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Abstract
In the present study, we discuss the concept of internal cubic bipolar fuzzy (ICBF) sets and
external cubic bipolar fuzzy (ECBF) sets. We also discuss some properties of ICBF-sets and
ECBF-sets under both P-Order andR-Order. We present examples and counterexamples to
support our concepts. Furthermore, we see the importance of ICBF-sets and EBCF-sets in
multiple attribute decision making. We proposed two cubic bipolar fuzzy ordered weighted
geometric aggregation operators, including, P-CBFOWG operator andR-CBFOWG opera-
tor to aggregate cubic bipolar fuzzy information with both perspectives, i.e., ICBF data and
ECBF data. Finally, we present a multiple attribute decision making problem to examine the
useability and capability of these operators and a comparison between ICBF information and
ECBF information.

Keywords Internal cubic bipolar fuzzy sets · External cubic bipolar fuzzy sets · Properties
of ICBF-sets and ECBF-sets · P-CBFOWG andR-CBFOWG operators · Multiple attribute
decision making

Mathematics Subject Classification 90B50 · 03E72

1 Introduction

In daily life, we encounter with many decision making circumstances, which involve ambi-
guities and uncertainties due to insufficient knowledge, meager information, incompatible
data, inconsistent and rare information. To overcome such kind of problems Zadeh (1965)
brought out the idea of fuzzy sets. The theory of fuzzy set is universality of classical set theory.
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Zadeh’s theory has been successfully applied in decision analysis to handle uncertain and
ambiguous data from many decades. Fuzzy sets have been auspiciously adapted in domains
of computer sciences (Frank and Seliger 1997). They used fuzzy logic and neural network
to diagnose faults. Madore (2004) used fuzzy spaces in physics and worked and introduced
concept of fuzziness in quantum mechanics. Innocent and Jhon (2004) constructed different
usefulmethod tomedical diagnosis. Recently, Fuzzy sets have been used inmany fields of life
including, commercial appliances (air conditioner, washing machine and heating ventilation,
etc.), forecasting system of weather, system of traffic monitoring (in Japan fuzzy controller
use to run the train all day long).

The researchers have been published a good number of research papers on extensions 
of fuzzy sets. Many set theories have been developed, including, interval valued set theory 
(Zadeh 1965), intuitionistic fuzzy set theory (Atanassov 1986), bipolar fuzzy set theory 
(Zhang 2017), neutrosophic set theory (Smarandache 2010), soft set theory (Molodtsov 
1999). All these theories have been developed according to necessity of handling specific 
type of data and its useability in different suitable domains.

For data analyzing of many types, bipolarity of knowledge is a vital part to be considered
while developing a mathematical framework for most of the situations. Bipolarity indicates
the positive and negative aspects of a particular problem. The concept behind the bipolarity
is that a huge range of human decisions analysis is involved bipolar subjective thoughts. For
illustration, happiness and grief, sweetness and sourness, effects and side effects are two
different aspects of decision analysis. The equilibrium and mutual coexistence of these two
aspects are treated as a key for balanced social environment. Zhang (1998), introduced the
extension of fuzzy set with bipolarity, called, bipolar-valued fuzzy sets. Bipolar fuzzy set is
suitable for information which involve property as well as its counter property. Lee (2000)
discussed some basic operations of bipolar-valued fuzzy set. Lee and Cios (2004) proposed
a comparison of intuitionistic fuzzy set, interval-valued set and bipolar fuzzy set. In bipolar-
valued fuzzy set interval of membership value is [−1, 1]. The bipolar fuzzy set involves
positive andnegativememberships. The elementswith 0membership indicate that they are not
satisfying the specific property, the interval (0, 1] indicates elements satisfying property with
different degrees of membership, whereas [−1, 0) shows that elements satisfying implicit
counter property. Bipolar fuzzy sets have been also used in many decision analysis which
involve bipolar type information (Aslam et al. 2014; Tahir et al. 2016). Jun et al. (2012)
introduced the abstraction of cubic set (extension of interval-valued fuzzy set and fuzzy
set) and its operations. They presented idea of internal and external cubic sets and their
characteristics. The concept has been extended with many other theories. Cubic set has been
also successfully used in decisionmaking processes due to its efficiency of containing enough
information of a particular type of data. Decision making has a vital role in our daily life
problems. We encounter with many difficulties to handle a problem which contains huge
amount of data. In this regard, different techniques with aggregation operators have been
introduced to handle such type of data. Many authors have been auspiciously adopted these
capable techniques to handle ambiguities in decision analysis (Ghodsypour and ’Brien 1998;
Gülçin and Çifçi 2012; Hwang and Yoon 1981).

The motivation of this paper is to develop a strong mathematical model for bipolar type
decision analysis. From latest research surveys of hybrid fuzzy set models, most of the
researchers in fuzzy-set-inspired models focused on real numbers between 0 and 1. But in
most of the real life problems, we encounter with the negative part of a particular decision. For
example, a medicine which is not effective may not be has any side effect. So the bipolarity
is an important aspect of human decisions. In human decisions the second important part is
ranking and rating of different alternatives obtained after particular evaluation. A verity of
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bipolar fuzzy decisionmaking with different technique is available in literature. This range of
applications of the theories can be used to deal with bipolar vagueness and uncertainty, which
introduced the simple bipolar fuzzy characterizations of the universe of options that depend on
a limited number of grades. So the concept of simple bipolar fuzzy set is insufficient to provide
the information about the occurrence of ratings or grades with accuracy because information
is limited, and it is also unable to describe the occurrence of uncertainty and vagueness very
well specially, when sensitive cases are involved in decision making problems. Similarly,
the concept of interval valued bipolar fuzzy sets (IVBFSs) is also insufficient to provide the
information about the opinion of experts depending upon the properties of alternatives. For
this purpose, we introduced the novel model with applications called cubic bipolar fuzzy
sets as the generalization of bipolar fuzzy sets. So, by the hybridization of two well-known
concepts called bipolar fuzzy sets and IVBFSs, we introduce a new hybrid model called
cubic bipolar fuzzy sets (CBFSs). This model provides more accuracy and flexibility as
compared to previously existing approaches, because it contains more information and it is
more comprehensive and reasonable. Proposed model provides complete information about
occurrence of ratings, uncertainty and bipolarity. It is also valuable because we extend the
method of aggregating operators using geometric operations under cubic bipolar fuzzy data
for MAGDM and compile the final decision using these extended operators method because
of the complex structure of proposed model. In this paper, firstly, we discuss ICBF-sets and
ECBF-sets and their relative characteristics under both orders, secondly, we introduce two
cubic bipolar fuzzy ordered weighted geometric aggregation operators to aggregate the ICBF
and ECBF data, then we apply both concepts to a multiple-criteria decision making problem
to handle this specific type of information. The paper is planed in following sequence: in
Sect. 2 we discuss some preliminaries , in Sect. 3 we introduce ICBF-sets and ECBF-sets
and their properties for P-Order and R-Order. In Sect. 4 we introduce cubic bipolar fuzzy
ordered weighted geometric aggregation operators under both order. In Sect. 5 we see the
useability and application of these operators. In Sect. 6 we finally concluded our study.

2 Preliminaries

In the present section, we make another look on some useful basic definitions. Throughout
this paper V is a universal set.

Definition 2.1 (Zadeh 1965) Let f be a membership function defined as f : V → [0, 1].
Then V f is a fuzzy set defined on V if each element & ∈ V is associated with membership’s
degree, which is a real number in [0, 1] and it is denoted by f (ς).

Definition 2.2 (Zadeh 1971) Let I = [0, 1] be closed interval and j̈ = [j�, ju] ba a closed
subinterval of I, where 0 ≤ j� ≤ ju ≤ 1. Let [J ] be the set of all subintervals. The interval-
valued fuzzy set (IVFS) defined on V is a function f : V → [J ]. The cumulation of all
IVFSs is denoted by [J ]V and j̈(ς) = [j�(ς), ju(ς)] ,for each j̈ ∈ [J ]V and ς ∈ V , is called
membership’s degree of ς to j̈, where j�(ς) and ju(ς) are called lower or inferior fuzzy sets
and upper or superior fuzzy sets, respectively.

Definition 2.3 (Jun et al. 2012) A cubic set on V can be defined as K = {〈ς, j̈(ς), V f (ς)〉 |
ς ∈ V }, where j̈ is interval-valued fuzzy set on V and V f is a fuzzy set on V .

Definition 2.4 (Zhang1998)Abipolar fuzzy set onV is of the formK={(ς, δPK(ς), δNK(ς) ) :
for all ς ∈ V },where δPK(ς) denotes the positive memberships ranges over [0, 1] and δNK(ς)
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denotes the negative memberships ranges over [−1, 0]. A bipolar fuzzy element (BFE) is
simply written as K = (δNK, δPK).

2.1 Cubic bipolar fuzzy sets

The present subsection is devoted for the study of cubic bipolar fuzzy sets (CBFSs). We
review some definition and operations of CBFSs with examples.

Definition 2.5 (Riaz and Tehrim 2019b) Let [J ] be the cumulation of all closed subin-
tervals of [−1, 1]. An interval-valued bipolar fuzzy set (IVBFS) is of the form K =
{〈ς, {MP

K(ς),MN
K(ς)}〉} where MP

K(ς) : V → [0, 1] and MN
K(ς) : V → [−1, 0] are

interval-valued positive and negativemembership degrees of ς ∈ V . An interval-valued bipo-
lar fuzzy element (IVBFE) can be written as K = {MP

K,MN
K} = {[δPK�, δ

P
Ku], [δNK�, δ

N
Ku]},

where δPK�, δ
P
Ku , δ

N
K� and δNKu are called upper and lower limits of the IVBFEsMP andMN

respectively.

