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Abstract

In this paper, we have introduced the determinant and adjoint of a square
Fuzzy Neutrosophic Soft Matrices (FNSMs). Also we define the circular FNSM
and study some relations on square FNSM such as reflexivity, transitivity and
circularity.
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1 Introduction

The theory of fuzzy set was introduced by Zadeh [?] as an appropriate mathematical
instrument for description of uncertainty observed in nature. Since the inception it
has got intensive acceptability in various fields. The traditional fuzzy sets is charac-
terised by the membership value or the grade of membership value. Some times it
may be very difficult to assign the membership value for fuzzy sets. Consequently
the concept of interval valued fuzzy sets was proposed [?] to capture the uncertainty
of grade of membership value. In some real life problems in expert system, belief
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system, information fusion and so on, we must consider the truth membership as
well as the falsity-membership for proper description of an object in uncertain, am-
biguous environment. Neither the fuzzy sets nor the interval valued fuzzy sets is
appropriate for such a situation. Intuitionistic fuzzy sets introduced by Atanassov
[?] is appropriate for such a situation. The intuitionistic fuzzy sets can only handle
the incomplete information considering both the truth membership (or simply mem-
bership) and falsity-membership (or non membership) values. It does not handle the
indeterminate and inconsistent information which exists in belief system.

Smarandache [?] introduced the concept of neutrosophic set which is a Mathemat-
ical tool for handling problems involving imprecise, indeterminacy and inconsistent
data. The concept of soft set theory was introduced by Molodtsov [?] in 1999, it
is a new approach for modeling vagueness and uncertainty. Soft set theory has a
rich potential for applications in several directions, few of which had been shown by
Molodtsov in his pioneer work. It is well known that the matrix formulation of a
Mathematical formula gives extra advantages to handle the problem. The classical
matrix theory cannot solve the problems involving various types of uncertainities.
That type of problems are solved by using fuzzy matrix[?]. Fuzzy matrix has been
proposed to represent fuzzy relation in a system based on fuzzy set theory, Ovehin-
nikov [?].

Fuzzy matrices play an important role in Science and Technology. Kim [?, ?, ?]
has explored some important result on the determinant of a square matrix. In Yong
Yang and Chenli Ji [?], introduced a matrix representation of soft set and applied it
in decision making problems. Rajarajeswari and Dhanalakshmi [?] introduced fuzzy
soft matrix and its application in Medical diagnosis. Sumathi and Arockiarani [?]
introduced new operations on fuzzy neutrosophic soft matrices. Mamouni Dhar [?] et
al., have also defined Neutrosophic fuzzy matrices and studied about square neutro-
sophic fuzzy matrices. In this article our main intention is to define determinant and
adjoint of FNSMs. Furthermore, efforts have been made to establish some properties
with the help of the new introduced definition of determinant of square FNSMs. In
section 1 we have introduced determinant of two types FNSM and its properties. In
section 2, the definition of adjoint of FNSM is given and some related Theorems are
asserted.

2 preliminaries

Definition 2.1. [?] Let U be an initial universe set and E be a set of parameters.
Let P(U) denotes the power set of U. Consider a nonempty set A, A ⊂ E. A pair
(F,A) is called a soft set over U, where F is a mapping given by F : A→ P (U).
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Definition 2.2. [?] Let U be an initial universe set and E be a set of parameters.
Consider a non empty set A, A ⊂ E. Let P (U) denotes the set of all fuzzy neutro-
sophic sets of U . The collection (F,A) is termed to be the Fuzzy Neutrosophic Soft
Set (FNSS) over U , Where F is a mapping given by F : A → P (U). Hereafter we
simply consider A as FNSM over U instead of (F,A).

