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Abstract: The linguistic neutrosophic numbers (LNNs) can express the truth, indeterminacy, and 

falsity degrees independently by three linguistic variables. Hence, they are an effective tool for 

describing indeterminate linguistic information under linguistic decision-making environments. 

Similarity measures are usual tools in decision-making problems. However, existing cosine 

similarity measures have been applied in decision-making problems, but they cannot deal with 

linguistic information under linguistic decision-making environments. To deal with the issue, we 

propose two cosine similarity measures based on distance and the included angle cosine of two 

vectors between LNNs. Then, we establish a multiple attribute group decision-making (MAGDM) 

method based on the cosine similarity measures under an LNN environment. Finally, a practical 

example about the decision-making problems of investment alternatives is presented to 

demonstrate the effective applications of the proposed MAGDM method under an LNN 

environment. 

Keywords: cosine similarity measure; linguistic neutrosophic number; multiple attribute group 

decision-making 

 

1. Introduction 

The fuzzy decision-making method is an important and complex research topic in 

decision-making theory. In recent decades, various fuzzy decision-making methods have been 

presented and applied in many decision-making fields. However, in real-world situations, some 

complex decision-making problems cannot be described by evaluation information with real 

numbers. In general, decision-makers make decisions under circumstances with vague, imprecise, 

and uncertain information. Therefore, they prefer to make a qualitative evaluation for attributes 

using linguistic terms because of the complexity of objective things and the ambiguity of human 

thinking. For this reason, Zadeh firstly proposed the concept of a linguistic variable and its 

application to approximate reasoning [1]. Based on the concept of a linguistic variable, Herrera et al. 

put forward a consensus model in group decision making and established three steps for solving a 

multi-criteria decision-making problem under linguistic information [2,3]. Next, many scholars also 

provided some 2-tuple linguistic representation models [4–7], two-dimension uncertain linguistic 

operations [8–10], and aggregation operators [11–15] to deal with decision-making problems with 

linguistic information.  

Furthermore, linguistic variables were integrated with other fuzzy theories to handle 

decision-making problems. Wang and Li proposed the aggregation operators of intuitionistic 

linguistic fuzzy numbers (ILFNs) and gave a decision-making approach by combining intuitionistic 

fuzzy numbers (IFNs) with linguistic variables [16]. Then, some extensions of IFNs were widely 
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studied, including some improved intuitionistic linguistic aggregation operators and their 

application in MAGDM problems [17–23], interval-valued intuitionistic linguistic sets and their 

application in multi-criteria decision-making (MCDM) problems [24], and so on. Rodriguez et al. 

also proposed hesitant fuzzy linguistic term sets (HFLTSs) by combining the hesitant fuzzy sets 

(HFSs) with linguistic variables [25]. Some new HFLTS approaches have been presented to solve 

decision-making problems in recent years [26–34]. Moreover, Zhou et al. defined intuitionistic 

hesitant linguistic sets (IHLSs) and several operators on the basis of hesitant fuzzy linguistic sets 

(HFLSs) and intuitionistic linguistic sets (ILSs) [35]. Faizi et al. proposed an outranking method for 

MCDM problems using IHLSs [36].  

In these extensions of fuzzy linguistic methods mentioned above, including ILFNs, HFLTSs, 

and IHLSs, there are only two linguistic variables for describing the linguistic information of both 

the truth/membership and falsity/non-membership degrees. So, the existing linguistic variables 

cannot express indeterminate or inconsistent linguistic information. However, the real 

decision-making problems often contain indeterminate or inconsistent information. To express this 

indeterminate or inconsistent information, Smarandache proposed the concept of neutrosophic sets 

(NSs) [37] and neutrosophic numbers (NNs) [38,39]. In neutrosophic theory, NSs and NNs are two 

different branches. Recently, NSs have been studied by some scholars and applied for solving 

