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Abstract: In recent years, there has been a growing interest in neutrosophic theory, and there are 

several methods for solving various problems under neutrosophic environment. However, a few 

papers have discussed the Data envelopment analysis (DEA) with neutrosophic sets. So, in this 

paper, we propose an input-oriented DEA model with simplified neutrosophic numbers and 

present a new strategy to solve it. The proposed method is based on the weighted arithmetic 

average operator and has a simple structure. Finally, the new approach is illustrated with the help 

of a numerical example. 

Keywords: Data envelopment analysis; Neutrosophic set; Simplified neutrosophic sets (SNSs); 
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1. Introduction 

With the advent of technology and the complexity and volume of information, senior 

executives have required themselves to apply scientific methods to determine and increase the 

productivity of the organization under their jurisdiction. Data envelopment analysis (DEA) is a 

mathematical technique to evaluate the relative efficiency of a set of some homogeneous units called 

decision-making units (DMUs) that use multiple inputs to produce multiple outputs. DMUs are 

called homogeneous because they all employ the same inputs to produce the same outputs. DEA by 

constructing an efficiency frontier measures the relative efficiency of decision making units (DMUs). 

Charnes et al. [1] developed a DEA model (CCR) based on the seminal work of Farrell [2] under the 

assumption of constant returns to scale (CRS). Banker et al. [3] extended the pioneering work 

Charnes et al. [1] and proposed a model conventionally called BCC to measure the relative efficiency 

under the assumption of variable returns to scale (VRS). DEA technique has just been effectively 

connected in various cases such as broadcasting companies [4], banking institutions [5-8], R&D 

organizations [9-10], health care services [11-12], manufacturing [13-14], telecommunication [15], 

and supply chain management [16-19]. However, data in the standard models are certain, but there 

are numerous circumstances in real life where we have to face uncertain parameters. Zadeh [20] first 

proposed the theory of fuzzy sets (FSs) against certain logic where the membership degree is a real 

number between zero and one. After this work, many researchers studied on this topic; details of 

some researches can be observed in [21-30]. Several researchers also proposed some models of DEA 

under fuzzy environment [31-42]. However, Zadeh’s fuzzy sets cannot deal with certain cases in 

which it is difficult to define the membership degree using one specific value. To overcome this lack 

of knowledge, Atanassov [43] introduced an extension of the FSs that called the intuitionistic fuzzy 

sets (IFSs). Although the theory of IFSs can handle incomplete information in various real-world 

issues, it cannot address all types of uncertainty such as indeterminate and inconsistent information. 
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Therefore, Smarandache [44-45], proposed the neutrosophic set (NS) as a strong general 

framework that generalizes the classical set concept, fuzzy set [20], interval-valued fuzzy set [46], 

intuitionistic fuzzy set [43], and interval-valued intuitionistic fuzzy set [47]. Neutrosophic set (NS) 

can deal with uncertain, indeterminate and incongruous information where the indeterminacy is 

quantified explicitly and truth membership, indeterminacy membership and falsity membership are 

completely independent. It can effectively describe uncertain, incomplete and inconsistent 

information and overcomes some limitations of the existing methods in depicting uncertain decision 

information. Moreover, some extensions of NSs, including interval neutrosophic set [48-51], bipolar 

neutrosophic set [52-54], single-valued neutrosophic set [55-59], simplified neutrosophic sets [60-64], 

multi-valued neutrosophic set [65-67], and neutrosophic linguistic set [68-70] have been presented 

and applied to solve various problems; see [71-80]. 

Although there are several approaches to solving various problems under neutrosophic 

environment, to the best of our knowledge, there are few investigations regarding DEA with 

neutrosophic sets. The first attempt has been proposed by Edalatpanah in [81] and further research 

has been presented in [82]. So, in this paper, we design a model of DEA with simplified neutrosophic 

numbers (SNNs) and establish a new strategy to solve it. The proposed method is based on the 

weighted arithmetic average operator and has a simple structure. 

