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a b s t r a c t 

Recently, the calculus of concept lattice is extended from unipolar to bipolar fuzzy space for precise 

measurement of vagueness in the attributes based on their acceptation and rejection part. These ex- 

tensions still unable to highlight the uncertainty in vague attributes and measurement of fluctuation at 

given phase of time. To conquer this problem, current paper proposed a method for adequate analysis of 

vagueness and uncertainty in data with fuzzy attributes using the amplitude and phase term of a defined 

complex vague set based concept lattice. In addition, the analysis derived from the proposed method is 

compared with CVSS method through an illustrative example. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Recent years, much attention has been paid towards precise

nalysis of uncertainty and vagueness in the given data set with

uzzy attributes. The uncertainty and vagueness in data coexists

imultaneously at the given phase of time. One of the suitable ex-

mple is large number of data generated from medical diagnoses

ay contain lots of incomplete, uncertain and vague information.

andling these type of complex or dynamic data set is a major

ssue for the researcher communities. To crush this problem, re-

ently Ye [1] tried to characterize the uncertainty and vagueness in

edical diagnoses data set based on its truth, indeterminacy and

alsity membership–value. However uncertainty and vagueness in

he symptoms of medical diagnoses data set changes at each inter-

al of time [2] . To represent these types of dynamic data set re-

ently properties of complex vague set [3] is introduced using the

xtensive properties of complex fuzzy logic [4–6] . The current pa-

er put forward effort to discover all the hidden pattern in a given

omplex data set. To elaborate the proposed method current pa-

er focuses on medical diagnoses data set and its hidden pattern

sing the properties of Formal Concept Analysis (FCA). The calcu-

us of FCA is already applied in analysis of gene expression data

2] , Chinese medicine data [7] , Breast cancer data [8] , Health care

ata [9] and TB data [10] . All of these available approaches focused

n finding pattern in medical diagnoses data in binary attributes.

hese methods lacks in handling the data set beyond the binary

ttributes and their fluctuation at given phase of time. The rea-
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on is to measure the vagueness and fluctuation in the uncertainty

alculus of complex vague set, complex vague lattice and complex

ague graph is required which is at infancy stage. To fill this back-

rop, the current paper aimed at depth analysis of complex fuzzy

et, its partial ordering visualization in the concept lattice using

he extensive properties of FCA. 

FCA is one of the well–established mathematical model for data

nalysis and processing, based on applied abstract algebra [11] . The

alculus of FCA provides a an alternative way to discover all the

idden pattern (i.e. formal concept) in a given data set. The gener-

ted formal concepts are nothing but a pair of objects (i.e. extent)

nd their common attributes (i.e. intent) which are closed with Ga-

ois connection. It can be considered as a basic unit of thought

or knowledge processing tasks [12] . All of the generated formal

oncepts can be displayed in compact arrangement of their gen-

ralization and specialization properties of a given concept lattice.

his hierarchical order visualization provides an adequate way to

efine the interested pattern in the given data set when compared

o its numerical representation. To intensify the knowledge pro-

essing tasks, the calculus of FCA expedite with fuzzy [13] , interval

14–16] , bipolar [17] , three–polar [18] , possibility [19] , rough set

20] and other extensive theory [21–23] . For defining the vague-

ess in attributes through unipolar [0,1], bipolar[0, 1] 2 or three–

olar [0,1] 3 fuzzy space based on their acceptation and rejection

art. However, these available approaches are unable to highlight

he fluctuation in uncertainty and vagueness at given phase of time

23] . In general the uncertainty in data occurs at each interval of

ime whereas vagueness is created due to problem in computa-

ional linguistics (like tall, young or bald). The uncertainty may

e derived from the factors like inconsistency, incompleteness, or

http://dx.doi.org/10.1016/j.chaos.2017.01.019
http://www.ScienceDirect.com
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Table 1 

Inevitable appearance of vagueness in medical data set in form 

of context. 

Conditions Objects Attributes Relation 

a Complete Complete Vague (or) 

Complex 

b Incomplete Complete Vague (or) 

or Vague Complex 

c Complete Incomplete Vague (or) 

or Vague Complex 

d Incomplete Incomplete Vague (or) 

or Vague or Vague Complex 

Table 2 

Comparison among interval, bipolar, vague and complex vague set. 

Interval Bipolar Vague Complex 

vague set 

Domain Universe of Universe of Universe of 

discourse discourse discourse 

Co–domain Unipolar Bipolar [0,1] 

interval- [0,1] [-1,0) × (0, 1] 

Uncertainty Yes Yes Yes Yes 

True Yes Yes Yes Yes 

Falsity No No No Yes 

Positive [0,1] [0,1] (0, 1] [0,1] 

Negative No No [ −1, 0) [0,1] 

Sharp Yes Yes No No 

boundaries 

Unit circle [0,1] [0,1] [0,2] [0,1] 

Amplitude term Yes Yes Yes Yes 

Phase term No No No Yes 
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o

a → b = 1 if a ≤ b , otherwise b . 
seasonality. It occurs when, the data shows cyclic or periodic pat-

tern in a given phase of time. Temperature is one of the suit-

able example to define the uncertainty and its fluctuation at given

phase of time (i.e. year). The temperature 22 ° is considered as

cool in the summer whereas the same temperature 22 ° is con-

sidered as warm in the winter season. This type of inconsistency

and fluctuation in the given attributes creates uncertainty in the

data. The vagueness is somehow related with the fuzziness avail-

able in given attributes (i.e. like young, tall or bald). It can be mea-

sured based on evidence to support (i.e. true membership –value)

or reject (i.e. false membership–value) the attributes for the given

context. It means vagueness occurs when a fuzzy attribute cannot

be defined via a sharp boundary. This situation generally can be

found in medical diagnoses data set, stock market and time series

data. As for example, How much hair loss is required to consider a

person is bald or not ?, How much loss of vision is required to con-

sider a person is legally blind or not?, What is the point of concep-

tion from date of birth to declare a person as human being? These

all fuzzy attributes contain vagueness which cannot be defined by

a precise boundaries as shown in Table 1 . To represent these types

of attributes, an expert requires some evidence to support or reject

them in a seized scale [0, 1]. For this purpose, recently properties

of vague set [24] , vague graph [25,26] , vague hypergraph [27,28] ,

vague soft set [29] , and vague lattice [30–32] is studied to expedite

its applications [33] . Subsequently, for measurement of uncertainty

and its fluctuation in the attributes [34] properties of complex

vague set [3] is introduced using the calculus of complex fuzzy set

[4] , complex fuzzy logic [5,6] and vague soft set [29] . Motivated

from these recent studies current paper focuses on exploring the

calculus of complex vague set with concept lattice for handling

complex data set. To fulfill this objective interval–valued, bipolar,

vague and complex fuzzy set is comparatively studied in Table 2 .