Definition 2.6 (Riaz and Tehrim 2019b) LetK1 andK2 be IVBFEs, and �〉0, then operations
on IVBFEs are defined below

(i) K1 ⊕ K2 = {[δPK�1
+ δPK�2

− δPK�1
δPK�2

, δPKu1
+ δPKu2

− δPKu1
δPKu2

], [−(−δNK�1
·

−δNK�2
),−(−δNKu1

· −δNKu2
)]}

(ii) K1 ⊗K2 = {[δPK�1
· δPK�2

, δPKu1
· δPKu2

], [−(−δNK�1
− δNK�2

− (δNK�1
· δNK�2

),−(−δNKu1
−

δNKu2
− (δNKu1

· δNKu2
)]}

(iii) �K1 = [(1 − (1 − δPK�1
)�, (1 − (1 − δPKu1

)�], [−((−δNK�1
)�),−((−δNKu1

)�)]
(iv) K1

� = [(δPK�1
)�, (δPKu1

)�], [−(1 − (1 − (−δNK�1
))�),−(1 − (1 − (−δNKu1

))�)]
(v) K1

c = [1 − δPKu1
, 1 − δPK�1

], [−1 − δNKu1
,−1 − δNK�1

]
(vi) K1 ∪ K2 = [max{δPK�1

, δPK�2
},max{δPKu1

, δPKu2
}], [min{δNK�1

, δNK�2
},min{δNKu1

, δNKu2
}]

(vii) K1 ∩ K2 = [min{δPK�1
, δPK�2

},min{δPKu1
, δPKu2

}], [max{δNK�1
, δNK�2

},max{δNKu1
, δNKu2

}]
Definition 2.7 (Riaz and Tehrim 2019b) A set having form K = {〈ς, {MP

K(ς),MN
K(ς)},

NK(ς)〉 : ς ∈ V } is called cubic bipolar fuzzy set (CBFS), whereM = {MP
K(ς),MN

K(ς)}
is called interval-valued bipolar fuzzy set (IVBFS) and N = NK(ς) is bipolar fuzzy set
(BFS). Consider the Interval I = [−1, 1]. Suppose that [I] and [J ] be the collection of all
sub-intervals of [0, 1] and [−1, 0] respectively. Then we obtain the mappings MP

K(ς) →
[I] | MP

K(ς) = [δPK�(ς), δPKu(ς)] and MN
K(ς) → [J ] | MN

K(ς) = [δNK�(ς), δNKu(ς)],
similarly we get NK(ς) → I | NK(ς) = [ρP

K(ς), ρN
K (ς)], so K becomes

K = 〈M,N 〉 = {〈ς, {[δPK�(ς), δPKu(ς)], [δNK�(ς), δNKu(ς)]}, {ρP
K(ς), ρN

K (ς)}〉 : ς ∈ V }
A cubic bipolar fuzzy element (CBFE) can be denoted by K = {〈{[δPK�, δ

P
Ku], [δNK�, δ

N
Ku]},

{ρP
K, ρN

K }〉}.
Example 2.8 (Riaz and Tehrim 2019b) Let V = {ς1, ς2, ς3} be a universal set then a CBFS
on V is given as follow:

K̈ = {〈ς1, {[0.44, 0.56], [−0.73,−0.61]}, {0.21,−0.33}〉, 〈ς2, {[0.73, 0.81],
[−0.61,−0.46]}, {0.19,−0.23}〉, 〈ς3, {[0.51, 0.62], [−0.41,−0.23]}, {0.31,−0.57}〉}.

Definition 2.9 (Riaz and Tehrim 2019b) (Equality)
Two cubic bipolar fuzzy sets (CBFSs) K1 and K2 on V are said to be equal if
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(i) [δPK�1
(ς), δPKu1

(ς)] = [δPK�2
(ς), δPKu2

(ς)] and [δNK�1
(ς), δNKu1

(ς)] = [δNK�2
(ς), δNKu2

(ς)]

(ii) {ρP
K1

(ς) = ρP
K2

(ς)} and {ρN
K1

(ς) = ρN
K2

(ς)}.
Definition 2.10 (Riaz and Tehrim 2019b) (P-Order)
Let K1 and K2 be two CBFSs on V . Then K1 ⊆P K2, if

(i) [δPK�1
(ς), δPKu1

(ς)] ≤ [δPK�2
(ς), δPKu2

(ς)] and [δNK�1
(ς), δNKu1

(ς)] ≥ [δNK�2
(ς), δNKu2

(ς)]

(ii) {ρP
K1

(ς) ≤ ρP
K2

(ς)} and {ρN
K1

(ς) ≥ ρN
K2

(ς)}.
Definition 2.11 (Riaz and Tehrim 2019b) (R-Order)
Let K1 and K2 be two CBFSs on V . Then K1 ⊆R K2, if

(i) [δPK�1
(ς), δPKu1

(ς)] ≤ [δPK�2
(ς), δPKu2

(ς)] and [δNK�1
(ς), δNKu1

(ς)] ≥ [δNK�2
(ς), δNKu2

(ς)]

(ii) {ρP
K1

(ς) ≥ ρP
K2

(ς)} and {ρN
K1

(ς) ≤ ρN
K2

(ς)}.
Definition 2.12 (Riaz and Tehrim 2019b) The complement of K can be defined as
Kc = {〈ς, {[1 − δPKu(ς), 1 − δPK�(ς)], [−1 − δNKu(ς),−1 − δNK�(ς)]}, {1 − ρP

K(ς),−1 −
ρN
K (ς)}〉 : ς ∈ V }.

Example 2.13 (Riaz and Tehrim 2019b) (P-Order)
Consider K̈1 = 〈M1,N1〉 and K̈2 = 〈M2,N2〉 two CBFSs on V where,

K̈1 = {〈ς1, {[0.23, 0.61], [−0.63,−0.45]}, {0.71,−0.68}〉,
〈ς2, {[0.46, 0.71], [−0.73,−0.61]}, {0.81,−0.71}〉,

〈ς3, {[0.24, 0.62], [−0.65,−0.47]}, {0.69,−0.72}〉},
K̈2 = {< ς1, {[0.33, 0.73], [−0.83,−0.51]}, {0.81,−0.71}〉,

〈ς2, {[0.53, 0.82], [−0.80,−0.70]}, {0.90,−0.80}〉,
〈ς3, {[0.33, 0.73], [−0.83,−0.71]}, {0.78,−0.81}〉},

It is clear K̈1 ⊆P K̈2.

Example 2.14 (Riaz and Tehrim 2019b) (R-Order)
Consider K̈1 = 〈M1,N1〉 and K̈2 = 〈M2,N2〉 two CBFSs on V where,

K̈1 = {〈ς1, {[0.23, 0.61], [−0.63,−0.45]}, {0.90,−0.80}〉,
〈ς2, {[0.46, 0.71], [−0.73,−0.61]}, {0.81,−0.71}〉,
〈ς3, {[0.24, 0.62], [−0.65,−0.47]}, {0.69,−0.72}〉},

K̈2 = {< ς1, {[0.33, 0.73], [−0.83,−0.51]}, {0.81,−0.71}〉,
〈ς2, {[0.53, 0.82], [−0.80,−0.70]}, {0.71,−0.68}〉,
〈ς3, {[0.33, 0.73], [−0.83,−0.71]}, {0.60,−0.63}〉},

It is clear K̈1 ⊆R K̈2.

Definition 2.15 (Riaz and Tehrim 2019b) (P-Union)
Let Kε be a collection of CBFSs on V , then we define P-Union as ∪n

ε=1Kε =
{〈maxε∈�[δPK�ε

(ς), δPKuε
(ς)],minε∈�[δNK�ε

(ς), δNKuε
(ς)]},maxε∈�(ρP

Kε
(ς)),minε∈�(ρN

Kε

(ς))}〉. We write it ∪P .
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Definition 2.16 (Riaz and Tehrim 2019b) (P-Intersection)
Let Kε be a collection of CBFSs on V , then we define P-Intersection as ∪n

ε=1Kε =
{〈minε∈�[δPK�ε

(ς), δPKuε
(ς)],maxε∈�[δNK�ε

(ς), δNKuε
(ς)]},minε∈�(ρP

Kε
(ς)),maxε∈�

(ρN
Kε

(ς))}〉. We write it ∩P .

Definition 2.17 (Riaz and Tehrim 2019b) (R-Union)
Let Kε be a collection of CBFSs on V , then we define R-Union as ∪n

ε=1Kε

= {〈maxε∈�[δPK�ε
(ς), δPKuε

(ς)],minε∈�[δNK�ε
(ς), δNKuε

(ς)]}, {minε∈�(ρP
Kε

(ς)),maxε∈�

(ρN
Kε

(ς))}〉. We write it ∪R.

Definition 2.18 (Riaz and Tehrim 2019b) (R-Intersection)
Let Kε be a collection of CBFSs on V , then we define R-Intersection as ∪n

ε=1Kε

= {〈minε∈�[δPK�ε
(ς), δPKuε

(ς)],maxε∈�[δNK�ε
(ς), δNKuε

(ς)]}, {maxε∈�(ρP
Kε

(ς)),minε∈�

(ρN
Kε

(ς))}〉. We write it ∩R.

Example 2.19 (Riaz and Tehrim 2019b) Consider K̈1 = 〈M1,N1〉 and K̈2 = 〈M2,N2〉
two CBFSs on V , where K̈1 = {〈ς1, {[0.22, 0.34], [−0.48,−0.36]}, {0.45,−0.67}〉,
〈ς2, {[0.37, 0.46], [−0.67,−0.59]}, {0.81,−0.72}〉}, K̈2 = {〈ς1, {[0.35, 0.43], [−0.63,
−0.51]}, {0.56,−0.67}〉, 〈ς2, {[0.38, 0.52], [−0.70,−0.54]}, {0.67,−0.43}〉}, then

K̈1 ∪P K̈2 = {〈ς1, {[0.35, 0.43], [−0.63,−0.51]}, {0.56,−0.67}〉,
〈ς2, {[0.38, 0.52], [−0.70,−0.59]}, {0.81,−0.72}〉}

K̈1 ∩P K̈2 = {〈ς1, {[0.22, 0.34], [−0.48,−0.36]}, {0.45,−0.61}〉,
〈ς2, {[0.37, 0.46], [−0.67,−0.54]}, {0.67,−0.43}〉}

K̈1 ∪R K̈2 = {〈ς1, {[0.35, 0.43], [−0.63,−0.51]}, {0.45,−0.61}〉,
〈ς2, {[0.38, 0.52], [−0.70,−0.59]}, {0.67,−0.43}〉}

K̈1 ∩R K̈2 = {〈ς1, {[0.35, 0.43], [−0.63,−0.51]}, {0.56,−0.67}〉,
〈ς2, {[0.38, 0.52], [−0.70,−0.59]}, {0.81,−0.72}〉}

Definition 2.20 (Riaz and Tehrim 2019b) Let K1, K2 be two CBFSs on V and �〉0 be a real
number. Then we define following algebraic operations for P-Order.