Definition 2.3. [?] A neutrosophic set A on the universe of discourse X is defined
as A = {⟨x, TA(x), IA(x), FA(x)⟩, x ∈ X}, where T, I, F : X →]−0, 1+[ and

−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.......(1)
From philosophical point of view the neutrosophic set takes the value from real stan-
dard or non-standard subsets of ]−0, 1+[ . But in real life application especially in
scientific and Engineering problems it is difficult to use neutrosophic set with value
from real standard or non-standard subset of ]−0, 1+[ . Hence we consider the neu-
trosophic set which takes the value from the subset of [0, 1].
Therefore we can rewrite the equation (1) as

0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.
In short an element ã in the neutrosophic set A , can be written as ã = ⟨aT , aI , aF ⟩,
where aT denotes degree of truth, aI denotes degree of indeterminacy, aF denotes
degree of falsity such that 0 ≤ aT + aI + aF ≤ 3.

Example 2.4. Assume that the universe of discourse X = {x1, x2, x3}, where x1, x2,
and x3 characterises the quality, relaibility, and the price of the objects. It may be
further assumed that the values of {x1, x2, x3} are in [0, 1] and they are obtained from
some investigations of some experts. The experts may impose their opinion in three
components viz; the degree of goodness, the degree of indeterminacy and the degree
of poorness to explain the characteristics of the objects. Suppose A is a Neutrosophic
Set (NS) of X, such that
A = {⟨x1, 0.4, 0.5, 0.3⟩, ⟨x2, 0.7, 0.2, 0.4⟩, ⟨x3, 0.8, 0.3, 0.4⟩} , where for x1 the degree
of goodness of quality is 0.4 , degree of indeterminacy of quality is 0.5 and degree of
falsity of quality is 0.3 etc,.

Let ℱm×n denotes FNSM of order m× n and ℱn denotes FNSM of order n× n.
Operations on FNSM of type-I are defined as follows.

Definition 2.5. [?] Let A = (
〈
aTij, a

I
ij, a

F
ij

〉
), B = (

〈
bTij, b

I
ij, b

F
ij

〉
) ∈ ℱm×n. The compo-

nentwise addition and componentwise multiplication is defined as
A⊕B = (sup

{
aTij, b

T
ij

}
, sup

{
aIij, b

I
ij

}
, inf

{
aFij, b

F
ij

}
).

A⊙B = (inf{aTij, bTij}, inf{aIij, bIij}, sup{aFij, bFij}).

Definition 2.6. [?] Let A ∈ ℱm×n, B ∈ ℱn×p, the composition of A and B is defined
as
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A ∘B =

(
n∑
k=1

(aTik ∧ bTkj),
n∑
k=1

(aIik ∧ bIkj),
n∏
k=1

(aFik ∨ bFkj)

)
equivalently we can write the same as

=

(
n⋁
k=1

(aTik ∧ bTkj),
n⋁
k=1

(aIik ∧ bIkj),
n⋀
k=1

(aFik ∨ bFkj)

)
.

The product A ∘ B is defined if and only if the number of columns of A is same
as the number of rows of B. A and B are said to be conformable for multiplication.
We shall use AB instead of A ∘B.

Definition 2.7. [?] Let A = (⟨aTij, aIij, aFij⟩) and c ∈ ℱ = [0, 1]. Define the fuzzy

neutrosophic scalar multiplication as cA = (
〈
inf{c, aTij}, inf{c, aIij}, sup{c, aFij}

〉
)

∈ ℱm×n.
For the universal matrix J1, by the definition 2.5 ,
cJ1 = inf(c⊙ ⟨1, 1, 0⟩) = (⟨inf{c, 1}, inf{c, 1}, sup{c, 0}⟩) = (⟨c, c, c⟩)
is the constant matrix all of whose entries are c. Further under componentwise mul-
tiplication cJ1 ⊙ A = (⟨c, c, c⟩)⊙ (⟨aTij, aIij, aFij⟩)
= (⟨min{c, aTij},min{c, aIij},max{c, aFij}⟩)
= cA ......(2)

Definition 2.8. If A = (aij) ∈ ℱm×n, where (aij) = (⟨aTij, aIij, aFij⟩), then
Ac = (bij)m×n where (bij) = (⟨aFij, 1− aIij, aTij⟩), is the complement of A.

Definition 2.9. [?] The n×m Zero matrix O1 is the matrix all of whose entries are
of the form ⟨0, 0, 1⟩.