MCDM problems [40–42]. NNs can effectively describe incomplete or indeterminate information 

because they consist of a determinate part and indeterminate part. Ye proposed a bidirectional 

projection method for MAGDM problems with NNs [43]. Ye presented a MAGDM method under 

an NN environment [44]. Linguistic variables can easily express a qualitative evaluation for an 

attribute in complex decision-making problems, but they cannot describe indeterminate or 

inconsistent evaluation information. To overcome the insufficiency of the existing linguistic 

variables, many researches extended linguistic variables to NSs and NNs. Li et al. introduced the 

concept of linguistic neutrosophic sets (LNSs) and their application in multicriteria decision-making 

problems [45]. Luo et al. proposed a decision-making approach based on an extended linguistic 

preference structure [46]. Wang et al. presented a decision-making method under single-valued 

neutrosophic linguistic environments [47]. Fang and Ye [48] put forward the concept of linguistic 

neutrosophic numbers (LNNs) by combining neutrosophic numbers (NNs) with linguistic 

variables, which is characterized independently by the truth, indeterminacy, and falsity linguistic 

variables. The basic operational laws of LNNs were developed. Further, an LNN-weighted 

arithmetic averaging (LNNWAA) operator and an LNN-weighted geometric averaging 

(LNNWGA) operator were proposed for MAGDM problems with LNNs [48]. The similarity 

measure between fuzzy sets is an important mathematical tool for determining the degree of 

similarity between two objects, which is effectively applied in decision-making problems. Biswas et 

al. proposed a cosine similarity measure of trapezoidal fuzzy neutrosophic numbers [49]. Mahmood 

et al. presented three similarity measures between simplified neutrosophic hesitant fuzzy sets [50]. 

The above cosine similarity measures have been applied in decision-making problems, but they 

cannot deal with linguistic information under linguistic decision-making environments. Hence, this 

paper extends cosine similarity measures to LNNs, which can solve linguistic information 

decision-making problems. In this paper, we propose two cosine similarity measures based on 

distance and the included angle cosine between LNNs in vector space, and establish a MAGDM 

method based on the cosine similarity measures under an LNN environment. The main advantage 

of the LNN method is that it is able to effectively handle indeterminate linguistic information under 

linguistic decision-making environments. 

The rest of the article is organized as follows. Section 2 briefly introduces some basic concepts 

of LNNs. Section 3 proposes the cosine similarity measures based on distance and the included 

angle cosine of two vectors. In Section 4, we establish a MAGDM method based on the cosine 

similarity measures of LNNs. Section 5 gives a practical example and comparison analysis using 

LNNs. Conclusions of this work are summarized in Section 6. 

  

http://www.sciencedirect.com.dbgw.lis.curtin.edu.au/science/article/pii/S1568494612000555#sec0100
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2. Some Basic Concepts of LNNs 

In this section, we briefly introduce basic concepts of linguistic variables, linguistic term sets, 

and linguistic neutrosophic numbers (LNNs), which will be needed in the following analysis. 

Zadeh firstly proposed the concept of linguistic variables [1], which represent qualitative data 

using words or sentences in natural language [2]. Let S = {s0, s1, …, sτ} is a linguistic term set with odd 

cardinality τ + 1, where si represents the value of a linguistic variable. For example, taking τ = 8, one 

can specify a linguistic term set S = {s0 = extremely low, s1 = very low, s2 = low, s3 = slightly low, s4 = 

medium, s5 = slightly high, s6 = high, s7 = very high, s8 = extremely high}. Then, the linguistic term set 

must satisfy the following characteristics [2,3]: 

(1) Ordering: si ≥ sj if i ≥ j. 

(2) Negation operator: Neg (si) = sτ+1−i. 

(3) Maximum operator: Max (si, sj) = si if i ≥ j. 

(4) Minimum operator: Min (si, sj) = sj if i ≥ j. 

By combining neutrosophic numbers (NNs) [39,40] with linguistic variables, Fang and Ye [48] 

introduced the concept of linguistic neutrosophic numbers (LNNs) and give the following 

definition:  

Definition 1 [48]. Assume that S = {s0, s1, …, sτ} is a linguistic term set with odd cardinality τ + 1. If e = <sα, 

sβ, sγ> is defined for sα, sβ, sγ   S and α, β, γ  [0, τ], where sα, sβ, and sγ represent, respectively, the truth 

degree, indeterminacy degree, and falsity degree by linguistic terms, then e is called a linguistic neutrosophic 

number (LNN). 

3. Cosine Measures of LNNs 

In this section, two cosine measures between LNNs are proposed. 