K1 ⊕P K2 =
{{[

δPK�1
(ς) + δPK�2

(ς) −
(
δPK�1

(ς)δPK�2
(ς)

)
, δPKu1(ς) + δPKu2(ς)

−
(
δPKu1(ς)δPKu2(ς)

)]
,

[
−

(
δNK�1

(ς)δNK�2
(ς)

)
,−

(
δNKu1(ς)δNKu2(ς)

)]}
,

{
ρP
K1

(ς) + ρP
K2

(ς)

−
(
ρP
K1

(ς)ρP
K2

(ς)
)

,−
(
ρN
K1

(ς)ρN
K2

(ς)
)}}

K1 ⊗P K2 =
{{[(

δPK�1
(ς)δPK�2

(ς)
)

,
(
δPKu1(ς)δPKu2(ς)

)]
,

[
−

(
−δNK�1

(ς)

−δNK�2
(ς) −

(
δNK�1

(ς)δNK�2
(ς)

))
,

−
(
−δNKu1(ς) − δNKu2(ς) −

(
δNKu1(ς)δNKu2(ς)

))]}
,

{(
ρP
K1

(ς)ρP
K2

(ς)
)

,
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−
(
−ρN

K1
(ς) − ρN

K2
(ς) −

(
ρN
K1

(ς)ρN
K2

(ς)
))}}

K�

1 =
{{[(

δPK�1
(ς)

)�

,
(
δPKu1(ς)

)�
]
,

[
−

(
1 −

(
1 −

(
−δNK�1

(ς)
))�)

,

−
(
1 −

(
1 −

(
−δNKu1(ς)

))�)]}
,

{(
ρP
K1

(ς)
)�

,−
(
1 −

(
1 −

(
−ρN

K1
(ς)

))�)}}

�K1 =
{{[

1 −
(
1 − δPK�1

(ς)
)�

, 1 −
(
1 − δPKu1(ς)

)�
]
,

[
−

(
−δNK�1

(ς)
)�

,

−
(
−δNKu1(ς)

)�
]}

,

{
1 −

(
1 − ρP

K1
(ς)

)�

,−
(
−ρN

K1
(ς)

)�
}}

Example 2.21 (Riaz and Tehrim 2019b) Let K̈1 = {〈ς1, {[0.44, 0.56], [−0.73,−0.61]},
{0.21,−0.33}〉} and K̈2 = {〈ς1, {[0.73, 0.81], [−0.61,−0.46]}, {0.54,−0.62}〉} and � = 2,
then

K̈1 ⊕P K̈2 =
{〈{[

0.44 + 0.73 − (0.32) , 0.56 + 0.81 − (0.45)

]
,

[
− (0.44) ,− (0.28)

]}
,

{
0.21 + 0.54 − (0.11) ,− (0.20)

}〉}

K̈1 ⊕P K̈2 = {〈ς1, {[0.85, 0.92], [−0.44,−0.28]}, {0.64,−0.20}〉}
K̈1 ⊗P K̈2 =

{〈{[
(0.32) , (0.45)

]
,

[
− (

0.73 + 0.61 − (0.44)
)
,

− (
0.61 + 0.46 − (0.28)

)]}
,

{
(0.096) ,−(

0.33 + 0.62 − (0.20)
)}〉}

K̈1 ⊗P K̈2 = {〈ς1, {[0.32, 0.45], [−0.90,−0.79]}, {0.096,−0.75}〉}
K̈2
1 =

{〈{[
(0.44)2 , (0.56)2

]
,

[
− (

1 − (1 − 0.73)2
)
,

− (
1 − (1 − 0.61)2

) ]}{
(0.21)2 ,− (

1 − (1 − 0.33)2
) }〉}

K̈2
1 = {〈ς1, {[0.19, 0.31], [−0.92,−0.84]}, {0.044,−0.55}〉}

2K̈1 =
{〈{[

1 − (1 − 0.44)2 , 1 − (1 − 0.56)2
]
,

[
− (0.73)2 ,− (0.61)2

]}
,

{
1 − (1 − 0.21)2 ,− (0.33)2

}〉}

2K̈1 = {〈ς1, {[0.68, 0.80], [−0.53,−0.37]}, {0.37,−0.10}〉}
Definition 2.22 (Riaz and Tehrim 2019b) Let K1, K2 be two CBFSs on V and �〉0 be a real
number. Then we define following algebraic operations for R-Order.

K1 ⊕R K2 =
{{[

δPK�1
(ς) + δPK�2

(ς) −
(
δPK�1

(ς)δPK�2
(ς)

)
, δPKu1(ς)

+δPKu2(ς) −
(
δPKu1(ς)δPKu2(ς)

)]
,
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[
−

(
δNK�1

(ς)δNK�2
(ς)

)
,−

(
δNKu1(ς)δNKu2(ς)

)]{(
ρP
K1

(ς)ρP
K2

(ς)
)

,

−
(
−ρN

K1
(ς) − ρN

K2
(ς) −

(
ρN
K1

(ς)ρN
K2

(ς)
))}}

K1 ⊗R K2 =
{{[(

δPK�1
(ς)δPK�2

(ς)
)

,
(
δPKu1(ς)δPKu2(ς)

)]
,

[
−

(
−δNK�1

(ς) − δNK�2
(ς) −

(
δNK�1

(ς)δNK�2
(ς)

))
,

−
(
−δNKu1(ς) − δNKu2(ς) −

(
δNKu1(ς)δNKu2(ς)

))]}
,

}
,

{
ρP
K1

(ς) + ρP
K2

(ς) −
(
ρP
K1

(ς)ρP
K2

(ς)
)

,

−
(
ρN
K1

(ς)ρN
K2

(ς)
)}}

K�

1 =
{{[(

δPK�1
(ς)

)�

,
(
δPKu1(ς)

)�
]
,

[
−

(
1 −

(
1 −

(
−δNK�1

(ς)
))�)

,

−
(
1 −

(
1 −

(
−δNKu1(ς)

))�)]}
,

{
1 −

(
1 − ρP

K1
(ς)

)�

,−
(
−ρN

K1
(ς)

)�
}}

�K1 =
{{[

1 −
(
1 − δPK�1

(ς)
)�

, 1 −
(
1 − δPKu1(ς)

)�
]
,

[
−

(
−δNK�1

(ς)
)�

,−
(
−δNKu1(ς)

)�
]{(

ρP
K1

(ς)
)�

,

−
(
1 −

(
1 −

(
−ρN

K1
(ς)

))�)}}

Example 2.23 (Riaz and Tehrim 2019b) Consider K̈1 = {〈ς1, {[0.44, 0.56], [−0.73,
−0.61]}, {0.21,−0.33}〉} and K̈2 = {〈ς1, {[0.73, 0.81], [−0.61,−0.46]}, {0.54,−0.62}〉}
and � = 2, then

K̈1 ⊕R K̈2 = {〈ς1, {[0.85, 0.92], [−0.44,−0.28]}, {0.096,−0.75}〉}
K̈1 ⊗R K̈2 = {〈ς1, {[0.32, 0.45], [−0.90,−0.79]}, {0.64,−0.20}〉}

K̈2
1 = {〈ς1, {[0.19, 0.31], [−0.92,−0.84]}, {0.37,−0.10}〉}

2K̈1 = {〈ς1, {[0.68, 0.80], [−0.53,−0.37]}, {0.044,−0.55}〉}
Lemma 2.24 (Riaz and Tehrim 2019b) LetKε be a family of cubic bipolar fuzzy sets and �〉0
be any real number, then for any K1, K2 ∈ Kε the K1 ⊕K2, K1 ⊗K2, K�

1 and �K1 are also
cubic bipolar fuzzy sets under P-Order and R-Order.

Theorem 2.25 (Riaz and Tehrim 2019b) Let K1, K2 be two CBFSs and �1, �2, �3〉0 be real
numbers then the following properties are hold under P-Order and R-Order.

(i) �(K1 ⊕P,R K2) = �K1 ⊕P,R �K2,
(ii) (K�

1 ⊗P,R K�

2 ) = (K1 ⊗P,R K2)
�
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(iii) K�1
1 ⊗P,R K�2

1 = K1
�1+�2 ,

(iv) (�1�2)K1 = �1(�2K1)

(v) (K1
�1�2) = (K1

�1)�2 ,
(vi) K1 ⊕P,R K2 = K2 ⊕P,R K1

(vii) K1 ⊗P,R K2 = K2 ⊗P,R K1,
(viii) K1 ∪P,R K2 = K2 ∪P,R K1

(ix) K1 ∩P,R K2 = K2 ∩P,R K1,
(x) {K1 ∪P,R K2}c = K1

c ∩P,R K2
c

(xi) {K1 ∩P,R K2}c = K1
c ∪P,R K2

c,
(xii) {K1 ⊕P,R K2}c = K1

c ⊗P,R K2
c

(xiii) {K1 ⊗P,R K2}c = K1
c ⊕P,R K2

c.

2.2 Ordered weighted aggregation operators

An aggregation operator is some sort of function that used to combine information or data.
It is used to combine n number of data, for instance, n numerical values in a single outcome.
The aggregation operators can be obtained by different mathematical operations for example
arithmetic operations and geometric operations. A weight factor is also used in aggregation
operator which allow us to weight the different data according to their relevance. There exist
a large number of different aggregation operators that differ on the assumptions on the data
(data types) and about the type of information that we can incorporate in the model. In the
present study we use ordered weighted aggregation operator which were first introduced by
Yager (1988) under averaging operations.