This paper organized as follows: some basic knowledge, concepts and arithmetic operations on 

SNNs are introduced in Section 2. In Section 3, we review some concepts of DEA and the 

input-oriented BCC model. In Section 4, we introduce the mentioned model of DEA under the 

simplified neutrosophic environment and propose a method to solve it.  In Section 5, an example 

demonstrates the application of the proposed model. Finally, some conclusions and future research 

are offered in Section 6. 

2. Simplified neutrosophic sets  

Smarandache [44-45] has provided a variety of real-life examples for possible applications of his 

neutrosophic sets; however, it is difficult to apply neutrosophic sets to practical problems. Therefore, 

Ye [60] reduced neutrosophic sets of non-standard intervals into a kind of simplified neutrosophic 

sets (SNSs) of standard intervals that will preserve the operations of the neutrosophic sets. In this 

section, we will review the concept of SNSs, which are a subclass of neutrosophic sets briefly. 

Definition 1 [60].  Let X be a space of points (objects), with a generic element in X denoted by x. A 

neutrosophic set A in X is characterized by a truth-membership function TA(x), an indeterminacy 

membership function IA(x) and a falsity-membership function FA(x). If the functions TA(x), IA(x) and 

FA(x) are singleton subintervals/subsets in the real standard [0, 1], that is TA(x): [0,1],X →  IA(x): 

[0,1],X → and FA(x): [0,1].X → Then, a simplification of the neutrosophic set A is denoted by  

{( ( ) ( ) ( )) | },,  ,  , A A AA x T x I x F x x X=  which is called a SNS. Also, SNS satisfies the condition 

.0 ( ) ( ) ( ) 3A A AT x I x F x+  +  

Definition 2 [60].   For SNSs A and B, A ⊆B if and only if ,( ) ( )A BT x T x ( ) ( ),A BI x I x  and 

)  ( ) (A BF x F x for every x in X. 

Definition 3 [63].  Let A, B be two SNSs. Then the arithmetic relations are defined as: 

( ) ( ) ( ) ( ) ( ) ( ), ( ) ( ) ,( ) ,A A A AB B B Bi A B T x T x T x T x I x I x F x F x = + −                                     (1)                                     

( ) ( ) ( ) ( ) ( ). ( ), ( ) ( ) ( ). ( ) ,( ) ,A A AB B B B A BAii A B T x T x I x I x I x I x F x F x F x F x+ − + −=                      (2)                      

.( ( )) ( )) ,( ( ))) 1 ( , 0(1 ,A A Aiii A T x I x F x    = −  −                                                (3) 

.( )) , )1( ) ( ,1 (1 ( )) ,1 0(
A A Aiv A T x I x F x   − − = − −                                             (4) 

Definition 4 [60]. Let Aj (j = 1, 2, ... , n) be a SNS. The simplified neutrosophic weighted arithmetic 

average operator is defined as: 

                 
1

1

( , , )
n

n j j

j

F A A A 
=

=                                                        (5) 
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where 
1 2( , , , )nW   =  is the weight vector of Aj, [0,1]j   and 

1

1.
n

j

j


=

=  

Theorem 1 [63]. For the simplified neutrosophic weighted arithmetic average operator, the 

aggregated result is as follows:   

                   
1

1 1 1

( , , ) 1 (1 ) , ( ) , ( ) .( ) ( ) ( )j j j

j j j

n n n

n A A A

j j j

F A A T x I x F x
  



= = =

= − −                        (6) 

3. The input-oriented BCC model of DEA  

Data envelopment analysis (DEA) is a linear programming method for assessing the efficiency 

and productivity of decision-making units (DMUs). In the traditional DEA literature, various 

well-known DEA approaches can be found such as CCR and BCC models [1, 3]. The efficiency of a 

DMU is established as the ratio of sum weighted output to sum weighted input, subjected to happen 

between one and zero.  Let DMUO is under consideration, then input-oriented BCC model for the 

relative efficiency is as follows [3]: 

       1

1

1

.