This table shows that the complex vague set provides more precise

representation of vagueness and uncertainty in the fuzzy attributes

using the amplitude and phase term. 
To achieve the goal, a method is proposed, in this paper to

enerate all the hidden pattern (i.e. formal concepts) in a given

omplex vague context using the amplitude and phase of a de-

ned complex vague set [3] , vague graph [25,26] , and concept lat-

ice [11,12,35–41] . To explore the properties of complex vague re-

ation [41–43] for refining the knowledge processing tasks using

echnique of concept lattice [23,44,45] . To fulfill this backdrop, the

roposed method is applied on a medical diagnoses data set with

tep by step illustration. The motivation is to improve the medical

iagnoses data processing tasks using a mathematical model rather

han traditional methods as it affects human life directly. The ob-

ective is to provide an accurate result for the adequate analysis of

isease and its recovery for a given phase of time. To validate the

esults, analysis derived from the proposed method is compared

ith CVSS method [3] with an illustrative example. 

Rest of the paper is organized as follows: Section 2 provides a

rief background about FCA with the vague setting. Section 3 con-

ains the proposed method for generating the complex vague con-

epts and its illustration in Section 4 . Section 5 provide discussions

ollowed by conclusions, and references. 

. Formal concept analysis with the vague setting 

There are many data set like ( http://indianalgae.co.in/ ) which

ontains vague attributes [34] . Medical data set is one of the suit-

ble example which contains lots of incomplete, inconsistent and

ague information. To represent these type of attributes an expert

eed evidence to accept or reject them in a seized scale [0, 1]. To

ll this backdrop, Gau and Buehrer [24] introduced properties of

ague set. In this section some basic preliminaries about FCA with

ague setting is given for handling the data with vague attributes. 

efinition 1. (Formal fuzzy context) [13] : A formal fuzzy context

 = ( X, Y , ˜ R ) is a fuzzy matrix having X as set of objects, Y as set

f attributes, and L –relation among them i.e. ˜ R : X × Y → L . In gen-

ral the relation 

˜ R represents non–zero fuzzy membership value at

hich the object x ∈ X has the attribute y ∈ Y in [0, 1] where L is a

upport set of some complete residuated lattice L [13] . 

efinition 2. (Formal vague context) [24,32] : A formal vague

ontext F = ( X, Y , ˜ R ) represents set of objects ( X ), set of

ague attributes ( Y ) and a vague relation 

˜ R between them 

˜ R =
〈 (x, y ) , t ˜ R (x, y ) , f ˜ R (x, y ) 〉| x ∈ X, y ∈ Y } . As for example, a patient

uffer from pneumonia or not can be represented through an ev-

dence for its acceptation (i.e. positive) and rejection (i.e. false

embership) value of a defined vague set and vague relation

mong them. 

efinition 3. (Residuated lattice) [35] : It is a basic structure of

ruth degrees L = ( L , ∧ , ∨ , �, → , 0, 1) in which 1 represents great-

st elements and 0 represents least elements respectively. L is a

omplete residuated lattice iff : 

1) ( L , ∧ , ∨ , 0, 1) is a complete lattice. 

2) ( L , �, 1) is commutative monoid. 

3) � and → are adjoint operators called as multiplication and

residuum, respectively i.e. a �b ≤ c iff a ≤ b → c, ∀ a, b, c ∈ L . 

The operators � and → are defined distinctly by Lukasiewicz, G

¨ del, and Goguen t–norms and their residua as given below [36] ; 

Lukasiewicz: 

• a � b = max ( a + b -1, 0), 
• a → b = min (1- a + b , 1). 

G ö del: 

• a � b = min ( a, b ), 
•

http://indianalgae.co.in/
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Table 3 

A vague set of V for Example 1 . 

v 1 v 2 v 3 

t I 0 .2 0 .3 0 .4 

f I 0 .3 0 .4 0 .5 

Table 4 

A vague set of E for Example 1 . 

v 1 v 2 v 2 v 3 v 3 v 1 

t I 0 .1 0 .2 0 .1 

f I 0 .5 0 .7 0 .6 

Fig. 1. A vague graph representation based on Tables 3 and 4 . 
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Goguen: 

• a � b = a · b , 
• a → b = 1 if a ≤ b , otherwise b / a . 

Recently, it is extensively studied for other L –sets [15,21,30,36] . 

efinition 4. (Fuzzy concept forming operator) [36] : The operators

 ↑ , ↓ ) for any L –set A ∈ L X of objects, and L –set B ∈ L Y of attributes

an be defined as follows: 

1) A 

↑ (y ) = ∧ x ∈ X ( A (x ) → 

˜ R ( x , y )) where A 

↑ ∈ L Y of attributes, 

2) B ↓ (x ) = ∧ y ∈ Y ( B (y ) → 

˜ R ( x , y )) where B ↓ ∈ L X of objects. 

The operators ( ↑ , ↓ ) are known as Galois connection. The set

 

↑ ( y ) is interpreted as the L -set of attributes y ∈ Y shared by all

bjects from A . Similarly, B ↓ ( x ) is interpreted as the L -set of all

bjects x ∈ X having the common attributes (from B ). The pair ( A,

 ) ∈ L X × L Y is called as formal fuzzy concept iff: A 

↑ = B and B ↓ = A .

n the formal fuzzy concepts fuzzy set of objects A is called as ex-

ent and fuzzy set of attributes B is called as intent. Subsequently,

hese computations are extended with interval–valued fuzzy set-

ing [15,16] , bipolar fuzzy setting [17] , vague setting [18,30] and

ossibility theory [19] . 

efinition 5. (Formal vague concept) [17,30,31] : The set of

bjects ( A ) = (x i , [ t A (x i ) , 1 − f A (x i )]) having the attributes ( B ) =
(y j , [ t B (y j ) , 1 − f B (y j )]) can be represented as a node in the vague

raph. The pair ( A, B ) is called as a formal vague concept iff: B ↓ =
( A , [ t A (x ) , 1 − f A (x )]) and A 

↑ = (B, [ t B (y ) , 1 − f B (y )]) . As for exam-

le, set of patients having pneumonia shares similar symptoms of

cceptation (i.e. positive) and rejection (i.e. false membership) in a

efined vague set and vice versa. 

efinition 6. (Partial ordering of fuzzy concepts) [13,14] : All the

iscovered formal fuzzy concepts FC F are connected via super and

ub concept hierarchy principle of partial ordering i.e. ( A 1 , B 1 ) ≤
( A 2 , B 2 ) ⇐⇒ A 1 ⊆ A 2 (⇐⇒ B 2 ⊆ B 1 ) . 

efinition 7. (Partial ordering of vague set) [28] . A vague relation

 ≤ ) on a vague set ( ̃  S ) is a partial order relation iff, it satisfies re-

exive, antisymmetric and transitive conditions. The partial order-

ng of vague set be defined as follows: Let us suppose two vague

ets I = ( t I ( z ), f I ( z )) and J = ( t J ( z ), f J ( z )) then I ⊆J iff t i ( z ) ≤ t j ( z ) and

 − f i (z) ≤ 1 − f j (z) . This ordering help us to define the super and

ub concept hierarchy between the generated formal vague con-

epts. 

efinition 8. Together with partial ordering the formal concepts

orms a complete lattice in which there exists an infimum and a

upremum among them as follows: 

• ∧ j∈ J (A j , B j ) = ( 
⋂ 

j∈ J A j , ( 
⋃ 

j∈ J B j ) ↓↑ ) , 
• ∨ j∈ J (A j , B j ) = (( 

⋃ 

j∈ J A j ) 
↑↓ , ⋂ 

j∈ J B j ) . 

efinition 9. (Complete lattice of vague set) [30,31] . A lattice is a

artially ordered set ( ̃  S , ≤) in which for every pair ( u, v ), there ex-

st a supremum = u ∨ v and an infimum = u ∧ v . Similarly, let us

uppose I = ( t I , f I ) and J = ( t J , f J ) be two vague sets of a complete lat-

ice then its infimum and supremum can be defined as follows: 

• ( t I ( z ), f I ( z )) ∧ ( t J ( z ), f J ( z )) = (min( t I ( z ), t J ( z )), min (1- f I (z) , 1 −
f J (z) )). 

