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The paper presents the correlation coefficient of
refined-single valued neutrosophic sets (Refined-
SVNSs) based on the extension of the correlation of
single valued neutrosophic sets (SVNSs), and then a
decision making method is proposed by the use of
the weighted correlation coefficient of Refined-SVNSs.
Through the weighted correlation coefficient between
the ideal alternative and each alternative, we can rank
all alternatives and the best one of all alternatives can
be easily identified as well. Finally, to prove this deci-
sion making method proposed in this paper is useful
to deal with the actual application, we use an example
to illustrate it.
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1. Introduction

Neutrosophic set (NS) proposed by Smarandache [1] is
an important tool to solve multi-criteria decision making
problems. Since then, many new extensions about incom-
plete, uncertain and imprecise information have been pre-
sented. For examples, in 2005, Wang et al. [2] introduced
the concept of an interval neutrosophic set (INS). The sin-
gle valued neutrosophic set (SVNS) was introduced for
the first time by Smarandache in 1998 in his book [3]; re-
viewed in [4], which is also mentioned by Wang et al. [5]
in 2010. In 2013, Smarandache refined the neutrosophic
set: truth value T is refined into types of sub-truths such
as T1, T2, etc., similarly indeterminacy I is split/refined
into types of sub-indeterminacies I1, I2, etc., and the sub-
falsehood F is split into F1, F2, etc. Therefore, Smaran-
dache [6] introduced the concept of a Refined-SVNS. In a
decision making problem, if the given criteria have many
sub-criteria, we will subdivide these criteria. In 2014,
Ye [7] presented a concept of a simplified neutrosophic set
(SNS). Now INS, SNS, and SVNS have been developed
by many researchers in various fields [8–22]. But there
are few studies and researches on the Refined-SVNS. So
we propose a decision making method on correlation co-

efficients of Refined-SVNSs and use a decision making
example to prove this method in this paper.

The rest organizations of this paper are as follows. Sec-
tion 2: briefly introduces NS, SVNS and Refined-SVNS.
Section 3: introduces the Correlation Coefficients and
the Correlation Coefficients of Refined-SVNS. Section 4:
gives a decision making method based on the weighted
correlation coefficient measures of Refined-SVNSs. Sec-
tion 5: presents an example with Refined-SVNS to illus-
trate the proposed methods and gives a conclusion. Fi-
nally, Section 6: concludes.

2. Some Concepts of NS, SVNS, and Refined-
SVNS

Definition 1 [1]. Set X be a universe of discourse, with a
generic element denoted x in X . Then a NS is defined as:

A =
{〈

x,TA(x), IA(x),FA(x)
〉∣∣x ∈ X

}
,

in which TA(x) : X → ]−0,1+[ means truth membership
function, IA(x) : X → ]−0,1+[ means indeterminacy mem-
bership and FA(x) : X → ]−0,1+[ means falsity member-
ship function. The functions TA(x), IA(x), and FA(x) are
real standard or nonstandard subsets of ]−0,1+[ and there
is no relation on the sum of TA(x), IA(x), and FA(x), so
−0 ≤ supTA(x)+ sup IA(x)+ supFA(x)≤ 3+.

Obviously, just using this Definition 1, we cannot apply
the neutrosophic set to deal with the practical problems.
Therefore, Smarandache [3] introduced the concept of a
SVNS, which is an extension of NS.

Definition 2 [3]. Set X be a universe of discourse, with a
generic element denoted x in X . Then a SVNS is defined
as:

A =
{〈

x,TA(x), IA(x),FA(x)
〉∣∣x ∈ X

}
,

in which TA(x), IA(x),FA(x) ∈ [0,1], 0 ≤ TA(x)+ IA(x)+
FA(x)≤ 3.

When we deal the practical problem, the given criteria
maybe have many sub-criteria, we should subdivide these
criteria. Therefore, Smarandache [6] introduced the con-
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cept of a Refined-SVNS.

