π ) /x 3 + (1 . 0 e i 2 π , 0 . 0 e i 2 π , 0 . 0 e i 2 π ) /x 4 } ↑ 
 { (0 . 3 e i 0 . 4 π , 0 . 7 e i 1 . 9 π , 0 . 5 e i 1 . 3 π ) /y 1 + (0 . 2 e i 0 . 3 π , 0 . 7 e i 1 . 2 π , 

 . 7 e i 1 . 9 π ) /y 2 + (0 . 3 e i 0 . 4 π , 0 . 5 e i 1 . 4 π , 0 . 4 e i 1 . 5 π ) /y 3 } . 
Now, apply the operator ↓ to find maximal vague set of objects

hile integrating the information from these constitutes attributes

s given below: 

 (0 . 3 e i 0 . 4 π , 0 . 7 e i 1 . 9 π , 0 . 5 e i 1 . 3 π ) /y 1 + (0 . 2 e i 0 . 3 π , 0 . 7 e i 1 . 2 π , 0 . 7 e i 1 . 9 π ) / 

 2 + (0 . 3 e i 0 . 4 π , 0 . 5 e i 1 . 4 π , 0 . 4 e i 1 . 5 π ) /y 3 } ↓ = 

 (1 . 0 e i 2 π , 0 . 0 e i 2 π , 0 . 0 e i 2 π ) / 

 1 + (1 . 0 e i 2 π , 0 . 0 e i 2 π , 0 . 0 e i 2 π ) /x 2 + (1 . 0 e i 2 π , 0 . 0 e i 2 π , 0 . 0 e i 2 π ) /x 3 + 

(1 . 0 e i 2 π , 0 . 0 e i 2 π , 0 . 0 e i 2 π ) /x 4 } . 
It provides following three–way complex neutrosophic con-

epts: 1. Extent: 

{ (1 . 0 e i 2 π , 0 . 0 e i 2 π , 0 . 0 e i 2 π ) /x 1 + (1 . 0 e i 2 π , 0 . 0 e i 2 π , 0 . 0 e i 2 π ) /x 2 + 

(1 . 0 e i 2 π , 0 . 0 e i 2 π , 0 . 0 e i 2 π ) /x 3 + (1 . 0 e i 2 π , 0 . 0 e i 2 π , 0 . 0 e i 2 π ) /x 4 } 
Intent: 

 (0 . 3 e i 0 . 4 π , 0 . 7 e i 1 . 9 π , 0 . 5 e i 1 . 3 π ) /y 1 + (0 . 2 e i 0 . 3 π , 0 . 7 e i 1 . 2 π , 0 . 7 e i 1 . 9 π ) / 

 2 + (0 . 3 e i 0 . 4 π , 0 . 5 e i 1 . 4 π , 0 . 4 e i 1 . 5 π ) /y 3 } 
Step 2. The Lower Neighbors of concepts shown in Step 1 can

e found as follows: 

(i) { (0 . 3 e i 0 . 4 π , 0 . 7 e i 1 . 9 π , 0 . 5 e i 1 . 3 π ) /y 1 + (0 . 2 e i 0 . 3 π , 0 . 7 e i 1 . 2 π , 

 . 7 e i 1 . 9 π ) /y 2 + (0 . 3 e i 0 . 4 π , 0 . 5 e i 1 . 4 π , 0 . 4 e i 1 . 5 π ) /y 3 } 
 

{
(1 . 0 e i 2 π , 0 . 0 e i 2 π , 0 . 0 e i 2 π ) /y 1 

}
. 
It provides { (1 . 0 e i 2 π , 0 . 0 e i 2 π , 0 . 0 e i 2 π ) /y 1 + (0 . 2 e i 0 . 3 π , 0 . 7 e i 1 . 2 π , 

 . 7 e i 1 . 9 π ) /y 2 + (0 . 3 e i 0 . 4 π , 0 . 5 e i 1 . 4 π , 0 . 4 e i 1 . 5 π ) /y 3 } . 
(ii) { (0 . 3 e i 0 . 4 π , 0 . 7 e i 1 . 9 π , 0 . 5 e i 1 . 3 π ) /y 1 + (0 . 2 e i 0 . 3 π , 0 . 7 e i 1 . 2 π , 

 . 7 e i 1 . 9 π ) /y 2 + (0 . 3 e i 0 . 4 π , 0 . 5 e i 1 . 4 π , 0 . 4 e i 1 . 5 π ) /y 3 } 
 

{
(1 . 0 e i 2 π , 0 . 0 e i 2 π , 0 . 0 e i 2 π ) /y 2 

}
. 