• ( t I ( z ), f I ( z )) ∨ ( t J ( z ), f J ( z )) = (max( t I ( z ), t J ( z )), max(1- f I (z) , 1 −
f J (z) )). 

efinition 10. (Vague graph) [24–26] : A vague graph with an un-

erlying set V is defined to be a pair G = ( I, J ) where I = ( t I , f I ) is

 vague set fuzzy set on V and J = ( t J , f J ) is a vague set on edges E

V × V such that: 

t J ( v 1 v 2 ) ≤ min ( t A ( v 1 ), t A ( v 2 )), and 
f J ( v 1 v 2 ) ≥ max ( t A ( v 1 ), t A ( v 2 )) for all v 1 , v 2 ∈ V and ( v 1 v 2 ) ∈ E . 

xample 1. Suppose, a doctor want to write the opinion symptoms

f pneumonia available in the patients ( v 1 , v 2 , v 3 ). For this purpose

octor need an evidence to support (i.e. true membership value)

r reject (i.e. false membership–value) his/her opinion. This can

e precisely written using the properties of vague set as shown in

able 3 . Table 4 represents the corresponding relationship among

hem. These two sets can be visualized as verices V = { v 1 , v 2 , v 3 }

nd edges set –E = { v 1 v 2 , v 2 v 3 , v 3 v 1 } of a defined vague graph G .

n which, I = ( t I , f I ) represents the vague set on V as shown in

able 3 and J = ( t J , f J ) represents the vague set on E ⊆ V × V as

hown in Table 4 . Fig. 1 shows the vague graph for the vague set

f vertices and edges shown in Tables 3 and 4 [27] . 

A vague graph G = ( I, J ) is complete iff [27] : 

t J ( v 1 v 2 ) = min( t I ( v 1 ), t I ( v 2 )), and 

f J ( v 1 v 2 ) = max( f I ( v 1 ), f I ( v 2 )) for all v 1 , v 2 ∈ V and ( v 1 v 2 ) ∈ E . 

The above given definitions and examples authenticates that

roperties of vague graph [24–26] provides an effective way to

isplay the vagueness in data with fuzzy attributes. In this case

 major problem is addressed while precise measurement of un-

ertainty and vagueness in the attributes [38–45] . Many times the

ncertainty in attribute arises due to inconsistency, incompleteness

nd its fluctuation in given phase of time. As for example 22 ° tem-

erature is considered as cool in summer whereas warm in winter.

o discover such type of pattern in the dynamic or vague context is

ard to compute using any of the available approaches [23,45] . To

eal with these type of data in the next section a method is pro-

osed based on properties of complex fuzzy logic and its extensive

roperties. 

. Proposed method 

In this section, a method is proposed to generate all the com-

lex vague concepts from a given complex vague context using the

roperties of Galois connections as given below: 
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Table 5 

Proposed algorithm for generating the complex vague concepts. 

Input: A complex vague context F = ( X, Y , ˜ R ) 

where number of objects = n and number of attributes = m . 

Output: Set of complex vague formal concepts: 

1. Write the subset of attributes 2 y and represent them as y j 
2. Set the membership value for the attribute set: 

Amplitude = (1.0, 1.0) and Phase = (2 π , 2 π ) 

3. Choose any subset of attributes and apply the operator ↓ : 
Amplitude: (y j , [ r t y j , 1 − r f y j 

]) ↓ = (x i , [ r t x i , 1 − r f x i 
]) , 

Phase: (e 
w r t y j 

, 2 π−w r 
f y j ) ↓ = (e 

w r t x i 
, 2 π−w r 

f x i ) 

4. Compute the complex vague membership for the obtained objects: 

Amplitude: 

min ( x i , r t x i ) for true membership and, 

min ( x i , 1 − r f x i 
) for false membership value. 

Phase term: 

min (e 
w r t x i ) for true phase term and, 

min ( e 
2 π−w r 

f x i ) for false phase term. 

5. Apply the operator ↑ on the constituted objects set: 

Amplitude: (x i , [ r t x i , 1 − r f x i 
]) ↑ = (y j , [ r t y j , 1 − r f y j 

]) , 

Phase: (e 
w r t x i 

, 2 π−w r 
f x i ) ↑ = (e 

w r t y j 
, 2 π−w r 

f y j ) 

6. Compute the complex vague membership value for the obtained attributes set: 

Amplitude: 

min ( y j , r t y j ) for true membership and, 

min ( y j , 1 − r f y j 
) for false membership value. 

Phase term: 

min (e 
w r t y j ) for true phase term and, 

min ( e 
2 π−w r 

f y j ) for false phase term. 

7. Write the generated complex vague concepts ( A, B ) 

8. Similarly, all complex vague concepts can be generated using other subsets. 

9. Remove all the repeated complex vague concepts. 

10. Draw the complex vague concept lattice based on their subset. 
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Let a formal vague context F = ( X, Y , ˜ R ) where X is set of ob-

jects, Y is set of vague attributes and 

˜ R = { ((x, y ) , r ˜ R (x, y ) e iw ˜ R 
(x,y ) ) :

∀ x ∈ X, y ∈ Y ) } represents complex vague relation among them. To

represent the uncertainty and its fluctuation in fuzzy attributes us-

ing given phase of time whereas the vagueness in fuzzy attributes

are represented through amplitude of complex vague set. 

Definition 11. (Complex fuzzy set) [4,5] : A complex fuzzy set Z

can be defined over a universe of discourse U . The complex–valued

grade of membership of an element z ∈ U can be characterized by

μZ ( z ). The membership–values that μZ ( z ) may receive all lie within

the unit circle in the complex plane in the form μZ ( z ) = r z (x ) e iw z (x ) ,

where i = 

√ −1 , both r Z ( z ) and w Z ( z ) are real–valued and r Z ( z ) ∈
[0,1]. The complex fuzzy set Z may be represented as the set of

ordered pairs: 

Z = { (z, μZ (z)) : z ∈ U} = { (z, r Z (z) e iw Z (z) ) : zinU} 
The partial ordering and their subset can be defined using am-

plitude and phase terms respectively. 

