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1. INTRODUCTION: 

  In dealing with uncertainties many theories have been recently developed, including the 

Theory of Probability, Theory of Intuitionistic Fuzzy Sets and Theory of Rough Sets and so on. 

Although many new techniques have developed as a result of these theories, yet difficulties are 

still there. The major difficulties arise due to inadequacy of parameters. 

The fuzzy set was introduced by Zadeh [14] in 1965 where each element had a degree of 

membership. The intuitionistic fuzzy set (IFS) was introduced by Atanaasov [1] in 1986 as a 

generalization of fuzzy set, where besides the degree of membership and the degree of 

non-membership of each element. It does not handle the indeterminate and inconsistent 

information which exist in belief system. 

 In 1995, Smarandache starting from philosophy (when we are fretted to distinguish 

between absolute truth and relative truth or between absolute falsehood and relative falsehood in 

logics, and respectively between absolute membership and relative membership or absolute 

non-membership and relative non-membership in set theory) that time began to use the 

non-standard analysis. Also, inspired from the sport games (winning, defeating, or tie scores), 

from votes (pro, contra, null/black votes), from decision making and control theory (making a 

decision, not making, or hesitating), from accepted/rejected/pending, etc., and guided by the fact 

that the law of excluded middle did not work any longer in the modern logics. So how to deal with 

all of them at once is it possible to unit them?. This type of situations well managed by 

Neutrosophic Set(NS), where indeterminacy is quantified explicitly and truth, indeterminacy, and 

falsity membership are independent to each other NS provides a more reasonable mathematical 

framework to deal with indeterminate and inconsistent information. During the last decade, the 

concept of NS and interval neutrosophic set (INS) have been used in various application such as 

Medical Diagnosis, Database, Topology, image processing Guo and Sengur [6] and decision 

making problems Broumi and Smarandache [3]. 

 Smarandache [11] first introduced neutrosophy as a branch of philosophy which studies 

the origin, nature, and scope of neutralities. Smarandache defined indeterminacy explicitly and 

state that truth, indeterminacy and falsity membership are independent and lies within ] 0,1 [, 
 

which is the non-standard unit interval and an extension of the standard interval [0,1].  It is 

generalization of intuitionistic fuzzy sets. 
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  Extremal algebra, in which the addition and multiplication of vectors and matrices is 

formally replaced by operations of maximum and minimum, or maximum and plus, are a useful 

tool for approaching problems in many areas, such as System Theory, Graph Theory, Scheduling 

Theory or knowledge Engineering. Systematic investigation in this direction can be found in 

[2,4,13]. 

 Kim and Roush [7] introduced the concept of Fuzzy Matrix(FM). FM plays a vital role in 

various areas in Science and Engendering and solves the problems involving various types of 

uncertainties [10]. FMs deal only with membership value where as Intuitionistic Fuzzy 

Matrices(IFMs) deals with both membership and non-membership values. 

 Dhar et.al, [5] have defined neutrosophic fuzzy matrices and studied square neutrosophic 

fuzzy matrices. Kavitha et.al, [8]studied the concepts of minimal solution of fuzzy neutrosophic 

soft matrix. They, also studied on the powers of fuzzy neutrosophic soft matrices in [9]. Uma et.al, 

[12] introduced two types of fuzzy neutrosophic soft matrices. 

 In this paper we extend the model operator concept to neutrosophic fuzzy matrix and give 

some fascinating results in transitive closure of neutrosophic fuzzy matrix. 

 

2. PRELIMINARY 

   In this section the basic definitions of Neutrosophic Set (NS), , Fuzzy Neutrosophic 

Matrix (FNM) and fuzzy neutrosophic matrices of type-I are provided.  

 

Definition 2.1.  