, 1,2,...,

, 1,2,...,

1

0 , 1,2,...,

o

n

j ij o i

j

n

j rj ro

j

n

j

j

j

Min

s t

x x i m

y y r s

j n



 







=

=

=

 =

 =

=

 =







                                           (7) 

       In this model, each DMU (suppose that we have n  DMUs) uses m  inputs ijx  

( 1,2,..., ),i m= to obtains s  outputs rjy ( 1,2,..., ).r s= Here ( 1,2,...., )ru r s=  and ( 1,2,...., ),iv i m=  

are the weights of the i th input and r th output. This model is calculated for every DMU to find 

out its best input and output weights. If * 1o = , we say that the DMUo is efficient otherwise it is 

inefficient. 

4. Simplified Neutrosophic Data Envelopment Analysis 

In this section, we establish DEA under simplified neutrosophic environment. Consider the 

input and output for the j th DMU as ( , , )
ij ij ij ijx x xx T I F = , ( , , )

rj rj rj rjy y yy T I F = which are the 

simplified neutrosophic numbers (SNN). Then the simplified neutrosophic BCC model that called 

SNBCC is defined as follows: 
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                             (8) 

Next, to solve the model (8) we propose the following algorithm: 

Algorithm 1. 

Step 1. Consider the DEA model (8) that the inputs and outputs of each DMU are SNN. 
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Step 2. Using the Definition 3 and Theorem 1, the SNBCC model of Step 1 can be transformed 

into the following model: 

      oMin   

       .s t  

( )

( )

1 1 1

1 1 1

1

1 (1 ) , ( ) , ( ) 1 (1 ) , ( ) , ( )

1 (1 ) , ( ) , ( ) , ,

1,

0, 1,2,..., .

j j j o o o

ij ij ij io io io

j j j

rj rj rj ro ro ro

n n n

x x x x x x

j j j

n n n

y y y y y y

j j j

n

j

j

j

T I F T I F

T I F T I F

j n

     

  





= = =

= = =

=

 
− −  − − 

 

 
− −  
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                    (9) 

Step 3. Using Definition 2, the SNBCC model of Step 2 can be transformed into the following 

model: 
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Step 4. Using the natural logarithm, transform the nonlinear model of (10) into the following linear 

model:    

    oMin                                                                      (11) 

     .s t      

     
1

ln(1 ) ln(1 ), 1,2,...,
ij io

n

j x o x

j

T T i m 
=

−  − =                           (12) 

     
1
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n
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j
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 =                             (13) 

     
1
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 =                             (14) 

     
1
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1

ln( ) ln( ), 1,2,...,
rj ro

n

j y y

j

F F r s
=

 =                            (17) 

    
1

1,
n

j

j


=

=                                                                               (18) 

0, 1,2,..., .j j n  =  

Step 5. Run model (11) and obtain the optimal solution. 

 

5. Numerical example 

In this section, an example of DEA problem under simplified neutrosophic environment is used 

to demonstrate the validity and effectiveness of the proposed model. 

Example 5.1. Consider 10 DMUs with three inputs and outputs where all the input and output data 

are designed as SNN (see tables 1 and 2). 

Table 1. DMUs with three SNN inputs 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. DMUs with three SNN outputs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, we use Algorithm.1 to solve the mentioned performance assessment problem. For example, 

The Algorithm.1 for DMU1 can be used as follows: 

Step 1. Obtain the SNBCC model (8): 