Definition 12. (Complex vague set) [3,42,43] : A complex vague set

Z can be defined over a universe of discourse U . The complex vague

membership of an element z ∈ U can be characterized by true

r t z and false membership value r f z for the amplitude term where

0 ≤ r t z + r f z ≤ 1 . The phase term can be characterized by w 

r 
t z 

and

2 π − w 

r 
f z 

in real–valued interval (0, 2 π ] and i = 

√ −1 . It can be

represented as follows: 

Z = { (z, [ r t z , 1 − r f z ] × e 
w 

r 
t z 

, 2 π−w 

r 
f z : z ∈ U} . Similarly, the com-

plex vague relationship among any two elements z 1 , z 2 ∈ U can

be represented through true and false membership among their

amplitude and phase terms. The partial ordering among two com-

plex vague set can be defined based on properties of vague set for

truth and false membership value independently for amplitude and

phase term as shown in definitions 7 of this paper. Amplitude rep-

resents vagueness in the attributes through a seized scale of define

vague set [0, 1]. The phase term is represented by [0, 2 π ] to mea-

sure the fluctuation in uncertainty. Now, the concepts from a given

complex vague context F = ( X, Y , ˜ R ) can be generated as follows: 

Step 1 . Let us suppose number of attributes in the given com-

plex vague context is m and number of objects is n which provides

2 m subset of attributes. 

Step 2 . In general the expert want maximum acceptation of

attributes in the given phase of time for refining the knowledge

based on his/her requirements. In this case amplitude can be con-

sidered as maximum true membership value i.e. 1.0 and minimum

false membership value i.e. 0.0 for each of the attributes. This con-

sidered membership–value (1.0, 1.0) for amplitude and phase term

can be used for each of the subsets (y j , [ r t y j 
, 1 − r f y j 

]) to discover

the pattern in complex vague context. Similarly, the phase value

can be computed for minimal fluctuation i.e. (e 
w 

r 
t y j 

, 2 π−w 

r 
f y j ) = (2 π ,

2 π ). 

Step 3 . Choose any of the attribute set to discover the pattern

in given complex vague context using ↓ of Galois connection. It

↓ provides an maximal covering objects set while integrating the

information from the chosen subset of attributes based on their

amplitude and phase term as given below: 

(y j , [ r t y j 
, 1 − r f y j 

]) ↓ = (x i , [ r t x i 
, 1 − r f x i 

]) , 

(e 
w 

r 
t y j 

, 2 π−w 

r 
f y j ) ↓ = (e 

w 

r 
t x i 

, 2 π−w 

r 
f x i ) for all y j ∈ Y where j =

1 , 2 , . . . , m and i = 1 , 2 , 3 , . . . , n . 

Step 4 . The membership value of the obtained objects set using

↓ on chosen subset of attributes can be computed for the ampli-

tude and phase term as follows: 
Amplitude: 

in ( x i , r t x i 
) for true membership and, 

in ( x i , 1 − r f x i 
) for false membership value. 

Phase term: 

in (e 
w 

r 
t x i ) for true phase term and, 

in ( e 
2 π−w 

r 
f x i ) for false phase term. 

Step 5 . Now, apply the operator ↑ on these constituted objects

et to find their maximal covering attributes based on amplitude

nd phase term as follows: 

(x i , [ r t x i 
, 1 − r f x i 

]) ↑ = (y j , [ r t y j 
, 1 − r f y j 

]) , 

(e 
w 

r 
t x i 

, 2 π−w 

r 
f x i ) ↑ = (e 

w 

r 
t y j 

, 2 π−w 

r 
f y j ) for all x i ∈ X where i =

 , 2 , . . . , n and j = 1 , 2 , 3 , . . . , m . 

Step 6 . The membership value of the obtained attributes (new

ttributes) using ↑ on the constituted objects set can be computed

s follows: 

Amplitude: 

in ( y j , r t y j 
) for true membership and, 

in ( y j , 1 − r f y j 
) for false membership value. 

Phase term: 

in (e 
w 

r 
t y j ) for true phase term and, 

in ( e 
2 π−w 

r 
f y j ) for false phase term. 

Step 7 . The finally obtained pair of complex vague set of objects

nd attributes set ( A, B ) forms a complex vague concept which is

losed with Galois connection. 

Step 8 . Similarly, other concepts can be generated using re-

aining subset of attributes. 

Step 9 . Remove the repeated complex vague concepts. To refine

he knowledge adequately using all the distinct concepts. 

Step 10 . Draw the complex vague concept lattice structure as

er their subsets for data analysis and processing tasks. 

Table 5 represents the pseudo code of the proposed method to

enerate all the complex vague concepts using subset of attributes
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↓

2 m ) using maximum acceptation for amplitude and phase term as

hown in Step 1 and 2. Then find their maximally covering ob-

ects set using the operator ↓ on the chosen subset of attributes as

hown in Step 3. The membership value for amplitude and phase

erm of covering objects set can be computed using the proper-

ies of complex vague set as shown in Step 4. Now, the proposed

ethod applies the operator ↑ on these constituted objects set to

nd their maximal covering attributes while integrating the infor-

ation from them as shown in Step 5. The membership value for

he obtained attributes set can be computed using the properties

f complex vague set as shown in Step 6. In this way the proposed

ethod gives a pair of objects–attributes set which are closed with

alois connection as shown in Step 7. Similarly, other complex

ague concepts can be generated using the remaining subset of at-

ributes as shown in Step 8. Step 9 remove those concepts which

re repeated. In last the complex vague concept lattice can be built

sing their subset hierarchy. It is one of the advantages of pro-

osed method while drawing the hierarchical order among them

n concept lattice visualization. 

Complexity : Let us suppose m is number of attributes and

 is the number of objects in the given complex vague context.

omputing the subset of attributes will takes O(2 m ) computational

ime whereas finding its covering objects set will take n time for

mplitude and same time for phase term. In this case the pro-

osed method takes total O(2 m ∗n 2 ) computation cost to generate

he complex vague concepts. The proposed algorithm provides an

ffective representation of vagueness through amplitude in seized

cale [0, 1] and uncertainty through the phase term [0, 2 π ] of a

efined complex vague set. This helps more in refining the knowl-

dge in complex data set with vague attribute at given phase of

ime. It is one of the favourable output of the proposed method

hen compared to any other approaches in FCA with vague (or

ipolar fuzzy) setting. 