           [11]A neutrosophic set A  on the universe of discourse X  is defined as 

={ , ( ), ( ), ( ) ; }A A AA x T x I x F x x X   ,  where , , :  ] 0,1 [T I F X    and 

 0 ( ) ( ) ( ) 3 .                                       (2.1)A A AT x I x F x       

From philosophical point of view the neutrosophic set takes the value from real standard or 

non-standard subsets of  ] 0,1 [. 
 But in real life application especially in Scientific and 

Engineering problems it is difficult to use neutrosophic set with value from real standard or 

non-standard subset of  ] 0,1 [. 
 Hence we consider the neutrosophic set which takes the value 

from the subset of  [0,1].  Therefore we can rewrite equation (2.1) as 

0 ( ) ( ) ( ) 3.A A AT x I x F x     In short an element a  in the neutrosophic set ,A  can be written as 

= , , ,T I Fa a a a   where Ta  denotes degree of truth, Ia  denotes degree of indeterminacy, Fa  

denotes degree of falsity such that 0 3.T I Fa a a        

 

Example 2.1 

         Assume that the universe of discourse 1 2 3={ , , }X x x x  where 1 2, x x  and 3x  

characterize the quality, reliability, and the price of the objects. It may be further assumed that the 

values of 1 2 3{ , , }x x x  are in [0,1] and they are obtained from some investigations of some experts. 

The experts may impose their opinion in three components viz; the degree of goodness, the degree 

of indeterminacy and the degree of poorness to explain the characteristics of the objects. Suppose 

A is a Neutrosophic Set (NS) of ,X  such that

1 2 3={ , 0.4, 0.5, 0.3 , , 0.7, 0.2, 0.4 , ,0.8, 0.3, 0.4 }A x x x       where for 1x  the degree of goodness 

of quality is 0.4, degree of indeterminacy of quality is 0.5 and degree of falsity of quality is 0.3 etc.    

 

Definition 2.2. 

          A neutrosophic matrix is a matrix in which all entries are from neutrosophic set. That is 

= ( , , )T I F

ij ij ijA a a a     
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Definition 2.3. 

          [12] Let = ( , , ), = ( , , ) .T I F T I F

ij ij ij ij ij ij m nA a a a B b b b     N  The component wise addition 

and component wise multiplication is defined as 

= ( { , },   { , },   { , })T T I I F F

ij ij ij ij ij ijA B sup a b sup a b inf a b  

= ( { , },   { , },   { , })T T I I F F

ij ij ij ij ij ijA B inf a b inf a b sup a b     

 

Definition 2.4. 

Let , ,m n n pA B  N N  the composition of A  and B  is defined as 

 

 

=1 =1 =1

=1 =1 =1

= (  ),   (  ),   (  )

          equivalentlywecanwritethesameas

= ( ),   ( ),    ( ) .

nn n
T T I I F F

ik kj ik kj ik kj

k k k

n n n
T T I I F F

ik kj ik kj ik kj
k k k

A B a b a b a b

a b a b a b

 
   

 

 
   

 

  

  

 

The product A B  is defined if and only if the number of columns of A  is same as the number of 

rows of .B  Then A  and B  are said to be conformable for multiplication. We shall use AB  

instead of .A B  

Where (  )T T

ik kja b  means max-min operation and  

=1

(  )
n

F F

ik kj

k

a b  means min-max operation.  

 

Definition 2.5. 

  Let , ,T I Fx x x , , ,T I Fy y y  NFS . Then we have   

    •      , , , , = , , , , ,T I F T I F T T I I F Fx x x y y y max x y max x y min x y .  

    •      , , , , = , , , , ,T I F T I F T T I I F Fx x x y y y min x y min x y max x y .  

    • , , = , ,
c

T I F F I Tx x x x x x .  

  

Definition 2.6. 

 Let , ,T I Fx x x , , ,T I Fy y y  NFS . Then  

 
1,1,0 , i , , , , ,

, , , , =
, , , i , , , , .

T I F T I F

T I F T I F

T I F T I F T I F

f x x x y y y
x x x y y y

x x x f x x x y y y

 
 



 

Here , , , ,T I F T I Fx x x y y y  means ,T T I Ix y x y   , and 
F Fx y   

   

Definition 2.7. 