Definition 3 [6]. Set X be a universe of discourse, with a
generic element denoted x in X . Then a Refined-SVNS is
defined as:

A =
{〈

x,
(
T1A(x),T2A(x), . . . ,TkA(x)

)
,(

I1A(x), I2A(x), . . . , IkA(x)
)
,(

F1A(x),F2A(x), . . . ,FkA(x)
)〉∣∣x ∈ X

}

here k is a positive integer, T1A(x),T2A(x), . . . ,TkA(x) ∈
[0,1], I1A(x), I2A(x), . . . , IkA(x) ∈ [0,1],
F1A(x),F2A(x), . . . ,FkA(x) ∈ [0,1], and 0 ≤ TiA(x) +
IiA(x)+FiA(x)≤ 3 for i = 1,2, . . . ,k.

Definition 4 [14]. Set X be a universe of discourse, and L
and M be two SVNSs, L = {〈x,TL(xi), IL(xi),FL(xi)〉 | xi ∈
X} and M = {〈x,TM(xi), IM(xi),FM(xi)〉 | xi ∈ X}. The
correlation coefficients measure of two SVNSs L and M
is:

N(L,M) =
C(L,M)

max{C(L,L),C(M,M)}
=

n

∑
k=1

[
TL(xi) ·TM(xi)+ IL(xi) · IM(xi)+FL(xi) ·FM(xi)

]/

max
{ n

∑
k=1

[
T 2

L (xi)+ I2
L(xi)+F2

L (xi)
]
,

n

∑
k=1

[
T 2

M(xi)+ I2
M(xi)+F2

M(xi)
]}

. . . . . (1)

Theorem 1. The correlation coefficients measure
N(L,M) satisfies the following properties (1)–(3) [14]:

(1) 0 ≤ N(L,M)≤ 1;

(2) N(L,M) = 1 if and only if L = M;

(3) N(L,M) = N(M,L);

Their proofs can be consulted in [14].

3. Correlation Coefficients Measure Methods
of Refined-SVNSs

Definition 5. Let X = {x1,x2, . . . ,xn} be a universe of
discourse, and L and M be two Refined-SVNSs,

L = {〈xi,(T1L(xi),T2L(xi), . . . ,TkiL(xi)),

(I1L(xi), I2L(xi), . . . , IkiL(xi)),

(F1L(xi),F2L(xi), . . . ,FkiL(xi))〉|xi ∈ X},
M = {〈xi,(T1M(xi),T2M(xi), . . . ,TkiM(xi)),

(I1M(xi), I2M(xi), . . . , IkiM(xi)),

(F1M(xi),F2M(xi), . . . ,FkiM(xi))〉|xi ∈ X}.
Here ki is a positive integer, and all TjL(xi), I jL(xi), FjL(xi)
and TjM(xi), I jM(xi), FjM(xi) ∈ [0,1](i = 1,2, . . . ,n; j =
1,2, . . . ,ki).

As an extension of Definition 4, we present a correla-
tion coefficients measure between two Refined-SVNSs L
and M as follows:

N(L,M) =
C(L,M)

max{C(L,L),C(M,M)}

=
n

∑
i=1

ki

∑
j=1

[
TjL(xi) ·TjM(xi)+ I jL(xi) · I jM(xi)

+FjL(xi) ·TjM(xi)
]/

ki

/

max
{ n

∑
i=1

ki

∑
j=1

[
TjL

2(xi)+ I jL
2(xi)+FjL

2(xi)
]/

ki,

n

∑
i=1

ki

∑
j=1

[
TjM

2(xi)+ I jM
2(xi)+FjM

2(xi)
]/

ki

}

. . . . . . . . . . . . . . . . . . . (2)

Theorem 1. The correlation coefficients measure
N(L,M) between two Refined-SVNSs L and M satisfies
the following properties:

(1) N(L,M) = N(M,L);

(2) 0 ≤ N(L,M)≤ 1;

(3) N(L,M) = 1 if and only if L = M;

Proof.
(1) For TjL(xi) · TjM(xi)+I jL(xi) · I jM(xi) + FjL(xi) ·
FjM(xi) = TjM(xi) · TjL(xi) + I jM(xi) · I jL(xi) + FjM(xi) ·
FjL(xi), so we can get N(L,M) = N(M,L).