Definition 2.26 (Yager 1988) Let K̈ε , for {ε = 1, 2, . . . , n}, be the collection of data andϒ =
{w1,w2, . . . ,wn}T be the weighted vector, where ordered weighted averaging aggregation
operator is a mapping A : K̈n → K̈ which can be defined as follows

A(K̈1, K̈2, . . . , K̈n) =
{

n⊕
ε=1

}
P

(wε(K̈ε))

Definition 2.27 (Yager 1988) (Properties)
The weighted averaging aggregation operator defined on K̈ε satisfy the following properties.

(i) (Idempotent) For K̈ε = K̈, we have CBFG(K̈1, K̈2, . . . , K̈n) = K̈
(ii) (Bounded) ∩CBFG(K̈1, K̈2, . . . , K̈n) ≤ CBFG(K̈1, K̈2, . . . , K̈n) ≤ ∪CBFG(K̈1,

K̈2, . . . , K̈n)

(iii) (Commutative) If (K̈′
1, K̈2

′
, . . . , K̈′

n) be different alteration of (K̈1, K̈2, . . . , K̈n), then
CBFG(K̈1, K̈2, . . . , K̈n) = CBFG(K̈′

1, K̈2
′
, . . . , K̈′

n)

(iv) (Monotonic) Let K̈ε and K̈′
ε then for K̈ε ≤ K̈′

ε , we get CBFG(K̈1, K̈2, . . . , K̈n) ≤
CBFG(K̈′

1, K̈2
′
, . . . , K̈′

n).

The researchers developed a number of aggregation operators according to necessity of data.
Here, we develop some ordered weighted geometric aggregation operators for cubic bipolar
fuzzy information.

3 Internal and external CBFSs

Definition 3.1 ACBFSK = 〈M,N 〉 is said to be an internal cubic bipolar fuzzy set (ICBFS)
if for all indexing set ε ∈ � and ς ∈ V the following conditions are satisfied δPK�ε

(ς) ≤
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ρP
Kε

≤ δPKuε
(ς), δNK�ε

(ς) ≤ ρN
Kε

≤ δNKuε
(ς) where δPK�ε

(ς), δ
(P)
Kuε

(ς), δNK�ε
(ς), δNKuε

(ς) ∈
M, ρP

Kε
, ρN

Kε
∈ N .

Definition 3.2 A CBFS K = 〈M,N 〉 is called an external cubic bipolar fuzzy set
(ECBFS) if for all indexing set ε ∈ � and ς ∈ V the following conditions are satisfied
ρP
Kε

/∈ (
(δPK�ε

(ς), δPKuε
(ς)

)
, ρN

Kε
/∈ (

δNK�ε
(ς), δNKuε

(ς)
)
where δPK�ε

(ς), δPKuε
(ς), δNK�ε

(ς),

δNKuε
(ς) ∈ M, ρP

Kε
, ρN

Kε
∈ N .

Example 3.3 The given below set is an ICBFS

K =
⎧⎨
⎩

〈ς1, {[0.32, 0.45], [−0.51,−0.42]}, {0.38,−0.48}〉,
〈ς2, {[0.41, 0.55], [−0.56,−0.47]}, {0.47,−0.50}〉,
〈ς3, {[0.63, 0.73], [−0.83,−0.71]}, {0.68,−0.79}〉

⎫⎬
⎭

Example 3.4 The given below set is an ECBFS

K =
⎧⎨
⎩

〈ς1, {[0.23, 0.33], [−0.51,−0.41]}, {0.41,−0.25}〉,
〈ς2, {[0.43, 0.56], [−0.83,−0.71]}, {0.71,−0.26}〉,
〈ς3, {[0.15, 0.21], [−0.49,−0.39]}, {0.33,−0.51}〉

⎫⎬
⎭

Theorem 3.5 Let K = 〈M,N 〉 be a CBFS on V , which is not ECBFS then ∃ ς ∈ V such
that ρP

Kε
∈ (

δPK�ε
(ς), δPKuε

(ς)
)
and ρN

Kε
∈ (

δNK�ε
(ς), δNKuε

(ς)
)
.

Proof Obvious. ��
Theorem 3.6 Let K = 〈M,N 〉 be a CBFS on V . If K is an ICBFS as well as ECBFS then
ρP
Kε

∈ (
δPK�ε

(ς) ∪ δPKuε
(ς)

)
and ρN

Kε
∈ (

δNK�ε
(ς) ∪ δNKuε

(ς)
)
for all ς ∈ V .

Proof By definition of ICBFS and ECBFS, we have δPK�ε
(ς) ≤ ρP

Kε
≤ δPKuε

(ς) and

δNK�ε
(ς) ≤ ρN

Kε
≤ δNKuε

(ς), ρP
Kε

/∈ (
δPK�ε

(ς), δPKuε
(ς)

)
and ρN

Kε
/∈ (

δNK�ε
(ς), δNKuε

(ς)
)
which

shows that ρP
Kε

= δPK�ε
(ς) or ρP

Kε
= δPKuε

(ς). Similarly, ρN
Kε

= δNK�ε
(ς) or ρN

Kε
= δNKuε

(ς).

Thus ρP
Kε

∈ (
δPK�ε

(ς) ∪ δPKuε
(ς)

)
and ρN

Kε
∈ (

δNK�ε
(ς) ∪ δNKuε

(ς)
)
for all ς ∈ V . ��

Theorem 3.7 Let K = 〈M,N 〉 be a CBFS, which is both ICBFS as well as ECBFS then
Kc = 〈M,N 〉 is also an ICBFS and ECBFS.

Proof By definition of ICBFS and ECBFS, we have δPK�ε
(ς) ≤ ρP

Kε
≤ δPKuε

(ς), δNK�ε
(ς) ≤

ρN
Kε

≤ δNKuε
(ς) and ρP

Kε
/∈ (δPK�ε

(ς), δPKuε
(ς)), ρN

Kε
/∈ (δNK�ε

(ς), δNKuε
(ς)) now,

1 − δPKuε
(ς) ≤ 1 − ρP

Kε
≤ 1 − δPK�ε

(ς), − 1 − δNKuε
(ς) ≤ −1 − ρN

Kε
≤ −1 − δNK�ε

(ς)

1 − ρP
Kε

/∈ (1 − δPKuε
(ς), 1 − δPK�ε

(ς)), − 1 − ρN
Kε

/∈ (−1 − δNKuε
(ς),−1 − δNK�ε

(ς))

By definition of compliment of CBFS, Kc is also ICBFS and ECBFS for all ς ∈ V . ��
Remark If K1 = 〈M1,N1〉 and K2 = 〈M2,N2〉 be two ECBFSs on V . Then

(i) K1 ∪P K2 may not to be an ICBFS.
(ii) K1 ∩P K2 may not to be an ICBFS.
(iii) K1 ∪P K2 may not to be an ECBFS.
(iv) K1 ∩P K2 may not to be an ECBFS.
(v) K1 ∪R K2 and K1 ∩R K2 may not to be ICBFSs.

The supporting counter examples for above remark are given below.
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Example 3.8 IfK1 = 〈M1,N1〉 andK2 = 〈M2,N2〉 be two ECBFSs on V . ThenK1 ∪P K2

may not to be an ICBFS.

K1 = {〈ς1, {[0.23, 0.33], [−0.51,−0.41]}, {0.41,−0.25}〉},
K2 = {〈ς1, {[0.21, 0.31], [−0.50,−0.40]}, {0.40,−0.24}〉} then
K1 ∪P K2 = {〈ς1, {[0.23, 0.33], [−0.51,−0.41]}, {0.41,−0.25}〉} is not an ICBFS.

Example 3.9 IfK1 = 〈M1,N1〉 andK2 = 〈M2,N2〉 be two ECBFSs on V . ThenK1 ∩P K2

may not to be an ICBFS.

K1 = {〈ς1, {[0.23, 0.33], [−0.51,−0.41]}, {0.41,−0.25}〉},
K2 = {〈ς1, {[0.21, 0.31], [−0.50,−0.40]}, {0.40,−0.24}〉} then
K1 ∩P K2 = {〈ς1, {[0.21, 0.31], [−0.50,−0.40]}, {0.40,−0.24}〉} is not an ICBFS.

Example 3.10 IfK1 = 〈M1,N1〉 andK2 = 〈M2,N2〉 be two ECBFSs on V . ThenK1∪PK2

may not to be an ECBFS.

K1 = {〈ς1, {[0.42, 0.81], [−0.56,−0.21]}, {0.39,−0.70}〉},
K2 = {〈ς1, {[0.51, 0.61], [−0.46,−0.31]}, {0.93,−0.25}〉} then
K1 ∪P K2 = {〈ς1, {[0.51, 0.81], [−0.56,−0.31]}, {0.93,−0.70}〉} is not an ECBFS.

Example 3.11 IfK1 = 〈M1,N1〉 andK2 = 〈M2,N2〉 be two ECBFSs on V . ThenK1∩PK2

may not to be an ECBFS.

K1 = {〈ς1, {[0.42, 0.81], [−0.56,−0.26]}, {0.39,−0.70}〉},
K2 = {〈ς1, {[0.51, 0.61], [−0.46,−0.46]}, {0.93,−0.25}〉} then
K1 ∩P K2 = {〈ς1, {[0.42, 0.61], [−0.46,−0.26]}, {0.39,−0.25}〉} is not an ECBFS.

Example 3.12 IfK1 = 〈M1,N1〉 andK2 = 〈M2,N2〉 be twoECBFSs on V . ThenK1∪RK2

and K1 ∩R K2 may not to be ICBFSs.

K1 = {〈ς1, {[0.21, 0.58], [−0.73,−0.61]}, {0.62,−0.21}〉},
K2 = {〈ς1, {[0.52, 0.31], [−0.83,−0.41]}, {0.72,−0.11}〉} then

K1 ∪R K2 = {〈ς1, {[0.52, 0.58], [−0.83,−0.61]}, {0.62,−0.11}〉}
K1 ∩R K2 = {〈ς1, {[0.21, 0.31], [−0.73,−0.41]}, {0.72,−0.21}〉}

are not ICBFSs.

Theorem 3.13 IfK1 = 〈M1,N1〉 andK2 = 〈M2,N2〉 be two ICBFSs on V . ThenK1∪PK2

and K1 ∩P K2 are also ICBFSs on V .