An NFM = ( 1,1,0 )J  for all entries is known as the universal matrix and NFM O=(

0,0,1 ) for all entries is known as Zero matrices. Denote the set of all NFMs of order m n  by 

mnF  and square matrix of order n by nF . The idenity NFM I= , ,T I F

ij ij ij    is defined by 

, ,T I F

ij ij ij    = 1,1,0  if i=j and , ,T I F

ij ij ij   = 0,0,1  if i j .  
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Definition 2.8. 

  Let = ( , , )T I F

ij ij ij m nA a a a  , = ( , , )T I F

ij ij ij m nB b b b   and = ( , , )T I F

ij ij ij n pC c c c   are NFMs. 

Then   

    • = ( , , , , ).T I F T I F

ij ij ij ij ijA B a a a b b bij    

    • = ( , , , , ).T I F T I F

ij ij ij ij ij ijA B a a a b b b    

    • AC (max-min composition) = ( ( , , , , )).T I F T I F

ij ij ij kj kj kjK
a a c c c   

  

   

Definition 2.9. 

Let = ( , , )T I F

ij ij ij m nA a a a   and = ( , , )T I F

ij ij ij n pC c c c   are NFMs. Then we have   

    • A C (min-max composition) = ( ( , , , , ))T I F T I F

ij ij ij ij ij ijk
a a a c c c .  

    • = ( , , )T T I F

ji ji jiA a a a  (Transpose of A).  

    • = ( ( , , , , ))T I F T I F

ik ik ik kj kj kjk
A C a a a c a a  .  

    • = ( ( , , , , ))T I F T I F

ik ik ik kj kj kjk
A C a a a c c c  .  

    • = ( , , )c F I T

ij ij ijA a a a  (Complement of A).  

Also we can use 
=1 =1 =1

= ( ( ), ( ), ( ) )
nn n

T T I I F F

ik kj ik kj ik kj

K K K

AC a c a c a c   . 

Also 
2 1= , =k kA AA A A A

 for max-min composition and 
[2] [ ] [ 1]= , =k kA A A A A A   for 

min-max composition.  

Definition 2.10. 

 For any NFM nAF ,   

    • A is reflexive if and only if nA I .  

    • A is symmetric if and only if = TA A .  

    • A is transitive if and only if 
2A A .  

    • A is idempotent if and only if 
2=A A .  

    • A is irreflexive if , , = 0,0,1T I F

ij ij ija a a  for all i=j.  

    • A is c-transitive if 
[2]A A .  

   

Definition 2.11. 
 An NFM A is said to be an neutrosophic fuzzy equivalence matrix if it satisfy reflexivity, 

symmetry and transitivity.  

 

Proposition 2.1. 

  ( ) =c c cA B A B  for A,B .mnF   

 

Proposition 2.2. 

  ( ) =c c cA B A B  for A,B .mnF   

 

Definition 2.12. 

  For an NFM A, define = ( , ,1 ), = ( 1 , , )T I T F I F

ij ij ij ij ij ijA a a a A a a a  W .  
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Lemma 2.1. 

  
=1=1

1 ( ) = (1 )(1 )
n n

ik kj ik kj

kk

a b a b     for all , , , [0,1]ij iji j a b  .  

 

Lemma 2.2. 

  
=1 =1

1 ( ) = ((1 ) (1 ))
n n

ik kj ik ij

k k

a b a b      for all , , , [0,1]ij iji j a b  .      

 

 

3. MODAL OPERATORS IN NFM  
          Throughout this section, matrices means Neutrosophic fuzzy matrices. In this section, 

some results about model operators are proved and the definitions of transitive and c-transitive of a 

NFM are given.  

   

Lemma 3.1. 