DMUS Inputs 1 Inputs 2 Inputs 3 

DMU1 <0.75, 0.1, 0.15> <0.75,0.1, 0.15> <0.8, 0.05, 0.1> 

DMU2 <0.85, 0.2,0.15> <0.6, 0.05,0.05> <0.9, 0.1, 0.2> 

DMU3 <0.9, 0.01, 0.05> <0.95, 0.01, 0.01> <0.98, 0.01, 0.01> 

DMU4 <0.7,0.2, 0.1> <0.65, 0.2, 0.15> <0.8, 0.05, 0.2> 

DMU5 <0.9, 0.05, 0.1> <0.95, 0.05, 0.05> <0.7, 0.2, 0.4> 

DMU6 <0.85, 0.2, 0.1> <0.7, 0.05, 0.1> <0.6, 0.2, 0.3> 

DMU7 <0.8, 0.3, 0.1> <0.9, 0.5, 0.1> <0.8, 0.1, 0.3> 

DMU8 <0.55, 0.3, 0.35> <0.65, 0.2, 0.25> <0.5, 0.35, 0.4> 

DMU9 <0.8, 0.05, 0.1> <0.9, 0.01, 0.05> <0.8, 0.05, 0.1> 

DMU10 <0.6, 0.1, 0.3> <0.8. 0.3. 0.1> <0.65, 0.2, 0.1> 

DMUS Outputs 1 Outputs  2 Outputs  3 

DMU1 <0.7, 0.15, 0.2> <0.7,0.15, 0.2> <0.65, 0.2, 0.25> 

DMU2 <0.15, 0.2,0.25> <0.15, 0.2,0.25> <0.25, 0.15, 0.05> 

DMU3 <0.75, 0.1, 0.15> <0.7, 0.15, 0.2> <0.8, 0.05, 0.1> 

DMU4 <0.5,0.35, 0.4> <0.6, 0.25, 0.3> <0.55, 0.3, 0.35> 

DMU5 <0.6, 0.2, 0.25> <0.6, 0.15, 0.4> <0.3, 0.5, 0.5> 

DMU6 <0.55, 0.3, 0.35> <0.5, 0.5, 0.5> <0.6, 0.25, 0.3> 

DMU7 <0.8, 0.1, 0.2> <0.3, 0.01, 0.05> <0.9, 0.05, 0.05> 

DMU8 <0.8, 0.1, 0.3> <0.8, 0.25, 0.3> <0.85, 0.2, 0.2> 

DMU9 <0.65, 0.2, 0.25> <0.7, 0.15, 0.2> <0.75, 0.1, 0.15> 

DMU10 <0.6, 0.1, 0.5> <0.75. 0.1. 0.3> <0.8, 0.3, 0.5> 



Neutrosophic Sets and Systems, Vol. 29, 2019     220  

 

 

Edalatpanah and Smarandache, Data envelopment analysis for simplified neutrosophic sets 

1

1

1 2 3

4 5 6

7 8 9
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0.75,0.1,0.15 0.85,0.2,0.15 0.9,0.01,0.05

0.7,0.2,0.1 0.9,0.05,0.1 0.85,0.2,0.1
0.75

0.8,0.3,0.35 0.8,0.05,0.1 0.6,0.1,0.3

0.6,0. ,0 3
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0.7,0.1,0.2 0.6,0.05,0.05 0.95,0.01,0.01

0.65,0.2,0.15 0.95,0.05,0.05 0.7,0.05,0.1
0.7,0.1

0.9,0.5,0.1 0.65,0.2,0.25 0.9,0.01,0.05

0.8,0.3,0.1
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4 5 6

7 8 9
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0.8,0.05,0.1 0.9,0.1,0.2 0.98,0.01,0.01

0.8,0.05,0.2 0.7,0.2,0.4 0.6,0.2,0.3
0.8,0.05,0.1

0.8,0.1,0.3 0.5,0.35,0.4 0.7,0.0
,

5,0.1

0.65,0.2,0.1

  

  


  



 
 
  




 
  

        

   



   
 

      

 

 

( )

1 2 3

4 5 6

7 8 9

10

0.7,0.15,0.2 0.15,0.2,0.25 0.75,0.1,0.15

0.5,0.35,0.4 0.6,0.2,0.25 0.55,0.3,0.35
0.7,0.15,0.2

0.8,0.1,0.2 0.8,0.1,0.3 0.65,0.2,0.25

0.6,0.1,0.5

  

  

  



 
 
  
 



  


        

        


      

 





,   

( )

1 2 3

4 5 6

7 8 9

10

0.6,0.1,0.3 0.2,0.1,0.3 0.7,0.15,0.2

0.6,0.25,0.3 0.6,0.15,0.4 0.5,0.5,0.5
0.6,0.1,0.3

0.3,0.01,0.05 0.8,0.25,0.3 0.7,0
,

.15,0.2

0.75,0.1,0.3

  