Proof By definition of ICBFS, for K1, we have δPK�1
(ς) ≤ ρP

K1
≤ δPKu1

(ς), δNK�1
(ς) ≤

ρN
K1

≤ δNKu1
(ς) similarly for K2, we get δPK�2

(ς) ≤ ρP
K2

≤ δPKu2
(ς), δNK�2

(ς) ≤ ρN
K2

≤
δNKu2

(ς) on taking P-Union,

max[δPK�1
(ς), δPK�2

(ς)] ≤ max[ρP
K1

, ρP
K2

] ≤ max[δPKu1(ς), δPKu2(ς)],
min[δNK�1

(ς), δNK�2
(ς)] ≤ min[ρN

K1
, ρN

K2
] ≤ min[δNKu1(ς), δNKu2(ς)]
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similarly P-Intersection,

min[δPK�1
(ς), δPK�2

(ς)] ≤ min[ρP
K1

, ρP
K2

] ≤ min[δPKu1(ς), δPKu2(ς)],
max[δNK�1

(ς), δNK�2
(ς)] ≤ max[ρN

K1
, ρN

K2
] ≤ max[δNKu1(ς), δNKu2(ς)]

So, K1 ∪P K2 and K1 ∩P K2 are ICBFSs on V . ��
Example 3.14 Consider K1 = {〈ς1, {[0.32, 0.60], [−0.50,−0.42]}, {0.38,−0.48}〉}, and
K2 = {〈ς2, {[0.41, 0.55], [−0.56,−0.41]}, {0.47,−0.50}〉}, then

K1 ∪P K2 = {〈ς1, {[0.41, 0.60], [−0.56,−0.42]}, {0.47,−0.50}〉}
K1 ∩P K2 = {〈ς1, {[0.32, 0.55], [−0.50,−0.41]}, {0.38,−0.48}〉}

are ICBFSs on V .

The following counter example shows that the R-Union and R-Intersection of two ICBFSs
may not be an ICBFS.

Example 3.15 IfK1 = 〈M1,N1〉 andK2 = 〈M2,N2〉 be two ICBFSs on V . ThenK1∪RK2

and K1 ∩R K2 may not to be ICBFSs.
K1 = {〈ς1, {[0.23, 0.37], [−0.73,−0.61]}, {0.30,−0.70}〉},
K2 = {〈ς1, {[0.51, 0.59], [−0.62,−0.54]}, {0.55,−0.59}〉} then

K1 ∪R K2 = {〈ς1, {[0.51, 0.59], [−0.73,−0.61]}, {0.30,−0.59}〉}
K1 ∩R K2 = {〈ς1, {[0.23, 0.37], [−0.62,−0.54]}, {0.55,−0.70}〉}

are not ICBFSs.

The following properties holds for all CBFSs, including, ICBFSs, and ECBFSs.

Theorem 3.16 Let K1, K2 and K3 be three CBFSs, then the following properties are hold
under P-Order as well as R-Order.

(i) K1 ∪P,R K1 = K1

(ii) K1 ∩P,R K1 = K1

(iii) (K1 ∪P,R K2) ∪P,R K3 = K1 ∪P,R (K2 ∪P,R K3)

(iv) (K1 ∩P,R K2) ∩P,R K3 = K1 ∩P,R (K2 ∩P,R K3)

(v) (K1 ⊕P,R K2) ⊕P,R K3 = K1 ⊕P,R (K2 ⊕P,R K3)

(vi) (K1 ⊗P,R K2) ⊗P,R K3 = K1 ⊗P,R (K2 ⊗P,R K3)

(vii) K1 ∪P,R (K2 ∩P,R K3) = (K1 ∪P,R K2) ∩P,R (K1 ∪P,R K2)

(viii) K1 ∩P,R (K2 ∪P,R K3) = (K1 ∩P,R K2) ∪P,R (K1 ∩P,R K2)

(ix) K1 ⊕P,R (K2 ∪P,R K3) = (K1 ⊕P,R K2) ∪P,R (K1 ⊕P,R K2)

(x) K1 ⊕P,R (K2 ∩P,R K3) = (K1 ⊕P,R K2) ∩P,R (K1 ⊕P,R K2)

(xi) K1 ⊗P,R (K2 ∪P,R K3) = (K1 ⊗P,R K2) ∪P,R (K1 ⊗P,R K2)

(xii) K1 ⊗P,R (K2 ∩P,R K3) = (K1 ⊗P,R K2) ∩P,R (K1 ⊗P,R K2)

Proof The proofs can be obtained by applying definitions. ��

4 Cubic bipolar fuzzy ordered weighted geometric aggregation
operators for CBFSs

In this section we define two aggregation operators for CBFSs.We define cubic bipolar fuzzy
ordered weighted geometric aggregation operators under the operations of P-Order and R-
Order. We discuss some certain features of both operators. We also examine capability and
reliability of these operators in aggregating the ICBF and ECBF data.
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4.1 Score and accuracy functions of CBFSs

To compare the cubic bipolar fuzzy elements(CBFEs) we use the score function. After apply-
ing proposed algorithm and CBFOWG-operators, we obtain different values for different
alternatives using score function if two or more values are same then we use accuracy func-
tion for those particular alternatives. The score function is defined as

Definition 4.1 (Riaz and Tehrim 2019a) The score function for CBFEs under P-Order can
be computed as

SP (K) = [δPK�(ς) + δPKu(ς)] + [δNK�(ς) + δNKu(ς)] − ρP
K(ς) − ρN

K (ς)

6

where SP (K) ∈ [−1, 1]. If SP (K1)〉SP (K2), then K1 � K2. However, If SP (K1) =
SP (K2), then A(K1) = A(K2) implies K1 = K2, where A(K) is defined in definition
4.2. The score function for CBFEs under R-Order can be computed as

SR(K) = [δPK�(ς) + δPKu(ς)] + [δNK�(ς) + δNKu(ς)] + ρP
K(ς) + ρN

K (ς)

6

where SR(K) ∈ [−1, 1]. If SR(K1)〉SR(K2), then K1 � K2. However, If SR(K1) =
SR(K2), then A(K1) = A(K2) implies K1 = K2. Where A(K) is defined in definition 4.2.

Here “�” denote the symbol of ranking or preference between alternatives.

Remark If K1 � K2 then SP (K1)〉SP (K2) or SR(K1)〉SR(K2) may or may not hold.

Definition 4.2 (Riaz and Tehrim 2019a) The accuracy function for CBFEs can be computed
as

A(K) = [δPK�(ς) + δPKu(ς)] − [δNK�(ς) + δNKu(ς)] + ρP
K(ς) − ρN

K (ς)

6

where A(K) ∈ [0, 1]. If A(K1)〉A(K2), then K1 � K2. If A(K1) = A(K2), then K1 = K2.

Example 4.3 Let us consider some CBFEs

B =
[
ς1 = {[0.45, 0.57], [−0.83,−0.53], {0.52,−0.78}}
ς2 = {[0.34, 0.50], [−0.65,−0.49], {0.39,−0.61}}

]

then SP (ς1) = −0.013,and SP (ς2) = −0.08 which shows that ς1 � ς2 using SP (K).
Similarly, SR(ς1) = −0.01,and SR(ς2) = −0.08 which shows that ς1 � ς2 using SR(K)

4.2 P-order cubic bipolar fuzzy ordered weighted geometric(P-CBFWG) operator

Definition 4.4 Suppose Kε = {〈{[δPK�ε
, δPKuε

], [δNK�ε
, δNKuε

]}, {ρP
Kε

, ρN
Kε

}〉}, for {ε = 1, 2,

. . . , n}, be a family of CBFEs. Then consider a weighted vector ϒ = {w1,w2, . . . ,w3}T ,
where 
n

ε=1wε = 1 and 0 ≤ wε ≤ 1. Let oε be an alteration which shows the greatest Kε

then cubic bipolar fuzzy ordered weighted geometric(CBFOWG) aggregation operator is a
mapping A : Kn → K which can be computed under P-Order as follows
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P-CBFOWG(K1,K2, . . . ,Kn) =
{

n⊗
ε=1

}
P

(wε(Koε))

=
{{[

n
�

ε=1

(
δPK�oε

)wε

,
n
�

ε=1

(
δPKuoε

)wε
]
,

[
−

(
1 − n

�
ε=1

(
1 − (−δNK�oε

)

)wε
)

,

−
(
1 − n

�
ε=1

(
1 − (−δNKuoε )

)wε
)]}

,

{
n
�

ε=1

(
ρP
Koε

)wε , −
(
1 − n

�
ε=1

(
1 − (−ρN

Koε
)

)wε
)}}

Example 4.5 Let us consider CBFEs K1 = {[0.42, 0.53], [−0.45,−0.34], {0.45,−0.39}},
K2 = {[0.66, 0.73], [−0.53,−0.40], {0.68,−0.45}} ,K3 = {[0.45, 0.67], [−0.62,−0.34],
{0.48,−0.51}} andK4 = {[0.23, 0.61], [−0.71,−0.60], {0.34,−0.63}} with weight vector
ϒ = {0.1, 0.2, 0.3, 0.4}T . Nowwe rearrange the CBFEs using score function underP-Order.
By applying score function, we obtain SP (K1) = 0.016, SP (K2) = 0.0383, SP (K3) =
0.0316, SP (K4) = −0.030. This shows that SP (K2)〉SP (K3)〉SP (K1)〉SP (K4) this implies
thatK2 � K3 � K1 � K4. Now we obtain the following ordered sequence of CBFEsKo1 =
{[0.66, 0.73], [−0.53,−0.40], {0.68,−0.45}},Ko2 = {[0.45, 0.67], [−0.62,−0.34], {0.48,
−0.51}}, Ko3 = {[0.42, 0.53], [−0.45,−0.34], {0.45,−0.39}} and Ko4 = {[0.23, 0.61],
[−0.71,−0.60], {0.34,−0.63}} �4