(2) For 0 ≤ TjM(xi) ≤ 1 then 0 ≤ TjL(xi) · TjM(xi) ≤ 1,
0 ≤ I jM(xi) ≤ 1 then 0 ≤ I jL(xi) · I jM(xi) ≤ 1 and 0 ≤
FjM(xi)≤ 1 then 0 ≤ FjL(xi) ·FjM(xi) ≤ 1, so we can get
N(L,M)≥ 0. Next, we prove N(L,M)≤ 1;

C(L,M)

=
n

∑
i=1

ki

∑
j=1

[
TjL(xi) ·TjM(xi)+ I jL(xi) · I jM(xi)

+FjL(xi) ·FjM(xi)
]/

ki

=
1
k1

[
(T1L(x1) ·T1M(x1)+ I1L(x1) · I1M(x1)

+F1L(x1) ·F1M(x1))+ · · ·+(Tk1L(x1) ·Tk1M(x1)

+Ik1L(x1) · Ik1M(x1)+Fk1L(x1) ·Fk1M(x1))
]

+ · · ·+ 1
kn

[
(T1L(xn) ·T1M(xn)+ I1L(xn) · I1M(xn)

+F1L(xn) ·F1M(xn))+ · · ·+(TknL(xn) ·TknM(xn)

+IknL(xn) · IknM(xn)+FknL(xn) ·FknM(xn))
]

According to the Cauchy-Schwarz inequality:

(α1β1 +α2β2 + · · ·+αnβn)
2

≤ (α1
2 +α2

2 + · · ·+αn
2)(β1

2 +β2
2 + · · ·+βn

2)

Where α1,α2, . . . ,αn ∈ Rn and β1,β2, . . . ,βn ∈ Rn, we can
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Table 1. The Refined-SVNS decision matrix D.

 ) ) 

  

   

   

 

get

C(L,M)2 ≤ 1
k1

2

[(
T1L

2(x1)+ I1L
2(x1)+F1L

2(x1)
)·

(
T1M

2(x1)+ I1M
2(x1)+F1M

2(x1)
)
+ · · ·

+
(
Tk1L

2(x1)+ Ik1L
2(x1)+Fk1L

2(x1)
)·

(
Tk1M

2(x1)+ Ik1M
2(x1)+Fk1M

2(x1)
)]

+ · · ·

+
1

kn
2

[(
T1L

2(x1)+ I1L
2(x1)+F1L

2(x1)
)·

(
T1M

2(x1)+ I1M
2(x1)+F1M

2(x1)
)
+ · · ·

+(TknL
2(x1)+ IknL

2(x1)+FknL
2(x1)

)·
(
TknM

2(x1)+ IknM
2(x1)+FknM

2(x1)
)]

=C(L,L)C(M,M)

For C(L,M)2 ≤ C(L,L)C(M,M), just C(L,M) ≤
C(L,L)1/2C(M,M)1/2.
Then, C(L,M)≤ max{C(L,L),C(M,M)}.
So we can get N(L,M) = C(L,M)
/max{C(L,L),C(M,M)}≤ 1.

(3) If L = M then TjL(xi) = TjM(xi)I jL(xi) = I jM(xi), and
FjL(xi) = FjM(xi) for any xi ∈ X and i = 1,2, . . . ,n, so we
can get N(L,M) = 1, if and only if L = M.

Usually, all attributes have weights, maybe these
weights are at the same values or different, but they are
all belong 0 to 1 and the total value of them is 1. Now, we
assume that the weight of each attribute Ci (i= 1,2, . . . ,n)
is wi. Then, we can introduce the weighted correlation co-
efficients measure between two Refined-SVNSs L and M
as follow:

W (L,M)

=
n

∑
i=1

wi

ki

∑
j=1

[(
TjL(xi) ·TjM(xi)+ I jL(xi) · I jM(xi)