  

  



 


 
  
 
  


        

       
 

       





 

  

1 2 3

4 5 6

7 8 9

10

0.65,0.2,0.25 0.25,0.15,0.05 0.8,0.05,0.1

0.55,0.3,0.35 0.3,0.5,0.5 0.6,0.25,0.3
0.65,0.2,0

0.9,0.05,0.05 0.85,0.2,0.2 0.75,0.1,0.15

0.8,0.3,0.5

  

  

  



        

        


      



 
 
  
 
  



 



( ).25 ,

1 2 3 4 4 6 7 8 9 10 1,

0, 1,2,...,10.j j

         



+ + + + + + + + + =

 =
 

 

Step 2. Using the Step 4 of Algorithm 1, we have: 

   1

.

Min

s t


 

(Using Eq. (12)) 

    
1 2 3 4 5

6 7 8 9 10 1

ln(0.25) ln(0.15) ln(0.1) ln(0.3) ln(0.1)

ln(0.15) ln(0.2) ln(0.2) ln(0.4) ln(0.4) ln(0.25),

    

     

+ + + + +

+ + + + 
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1 2 3 4 5

6 7 8 9 10 1

ln(0.3) ln(0.4) ln(0.05) ln(0.35) ln(0.05)

ln(0.3) ln(0.1) ln(0.35) ln(0.1) ln(0.2) ln(0.3)

    

     

+ + + + +

+ + + + 
 

    
1 2 3 4 5

6 7 8 9 10 1

ln(0.2) ln(0.1) ln(0.02) ln(0.2) ln(0.3)

ln(0.4) ln(0.2) ln(0.5) ln(0.3) ln(0.35) ln(0.2)

    

     

+ + + + +

+ + + + 
 

(Using Eq. (13)) 

   
1 2 3 4 5

6 7 8 9 10 1

ln(0.1) ln(0.2) ln(0.01) ln(0.2) ln(0.05)

ln(0.2) ln(0.3) ln(0.05) ln(0.1) ln(0.1) ln(0.1)

    

     

+ + + + +

+ + + + 
 

   
1 2 3 4 5

6 7 8 9 10 1

ln(0.1) ln(0.05) ln(0.01) ln(0.2) ln(0.05)

ln(0.05) ln(0.5) ln(0.2) ln(0.01) ln(0.3) ln(0.1)

    

     

+ + + + +

+ + + + 
 

  
1 2 3 4 5

6 7 8 9 10 1

ln(0.05) ln(0.05) ln(0.01) ln(0.05) ln(0.2)

ln(0.2) ln(0.1) ln(0.35) ln(0.05) ln(0.2) ln(0.05)

    

     

+ + + + +

+ + + + 
 

(Using Eq. (14)) 

  
1 2 3 4 5

6 7 8 9 10 1

ln(0.15) ln(0.15) ln(0.05) ln(0.1) ln(0.1)

ln(0.1) ln(0.35) ln(0.1) ln(0.3) ln(0.3) ln(0.15)

    

     

+ + + + +

+ + + + 
 

  
1 2 3 4 5

6 7 8 9 10 1

ln(0.2) ln(0.05) ln(0.01) ln(0.15) ln(0.05)

ln(0.1) ln(0.1) ln(0.25) ln(0.05) ln(0.1) ln(0.2)

    

     

+ + + + +

+ + + + 
 

  
1 2 3 4 5

6 7 8 9 10 1

ln(0.1) ln(0.2) ln(0.01) ln(0.2) ln(0.4)

ln(0.3) ln(0.3) ln(0.4) ln(0.1) ln(0.1) ln(0.1)

    

     

+ + + + +

+ + + + 
 

(Using Eq. (15)) 

  
1 2 3 4 5

6 7 8 9 10

ln(0.3) ln(0.85) ln(0.25) ln(0.5) ln(0.4)

ln(0.45) ln(0.2) ln(0.2) ln(0.35) ln(0.4) ln(0.3),

    