        For any two NFMs A and B,  

( , , , , ) = ( , , ) ( , , ).T I F T I F T I F T I F

ij ij ij ij ij ij ij ij ij ij ij ija a a b b b a a a b b b W W W  (3.1) 

Proof:   

    • If , , , ,T I F T I F

ij ij ij ij ij ija a a b b b , then  

 ( , , , , ) = ( 1,1,0 ) = 1,1,0 .T I F T I F

ik ik ik kj kj kja a a b b bW W  (3.2) 

Since, , , , ,T I F T I F

ij ij ij ij ij ija a a b b b , T T

ij ija b , I I

ij ija b  and F F

ij ija b . Therefore, 1 1T T

ij ija b    and 

, ,1 , ,1T I T T I T

ij ij ij ij ij ija a a b b b   , so ( , , ) ( , , ).T I F T I F

ij ij ij ij ij ija a a b b bW W  Thus  

 , , , , = 1,1,0 .T I F T I F

ij ij ij ij ij ija a a b b bW W  (3.3) 

From (3.2) and (3.3), (3.1) holds.  

    • If , , , ,T I F T I F

ij ij ij ij ij ija a a b b b , then  

 ( , , , , ) = , , = , ,1 .T I F T I F T I F T I T

ij ij ij ij ij ij ij ij ij ij ij ija a a b b b a a a a a a W W  (3.4) 

  

 , , , , = , ,1 , ,1 = , ,1 .T I F T I F T I T T I T T I T

ij ij ij ij ij ij ij ij ij ij ij ij ij ij ija a a b b b a a a b b b a a a    W W  (3.5) 

  

Clearly, from (3.4) and (3.5),(3.1) holds.  

 

Lemma 3.2.   

         For any two NFMs A and B,  

  

 ( , , , , ) = ( , , , , ).T I F T I F T I F T I F

ij ij ij ij ij ij ij ij ij ij ij ija a a b b b a a a b b b     (3.6) 

  

Proof:   

    • If , , , ,T I F T I F

ij ij ij ij ij ija a a b b b , then  

 ( , , , , ) = ( 1,1,0 ) = 1,1,0 .T I F T I F

ij ij ij ij ij ija a a b b b    (3.7) 

Since, , , , , , ,T I F T I F T T I I

ij ij ij ij ij ij ij ij ij ija a a b b b a b a b    and F F

ij ija b .Therefore 1 1T T

ij ija b    and 

, ,1 , ,1T I T T I T

ij ij ij ij ij ija a a b b b   , So ( , , ) ( , , ).T I F T I F

ij ij ij ij ij ija a a b b b    Thus,  

 , , , , = 1,1,0T I F T I F

ij ij ij ij ij ija a a b b b   (3.8) 

 From (3.7) and (3.8), (3.6) holds,  
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    • If , , < , , .T I F T I F

ij ij ij ij ij ija a a b b b  Then  

 ( , , , , ) = , , = 1 , , .T I F T I F T I F F I F

ij ij ij ij ij ij ij ij ij ij ij ija a a b b b a a a a a a     (3.9) 

  

 , , , , = 1 , , 1 , , = 1 , , .T I F T I F F I F F I F F I F

ij ij ij ij ij ij ij ij ij ij ij ij ij ij ija a a b b b a a a b b b a a a       (3.10) 

 

Clearly from (3.9) and (3.10),(3.6) holds.  

  

 

Lemma 3.3. 

         A is reflexive matrix if and only if AW  is reflexive matrix  

Proof:  

       A is reflexive , , , ,T I F T I F

ij ij ij ij ij ijA I a a a        for all  

 i,j. , ,1 , ,1T I T T I T

ij ij ij ij ij ija a a        for all , .i j  A I A  W W W  is reflexive. In dual way 

we can prove the following lemma.  

  

Lemma 3.4. 

  A is reflexive matrix if and only if A  is reflexive matrix.  

   

 

 

Lemma 3.5. 

        A is reflexive if and only if cAW  is reflexive.  

Proof: It is evident that if A is reflexive if and only if cA  is reflexive and so cAW .  

Similarly, cA  is irreflexive if and only if A is reflexive.  

   

Lemma 3.6. 

        A is symmetric matrix if and only if AW  is symmetric matrix and so cAW .  