It provides: { (0 . 3 e i 0 . 4 π , 0 . 7 e i 1 . 9 π , 0 . 5 e i 1 . 3 π ) /y 1 + 

(1 . 0 e i 2 π , 0 . 0 e i 2 π , 0 . 0 e i 2 π ) /y 2 + (0 . 3 e i 0 . 4 π , 0 . 5 e i 1 . 4 π , 0 . 4 e i 1 . 5 π ) /y 3 } . 
(iii) { (0 . 3 e i 0 . 4 π , 0 . 7 e i 1 . 9 π , 0 . 5 e i 1 . 3 π ) /y 1 + (0 . 2 e i 0 . 3 π , 0 . 7 e i 1 . 2 π , 

 . 7 e i 1 . 9 π ) /y 2 + (0 . 3 e i 0 . 4 π , 0 . 5 e i 1 . 4 π , 0 . 4 e i 1 . 5 π ) /y 3 } 
 

{
(1 . 0 e i 2 π , 0 . 0 e i 2 π , 0 . 0 e i 2 π ) /y 3 

}
. 

It provides: { (0 . 3 e i 0 . 4 π , 0 . 7 e i 1 . 9 π , 0 . 5 e i 1 . 3 π ) /y 1 + 

(0 . 2 e i 0 . 3 π , 0 . 7 e i 1 . 2 π , 0 . 7 e i 1 . 9 π ) /y 2 + (1 . 0 e i 2 π , 0 . 0 e i 2 π , 0 . 0 e i 2 π ) /y 3 } 
Now following Lower Neighbor can be generated from above

btained complex neutrosophic attribute using the Galois connec-

ion (as illustrated in Step 1): 

2. Extent: 

 (0 . 5 e i 0 . 7 π , 0 . 3 e i 1 . 6 π , 0 . 3 e i 1 . 4 π ) /x 1 +(0 . 3 e i 0 . 5 π , 0 . 5 e i 0 . 4 π , 0 . 4 e i 1 . 3 π ) /x 2 +
(0 . 4 e i 1 . 5 π , 0 . 6 e i 1 . 9 π , 0 . 5 e i 0 . 2 π ) /x 3 + (0 . 4 e i 0 . 2 π , 0 . 7 e i 0 . 2 π , 0 . 2 e i 0 . 5 π ) /x 4 }

Intent: 

 (1 . 0 e i 2 π , 0 . 0 e i 2 π , 0 . 0 e i 2 π ) /y 1 + (0 . 2 e i 0 . 3 π , 0 . 7 e i 1 . 2 π , 0 . 9 e i 1 . 4 π ) /y 2 + 

(0 . 3 e i 0 . 4 π , 0 . 5 e i 1 . 4 π , 0 . 4 e i 1 . 5 π ) /y 3 } 
3. Extent: { (0 . 8 e i 1 . 7 π , 0 . 7 e i 1 . 1 π , 0 . 2 e i 0 . 5 π ) /x 1 + 

(0 . 4 e i 0 . 3 π , 0 . 1 e i 0 . 8 π , 0 . 4 e i 1 . 7 π ) /x 2 + (0 . 6 e i 1 . 6 π , 0 . 6 e i 1 . 2 π , 0 . 8 e i 0 . 9 π ) / 

 3 + (0 . 2 e i 0 . 9 π , 0 . 1 e i 0 . 5 π , 0 . 9 e i 1 . 9 π ) /x 4 } 
Intent: { (0 . 3 e i 0 . 4 π , 0 . 7 e i 1 . 9 π , 0 . 5 e i 1 . 3 π ) /y 1 + 