. Illustration 

In the last decade, many researchers have tried to analyze the

idden pattern in a given medical data set using the properties

f concept lattice [2,7–10] . In general the medical diagnoses data

et contains lots of incomplete, vague or uncertain information

hich values fluctuate at given phase of time. In this case ade-

uate analysis of hidden pattern in medical diagnoses data set and

heir interpretation is computationally expensive tasks from any of

he available approaches. To overcome from this issue, recently Ye

1] tried to characterize the medical diagnoses data set based on

ruth, false, and indeterminacy membership–values, whereas, Prem

umar Singh [18] displayed their super–sub concept visualization

n the concept lattice. These extensions are also unable to high-

ight the fluctuation of uncertainty in attributes of medical diag-

oses data at given time–interval. To deal with problem precisely,

ecently, the calculus of complex fuzzy logic [4–6] and its corre-

ponding relationship [42,43] is introduced to represent the medi-

al diagnoses data set using a defined complex vague soft set [3] .

he current paper put forward effort to analyze the medical data

et using the calculus of complex vague set [3,5,6] , concept lattice

11,12] and its extensive properties [13–21] . This research is essen-

ial because it affects the human life directly or indirectly. To fulfill

his requirement, a method is proposed in Table 5 to generate all

he hidden pattern (i.e. formal concepts) in a given medical data

et to reveal some interested information as given below: 

xample 2. Let us suppose a company manufactures set of

edicines–{ x 1 , x 2 , x 3 , x 4 } to diagnoses the following disease–

 y 1 = pneumonia, y 2 = influenza, y 3 = tuberculosis, y 4 = asthma). In

his case the manufacturing company can take suggestions from

ifferent experts on these medicine and their impact on diagnoses
f the given disease. The expert provides following analysis to di-

gnoses the pneumonia based on given medicine: 

• The medicine x 1 diagnosis the pneumonia ( y 1 ) 20 to 30% per-

cent in one to four months. The medicine x 2 diagnosis the

pneumonia ( y 1 ) 50 to 80% in one to six months. 
• The medicine ( x 3 ) diagnosis the pneumonia ( y 1 )40 to 70 % in

four to ten months. 
• The medicine ( x 4 ) diagnosis the pneumonia ( y 1 ) 30 to 50% in

two to six months. 

The obtained evidence (i.e. measuring the vagueness) to diag-

ose the pneumonia ( y 1 ) and its fluctuation (i.e. uncertainty) based

n all the medicine ( x 1 , x 2 , x 3 , x 4 can be written via amplitude and

hase term of a defined complex vague set. The phase term can be

onsidered as [0, 2 π ] to represent the diagnoses of disease from

he given medicine in a yearly basis. In this case, if the medicine

iagnoses the disease in 12 months then, its phase time can be

onsidered as 2 π . Similarly the phase value can be computed for

ther time of interval as shown below: 

(a) y 1 = { [0 . 2 , 0 . 3] e i [0 . 2 π, 0 . 8 π ] /x 1 , [0 . 5 , 0 . 8] e i [0 . 2 π, 1 . 2 π ] /x 2 , [0 . 4 , 0 . 7]

 

i [0 . 8 π, 1 . 8 π ] /x 3 , [0 . 3 , 0 . 5] e i [0 . 3 π,π ] /x 4 } . 
Subsequently, diagnoses of influenza ( y 2 ), tuberculosis ( y 3 ), and

sthma ( y 4 ) based on given medicines ( x 1 , x 2 , x 3 , x 4 ) can be writ-

en through a complex vague set as shown below [3]: 

(b) y 2 = { [0 . 2 , 0 . 4] e i [0 . 4 π, 0 . 6 π ] /x 1 , [0 . 9 , 1] e i [0 π,π ] /x 2 , [0 . 8 , 0 . 95]

 

i [0 . 6 π, 0 . 6 π ] /x 3 , [0 . 5 , 0 . 5] e i [0 . 3 π, 1 . 5 π ] /x 4 } . 
(c) y 3 = { [0 . 6 , 0 . 7] e i [0 π, 0 . 7 π ] /x 1 , [0 . 6 , 0 . 8]

 

i [0 . 4 π, 1 . 4 π ] /x 2 , [0 . 4 , 0 . 8] e i [0 . 2 π, 0 . 6 π ] /x 3 , [0 . 2 , 0 . 5] e i [0 . 1 π, 0 . 5 π ] /x 4 } . 
(d) y 4 = { [0 . 4 , 0 . 6] e i [0 . 4 π, 0 . 8 π ] /x 1 , [0 . 1 , 0 . 4] e i [0 . 1 π, 0 . 8 π ] /x 2 , [0 . 3 , 0 . 9]

 

i [0 . 2 π, 1 . 4 π ] /x 3 , [0 . 4 , 0 . 9] e i [ π, 2 π ] /x 4 } . 
Now, the problem with doctor is to analyze the most suitable

edicine which diagnosis the given disease in given phase of time.

he same problem with company to accelerate its manufacturing

rocess. To evaluate this analysis some interested patterns among

edicine and its effect on the given disease is required. To achieve

his goal shown in Section 3 of this paper can be applied to visual-

ze the above given numerical data in the concept lattice. For this

urpose above given data set is represented in form of a complex

ague context as shown in Table 6 . 

Step (1) All the generated complex vague subset of attributes

re as follows: 

1. { �}, 

2. {[1.0, 1.0] e i [2 π , 2 π ] / y 1 }, 

3. {[1.0, 1.0] e i [2 π , 2 π ] / y 2 }, 

4. {[1.0, 1.0] e i [2 π , 2 π ] / y 3 }, 

5. {[1.0, 1.0] e i [2 π , 2 π ] / y 4 }, 

6. { [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 1 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 2 } , 
7. { [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 1 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 3 } , 
8. { [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 1 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 4 } , 
9. { [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 2 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 3 } , 
0. { [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 2 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 4 } , 
1. { [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 3 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 4 } , 
2. { [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 1 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 2 + 

[1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 3 } , 
3. { [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 1 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 2 + 

[1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 4 } , 
4. { [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 1 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 3 + 

[1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 4 } , 
5. { [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 2 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 3 + 

[1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 5 } , 
6. { [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 1 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 2 + 

[1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 3 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 4 } , 
Step (2) Let us consider the first subset of attributes i.e. 1.{ �} to

enerate the complex vague concepts. To find it apply the operator

 to find its maximal covering objects as given below: 
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Table 6 

A complex vague context representation of medicine and its effect on the given disease. 

x 1 x 2 x 3 x 4 

y 1 [0.2, 0.3] e i [0.2 π , 0.8 π ] [0.5, 0.8] e i [0.2 π , 1.2 π ] [0.4, 0.7] e i [0.8 π , 1.8 π ] [0.3, 0.5] e i [0.3 π , π ] 

y 2 [0.2, 0.4] e i [0.4 π , 0.6 π ] [0.9, 1] e i [0 π , π ] [0.8, 0.95] e i [0.6 π , 0.6 π ] [0.5, 0.5] e i [0.3 π , 1.5 π ] 

y 3 [0.6, 0.7] e i [0 π , 0.7 π ] [0.6, 0.8] e i [0.4 π , 1.4 π ] [0.4, 0.8] e i [0.2 π , 0.6 π ] [0.2, 0.5] e i [0.1 π , 0.5 π ] 

y 4 [0.4, 0.6] e i [0.4 π , 0.8 π ] [0.1, 0.4] e i [0.1 π , 0.8 π ] [0.3, 0.9] e i [0.2 π , 1.4 π ] [0.4, 0.9] e i [ π , 2 π ] 

 

 

 

 

 

 

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

{ �} ↓ = { [1 . 0 , 1 . 0] e i [2 π, 2 π ] /x 1 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /x 2 + [1 . 0 , 1 . 0] 

e i [2 π, 2 π ] /x 3 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /x 4 } . 
Now apply the operator ↑ on these constituted objects set to

find their maximal covering attributes as given below: 