Definition 2. Assume that S = {s0, s1, …, sτ} is a linguistic term set with odd cardinality τ+1. If E = {e1, e2, …, 

en} and G = {g1, g2, …, gn} are two sets of LNNs, where 
k k k

k e e ee s , s , s      and 

k k k
k g g gg s , s , s      are LNNs with      

k k k k k
e e g g g, s , s ,s , s , s S  and f(sj) = j is a linguistic 

scale function for αek, βek, γek, αgk, βgk, γgk   [0, τ] and k = 1, 2, …, n. Then, two cosine measures of E and G 

are proposed based on distance and the included angle cosine of two vectors, respectively, as follows: 
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According to the above definition, the two cosine similarity measures CiLNNs (E, G) (i = 1, 2) for 

LNNs satisfy the following properties (p1)–(p3):  
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(p1) 0 ≤ CiLNNs (E, G) ≤ 1;  

(p2) CiLNNs (E, G) = CiLNNs (G, E); 

(p3) If E = G, then CiLNNs (G, E) = 1. 

Proof. Firstly, we prove the properties (p1)–(p3) of C1LNNs (E, G). 

(p1) Let ( ) /6k k k k k ke g e g e g              , there exist 

0 ( )/ 1k ke g ,     0 ( )/ 1 and 0 ( )/ 1k k k ke g , e g .            Then, there is 

0 ( k k k ke g e g       )/3 1k ke g .      

For 0 2  0 1/ , cos .       Hence, 0 ≤ C1LNNs (E, G) ≤ 1 holds.

 
(p2) It is straightforward. 

(p3) If E = G, there are .         
k k k k k k

e e e g g gs , s , s s , s , s Here, E and G can be 

considered as sets, there exist and E G E G,  then 
k k

e gs s  , 
k k

e gs s   and  
k k

e gs s

, for k = 1, 2, …, n. According to the operational laws of LNNs, we have ( ) ( ) 
k k

e gf s f s ,  

( ) ( ) 
k k

e gf s f s ,  and ( ) ( ) 
k k

e gf s f s ,  hence αek = αgk, βek = βgk, and γek = γgk, then 

{( g ) /6 }k k k k k kcos e g e e g             0 1cos  . Thus, C1LNNs (G, E) = 1 holds.

 Secondly, we prove the properties (p1)–(p3) of C2LNNs (E, G). 

(p1) It is obvious that C2LNNs (E, G) ≥ 0. Then, we only prove C2LNNs (E, G) ≤ 1. 

According to Cauchy-Schwarz inequality, we can obtain the following inequality: 
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Thus, we have finished the proof. 

If we consider the weights of the elements ek and gk (k = 1, 2, …, n), the two weighted cosine 

similarity measures between E and G are proposed, respectively, as follows: 

1

1
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6
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k k k k k k
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where ωk   [0, 1], and 
1

1
n

kk



  for k = 1, 2, …, n. 

It is obvious that the two weighted cosine similarity measures CωiLNNs (E, G) (i = 1, 2) also satisfy 

the following properties (p1)–(p3): 

(p1) 0 ≤ CωiLNNs (E, G) ≤ 1;  

(p2) CωiLNNs (E, G) = CωiLNNs (G, E); 

(p3) If E = G, then CωiLNNs = 1. 

Especially when ωk = 1/n for k = 1, 2, …, n, Equations (3) and (4) are reduced to Equations (1) and 

(2), respectively. 

We can easily prove the properties (p1)–(p3) for CωiLNNs (E, G) (i = 1, 2) by a similar proof 

process. 

4. MAGDM Method Based on the Cosine Measures of LNNs 

In this section, we apply the cosine similarity measures of LNNs to solve MAGDM problems 

with LNN information. 

For an MAGDM problem, let H = {h1, h2, …, hm} be a set of m alternatives and A = {A1, A2, …, An} 

be a set of n attributes. The weight vector of the attributes Aj (j = 1, 2, …, n) is ωA = (ωA1, ωA2, …, ωAn)T, 

satisfying ωAj   [0, 1], and 
1

1
n

Ajj



  for j = 1, 2, …, n. Assume that EX = {EX1, EX2, …, EXy} 

is a group of experts and their corresponding weight vector is ωE = (ωE1, ωE2, …, ωEy)T, satisfying ωEk

[0, 1], and 
1

1
y

Ekk



  for k = 1, 2, …, y. The linguistic term is set S = {s0 = extremely low, s1 = 

very low, s3 = low, s4 = medium, s5 = slightly high, s6 = high, s7 = very high, s8 = extremely high}. Each 

expert can assign the truth degree, falsity degree, and indeterminacy degree to each attribute Aj (j = 1, 