Proof: A is symmetric , , = , ,T I F T I F

ij ij ij ij ij ija a a a a a  for all ,i j  

, ,1 = , ,1 = ( ) .T I T T I T T

ij ij ij ij ij ija a a a a a A A   W W  Thus A is symmetric if and only if AW  is 

symmetric. Similarly we can prove the following lemma.  

  

Lemma 3.7. 

  A is symmetric matrix if and only if A  is reflexive matrix.  

   

Lemma 3.8. 

        A is transitive matrix if and only if AW  is transitive matrix.  

Proof: 

A is transitive 
2

=1 =1 =1

, , ( ), ( ), ( )
nn n

T I F T T I I F F

ij ij ij ik kj ik kj ik kj

k k k

A A a a a a a a a a a        for all i,j

=1 =1 =1 =1 =1 =1 =1=1 =1

( , ), ( ), ( ) ( ),1 1 ( ) ,1 ,1 = , ((1 ) (1 ))
n nn n n n n n n

T T T I I I F F F T T T T T T T T T T T T T T T T

ij ik kj ij ik kj ij ik kj ij ik kj ij ik kj ij ij ik kj ik kj ik kj ik kj

k k k k k k kk k

a a a a a a a a a a a a a a a a a a a a a a a a a                       

 

by lemma 2.2 Similarly, we can prove the following lemma.  

 

Lemma 3.9. 

          A is transitive matrix if and only if A  is transitive matrix.  
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Lemma 3.10. 

          A is idempotent matrix if and only if AW  is idempotent matrix.  

Proof: 

      A idempotent 
2

=1 =1 =1

= , , = ( ), ( ), ( )
nn n

T I F T T I I F F

ij ij ij ik kj ik kj ik kj

k k k

A A a a a a a a a a a      for all i,j. 

=1 =1 =1 =1 =1 =1

, ,1 = ( ), ( ),1 ( ) ( ), ( ), ((1 ) (1 ))
nn n n n n

T I T T T T T T T T T T T T T

ij ij ij ik kj ik kj ik kj ik kj ik kj ik kj

k k k k k k

a a a a a a a a a a a a a a a           

by Lemma 2.2 
2= ( ) .A AW W  Thus A is idempotent AW  is idempotent. The following 

lemma is trivial from the above.  

  

Lemma 3.11.  
          A is an idempotent matrix if and only if A  is an idempotent matrix.  

 

 

 

Remark 3.1. 

         If A is an neutrosophic fuzzy equivalence matrix, then AW  and A  are also 

neutrosophic fuzzy equivalence matrices.  

 

 

Definition 3.1.  

         Let A F  the transitive closure and c-transitive closure of A is defined by 
2 3= nA A A A A      and [2] [ ]= ( ) ( )c c c nA A A A     respectively.  

  

Theorem 3.1. 

       For nAF , = ( )cA A


.  

Proof:  

      By definition 3.1, 
2 3 2( ) = ( ) = ( ( ) ( ) )c n c c c n cA A A A A A A A        .  

first let us prove 
2 [2]( ) = ( )c cA A . We know that 

2

=1 =1 =1

= ( ), ( ), ( )
nn n

T T I I F F

ik kj ik kj ik kj

k k k

A a a a a a a    and so  

 
2

=1 =1=1

( ) = ( ), ( ), ( ) .
n n n

c F F I I T T

ik kj ik kj ik kj

k kk

A a a a a a a    (3.11) 

Also = , ,c F I T

ij ij ijA a a a  gives by the definition of 
[ 2],A   

 2

=1 =1=1

( ) = ( ), ( ), ( )
n n n

c F F I I T T

ik kj ik kj ik kj

k kk

A a a a a a a     (3.12) 

Thus by (3.11) and (3.12) 
2 [2]( ) = ( )c cA A , so in general 

[ ]( ) = ( )n c c nA A . By Definition 3.1, 
2 3 2 3 2 2( ) = ( ) = ( ) = ( ( ) ) = ( ) ( ) ( ) ) =c n c n c c c n c c c c nA A A A A A A A A A A A A A A A

             

 .  

Lemma 3.12. 

         A is transitive if and only if 
cA  is c-transitive and so 

cAW  is transitive.  