{ [1 . 0 , 1 . 0] e i [2 π, 2 π ] /x 1 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /x 2 + 

[1 . 0 , 1 . 0] e i [2 π, 2 π ] /x 3 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /x 4 } ↑ = 

{ [0 . 2 , 0 . 3] e i [0 . 2 π, 0 . 8 π ] /y 1 + [0 . 2 , 0 . 4] e i [0 π, 0 . 6 π ] /y 2 + 

[0 . 2 , 0 . 5] e i [0 π, 0 . 5 π ] /y 3 + [0 . 1 , 0 . 4] e i [0 . 1 π, 0 . 8 π ] /y 4 } 
These provides following complex vague concepts: 

1. Extent: 

{ [1 . 0 , 1 . 0] e i [2 π, 2 π ] /x 1 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /x 2 + 

[1 . 0 , 1 . 0] e i [2 π, 2 π ] /x 3 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /x 4 } , 
Intent: 

{ [0 . 2 , 0 . 3] e i [0 . 2 π, 0 . 8 π ] /y 1 + [0 . 2 , 0 . 4] e i [0 π, 0 . 6 π ] /y 2 + 

[0 . 2 , 0 . 5] e i [0 π, 0 . 5 π ] /y 3 + [0 . 1 , 0 . 4] e i [0 . 1 π, 0 . 8 π ] /y 4 } . 
Step (3) Now consider the second subset of attributes i.e. 2.

{[1.0, 1.0] e i [2 π , 2 π ] / y 1 } to generate the complex vague concepts. To

find it apply the operator ↓ to find its maximal covering objects as

given below: 

{[1.0, 1.0] e i [2 π , 2 π ] / y 1 } 
↓ = 

{ [0 . 2 , 0 . 3] e i [0 . 2 π, 0 . 8 π ] /x 1 + [0 . 5 , 0 . 8] e i [0 . 2 π, 1 . 2 π ] /x 2 + 

[0 . 4 , 0 . 7] e i [0 . 8 π, 1 . 8 π ] /x 3 + [0 . 3 , 0 . 5] e i [0 . 3 π,π ] /x 4 } . 
Now apply the operator ↑ on these constituted objects set to

find their maximal covering attributes as given below: 

{ [0 . 2 , 0 . 3] e i [0 . 2 π, 0 . 8 π ] /x 1 + [0 . 5 , 0 . 8] e i [0 . 2 π, 1 . 2 π ] /x 2 + 

[0 . 4 , 0 . 7] e i [0 . 8 π, 1 . 8 π ] /x 3 + [0 . 3 , 0 . 5] e i [0 . 3 π,π ] /x 4 } ↑ = 

{ [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 1 + [1 . 0 , 1 . 0] e i [0 π, 0 . 6 π ] /y 2 + 

[0 . 2 , 0 . 5] e i [0 π, 0 . 5 π ] /y 3 + [0 . 1 , 0 . 4] e i [0 . 1 π, 0 . 8 π ] /y 4 } . 
These provides following complex vague concepts: 

2. Extent: 

{ [0 . 2 , 0 . 3] e i [0 . 2 π, 0 . 8 π ] /x 1 + [0 . 5 , 0 . 8] e i [0 . 2 π, 1 . 2 π ] /x 2 + 

[0 . 4 , 0 . 7] e i [0 . 8 π, 1 . 8 π ] /x 3 + [0 . 3 , 0 . 5] e i [0 . 3 π,π ] /x 4 } . 
Intent: 

{ [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 1 + [1 . 0 , 1 . 0] e i [0 π, 0 . 6 π ] /y 2 + 

[0 . 2 , 0 . 5] e i [0 π, 0 . 5 π ] /y 3 + [0 . 1 , 0 . 4] e i [0 . 1 π, 0 . 8 π ] /y 4 } . 
Step (4) Similarly following concepts can be generated using

other given subset of attribute shown in step 1 : 

3. Extent: 

{ [0 . 2 , 0 . 4] e i [0 . 4 π, 0 . 6 π ] /x 1 + [0 . 9 , 1] e i [0 π,π ] /x 2 + 

[0 . 8 , 0 . 95] e i [0 . 6 π, 0 . 6 π ] /x 3 + [0 . 5 , 0 . 5] e i [0 . 3 π, 1 . 5 π ] /x 4 } . 
Intent: 

{ [0 . 2 , 0 . 3] e i [0 . 2 π, 0 . 8 π ] /y 1 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 2 + 

[0 . 2 , 0 . 5] e i [0 π, 0 . 5 π ] /y 3 + [0 . 1 , 0 . 4] e i [0 . 1 π, 0 . 8 π ] /y 4 } . 
4. Extent: 

{ [0 . 6 , 0 . 7] e i [0 π, 0 . 7 π ] /x 1 + [0 . 6 , 0 . 8] e i [0 . 4 π, 1 . 4 π ] /x 2 + 

[0 . 4 , 0 . 8] e i [0 . 2 π, 0 . 6 π ] /x 3 , [0 . 2 , 0 . 5] e i [0 . 1 π, 0 . 5 π ] /x 4 } . 
Intent: 

{ [0 . 2 , 0 . 3] e i [0 . 2 π, 0 . 8 π ] /y 1 + [0 . 2 , 0 . 4] e i [0 π, 0 . 6 π ] /y 2 + 

[1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 3 + [0 . 1 , 0 . 4] e i [0 . 1 π, 0 . 8 π ] /y 4 } . 
5. Extent: 

{ [0 . 4 , 0 . 6] e i [0 . 4 π, 0 . 8 π ] /x 1 + [0 . 1 , 0 . 4] e i [0 . 1 π, 0 . 8 π ] /x 2 + 

[0 . 3 , 0 . 9] e i [0 . 2 π, 1 . 4 π ] /x 3 + [0 . 4 , 0 . 9] e i [ π, 2 π ] /x 4 } . 
Intent: 

{ [0 . 2 , 0 . 3] e i [0 . 2 π, 0 . 8 π ] /y 1 + [0 . 2 , 0 . 4] e i [0 π, 0 . 8 π ] /y 2 + 

[0 . 2 , 0 . 5] e i [0 π, 0 . 5 π ] /y 3 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 4 } . 
6. Extent: 
{ [0 . 2 , 0 . 3] e i [0 . 2 π, 0 . 6 π ] /x 1 + [0 . 5 , 0 . 8] e i [0 π,π ] /x 2 + 

0 . 4 , 0 . 7] e i [0 . 6 π, 0 . 6 π ] /x 3 + [0 . 3 , 0 . 5] e i [0 . 3 π,π ] /x 4 } . 
Intent: 

{ [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 1 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 2 + 

0 . 2 , 0 . 5] e i [0 π, 0 . 5 π ] /y 3 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 4 } . 
7. Extent: 

{ [0 . 2 , 0 . 3] e i [0 π, 0 . 7 π ] /x 1 + [0 . 5 , 0 . 8] e i [0 . 2 π, 0 . 4 π ] /x 2 + 