(1 . 0 e i 2 π , 0 . 0 e i 2 π , 0 . 0 e i 1 . 9 π ) /y 2 + (0 . 3 e i 0 . 4 π , 0 . 5 e i 1 . 4 π , 0 . 4 e i 1 . 5 π ) /y 3 } 
4. Extent: { (0 . 4 e i 0 . 4 π , 0 . 5 e i 0 . 2 π , 0 . 4 e i 0 . 7 π ) /x 1 + 

(0 . 5 e i 0 . 4 π , 0 . 4 e i 1 . 4 π , 0 . 3 e i 0 . 5 π ) /x 2 + (0 . 3 e i 0 . 5 π , 0 . 3 e i 1 . 4 π , 0 . 4 e i 1 . 5 π ) / 

 3 + (0 . 7 e i 1 . 2 π , 0 . 2 e i 0 . 7 π , 0 . 4 e i 0 . 2 π ) /x 4 } 
Intent: { (0 . 3 e i 0 . 4 π , 0 . 7 e i 1 . 9 π , 0 . 5 e i 1 . 3 π ) /y 1 + 

(0 . 2 e i 0 . 3 π , 0 . 7 e i 1 . 2 π , 0 . 7 e i 1 . 9 π ) /y 2 + (1 . 0 e i 2 π , 0 . 0 e i 2 π , 0 . 0 e i 2 π ) /y 3 } 
It can be observed that each of the obtained Lower Neighbors

re distinct. In this case, each of them can be considered as Next

eighbor as shown in Fig. 4 . 

Step 3 Similarly, following concepts can be generated using the

ext Neighbor of concept generated at Step 2: 

5. Extent: { (0 . 5 e i 0 . 7 π , 0 . 7 e i 1 . 6 π , 0 . 3 e i 1 . 4 π ) /x 1 + 

(0 . 3 e i 0 . 3 π , 0 . 5 e i 0 . 8 π , 0 . 4 e i 1 . 7 π ) /x 2 + (0 . 4 e i 1 . 5 π , 0 . 6 e i 1 . 9 π , 0 . 8 e i 0 . 9 π ) / 

 3 + (0 . 2 e i 0 . 2 π , 0 . 7 e i 0 . 5 π , 0 . 9 e i 1 . 4 π ) /x 4 } 
Intent: { (1 . 0 e i 2 π , 0 . 0 e i 2 π , 0 . 0 e i 2 π ) /y 1 + 

(1 . 0 e i 2 π , 0 . 0 e i 2 π , 0 . 0 e i 2 π ) /y 2 + (0 . 3 e i 0 . 4 π , 0 . 5 e i 1 . 4 π , 0 . 4 e i 1 . 5 π ) /y 3 } 
6. Extent: { (0 . 4 e i 0 . 4 π , 0 . 5 e i 1 . 6 π , 0 . 4 e i 1 . 4 π ) /x 1 + 

(0 . 3 e i 0 . 4 π , 0 . 5 e i 1 . 4 π , 0 . 4 e i 1 . 3 π ) /x 2 + (0 . 3 e i 0 . 5 π , 0 . 6 e i 1 . 9 π , 0 . 8 e i 1 . 5 π ) / 

 + (0 . 4 e i 0 . 2 π , 0 . 7 e i 0 . 7 π , 0 . 9 e i 1 . 9 π ) /x } 
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Table 8 

A complex neutrosophic context representation of Tables 5–7 . 