ε=1

(
δPK�oε

)wε = (
(0.66)0.1 × (0.45)0.2 × (0.42)0.3 ×

(0.23)0.4
) = 0.350

4
�

ε=1

(
δPKuoε

)wε = (
(0.73)0.1 × (0.67)0.2 × (0.53)0.3 × (0.61)0.4

) = 0.606

4
�

ε=1

(
1 − δNK�oε

)wε = (1 − 0.53)0.1 × (1 − 0.62)0.2 × (1 − 0.45)0.3 × (1 − 0.71)0.4 = −0.610

4
�

ε=1

(
1 − δNKuoε

)wε = (1 − 0.40)0.1 × (1 − 0.34)0.2 × (1 − 0.34)0.3 × (1 − 0.60)0.4 = −0.464

4
�

ε=1

(
ρP
Koε

)wε = (
(0.68)0.1 × (0.48)0.2 × (0.45)0.3 × (0.34)0.4

) = 0.424

4
�

ε=1

(
1 − ρN

Koε

)wε = (1 − 0.45)0.1 × (1 − 0.51)0.2 × (1 − 0.39)0.3 × (1 − 0.63)0.4 = −0.526

P-CBFOWG(K1,K2,K3,K4) = {[0.350, 0.606], [−0.610,−0.464], {0.424,−0.526}}
Theorem 4.6 Suppose thatKε = {〈{[δPK�ε

, δPKuε
], [δNK�ε

, δNKuε
]}, {ρP

Kε
, ρN

Kε
}〉} be a collection

of CBFEs. Let ϒ = {w1,w2, . . . ,wn} be weight vector and 0 ≤ wε ≤ 1 | 
n
ε=1 = 1, then

P-CBFOWG operator is Idempotent, bounded and monotonic.

Proof Idempotent:
For Kε = K, we will prove that P-CBFOWG(K1,K2, . . . ,Kn) = K. By definition of
P-CBFOWG, we have

P-CBFOWG(K1,K2, . . . ,Kn) = { n⊗
ε=1

}
P (wε(Koε))

=
{{[

n
�

ε=1

(
δPK�oε

)wε ,
n
�

ε=1

(
δPKuoε

)wε

]
,

[
−

(
1 − n

�
ε=1

(
1 − (−δNK�oε

)
)wε

)
,

−
(
1 − n

�
ε=1

(
1 − (−δNKuoε )

)wε

)]}
,

{
n
�
ε=1

(
ρP
Koε

)wε ,−
(
1 − n

�
ε=1

(
1 − (−ρN

Koε
)
)wε

)}}

=
{{[

n
�

ε=1

(
δPK�o

)wε ,
n
�

ε=1

(
δPKuo

)wε

]
,

[
−

(
1 − n

�
ε=1

(
1 − (−δNK�o)

)wε

)
,
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−
(
1 − n

�
ε=1

(
1 − (−δNKuo)

)wε

)]}
,

{
n
�
ε=1

(
ρP
Ko

)wε ,−
(
1 − n

�
ε=1

(
1 − (−ρN

Ko)
)wε

)}}

=
{{[(

δPK�o

) n



ε=1
wε

,
(
δPKuo

) n



ε=1
wε

]
,

[
−

(
1 − (

1 − (−δNK�o
)
) n



ε=1

wε

)
,

−
(
1 − (

1 − (−δNKuo )
) n



ε=1

wε

)]}
,

{(
ρP
Ko

) n



ε=1
wε

,−
(
1 − (

1 − (−ρN
Ko

)
) n



ε=1

wε

)}}

= K

Bounded:
∩PP-CBFOWG(K1,K2, . . . ,Kn) ≤ P − CBFOWG(K1,K2, . . . ,Kn) ≤ ∪PP −
CBFOWG(K1,K2, . . . ,Kn), that is every CBFE is bounded between the operation ∩P
and ∪P . Consider

P-CBFOWG(K1,K2, . . . ,Kn)

=
{{[

n
�
ε=1

(
δPK�oε

)wε ,
n
�

ε=1

(
δPKuoε

)wε

]
,

[
−

(
1 − n

�
ε=1

(
1 − (−δNK�oε

)
)wε

)
,

−
(
1 − n

�
ε=1

(
1 − (−δNKuoε )

)wε

)]}
,

{
n
�
ε=1

(
ρP
Koε

)wε ,−
(
1 − n

�
ε=1

(
1 − (−ρN

Koε
)
)wε

)}}

∩PP-CBFOWG(K1,K2, . . . ,Kn)

=
{{[

n
�
ε=1

(
min δPK�oε

)wε ,
n
�

ε=1

(
min δPKuoε

)wε

]
,

[
−

(
1 − n

�
ε=1

(
1 − max(−δNK�oε

)
)wε

)
,

−
(
1 − n

�
ε=1

(
1 − max(−δNKuoε )

)wε

)]}
,

{
n
�

ε=1

(
min ρP

Koε

)wε ,

−
(
1 − n

�
ε=1

(
1 − max(−ρN

Koε
)
)wε

)}}

similarly,

∪PP − CBFOWG(K1,K2, v,Kn)

=
{{[

n
�

ε=1

(
max δPK�oε

)wε ,
n
�
ε=1

(
max δPKuoε

)wε

]
,

[
−

(
1 − n

�
ε=1

(
1 − min(−δNK�oε

)
)wε

)
,

−
(
1 − n

�
ε=1

(
1 − min(−δNKuoε )

)wε

)]}
,

{
n
�

ε=1

(
max ρP

Koε

)wε ,

−
(
1 − n

�
ε=1

(
1 − min(−ρN

Koε
)
)wε

)}}
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we have,

{
min(δPK�oε

) ≤ δPK�oε
≤ max(δPK�oε

)
}

⇒
{

n
�
ε=1

(
min(δPK�oε

)
)wε ≤ n

�
ε=1

(
δPK�oε

)wε ≤ n
�

ε=1

(
max(δPK�oε

)
)wε

}

A similar computation gives,

{
n
�

ε=1

(
min(δPKuoε )

)wε ≤ n
�

ε=1

(
δPKuoε

)wε ≤ n
�
ε=1

(
max(δPKuoε )

)wε

}
{

−
(
1 − n

�
ε=1

(
1 − min(−δNK�oε

)
)wε

)
≤ −

(
1 − n

�
ε=1

(
1 − (−δNK�oε

)
)wε

)

≤ −
(
1 − n

�
ε=1

(
1 − max(−δNK�oε

)
)wε

)}
{

−
(
1 − n

�
ε=1

(
1 − min(−δNKuoε )

)wε

)
≤ −

(
n
�

ε=1

( − δNKuoε

)wε

)

≤ −
(

n
�

ε=1

(
1 − max(−δNKuoε )

)wε

)}
{

n
�

ε=1

(
min(ρP

Koε
)
)wε ≤ n

�
ε=1

(
ρP
Koε

)wε ≤ n
�

ε=1

(
max(ρP

Koε
)
)wε

}

and
{

−
(
1 − n

�
ε=1

(
1 − min(−ρN

oKε
)
)wε

)
≤ −

(
1 − n

�
ε=1

(
1 − (−ρN

Koε
)
)wε

)

≤ −
(
1 − n

�
ε=1

(
1 − max(−ρN

Koε
)
)wε

)}

If the CBFEs satisfied property of idempotent then the equality does holds.

Monotonic:
Consider Kε and K′

ε two collections of CBFEs then for Kε ≤ K′
ε , we get

P-CBFOWG(K1,K2, . . . ,Kn) ≤ P-CBFOWG(K′
1,K2

′, . . . ,K′
n). We have, Kε ≤ K′

ε

⇒ {
(δPK�oε

) ≤ (δPK′�oε )
} ⇒

{
n
�
ε=1

(
δPK�oε

)wε ≤ n
�

ε=1

(
(δPK′�oε )

)wε

}

⇒
{

n
�

ε=1

(
(δPK�oε

)
)wε ≤ n

�
ε=1

(
(δPK′�oε )

)wε

}

A similar computation gives,

{
n
�
ε=1

(
δPKuoε

)wε ≤ n
�

ε=1

(
δPK′uoε

)wε

}
{

−
(
1 − n

�
ε=1

(
1 − (−δNK�oε

)
)wε

)
≤ −

(
1 − n

�
ε=1

(
1 − (−δNK′�oε )

)wε

)}
{

−
(
1 − n

�
ε=1

(
1 − (−δNKuoε )

)wε

)
≤ −

(
1 − n

�
ε=1

(
1 − (−δNK′uoε )

)wε

)}
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{
n
�

ε=1

(
ρP
Koε

)wε ≤ n
�
ε=1

(
ρP
K′

oε

)wε

}
and

{
−

(
n
�

ε=1

(
1 − (−ρN

Koε
)
)wε

)
≤

−
(
1 − n

�
ε=1

(
1 − (−ρN

K′
oε

)
)wε

)}

Thus P-CBFOWG is monotonic. ��
Theorem 4.7 Let Kε = {〈{[δPK�ε

, δPKuε
], [δNK�ε

, δNKuε
]}, {ρP

Kε
, ρN

Kε
}〉}, for {ε = 1, 2, . . . , n},

be the collection of CBFEs. Then their aggregating value computed by P-CBFOWG is again
a CBFE.