Proof:  
      It is evident from the definition of transitive and c-transitive.  

  

 Lemma 3.13. 

 If A is reflexive NFM, then   

    • 
TA  is reflexive.  

    • A B  is reflexive.  
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    • A B  is reflexive if and only if B is reflexive. 

Proof: 

      (i) and (ii) are obvious from the definition of reflexive. (iii) If B is not reflexive, then 

, , 1,1,0T I F

ii ii iib b b   for at least one i, that is , , < 1,1,0 .T I F

ii ii iib b b  Thus 

, , , , < 1,1,0 .T I F T I F

ii ii ii ii ii iia a a b b b  Therefore the condition B is reflexive is necessary, the 

sufficient part is trivial.  

 

 

 

Theorem 3.2. 

  If , nA BF  where A is reflexive and symmetric, B is reflexive, symmetric and 

transitive and A B , then A B  .  

Proof:  

      For = ( , , )T I F

ij ij ijA a a a , = ( , , )T I F

ij ij ijB b b b , 
=1 =1 =1

= ( ( ), ( ), ( ) )
nn n

T T I I F F

ik kj ik kj ik kj

k k k

AB a b a b a b    

and each  

  

 
=1 =1 =1

1,1,0 , i = ,
( ), ( ), ( ) =

, , , i .

nn n
T T I I F F

ik kj ik kj ik kj T I F
k k k ij ij ij

fi j
a b a b a b

b b b fi j


 


    

Thus =AB B  implies =AA AB B . That is 2A B . Continuing in this way, we have 
3 4,A B A B   and also 2 3 nA A A A B      and hence A B  .  

  

Lemma 3.14. 

 If A  is the transitive closure of A, then the transitive closure of AW  is AW   

Proof:  
     Now 

2 2 2= [ ] = = ( ) ( ) = ( )n n nA A A A A A A A A A A         W W W W W W W W W . 

Similarly, the following results are also true.   

    • = ( ) .A A W W   

    • = ( ) .A A     

    • = ( ) .A A     

  

 Lemma 3.15. 

  For an NFM ,[( ) ] =[( ) ] .c c

nA A A

F W W   

Proof:  

      As we know 
2( ) = ,[( ) ] = [( ] = ( ) ( ) .c c c c c c c nA A A A A A A       W W   

 
2

=1 =1 =1

( ) = ( ( ), ( ), (1 )(1 ) ).
nn n

c F F I I F f

ik kj ik kj ik kj

k k k

A a a a a a a      

=1 =1 =1

= ( ( ), ( ), (1 ) (1 ) )
n n n

F F I I F F

ik kj ik kj ik kj

k k k

a a a a a a        By definition, 

2

=1=1 =1

= ( ( ), ( ), ( ) )
n n n

T T I I F F

ik kj ik kj ik kj

kk k

A a a a a a a     

2

=1 =1

= ( =1 ( ), ( ),1 ( ) )
n n

n T T I I F F

ik kj ik kj ik kj

k k

A k a a a a a a     W  Which yields, 
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2

=1 =1

( ) = ( 1 ( ), ( ), =1 ( ) )
n n

c F F I I n T T

ik kj ik kj ik kj

k k

A a a a a k a a     W  Therefore, 2 2( ) = ( )c cA A W , so in 

general ( ) = ( )c n n cA A W   

 2( ) = = ( ) ( )c c c c c nA A A A A
 

           W  
2= ( ) ( ) ( )c c n cA A A  W W W  

2= ( ) = ( )n c cA A A A  W W W W . 

In dual fashion, one can prove the following lemma. 

 

Lemma 3.16. 

 For an NFM ,(( ) ) = (( ) ) .c c

nA A A 

  F   

  

Definition 3.2. 

        For any two elements , , , , ,T I F T I Fx x x y y y NFS , we introduce the operation ' m  

as      , , , , = , , , , ,T I F T I F T T I I F F

mx x x y y y min x y min x y min x y . Using this definition 

the following lemmas are trivial.  