y 1 y 2 y 3 

x 1 (0.5 e i 0.7 π , 0.3 e i 1.6 π , 0.3 e i 1.4 π ) (0.8 e i 1.7 π , 0.7 e i 1.1 π , 0.2 e i 0.5 π ) (0.4 e i 0.4 π , 0.5 i 0.2 π , 0.4 e i 0.7 π ) 

x 2 (0.3 e i 0.5 π , 0.5 e i 0.4 π , 0.4 e i 1.3 π ) (0.4 e i 0.3 π , 0.1 e i 0.8 π , 0.4 e i 1.7 π ) (0.5 e i 0.4 π , 0.4 i 1.4 π , 0.3 e i 0.5 π ) 

x 3 (0.4 e i 1.5 π , 0.6 e i 1.9 π , 0.5 e i 0.2 π ) (0.6 e i 1.6 π , 0.6 e i 1.2 π , 0.8 e i 0.9 π ) (0.3 e i 0.5 π , 0.3 i 1.4 π , 0.4 e i 1.5 π ) 

x 4 (0.4 e i 0.2 π , 0.7 e i 0.2 π , 0.2 e i 0.5 π ) (0.2 e i 0.9 π , 0.1 e i 0.5 π , 0.9 e i 1.9 π ) (0.7 e i 1.2 π , 0.2 i 0.7 π , 0.4 e i 0.2 π ) 

Table 9 

Significant distinction of the proposed method when compared to other approaches. 

Complex Complex vague Complex Proposed 

fuzzy set set [25] neutrosophic set method 

[29,30] [24–35] [2,10] 

Domain Universe of Universe of Universe of Universe of 

Discourse Discourse Discourse Discourse 

Co–domain Three–polar Three–polar Unit Three–polar 

Single–valued Interval–valued circle circle 

True–region [0, 1] [0, 1] [0, 1] [0, 1] 

False–region [0, 1] [0, 1] [ −1 , 0) [0, 1] 

Uncertain [0, 1] [0, 1] 1-true [0, 1] 

regions -false 

Amplitude Yes Yes Yes Yes 

term 

Phase No No Yes Yes 

term 

Pattern Yes Yes Yes Yes 

Graph Yes Yes No Yes 

Lattice Yes Yes No Yes 

Methodology Subset Subset δ–equal Lower 

Neighbor 

Time complexity O(2 m . n ) O(2 m . n ) O(2 m . n 2 ) O(| C |. n 6 . m 

6 ) 
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Intent: { (1 . 0 e i 2 π , 0 . 0 e i 2 π , 0 . 0 e i 2 π ) /y 1 + 

(0 . 2 e i 0 . 3 π , 0 . 7 e i 1 . 2 π , 0 . 7 e i 1 . 9 π ) /y 2 + (1 . 0 e i 2 π , 0 . 0 e i 2 π , 0 . 0 e i 2 π ) /y 3 } 
7. Extent: { (0 . 3 e i 0 . 4 π , 0 . 7 e i 1 . 1 π , 0 . 5 e i 0 . 7 π ) /x 1 + 

(0 . 4 e i 0 . 3 π , 0 . 5 e i 1 . 4 π , 0 . 4 e i 1 . 7 π ) /x 2 + (0 . 3 e i 0 . 5 π , 0 . 6 e i 1 . 2 π , 0 . 8 e i 1 . 5 π ) / 

x 3 + (0 . 2 e i 0 . 9 π , 0 . 2 e i 0 . 7 π , 0 . 9 e i 1 . 4 π ) /x 4 } 
Intent: { (0 . 3 e i 0 . 4 π , 0 . 7 e i 1 . 9 π , 0 . 5 e i 1 . 3 π ) /y 1 + 

(1 . 0 e i 2 π , 0 . 0 e i 2 π , 0 . 0 e i 2 π ) /y 2 + (1 . 0 e i 2 π , 0 . 0 e i 2 π , 0 . 0 e i 2 π ) /y 3 } 
8. Extent: { (0 . 4 e i 0 . 4 π , 0 . 7 e i 1 . 6 π , 0 . 4 e i 1 . 4 π ) /x 1 + 

(0 . 3 e i 0 . 3 π , 0 . 5 e i 1 . 4 π , 0 . 4 e i 1 . 7 π ) /x 2 + (0 . 3 e i 0 . 5 π , 0 . 6 e i 1 . 9 π , 0 . 8 e i 1 . 5 π ) / 

x 3 + (0 . 2 e i 0 . 2 π , 0 . 7 e i 0 . 7 π , 0 . 9 e i 1 . 9 π ) /x 4 } 
Intent: { (1 . 0 e i 2 π , 0 . 0 e i 2 π , 0 . 0 e i 2 π ) /y 1 + 