+FjL(xi) ·FjM(xi)
)]/

ki

/

max
{ n

∑
i=1

wi

ki

∑
j=1

[
TjL

2(xi)+ I jL
2(xi)+FjL

2(xi)
]/

ki,

n

∑
i=1

wi

ki

∑
j=1

[
TjM

2(xi)+ I jM
2(xi)+FjM

2(xi)
]/

ki

}

. . . . . . . . . . . . . . . . . . . (3)

4. Building a Decision-Making Model Using
the Correlation Coefficients

In a decision-making problem, there are a set of alter-
natives A = {A1,A2, . . . ,Am} and a set of attributes C =
{C1,C2, . . . ,Cn}. Sometimes Ci (i = 1,2, . . . ,n) may be
subdivided into some sub-attribute Ci j (i = 1,2, . . . ,n, j =
1,2, . . . ,ki), then we can use a Refined-SVNS to express
it:

Ar =
{〈

Ci,(T1Ar (Ci),T2Ar (Ci), . . . ,TkiAr (Ci)),

(I1Ar(Ci), I2Ar(Ci), . . . , IkiAr (Ci)),

(F1Ar (Ci),F2Ar (Ci), . . . ,FkiAr (Ci))
〉∣∣Ci ∈C

}
,

r = 1,2, . . . ,m and i = 1,2, . . . ,n.

(4)

We could use a Refined-SVNS to denote the values of the
three functions TkiSr(Gi), IkiSr(Gi), FkiSr(Gi) for conve-
nience, so we establish the Refined-SVNS decision matrix
D, which is shown in Table 1.

Step 1: Based on the Refined-SVNS decision matrix D,
we can get the ideal solution (ideal Refined-SVNS) A∗

i .
When the attributes are benefit, A∗

i is shown as follows:

A∗
i =

〈(
T1Am

max,T2Am
max, . . . ,TkiAm

max
)
,

(
I1Am

max, I2Am
max, . . . , IkiAm

max
)
,

(
F1Am

max,F2Am
max, . . . ,FkiAm

max
)〉

,

for i = 1,2, . . . ,n.

. . . (5)
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Table 2. The Refined-SVNS decision matrix D for four alternatives on three attributes/seven sub-attributes.

 ) ) ) 
  

  

  

  

When the attributes are cost, A∗
i is shown as follows:

A∗
i =

〈(
T1Am

min,T2Am
min, . . . ,TkiAm

min
)
,

(
I1Am

min, I2Am
min, . . . , IkiAm

min),
(
F1Am

min,F2Am
min, . . . ,FkiAm

min
)〉

,

for i = 1,2, . . . ,n.

. . . . (6)

So we can get the ideal alternative A∗ = {A∗
1,A

∗
2, . . . ,A

∗
n}.

Step 2: When the weights of attributes are given by w =
(w1,w2, . . . ,wn) with wi ≥ 0 and ∑n

i=1 wi = 1. The corre-
lation coefficients measure between the ideal alternative
A∗ and each alternative Ar (r = 1,2, . . . ,m) can be calcu-
lated according to Eqs. (4) and (5). Then we can obtain
the values of W (Ar,A∗) for r = 1,2, . . . ,m.

Step 3: According the values of W (Ar,A∗) for r =
1,2, . . . ,m, all alternatives can be ranked in a descending
order and the alternative of biggest W (Ar,A∗) value just
is the best choice.

Step 4: End.

5. Illustrative Examples

In this section, we give two examples with multiple
attribute to demonstrate the application of the proposed
method in this paper.

5.1. Example 1
Now, we discuss the decision-making problem adapted

from [22]. A construction company wants to determine
the selecting problem of construction projects. Now
four construction projects are provided by decision mak-
ers, then we can get a set of four alternatives A =
A1,A2,A3,A4. Then, in these construction projects, which
one can be selected dependent on three main attributes.
These attributes are financial state (C1), environmental
protection (C2) and technology (C3), and at the same time
these attributes can be divided into seven sub-attributes:
budget control (C11) and risk/return ratio (C12); public re-
lation (C21), geographical location (C22), and health and
safety (C23); technical knowhow (C31) and technologi-
cal capability (C32). Then, decision makers evaluate the
value of the four possible alternatives under the above
attributes by suitability judgments. With these values

we can construct the Refined-SVNS decision matrix D,
which is shown in Table 2.