2, …, n) on the alternatives hi (i =1, 2, …, m) according to the linguistic terms, respectively. Therefore, 

we can established an LNN decision matrix 
T

1 2( ) =[ ]k k k k k

i , j m n mD d D , D , ,D , where

k k k
i , j i , j i , j

k

i , jd s , s , s
  

   (i = 1, 2, …, m; j = 1, 2, …, n; k = 1, 2, …, y) is an LNN for   k k k
i , j i , j i , j

s , s , s

  [0, 1], and 
1 1 1

1 2{ } { k k k
i , i , i ,

k k k k

i i , i , i ,nD d ,d , ,d s , s , s ,
  

     
2 2 2

k k k
i , i , i ,

s , s , s ,
  

   

}.k k k
i ,n i ,n i ,n

..., s , s , s
  

   

Then, we apply the cosine similarity measures of LNNs to solve MAGDM problems using the 

following steps: 

Step 1: Establish an ideal alternative (ideal solution) LNN matrix as follows: 
T

1 2( ) = [ ]* * * * *

i , j m n mH h H , H , ,H  with * ( ) ( ) ( )
i , j i , ji , j

i , jh max s , min s , min s      (i = 1, 2, …, 

m; j = 1, 2, …, n). 

Step 2: Calculate the weighted cosine measure values between Dk 

i  and the ideal alternative H* 

i  

by Equation (3) or Equation (4) and obtain the value of Cω1LNNs (Dk 

i , H
* 

i ) or Cω2LNNs (Dk 

i , H
* 

i) (i = 1, 2, …, 

m). 
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Step 3: Calculate the overall weighted cosine measure values considering the corresponding 

weight of each expert to evaluate the alternatives Hi (i = 1, 2, …, m), as follows: 

1 1

1
( ) ( )

yk k *

LNNs i Ek LNNs i ik
C D ,H C D ,H 


   (5) 

2 2

1
( ) ( )

yk k *

LNNs i Ek LNNs i ik
C D ,H C D ,H 


   (6) 

where ωEk[0, 1] and 
1

1
y

Ekk



  for k = 1, 2, …, y. 

Step 4: Rank the alternatives according to the values of Cω1LNNs (Dk, Hi) or Cω2LNNs (Dk, Hi) and 

select the best one(s). The bigger the cosine measure value, the better the alternative.  

Step 5: End. 

5. Practical Example and Comparison Analysis 

In this section, we provide a practical example of the selection problem of investment 

alternatives adapted from [48] to demonstrate the applications of the developed MAGDM approach 

with neutrosophic linguistic information. 

5.1. Practical Example 

There is an investment company, which needs to invest a sum of money in the best selection. 

There is a panel with four possible investment alternatives H = {H1, H2, H3, H4}, where: (a) H1 is a car 

company; (b) H2 is a food company; (c) H3 is a computer company; (d) H4 is an arms company. The 

investment company needs to make a decision based on three attributes: (a) A1 is the risk factor; (b) 

A2 is the growth factor; (c) A3 is the environmental factor. The weight vector of the three attributes is 

ωA = (0.35, 0.25, 0.4)T. Three decision-makers denoted as EX = {EX1, EX2, EX3} are invited to evaluate 

the alternatives on the three attributes by LNNs from the linguistic term set S = {s0 = extremely low, s1 

= very low, s3 = low, s4 = medium, s5 = slightly high, s6 = high, s7 = very high, s8 = extremely high}, and 

then their corresponding weight vector is given as ωE = (0.37, 0.33, 0.3)T. Thus, we can establish the 

LNN decision matrix Dk according to the linguistic evaluation information given by each 

decision-maker EXk (k = 1, 2, 3) as follows:  
1

1 6 1 2 7 2 1 6 2 2

1

7 1 1 7 3 2 7 2 121

1
6 2 2 7 1 1 6 2 23

1
7 1 2 7 2 3 7 2 14

=

D s , s , s s , s , s s , s , s

s , s , s s , s , s s , s , sD
D

s , s , s s , s , s s , s , sD

s , s , s s , s , s s , s , sD

        
   

                
   

         

,
 

2

1 6 1 2 6 1 1 4 2 3

2

7 2 3 6 1 1 4 2 322

2
5 1 2 5 1 2 5 4 23

2
6 1 1 5 1 1 5 2 34

=

D s , s , s s , s , s s , s , s

s , s , s s , s , s s , s , sD
D

s , s , s s , s , s s , s , sD

s , s , s s , s , s s , s , sD

        
   

                
   

         

, 

3

1 7 3 4 7 3 3 5 2 5

3

6 3 4 5 1 2 6 2 323

3
7 2 4 6 1 2 7 2 43

3
7 2 3 5 2 1 6 1 14

=

D s , s , s s , s , s s , s , s

s , s , s s , s , s s , s , sD
D

s , s , s s , s , s s , s , sD

s , s , s s , s , s s , s , sD

        
   

                
   

         

.
 