(1 . 0 e i 2 π , 0 . 0 e i 2 π , 0 . 0 e i 2 π ) /y 2 + (1 . 0 e i 2 π , 0 . 0 e i 2 π , 0 . 0 e i 2 π ) /y 3 } 
It can be observed that the above generated three–way com-

plex fuzzy concepts and their compact visualization is shown in

Fig. 4 using the properties of complex neutrosophic graph. This

graph shows that concept 1 is most generalized concept whereas

concept number 8 is most specialized concepts. The concept num-

ber 1 represents that each of the chosen regions has 20–30 per-

cent acceptable saturation value for the PM 10 in month of sec-

ond to four months, 50–70 percent un–acceptable level in month

of seventh to eighth whereas 40–70 percent uncertain from ninth

to eleven months. In this case, the expert can refer to authorized

government body for extra preparation in those months to reduce

their health effects on the citizen. In a more precise way the ex-

pert may interpret the concept numbers 8. It represents that, the

region x 1 has 40 percent acceptance level of each parameter in the

month of second, 70 percent un–acceptable level in the month of

ninth whereas 40 percent unpredictable in the month of seventh.

The region x 2 has 30 percent acceptance level of each parameter

in the month of first to second, 50 percent un–acceptable level in

the month of eighth to ninth whereas 40 percent un–predictable

in the month of ninth to tenth. The region x 3 has 30 percent ac-

ceptance level of each parameter in the month of second to third,

60 percent un–acceptable level in the month of tenth to eleven,

whereas 80 percent un–predictable in the month of ninth to tenth.
 m  

o  
he region x 4 has 20 percent acceptance level of each parameter in

he month of first, 70 percent un–acceptable level in the month of

hird to fourth whereas 90 percent un–predictable in the month of

enth to eleven. It can be observed that, these extracted patterns

re more helpful in controlling or measuring the effect of AQI on

he health of citizens in those areas. This will help in reducing the

evel of AQI and its fluctuation in those particular months to the

ertain levels using following methods: 

1. Controlling emission from coal based power station, 

2. Controlling hospitals waste, 

3. Controlling diesel vehicles, 

4. Controlling road or building construction dust, 

5. Controlling the old and private vehicles etc. 

It is one of the major and significant advantages of the pro-

osed method towards measuring the pattern of AQI and its re-

uction which will help to the society. 

Table 9 shows that, the proposed method has several advan-

ages while dealing with complex neutrosophic context when com-

ared to recently introduced methods. One of the most signifi-

ant output of the proposed method provides a compressed line

iagram and graphical analytics of the given complex neutro-

ophic context O(| C |. n 6 . m 

6 ) time complexity. However, the pro-

osed method unable to provide a mechanism to incorporate the

pinion of all experts in one model to refine the pattern at user

equired information granules. To overcome from this problem the

uthor will focus on introducing connection of granular computing

46–48] to refine the multi–valued neutrosophic [9,33] contexts for

ulti–decision process [19,20,28] at user required complex granu-

ation. 

. Conclusions and future research 

This paper aimed at measuring changes in complex fuzzy at-

ributes and its pattern based on truth, false and indeterminacy

embership–values at given phase of time using the properties

f complex neutrosophic concept lattice. To achieve this goal, a
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ethod is proposed in this paper for graphical analytics of com-

lex neutrosophic data set using the calculus of Lower Neighbors

lgorithm which takes O(| C |. n 6 . m 

6 ) time complexity. One of the

uitable applications of the proposed method is also demonstrated

or precise analysis of AQI and its interested pattern in the given

ear. However, the proposed method unable to provide an ade-

uate analysis based on user required complex granules exists be-

ond the bipolar space. To deal with this problem author will focus

n refined neutrosophic sets [9,33] or complex multi–fuzzy sets

28,47] at different granulation for further applications. 
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