For these attributes are benefit, so we can obtain the
ideal alternative A∗ by using Eq. (4) from the Refined-
SVNS decision matrix D.

A∗ = {〈(0.8,0.8),(0.1,0.1),(0.2,0.2)〉,
〈(0.9,0.8,0.8),(0.1,0.1,0.1),(0.1,0.1,0.1)〉,
〈(0.8,0.8),(0.1,0.2),(0.1,0.1)〉}.

With the weight vector of the three attributes by w =
(0.4,0.3,0.3) on the opinion of the experts and Eq. (3),
we can obtain the weighted correlation coefficients mea-
sure values between the ideal alternation A∗ and each al-
ternative Ar (r = 1,2,3,4), the measure values are listed
as follows:

W (A1,A∗) = 0.9156, W (A2,A∗) = 0.9603,
W (A3,A∗) = 0.9308, and W (A4,A∗) = 0.8861.

Because of the measure values are W (A2,A∗) >
W (A3,A∗) > W (A1,A∗) > W (A4,A∗), the ranking order
just is A2 	 A3 	 A1 	 A4. Therefore, we can get the al-
ternative A2 as the best choice among all alternatives.

Comparing with the method of [22], the correlation co-
efficients measure between two Refined-SVNSs proposed
in this paper is relatively simpler and easier, and we can
obtain the same choice as in [22] through the weighted
correlation coefficients measure values between the ideal
alternation A∗ and each alternative Ar (r = 1,2,3,4).

5.2. Example 2
A university wants to rank the academy with some

main attributes. Now there are five academies will be
ranked, then we can get a set of five academics A =
{A1,A2,A3,A4,A5}. The rank of these academics de-
pends on three main attributes and seven sub-attributes:
(1) Teaching (C1): teaching conditions (C11), teachers
troop (C12) and teaching level (C13); (2) The scientific re-
search (C2): teachers’ scientific research (C21), students’
scientific research (C22); (3) Server (C3): social reputation
(C31), the employment situation (C32).

Experts evaluate the value of the five academics under
the above attributes by some data. With these values we
can construct the Refined-SVNS decision matrix, which
is shown in Table 3.

For these attributes are benefit, so we can obtain
the ideal alternative A* by using formula (4) from the
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Table 3. The Refined-SVNS decision matrix D for five academics on three attributes/seven sub-attributes.

 ) ) ) 
 

 

 

 

Refined-SVNS decision matrix D.

A∗ = {〈(0.8,0.9,0.8),(0.2,0.2,0.1),(0.1,0.1,0.2)〉 ,
〈(0.9,0.7),(0.1,0.1),(0.2,0.3)〉,
〈(0.8,0.9),(0.1,0.2),(0.1,0.1)〉}.

W (A1,A∗) = 0.9950, W (A2,A∗) = 0.9207,
W (A3,A∗) = 0.8779, W (A4,A∗) = 0.8987,
W (A5,A∗) = 0.8947.

So, the ranking of five academics is A1 	 A2 	 A4 	
A5 	 A3. Therefore, the academic named A1 is the best
one of all evaluated academics.

From above two examples, we can see that the corre-
lation coefficients of refined-neutrosophic set can be used
in actual engineering and scientific applications to help
people to do some decision problems.

6. Conclusions

We presented the correlation coefficients measure of
Refined-SVNSs in this paper and we use this method
to deal with two actual decision-making applications.
Through the correlation coefficients measure between the
ideal alternative and each alternative, the ranking order
of all alternatives can be got and the best alternative can
be selected as well. Finally, the ranking order in the first
example with correlation coefficients measure is proba-
bly agree with the ranking results of [22], the second ex-
ample with correlation coefficients measure can get the
rank of five evaluated academics, so the method pro-
posed in this paper is suitable for actual applications in
decision-making problems with Refined-SVNS. In the fu-
ture, we shall go on studying the correlation coefficients
measure between Refined-SVNSs and extending the pro-
posed decision-making method to many other fields.
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