Proof Let Koε be the collection of CBFEs after applying SP , where o is alteration of alter-
natives shows the greatest Kε . We prove this by mathematical induction, suppose that for
n = 2

w1Ko1 =
{{[(

δPK�o1

)w1 ,
(
δPKuo1

)w1

]
,

[
−

(
1 − (

1 − (−δNK�o1
)
)w1

)
,

−
(
1 − (

1 − (−δNKuo1
)
)w1

)]}
,

{(
ρP
Ko1

)w1 ,−
(
1 − (

1 − (−ρN
Ko1

)
)w1

)}}

w2Ko2 =
{{[(

δPK�o2

)w2 ,
(
δPKuo2

)w2

]
,

[
−

(
1 − (

1 − (−δNK�o2
)
)w2

)
,

−
(
1 − (

1 − (−δNKuo2
)
)w2

)]}
,

{(
ρP
Ko2

)w2 ,−
(
1 − (

1 − (−ρN
Ko2

)
)w2

)}}

w1Ko1 ⊗P w2Ko2 =
{{[(

δPK�o1

)w1 ,
(
δPKuo1

)w1

]
,

[
−

(
1 − (

1 − (−δNK�o1
)
)w1

)
,

−
(
1 − (

1 − (−δNKuo1
)
)w1

)]}
,

{(
ρP
Ko1

)w1 ,−
(
1 − (

1 − (−ρN
Ko1

)
)w1

)}}
⊗P

{{[(
δPK�o2

)w2 ,
(
δPKuo2

)w2

]
,

[
−

(
1 − (

1 − (−δNK�o2
)
)w2

)
,−

(
1 − (

1 − (−δNKuo2
)
)w2

)]}
,

{(
ρP
Ko2

)w2 ,−
(
1 − (

1 − (−ρN
Ko2

)
)w2

)}}

w1Ko1 ⊗P w2Ko2 =
{{[(

δPK�o1

)w1
(
δPK�o2

)w2 ,
(
δPKuo1

)w1
(
δPKuo2

)w2

]
,

[
−

(
1 − ( − 1(−δNK�o1

)
)w1

(
1 − (−δNK�o2

)
)w2

)
,−

(
1 − (

1 − (−δNKuo1
)
)w1

(
1 − (−δNKuo2

)
)w2

)]}
,

{(
ρP
Ko1

)w1
(
ρP
Ko2

)w2 ,

−
(
1 − (

1 − (−ρN
Ko1

)
)w1

(
1 − (−ρN

Ko2
)
)w2

)}}

suppose the statement is true for n = z{
z⊗

ε=1

}
P

(wε(Koε))

=
{{[

z
�

ε=1

(
δPK�oε

)wε ,
z
�

ε=1

(
δPKuoε

)wε

]
,

[
−

(
1 − z

�
ε=1

(
1 − (−δNK�oε

)
)wε

)
,

−
(
1 − z

�
ε=1

(
1 − (−δNKuoε )

)wε

)]}
,

{
z
�
ε=1

(
ρP
Koε

)wε ,−
(
1 − z

�
ε=1

(
1 − (−ρN

Koε
)
)wε

)}}
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now we will show that the statement is true for n = z + 1.{
z⊗

ε=1

}
P

(wε(Koε)) ⊗P wz+1(Koz+1)

=
{{[

z
�

ε=1

(
δPK�oε

)wε ,
z
�

ε=1

(
δPKuoε

)wε

]
,

[
−

(
1 − z

�
ε=1

(
1 − (−δNK�oε

)
)wε

)
,

−
(
1 − z

�
ε=1

(
1 − (−δNKuoε )

)wε

)]}
,

{
z
�
ε=1

(
ρP
Koε

)wε ,−
(
1 − z

�
ε=1

(
1 − (−ρN

Koε
)
)wε

)}}
⊗P

{{[(
δPK�oz+1

)wz+1 ,
(
δPKuoz+1

)wz+1

]
,

[
−

(
1 − (

1 − (−δNK�oz+1
)
)wz+1

)
,−

(
1 − (

1 − (−δNKuoz+1
)
)wz+1

)]}
,

{(
ρP
Koz+1

)wz+1 ,

−
(
1 − (

1 − (−ρN
Koz+1

)
)wz+1

)}}

thus after some simplification, we get the final expression
{
z+1⊗
ε=1

}
P

(wε(Koε))

=
{{[

z+1
�

ε=1

(
δPK�oε

)wε ,
z+1
�

ε=1

(
δPKuoε

)wε

]
,

[
−

(
1 − z+1

�
ε=1

(
1 − (−δNK�oε

)
)wε

)
,

−
(
1 − z+1

�
ε=1

(
1 − (−δNKuoε )

)wε

)]}
,

{
z+1
�
ε=1

(
ρP
Koε

)wε ,−
(
1 − z+1

�
ε=1

(
1 − (−ρN

Koε
)
)wε

)}}

which is again a cubic bipolar fuzzy element. Hence the statement is true for all n. ��

Now we define cubic bipolar fuzzy ordered weighted geometric aggregating operator under
R-Order, the CBFOWG operator under R-Order share similar properties as in P-Order.

4.3 R-order cubic bipolar fuzzy ordered weighted geometric(R-CBFOWG) operator

Definition 4.8 Suppose Kε = {〈{[δPK�ε
, δPKuε

], [δNK�ε
, δNKuε

]}, {ρP
Kε

, ρN
Kε

}〉}, for {ε = 1, 2,
. . . , n}, be a collection of CBFEs. Let o is the alteration of alternatives. Consider a weight
vector ϒ = {w1,w2, . . . ,w3}T , where 
n

ε=1wε = 1 and 0 ≤ wε ≤ 1, then CBFOWG is a
mapping A : Kn → K which can be computed under R-Order as follows

R-CBFOWG(K1,K2, . . . ,Kn) =
{

n⊗
ε=1

}
R

(wε(Koε))

=
{{[

n
�
ε=1

(
δPK�oε

)wε ,
n
�

ε=1

(
δPKuoε

)wε

]
,

[
−

(
1 − n

�
ε=1

(
1 − (−δNK�oε

)
)wε

)
,

−
(
1 − n

�
ε=1

(
1 − (−δNKuoε )

)wε

)]}
,

{
1 − n

�
ε=1

(
1 − ρP

Koε

)wε ,−
(

n
�
ε=1

( − ρN
Koε

)wε

)}}
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Theorem 4.9 (Properties)
Let Kε = {〈{[δPK�ε

, δPKuε
], [δNK�ε

, δNKuε
]}, {ρP

Kε
, ρN

Kε
}〉} be the collection of CBFEs then R-

CBOFWG operator is idempotent, bounded, commutative and monotonic.

Proof The proofs are similar as for P-Order. ��
Lemma 4.10 Let Kε = {〈{[δPK�ε

, δPKuε
], [δNK�ε

, δNKuε
]}, {ρP

Kε
, ρN

Kε
}〉}, for {ε = 1, 2, . . . , n}

be the collection of CBFEs, then their aggregating value calculated byR-CBFWG operator
is a CBFE.

5 Application ofP-CBFOWG andR-CBFOWG operators tomultiple
attribute decision analysis using ICBFSs and ECBFSs

Themultiple attribute decision analysis is a process inwhich a collection of different attributes
or parameters are involved. All these attributes may be conflicting with each other. For
example, a personwant a highly efficient car in low cost, then howcan be it possible tomanage
high quality in low price? So these are conflicting attributes. This type of decision making
is more difficult when the problems involve more uncertainties and ambiguities. The role of
bipolarity is also important in decision making process, which involve uncertain bipolar type
information. The bipolar fuzzy sets have been successfully used to handle uncertain data
which can distinguish the positive aspect as well as negative aspect of a particular problem.
The cubic set is also an important and successful tool to get proper results by the mean of
interval valued fuzzy set. Here we use a combination of both extensions to get proper results
through this hybrid of bipolar fuzzy set.

5.1 Proposed technique

In this subsection, we discuss the process of cubic bipolar fuzzy ordered weighted geometric
aggregation operators to solve a multiple attribute decision making problem under the envi-
ronment ICBF and ECBF information. We see the behavior of ICBF and ECBF information
in decision analysis. In this terminology the following steps are included.

Algorithm:
Step 1: Let X = {ς1, ς2, . . . , ςm} be the set of alternatives Y = {ẏ1, ẏ2, . . . , ẏk} be the set
of attributes or parameters and ϒ̇ = {ẇ1, ẇ2, . . . , ẇn}T be the weight under the condition

that 0 ≤ w ≤ 1 and
n



ε=1
wε = 1.

Step 2: We further assume that M = [
bıj

]
m×k , for ı = {1, 2, . . .m} and j =

{1, 2, . . . k}, be the decision matrix of ICBF or ECBF data provided by experts, where
each bıj = {{[δ�ıj , δuıj ]P , [δ�ıj , δuıj ]N }, {ρP

�ıj
, ρN

uıj }} is ICBF-element(ICBFE) or ECBF-
element(ECBFE). These matrices are specified by the set of alternatives with respect to the
set of attributes.
Step 3:Compute M′ = [

b′
ıj

]
m×k , for ı = {1, 2, . . .m} and j = {1, 2, . . . k} the matrix of

ordered alternatives by calculating SP or SR
Step 4: Apply P-CBFOWG orR-CBFOWG operator toM′ = [

b′
ıj

]
m×k and obtain aggre-

gating matrixM′′ = [
b′′

ıj
]
m×k

Step 5: Calculate

SP (b′′
ı ) = [δ�ı + δuı ]P + [δ�ı + δuı ]N − ρP

�ı
− ρN

uı

6
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or

SR(b′′
ı ) = [δ�ı + δuı ]P + [δ�ı + δuı ]N + ρP

�ı
+ ρN

uı

6

Step 6: Rank the alternatives.

5.2 Computative example ofP-CBFOWG andR-CBFWG operators in multiple
attribute decisionmaking problem

Themultiple attribute decision analysis unambiguously solves numerous incompatible points
of comparison in decision making in the terms such as government, business, medicine,
physics, information technology, etc. These incompatible points of comparison are classical
in measuring options, for example, cost is main attribute and standard is another attribute
incompatible with cost. In this case a healthy and beneficial decision is more difficult. In
literature, there are many decision making problems solved by different techniques and
approaches. In this subsection we present a different, but useful method to tackle a problem
of decision analysis. In this regard, we consider ICBFEs and ECBFEs and use CBFOWG
operators of both orders to examine a real life problem. The computative example is illustrated
here.

5.3 Numerical example

Suppose that the government want to assign a contract of construction to the best construc-
tion company on three attributes. The are three construction companies as three alternatives
including, ς1 , ς2 = and ς3 =. The three attributes are ẏ1 = necessity of peoples, ẏ2 =
5-year status of all three alternatives and ẏ3 = budget limit to examine all three alternatives.
The decision maker(DM) assume ICBFEs and ECBFEs because is more helpful in examine
the decision with different perspectives. So, ICBFEs and ECBFEs are suitable to handle
such kind of data. We associate positive membership degree with positive status of a partic-
ular alternative, whereas negative membership degrees associate with negative status of that
alternative with respect to each attribute. The decision maker construct decision matrix first
with ICBFEs and then with ECBFEs for alternatives ςı with respect to attributes ẏj , where
ı = 1, 2, 3 and j = 1, 2, 3 (Table 1).