 

Then, the developed MAGDM approach can be applied to this decision-making problem using 

the following steps:
 Step 1: We establish the LNN matrix H* = (h

* 

i,j)4×3 of ideal alternatives (ideal solutions) H* 

i  (i = 1, 2, 

3, 4) as follows: 
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1 8 0 0 8 0 0 8 0 0

8 0 0 8 0 0 8 0 02*

8 0 0 8 0 0 8 0 03

8 0 0 8 0 0 8 0 04

=

*

*

*

*

H s , s , s s , s , s s , s , s

s , s , s s , s , s s , s , sH
H

s , s , s s , s , s s , s , sH

s , s , s s , s , s s , s , sH

        
   

                
   

         

,  

where 
*

8 0 0( ) ( ) ( ) =
i , j i , ji , j

i , jh max s ,min s ,min s s , s , s       (i = 1, 2, 3, 4; j = 1, 2, 3) and 

8 0 0 8 0 0 8 0 0{ }*

kH s , s , s s , s , s s , s , s       (k = 1, 2, 3, 4). 

Step 2: We calculate the weighted cosine measure values based on the distance between D
k 

i  and 

the ideal alternative H
* 

i  by Equation (3) as follows:  

Cω1LNNs (D1, H*) = {Cω1LNNs (D
1 

1 , H* 

1), Cω1LNNs (D
1 

2 , H
* 

2), Cω1LNNs (D
1 

3 , H* 

3), Cω1LNNs (D
1 

4 , H
* 

4)} = {0.9425, 

0.9606, 0.9381, 0.9554}; 

Cω1LNNs (D2, H*) = {Cω1LNNs (D
2 

1 , H* 

1), Cω1LNNs (D
2 

2 , H
* 

2), Cω1LNNs (D
2 

3 , H
* 

3), Cω1LNNs (D
2 

4 , H
* 

4)} = {0.9055, 

0.8974, 0.8869, 0.9212}; 

Cω1LNNs (D3, H*) = {Cω1LNNs (D
3 

1 , H* 

1), Cω1LNNs (D
3 

2 , H
* 

2), Cω1LNNs (D
3 

3 , H
* 

3), Cω1LNNs (D
3 

4 , H
* 

4)} = {0.8447, 

0.8807, 0.9094, 0.9407} 

Similarly, we can calculate the weighted cosine measure values based on the included angle 

cosine of two vectors between D
k 

i  and the ideal alternative H
* 

i  by Equation (4) as follows:  

Cω2LNNs (D1, H*) = {Cω2LNNs (D
1 

1 , H*1), Cω2LNNs (D
1 

2 , H
* 

2), Cω2LNNs (D
1 

3 , H
* 

3), Cω2LNNs (D
1 

4 , H
* 

4)} = {0.9279, 

0.9464, 0.9234, 0.9367}; 

Cω2LNNs (D2, H*) = {Cω2LNNs (D
2 

1 , H
* 

1), Cω2LNNs (D
2 

2 , H
* 

2 ), Cω2LNNs (D
2 

3 , H
* 

3), Cω2LNNs (D
2 

4 , H
* 

4)} = {0.8684, 

0.8516, 0.8459, 0.9057}; 

Cω2LNNs (D3, H*) = {Cω2LNNs (D
3 

1 , H
* 

1), Cω2LNNs (D
3 

2 , H
* 

2), Cω2LNNs (D
3 

3 , H
* 

3), Cω2LNNs (D
3 

4 , H
* 

4)} = {0.7708, 

0.8400, 0.8663, 0.9287}. 