0 . 4 , 0 . 7] e i [0 . 2 π, 0 . 6 π ] /x 3 + [0 . 2 , 0 . 5] e i [0 . 1 π, 0 . 5 π ] /x 4 } . 
Intent: 

{ [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 1 + [1 . 0 , 1 . 0] e i [0 π, 0 . 6 π ] /y 2 + 

1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 3 + [0 . 1 , 0 . 4] e i [0 . 1 π, 0 . 8 π ] /y 4 } . 
8. Extent: 

{ [0 . 2 , 0 . 3] e i [0 π, 0 . 8 π ] /x 1 + [0 . 1 , 0 . 4] e i [0 . 1 π, 0 . 8 π ] /x 2 + 

0 . 3 , 0 . 7] e i [0 . 2 π, 1 . 4 π ] /x 3 + [0 . 3 , 0 . 5] e i [0 . 3 π,π ] /x 4 } . 
Intent: 

{ [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 1 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 2 + 

0 . 2 , 0 . 5] e i [0 π, 0 . 5 π ] /y 3 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 4 } . 
9. Extent: 

{ [0 . 2 , 0 . 4] e i [0 π, 0 . 6 π ] /x 1 + [0 . 6 , 0 . 8] e i [0 π,π ] /x 2 + 

0 . 4 , 0 . 8] e i [0 . 2 π, 0 . 6 π ] /x 3 + [0 . 2 , 0 . 5] e i [0 . 1 π, 0 . 5 π ] /x 4 } . 
Intent: 

{ [0 . 2 , 0 . 3] e i [0 . 2 π, 0 . 8 π ] /y 1 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 2 + 

1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 3 + [0 . 1 , 0 . 4] e i [0 . 1 π, 0 . 8 π ] /y 4 } . 
10. Extent: 

{ [0 . 2 , 0 . 4] e i [0 . 4 π, 0 . 6 π ] /x 1 + [0 . 1 , 0 . 4] e i [0 π, 0 . 8 π ] /x 2 + 

0 . 3 , 0 . 9] e i [0 . 2 π, 0 . 6 π ] /x 3 + [0 . 4 , 0 . 5] e i [0 . 3 π, 1 . 5 π ] /x 4 } . 
Intent: 

{ [0 . 2 , 0 . 5] e i [0 . 2 π, 0 . 8 π ] /y 1 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 2 + 

0 . 2 , 0 . 5] e i [0 π, 0 . 5 π ] /y 3 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 4 } . 
11. Extent: 

{ [0 . 4 , 0 . 6] e i [0 π, 0 . 7 π ] /x 1 + [0 . 1 , 0 . 4] e i [0 . 1 π, 0 . 8 π ] /x 2 + 

0 . 3 , 0 . 8] e i [0 . 2 π, 0 . 6 π ] /x 3 + [0 . 2 , 0 . 5] e i [0 . 1 π, 0 . 5 π ] /x 4 } . 
Intent: 

{ [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 1 + [0 . 2 , 0 . 4] e i [0 π, 0 . 6 π ] /y 2 + 

1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 3 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 4 } . 
12. Extent: 

{ [0 . 2 , 0 . 3] e i [0 π, 0 . 6 π ] /x 1 + [0 . 5 , 0 . 8] e i [0 π,π ] /x 2 + 

0 . 4 , 0 . 7] e i [0 . 2 π, 0 . 6 π ] /x 3 + [0 . 2 , 0 . 5] e i [0 . 1 π, 0 . 5 π ] /x 4 } . 
Intent: 

{ [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 1 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 2 + 

1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 3 + [0 . 1 , 0 . 4] e i [0 . 1 π, 0 . 8 π ] /y 4 } . 
13. Extent: 

{ [0 . 2 , 0 . 3] e i [0 . 2 π, 0 . 6 π ] /x 1 + [0 . 1 , 0 . 4] e i [0 . 1 π, 0 . 8 π ] /x 2 + 

0 . 3 , 0 . 7] e i [0 . 2 π, 0 . 6 π ] /x 3 + [0 . 3 , 0 . 5] e i [0 . 3 π,π ] /x 4 } . 
Intent: 

{ [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 1 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 2 + 

0 . 2 , 0 . 5] e i [0 π, 0 . 5 π ] /y 3 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 4 } . 
14. Extent: 

{ [0 . 2 , 0 . 3] e i [0 π, 0 . 7 π ] /x 1 + [0 . 1 , 0 . 4] e i [0 . 1 π, 0 . 8 π ] /x 2 + 

0 . 3 , 0 . 7] e i [0 . 2 π, 0 . 6 π ] /x 3 + [0 . 2 , 0 . 5] e i [0 . 1 π, 0 . 5 π ] /x 4 } . 
Intent: 

{ [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 1 + [1 . 0 , 1 . 0] e i [0 π, 0 . 6 π ] /y 2 + 

1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 3 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 4 } . 
15. Extent: 

{ [0 . 2 , 0 . 4] e i [0 π, 0 . 6 π ] /x 1 + [0 . 1 , 0 . 4] e i [0 π, 0 . 8 π ] /x 2 + 

0 . 3 , 0 . 8] e i [0 . 2 π, 0 . 6 π ] /x 3 + [0 . 2 , 0 . 5] e i [0 . 1 π, 0 . 5 π ] /x 4 } . 

Intent: 
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Fig. 2. A complex vague concept lattice generated from context shown in Table 6 . 
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Table 7 

Comprehension on uses of set theory, lattice, and graph for analyzing pattern in 

medical data set. 

Different Set theory Lattice Graph Pattern 

medical data analytics in data 

Medical Neutrosophic ∗ ∗ Correlation 

Diagnoses Set [1] [1] 

Gene Binary Concept ∗ Interval 

Data Context [2] Lattice [2] Pattern [2] 

Medicine Complex ∗ ∗ CVSS 

Analysis Vague set [3] method [3] 

China Binary Concept ∗ Formal 

Medicine Context [7] Lattice [7] concept [7] 

Breast Binary Concept ∗ Formal 

Cancer Context [8] Lattice [8] concept [8] 

TB data Binary Concept ∗ Formal 

Set Context [9] Lattice [9] concept [9] 

Health care Binary Concept ∗ Formal 

Data Context [10] Lattice [10] concept [10] 

Medical Neutrosophic Concept Neutrosophic Formal 

Diagnoses Set [18] Lattice [18] Graph [18] Concept [18] 
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{ [1 . 0 , 0 . 3] e i [2 π, 2 π ] /y 1 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 2 + 

1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 3 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 4 } . 
16. Extent: 

{ [0 . 2 , 0 . 3] e i [0 π, 0 . 6 π ] /x 1 + [0 . 1 , 0 . 4] e i [0 π, 0 . 8 π ] /x 2 + 

0 . 3 , 0 . 7] e i [0 . 2 π, 0 . 6 π ] /x 3 + [0 . 2 , 0 . 5] e i [0 . 1 π, 0 . 3 π ] /x 4 } . 
Intent: 

{ [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 1 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 2 + 