    

+ + + + +

+ + + + 
 

  
1 2 3 4 5

6 7 8 9 10

ln(0.4) ln(0.8) ln(0.3) ln(0.4) ln(0.4)

ln(0.5) ln(0.7) ln(0.2) ln(0.3) ln(0.25) ln(0.4),

    

    

+ + + + +

+ + + + 
 

  
1 2 3 4 5

6 7 8 9 10

ln(0.35) ln(0.75) ln(0.2) ln(0.45) ln(0.7)

ln(0.4) ln(0.1) ln(0.15) ln(0.25) ln(0.2) ln(0.35),

    

    

+ + + + +

+ + + + 
 

(Using Eq. (16)) 

  
1 2 3 4 5

6 7 8 9 10

ln(0.15) ln(0.2) ln(0.1) ln(0.35) ln(0.2)

ln(0.3) ln(0.1) ln(0.1) ln(0.2) ln(0.1) ln(0.15),

    

    

+ + + + +

+ + + + 
 

  
1 2 3 4 5

6 7 8 9 10

ln(0.1) ln(0.1) ln(0.15) ln(0.25) ln(0.15)

ln(0.5) ln(0.01) ln(0.25) ln(0.15) ln(0.1) ln(0.1),

    

    

+ + + + +

+ + + + 
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1 2 3 4 5

6 7 8 9 10

ln(0.2) ln(0.15) ln(0.05) ln(0.3) ln(0.5)

ln(0.25) ln(0.05) ln(0.2) ln(0.1) ln(0.3) ln(0.2),

    

    

+ + + + +

+ + + + 
 

(Using Eq. (17)) 

  
1 2 3 4 5

6 7 8 9 10

ln(0.2) ln(0.25) ln(0.15) ln(0.4) ln(0.25)

ln(0.35) ln(0.2) ln(0.3) ln(0.25) ln(0.5) ln(0.2),

    

    

+ + + + +

+ + + + 
 

  
1 2 3 4 5

6 7 8 9 10

ln(0.3) ln(0.3) ln(0.2) ln(0.3) ln(0.4)

ln(0.5) ln(0.05) ln(0.3) ln(0.2) ln(0.3) ln(0.3),

    

    

+ + + + +

+ + + + 
 

  
1 2 3 4 5

6 7 8 9 10

ln(0.25) ln(0.05) ln(0.1) ln(0.35) ln(0.5)

ln(0.3) ln(0.05) ln(0.2) ln(0.15) ln(0.5) ln(0.25),

    

    

+ + + + +

+ + + + 
 

(Using Eq. (18)) 

  
1 2 3 4 4 6 7 8 9 10 1,

0, 1,2,...,10.j j

         



+ + + + + + + + + =

 =
 

Step 3. After computations with Lingo, we obtain 
*

1 0.9068 =  for DMU1. 

Similarly, for the other DMUs, we report the results in Table 3. 

Table 3. The efficiencies of the other DMUs 

DMUs 1 2 3 4 5 6 7 8 9 10 
*  0.9068 0.9993 0.5153 0.9973 0.6382 0.6116 1 1 0.6325 1 

Rank 4 2 8 3 5 7 1 1 6 1 

By these results, we can see that DMUs 7, 8, and 10 are efficient and others are inefficient. 

6. Conclusions and future work 

There are several approaches to solving various problems under neutrosophic environment.  

However, to the best of our knowledge, the Data Envelopment Analysis (DEA) has not been 

discussed with neutrosophic sets until now. This paper, therefore, plans to fill this gap and a new 

method has been designed to solve an input-oriented DEA model with simplified neutrosophic 

numbers. A numerical example has been illustrated to show the efficiency of the proposed method. 

The proposed approach has produced promising results from computing efficiency and 

performance aspects. Moreover, although the model, arithmetic operations and results presented 

here demonstrate the effectiveness of our approach, it could also be considered in other DEA models 

and their applications to banks, police stations, hospitals, tax offices, prisons, schools and 

universities. As future researches, we intend to study these problems.  
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