Step 3: Considering the corresponding weight ωE = (0.37, 0.33, 0.3)T of the experts to evaluate 

the alternatives Hi (i = 1, 2, 3, 4), we can calculate the overall weighted cosine measure values based 

on distance by Equation (5) as follows: 

Cω1LNNs (Dk, H1) = 0.37 × Cω1LNNs (D
1 

1 , H
* 

1) + 0.33 × Cω1LNNs (D
2 

1 , H
* 

1) + 0.3 × Cω1LNNs (D
3 

1 , H
* 

1) = 0.9009; 

Cω1LNNs (Dk, H2) = 0.37 × Cω1LNNs (D
1 

1 , H
* 

2) + 0.33 × Cω1LNNs (D
2 

1 , H
* 

2) + 0.3 × Cω1LNNs (D
3 

1 , H
* 

2) = 0.9158; 

Cω1LNNs (Dk, H3) = 0.37 × Cω1LNNs (D
1 

1 , H
* 

3) + 0.33 × Cω1LNNs (D
2 

1 , H
* 

3) + 0.3 × Cω1LNNs (D
3 

1 , H
* 

3) = 0.9126; 

Cω1LNNs (Dk, H4) = 0.37 × Cω1LNNs (D
1 

1 , H
* 

4) + 0.33 × Cω1LNNs (D
2 

1 , H
* 

4) + 0.3 × Cω1LNNs (D
3 

1 , H
* 

4) = 0.9397. 

Similarly, we can calculate the overall weighted cosine measure values based on the included 

angle cosine of two vectors by Equation (6) as follows: 

Cω2LNNs (Dk, H1) = 0.8611, Cω2LNNs (Dk, H2) = 0.8832, Cω2LNNs (Dk, H3) = 0.8807, Cω2LNNs (Dk, H4) = 0.9241. 

Step 4: According to the above values of Cω1LNNs (Dk, Hi) and Cω2LNNs (Dk, Hi) (i = 1, 2, 3, 4), both 

the cosine measure values based on distance and the cosine measure values based on the included 

angle cosine of two vectors, there are the same ranking orders: H4 > H2 > H3 > H1. Thus, according to 

the maximum value of cosine similarity measures, the alternative H4 is the best choice. 

5.2. Related Comparison 

For further comparison, Table 1 lists the MAGDM results based on the cosine measures of 

LNNs proposed in this paper and the LNNWAA and LNNWGA Operators in the relevant paper 

[48], respectively. 

Obviously, from the result of Table 1, ranking orders and the best alternatives based on the 

new method proposed in this paper are consistent with the results provided by Fang and Ye [48]. 

Compared with the literature [48], the calculation process of the cosine measures for MAGDM 

proposed in this paper is relatively simple compared to the LNNWGA operator and the LNNWAA 
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operator in [48]. For further comparison, the MAGDM methods developed in the relevant papers 

[43,44] cannot deal with indeterminate and inconsistent linguistic information; while the method 

presented in this paper can solve linguistic decision-making problems with LNN information. The 

above comparisons demonstrate that this paper presented a new way for solving decision-making 

problems under an LNN environment.  

Table 1. Decision results based on LNN MAGDM methods. 

MAGDM Method Cosine Measure Value (Score Function) Ranking Order The Best Alternative 

Cω1LNNs (Dk, Hi) 0.9009, 0.9158, 0.9126, 0.9397 H4 > H2 > H3 > H1 H4 

Cω2LNNs (Dk, Hi) 0.8611, 0.8832, 0.8807, 0.9241 H4 > H2 > H3 > H1 H4 

LNNWAA Operator [48] 0.7528, 0.7770, 0.7613, 0.8060 H4 > H2 > H3 > H1 H4 

LNNWGA Operator [48] 0.7397, 0.7747, 0.7513, 0.8035 H4 > H2 > H3 > H1 H4 

6. Conclusions 

Under a linguistic environment, two cosine similarity measures of LNNs based on the distance 

and the included angle cosine of two vectors were presented in this paper. Then, an MAGDM 

method with LNNs was developed based on the proposed cosine similarity measures. Finally, to 

demonstrate the application and effectiveness of the proposed method, we introduced a practical 

example about the MAGDM problems based on the cosine similarity measures of LNNs. The 

decision-making results show that the proposed method can effectively solve decision-making 

problems with LNN information. In the future work, we shall study some new correlation 

coefficients between LNNs and their MAGDM methods, and extend the similarity measures to 

linguistic neutrosophic cubic numbers [51]. 
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