1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 3 + [1 . 0 , 1 . 0] e i [2 π, 2 π ] /y 4 } . 
In the above generated concepts number 6, 8, and 13 are simi-

ar. Similarly concept number 12 and 7 are similar. Hence distinct

omplex vague concepts are 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 14, 15 and

6 which concept lattice is shown in Fig. 2 . From that following

nformation can be extracted: 

• Concept number 1 represents none of the disease can be diag-

noses using all the medicines simultaneously. 
• Concept number 2 represents that disease y 1 (pneumo-

nia) and y 2 (influenza) can be recovered by medicine [0.5,

0.8] e i [0.2 π , 1.2 π ] / x 2 in five to six month due to its maximal re-

lationship with them. 
• Concept number 3 represents that disease y 2 (influenza) has

strong relationship with medicine [0.9, 1] e i [0 π , π ] / x 2 . It shows

that influenza can be recovered using medicine x 2 in five to six

months. 
• Concept number 4 represents that disease y 3 (tuberculosis) has

maximal relationship with medicine [0.6, 0.8] e i [0.4 π , 1.4 π ] / x 2 . It

shows that tuberculosis can be recovered using medicine x 2 in

five to six months. 
• Concept number 5 represents that disease y 4 (asthma) has

maximal relationship with medicine [0.4, 0.9] e i [ π , 2 π ] / x 4 . It

shows that asthma can be recovered using medicine x 4 within

six months. 
• Concept number 6 represents that disease y 1 (pneumonia),

y 2 (influenza), y 4 (asthma) have maximal relationship with

medicine [0.5, 0.8] e i [0 π , π ] / x 2 . It shows that these disease can

be recovered using the medicine x 2 within six month. 
• Concept number 7 represents that disease y 1 (pneumonia), y 2 

(influenza), y 3 (tuberculosis) have maximal relationship with

[0.5, 0.8] e i [0.2 π , 0.4 π ] / x 2 . It shows that these disease can be re-

covered using medicine x 2 within a months. 
• Concept number 16 represents that all the disease can be di-

agnoses 30–70% using medicine [0.3, 0.7] e i [0.2 π , 0.6 π ] / x 3 within
two months. p
The aforementioned representation and derived analysis from

he proposed method resembles with CVSS method [3] with fol-

owing advantages: 

• The proposed method provides many hidden pattern to analyze

the best suitable medicine for the diagnoses of particular dis-

ease at given phase of time. 
• The proposed method provides precise visualization of vague-

ness and uncertainty in medical attributes via concept lattice

rather than its numerical representation. 
• The proposed method provides a hierarchical order visualiza-

tion of generated pattern in a given complex vague context

within O (2 m ∗n 2 ) computational time. This is another advan-

tages of the proposed method while refine the knowledge. 

Due to the mentioned advantages of the proposed method it

an be useful in various research fields for data analysis and pro-

essing tasks [23,42,43] . In future work will be focused on depth

nalysis of complex vague concept lattice and its several applica-

ions. 

. Discussions 

Recent years, many researchers have paid attention for discov-

ring some of the interested pattern in medical data set using the

roperties of concept lattice as shown in Table 7 . Among them

ome notable researches are neutrosophic set based medical diag-

oses [1] , handling gene expression [2] , Chinese medicine discov-

ry [7] , Breast cancer [8] , TB [9] and Health care [10] data set have

eceived much attention. Each of these available methods unable

o highlight the uncertainty and their fluctuation at given phase

f time. To deal with this problem recently Prem Kumar Singh

18] characterized it based on acceptation, rejection and uncertain

egions of a defined three–way fuzzy concept lattice. Selvachan-

ran et al. [3,43] tried to represent the vagueness and fluctua-

ion in uncertainty of a given medical diagnoses data set based

n amplitude and phase term of a defined complex vague soft

et, respectively. It can be observe that less attention has been to-

ards handling vagueness and uncertainty in medical data using

he properties of graph and concept lattice as marked 

∗ in Table 7 .

owever this connection provides adequate and precise analysis of

edical diagnoses through graphical visualization rather than its

umerical representation. To fulfill this backdrop the current pa-

er put forward effort to analyze the vagueness and uncertainty

n medical data set using amplitude and phase term of a defined

omplex vague concept lattice. To achieve this goal following pro-

osal are made in this paper: 
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1) This paper proposed a method to analyze the fluctuation in

medical diagnoses using complex vague context as shown in

Table 6 . 

2) This paper proposed a method to discover all the hidden pat-

tern (i.e. formal concepts) in a given medical data set as shown

in Table 5 . 

3) To refine the knowledge building the complex vague concept

lattice structure is proposed in Section 3 based on subset of

attributes. 

4) One application of the proposed method is also discussed in

Section 4 . 

5) The analysis derived from the proposed method is also com-

pared with CVSS [3] method and shown that obtained re-

sults are in agreement with each other. However, the pro-

posed method provides better representation of uncertainty

and vagueness in medical data through concept lattice when

compare to its numerical representation by CVSS method [3] . 

Modelling uncertainty and vagueness in non–linear problems

is one of the major concern for the expert of any research fields.

However the analysis of this paper is focused on medical diagnoses

data set. To deal with this notable problem current paper provides

an alternative way in Section 3 to represent the vagueness and un-

certainty in data using complex vague context. Further to find the

hidden pattern in the obtained complex vague context a method

is proposed to generate all concepts using their chosen subset

of attributes as shown in Table 5 . It is shown that Fig. 2 gener-

ated by the proposed method provides an effective way to analyze

the complex vague context rather than its numerical representa-

tion done by CVSS method [3] . However the analysis derived from

the proposed method resembles with CVSS method [3] with more

depth analysis by their concept lattice visualization. Similarly, it

can be observed that the proposed method in this paper is distinct

from any of the available approaches shown in Table 7 in following

aspects: 

1) The proposed method provides an adequate representation of

vagueness in attributes and their fluctuation using amplitude

and phase of a defined complex vague set. 

2) The proposed method introduced an alternative way to repre-

sent the large number of generated medical diagnoses data set

in form of context and their compact display in the concept lat-

tice. To improve the knowledge processing tasks when compare

to its numerical representation. 

3) The proposed method established a mathematical model to an-

alyze some hidden pattern in medical diagnoses data set based

on extent and intent pair and their hierarchical order visualiza-

tion rather than traditional way. 

Due to above advantages of the proposed methods it can be ap-

plied in various research fields for modelling the uncertainty and

vagueness in data [23] . In future the research work will be focus

on depth analysis of complex vague concept lattice [42,43] , reduc-

tion [44,45] and its applications in various research fields [23] . 

6. Conclusions 

This paper introduced a method to provide an effective way

to analyze the uncertainty and vagueness in complex (or dy-

namic) data set using complex vague concept lattice. To achieve

this goal a method is proposed to discover all the hidden pattern

in given complex data set using the properties of complex fuzzy

logic and Galois connection within O( n 2 .2 m ) complexity. The pro-

posed method is demonstrated on a medical diagnoses data set

and shown that obtained results are resembled with CVSS method

[3] . In addition, the proposed method provides many pattern (i.e.

complex vague concept) and their compact display in the concept

lattice when compare to its numerical representation. 
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