  

Lemma 3.17. 

The operation m  is commutative on NFSs.  

  

Lemma 3.18. 

The operation m  is associative on NFS.  

   

Lemma 3.19. 

The operation m  is distributive over addition in NFSs.  

Proof: 

      For any , , , , , , , ,T I F T I F T I Fx x x y y y z z z NFSs   

 

       , , , , , , = , , , , , , ,T I F T I F T I F T T I I F F T I F

m mx x x y y y z z z max x y max x y min x y z z z  

  

         = , , , , , , ,T T T I I I F F Fmin x y z min max x y z min min x y z  (3.13) 

  

case(1)  

If , , , ,T I F T I Fx y z y y y  and , , , ,T I F T I Fx x x y y y  then,RHS of 14 is ,T Fz x  now 

consider, ( , , , , ) ( , , , , )T I F T I F T I F T I F

m mx x x z z z y y y z z z     

 
, , , i , , , , ,

= , ,
, , , i , , , ,

t I F T I F T I F

T I F

T I F T I F T I F

z z y f z z z y y y
z z z

y y z f y y y z z z

 




 

  

 = , ,t I Fz z x  (3.14) 

In this case, it is distributive.  

case(2)  

If , , , ,T I F T I fx x x y y y  and , , , ,T I F T I Fx x x z z z  then the left hand side of above 

equation 15 reduces to , , , ,T I F T I F

my y y z z z .  

sub case (2.1)  
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If , , , ,T I F T I Fz z z y y y  then , , , , = , ,T I F T I F T I F

mz z z y y y z z y  Now, 

, , , , ( , , , , ) = , , , , = , ,T I F T I F T I F T I F T I F T I F T I F

m mx x x z z z x x x z z z x x z z z y z z y   

 Thus distributivity holds,  

sub case (2.2)  

If , , , ,T I F T I Fz z z y y y  then L.H.S of equation 15 becomes , ,T I Fy y z  and R.H.S of 

equation 15 becomes , 

, , , , ( , , , , ) = , , , , = , ,T I F T I F T I F T I F T I F T I F T I F

m mx x x z z z x x x z z z x x z y y z y y z   

 Thus it is distributive in this case also.  

case(3)  

If , , , , , ,T I F T I F T I Fy y y x x x z z z   then L.H.S becomes, 

( , , , , ) , , = , , , , = , ,T I F T I F T I F T I F T I F T I F

m mx x x y y y z z z x x x z z z x x z    Also, 

( , , , , ) ( , , , , ) = , , , , = , ,T I F T I F T I F T I F T I F T I F T I F

m mx x x z z z z z z z z z x x y y y z x x z   

 so, it is distributive in this case too  

case (4)  

If , , , , , ,T I F T I F T I Fz z z x x x y y y   then the L.H.S reduces to 

, , , , = , ,T I F T I F T I F

my y y z z z z z y  and 

( , , , , ) ( , , , , ) = , , , , = , ,T I F T I F T I F T I F T I F T I F T I F

m mx x x z z z x x x z z z z z x z z y z z z   

 Thus distributivity holds for all cases.  

  

Definition 3.3. 

         For any two elements , , , , ,T I F T I Fx x x y y y NFS , we define the inequality '   as 

, , , ,T I F T I Fx x x y y y  means x y , 
I Ix y  and 

F Fx y .  

  

Remark 3.2. 

         The elements in the set  , , | , , , ,T I F T I F T I Fy y y NFS x x x y y y   are identity 

element of , ,T I Fx x x  with respect to ' m . That is we have multiple identity element.  

  

Remark 3.3. 

         Any NFMs A can be decomposed into two Neutrosophic fuzzy matrices AW  and A  

by means of m . That is = ( ) ( )mA A A W .  

  

Remark 3.4. 

         For any two NFMs A and B, ( ) ( ) = ( )m mA B A B A B    .  

 

4. CONCLUSION: 

In this paper, we introduced modal operators and a new composition operation in 

Neutrosophic fuzzy matrix. Further some of its algebraic properties are investigated. 
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