By calculating SP we obtain the matrix of ordered alternatives (Table 2).

Table 1 M = [
bıj

]
m×k decision matrix of ICBFSs provided by DM

X vs Y ẏ1 ẏ2 ẏ3

ς1 {[0.45, 0.59],
[−0.92,−0.42],
{0.53,−0.88}}

{[0.63, 0.73],
[−0.83,−0.71],
{0.68,−0.79}}

{[0.23, 0.34],
[−0.37,−0.22],
{0.31,−0.32}}

ς2 {[0.28, 0.53],
[−0.78,−0.60],
{0.35,−0.75}}

{[0.41, 0.49],
[−0.52,−0.44],
{0.45,−0.49}}

{[0.39, 0.48],
[−0.54,−0.39],
{0.42,−0.49}}

ς3 {[0.34, 0.48],
[−0.84,−0.72],
{0.41,−0.77}}

{[0.52, 0.60],
[−0.63,−0.55],
{0.56,−0.60}}

{[0.46, 0.57],
[−0.60,−0.48],
{0.22,−0.11}}
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Table 2 M′ = [
b′
ıj

]
m×k decision matrix with ordered alternatives of ICBFSs using SP

X vs Y ẏ1 ẏ2 ẏ3

ς1 {[0.45, 0.59],
[−0.92,−0.42],
{0.53,−0.88}}

{[0.23, 0.34],
[−0.37,−0.22],
{0.31,−0.32}}

{[0.63, 0.73],
[−0.83,−0.71],
{0.68,−0.79}}

ς2 {[0.39, 0.48],
[−0.54,−0.39],
{0.42,−0.49}}

{[0.41, 0.49],
[−0.52,−0.44],
{0.45,−0.49}}

{[0.28, 0.53],
[−0.78,−0.60],
{0.35,−0.75}}

ς3 {[0.52, 0.60],
[−0.63,−0.55],
{0.56,−0.60}}

{[0.34, 0.48],
[−0.84,−0.72],
{0.41,−0.77}}

{[0.46, 0.57],
[−0.60,−0.48],
{0.22,−0.11}}

Table 3 M′ = [
b′
ıj

]
m×k decision matrix with ordered alternatives of ICBFSs using SR

X vs Y ẏ1 ẏ2 ẏ3

ς1 {[0.23, 0.34],
[−0.37,−0.22],
{0.31,−0.32}}

{[0.63, 0.73],
[−0.83,−0.71],
{0.68,−0.79}}

{[0.45, 0.59],
[−0.92,−0.42],
{0.53,−0.88}}

ς2 {[0.41, 0.49],
[−0.52,−0.44],
{0.45,−0.49}}

{[0.39, 0.48],
[−0.54,−0.39],
{0.42,−0.49}}

{[0.28, 0.53],
[−0.78,−0.60],
{0.35,−0.75}}

ς3 {[0.46, 0.57],
[−0.60,−0.48],
{0.22,−0.11}}

{[0.52, 0.60],
[−0.63,−0.55],
{0.56,−0.60}}

{[0.34, 0.48],
[−0.84,−0.72],
{0.41,−0.77}}

Now compute P-CBFOWG to aggregate M′ = [
b′

ıj
]
m×k , with weight vector ϒ =

{0.4, 0.2, 0.4}

M′′ =
⎡
⎣ς1 = {[0.450, 0.575], [−0.836,−0.533], {0.526,−0.787}}

ς2 = {[0.345, 0.501], [−0.654,−0.493], {0.395,−0.616}}
ς3 = {[0.454, 0.562], [−0.677,−0.566], {0.362,−0.506}}

⎤
⎦

by calculating SP we obtain the ranking ς1 � ς3 � ς2. So ς1 is best choice.
Now we consider decision matrix of ICBFEs and perform same process under R-Order. By
calculating SR we obtain the matrix of ordered alternatives (Table 3).

Now compute R-CBFOWG to aggregate M′ = [
b′

ıj
]
m×k , with weight vector ϒ =

{0.4, 0.2, 0.4}

M′′ =
⎡
⎣ς1 = {[0.367, 0.493], [−0.787,−0.431], {0.492,−0.574}}

ς2 = {[0.348, 0.503], [−0.651,−0.502], {0.405,−0.580}}
ς3 = {[0.417, 0.537], [−0.727,−0.605], {0.377,−0.336}}

⎤
⎦

by calculating SR we obtain the ranking ς3 � ς1 � ς2. So ς3 is best choice. If decision
maker consider decision matrix with ECBFEs (Table 4). By calculating SP we obtain the
matrix of ordered alternatives (Table 5).
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Table 4 M = [
bıj

]
m×k decision matrix with ECBFEs provided by DM

X vs Y ẏ1 ẏ2 ẏ3

ς1 {[0.54, 0.67],
[−0.12,−0.10],
{0.23,−0.56}}

{[0.76, 0.87],
[−0.13,−0.12],
{0.60,−0.64}}

{[0.81, 0.92],
[−0.19,−0.18],
{0.70,−0.73}}

ς2 {[0.64, 0.77],
[−0.13,−0.11],
{0.32,−0.37}}

{[0.80, 0.92],
[−0.19,−0.18],
{0.24,−0.29}}

{[0.76, 0.82],
[−0.21,−0.18],
{0.23,−0.27}}

ς3 {[0.74, 0.87],
[−0.23,−0.20],
{0.33,−0.40}}

{[0.66, 0.78],
[−0.31,−0.26],
{0.34,−0.43}}

{[0.73, 0.77],
[−0.30,−0.29],
{0.26,−0.44}}

Table 5 M′ = [
b′
ıj

]
m×k decision matrix with ordered alternatives of ECBFEs using SP

X vs Y ẏ1 ẏ2 ẏ3

ς1 {[0.76, 0.87],
[−0.13,−0.12],
{0.60,−0.64}}

{[0.81, 0.92],
[−0.19,−0.18],
{0.70,−0.73}}

{[0.54, 0.67],
[−0.12,−0.10],
{0.23,−0.56}}

ς2 {[0.80, 0.92],
[−0.19,−0.18],
{0.24,−0.29}}

{[0.76, 0.82],
[−0.21,−0.18],
{0.23,−0.27}}

{[0.64, 0.77],
[−0.13,−0.11],
{0.32,−0.37}}

ς3 {[0.74, 0.87],
[−0.23,−0.20],
{0.33,−0.40}}

{[0.73, 0.77],
[−0.30,−0.29],
{0.26,−0.44}}

{[0.66, 0.78],
[−0.31,−0.26],
{0.34,−0.43}}

Table 6 M = [
bıj

]
m×k decision matrix with ordered alternatives of ECBFEs SR

X vs Y ẏ1 ẏ2 ẏ3

ς1 {[0.76, 0.87],
[−0.13,−0.12],
{0.60,−0.64}}

{[0.81, 0.92],
[−0.19,−0.18],
{0.70,−0.73}}

{[0.54, 0.67],
[−0.12,−0.10],
{0.23,−0.56}}

ς2 {[0.80, 0.92],
[−0.19,−0.18],
{0.24,−0.29}}

{[0.76, 0.82],
[−0.21,−0.18],
{0.23,−0.27}}

{[0.64, 0.77],
[−0.13,−0.11],
{0.32,−0.37}}

ς3 {[0.74, 0.87],
[−0.23,−0.20],
{0.33,−0.40}}

{[0.66, 0.78],
[−0.31,−0.26],
{0.34,−0.43}}

{[0.73, 0.77],
[−0.30,−0.29],
{0.26,−0.44}}

now compute P-CBFOWG to aggregate M′ = [
b′

ıj
]
m×k , with weight vector ϒ =

{0.4, 0.2, 0.4}

M′′ =
⎡
⎣ς1 = {[0.671, 0.792], [−0.138,−0.124], {0.421,−0.631}}

ς2 = {[0.724, 0.837], [−0.170,−0.152], {0.266,−0.319}}
ς3 = {[0.704, 0.812], [−0.276,−0.242], {0.318,−0.420}}

⎤
⎦

by calculating SP we obtain the ranking ς1 � ς2 � ς3. So ς1 is best choice. Now we
consider decision matrix with ECBFEs and operator with R-Order (Table 6).
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Fig. 1 Flow chart of whole process

Fig. 2 Yellow = ς1, Brown = ς2,Blue = ς3, the internal pie graph is representing ranking of alternatives
using ICBFEs w.r.t P-Order (Fig. 1) andR-Order (Fig. 2) and the external pie graph is representing ranking
of alternatives using ECBFEs w.r.t P-Order (Fig. 1) andR-Order (Fig. 2)

Now compute R-CBFOWG to aggregate M′ = [
b′

ıj
]
m×k , with weight vector ϒ =

{0.4, 0.2, 0.4}

M′′ =
⎡
⎣ς1 = {[0.671, 0.792], [−0.138,−0.124], {0.509,−0.622}}

ς2 = {[0.724, 0.837], [−0.170,−0.152], {0.271,−0.315}}
ς3 = {[0.719, 0.810], [−0.274,−0.249], {0.304,−0.421}}

⎤
⎦

by calculating SR we obtain the ranking ς1 � ς3 � ς2. So ς1 is best choice.

6 Conclusion

In this paper, we present the concept of internal cubic bipolar fuzzy(ICBF) sets and external
cubic bipolar fuzzy(ECBF) sets. We proposed two cubic bipolar fuzzy ordered weighted
geometric aggregation operators, including, P-CBFOWG operator andR-CBFOWG opera-
tor to aggregate cubic bipolar fuzzy information with both perspectives, i.e., ICBF data and
ECBF data. Finally, we present a multiple attribute decision making problem to examine
the useability and capability of these operators and a comparison between ICBF information
and ECBF information. We see the final results are more reliable after applying different
geometric operators with different perspectives. We examine that in all four processes ς1 is
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most reliable alternative. We conclude that the techniques is useful in bipolar type decision
making due to its internal and external point of view.
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