The n× n identity matrix ℐ1 is the matrix ℐ1 =

{
⟨1, 1, 0⟩ if i = j

⟨0, 0, 1⟩ if i ∕= j

The n × m universal matrix J1 is the matrix all of whose entries are of the form
⟨1, 1, 0⟩.

Operations on FNSM of type-II are defined as follows.

Definition 2.10. [?] Let A = (aTij, a
I
ij, a

F
ij), B = (bTij, b

I
ij, b

F
ij) ∈ ℱm×n, the componen-

twise addition and componentwise multiplication is defined as
A⊕B = (

〈
sup

{
aTij, b

T
ij

}
, inf

{
aIij, b

I
ij

}
, inf

{
aFij, b

F
ij

}〉
).

A⊙B = (
〈
inf{aTij, bTij}, sup{aIij, bIij}, sup{aFij, bFij}

〉
).

Analogous to FNSM of type-I we can define FNSM of type -II in the following
way
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Definition 2.11. [?] Let A = (⟨aTij, aIij, aFij⟩) = (aij) ∈ ℱm×n and B = (⟨bTij, bIij, bFij⟩) =
(bij) ∈ ℱn×p the product of A and B is defined as

A ∗B =

(
n∑
k=1

〈
aTik ∧ bTkj

〉
,

n∏
k=1

〈
aIik ∨ bIkj

〉
,

n∏
k=1

〈
aFik ∨ bFkj

〉)
equivalently we can write the same as

=

(
n⋁
k=1

〈
aTik ∧ bTkj

〉
,

n⋀
k=1

〈
aIik ∨ bIkj

〉
,

n⋀
k=1

〈
aFik ∨ bFkj

〉)
.

the product A ∗B is defined if and only if the number of columns of A is same as the
number of rows of B. A and B are said to be conformable for multiplication.

Definition 2.12. [?] The n×m Zero matrix O2 is the matrix all of whose entries are

of the form ⟨0, 1, 1⟩. The n×n identity matrix ℐ2 is the matrix =

{
⟨1, 0, 0⟩ if i = j

⟨0, 1, 1⟩ if i ∕= j

The n×m universal matrix J2 is the matrix all of whose entries are of the form
⟨1, 0, 0⟩.

Definition 2.13. [?] Let A = (⟨aTij, aIij, aFij⟩) and c ∈ ℱ , then the fuzzy neutrosophic
scalar multiplication is defined by
cA = (inf{c, aTij}, sup{c, aIij}, sup{c, aFij})

Proposition 2.14. [?] If A ≤ B , then AC ≤ BC.

3 The determinant and adjoint of FNSM of type-I

Definition 3.1. The determinant ∣A∣ of n× n FNSM A = (⟨aTij, aIij.aFij⟩) is defined
as follows
∣A∣ = ⟨

⋁
�∈Sn

aT1�(1) ∧ ... ∧ aTn�(n),
⋁
�∈Sn

aI1�(1) ∧ ... ∧ aIn�(n),
⋀
�∈Sn

aF1�(1) ∨ ... ∨ aFn�(n)⟩

where Sn denotes the symmetric group of all permutations of the indices (1, 2, ...n).

Example 3.2. Let A = (⟨aTij, aIij, aFij⟩) be a FNSM such that

A =

[
(0.5, 0.3, 0.4) (0.6, 0.7, 0.8)
(0.9, 0.6, 0.7) (0.5, 0.6, 0.7)

]
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∣A∣ = (⟨0.5, 0.3, 0.4⟩ ∧ ⟨0.5, 0.6, 0.7⟩) ∨ (⟨0.6, 0.7, 0.8⟩ ∧ ⟨0.9, 0.6, 0.7⟩)
= ⟨0.5, 0.3, 0.7⟩ ∨ ⟨0.6, 0.6, 0.8⟩
= ⟨0.6, 0.6, 0.7⟩

Theorem 3.3. If a FNSM B is obtained from an n × n FNSM A = (⟨aTij, aIij, aFij⟩)
by multiplying the i− tℎ row of A (i− tℎ column) by k ∈ [0, 1], then B = k ∣A∣ .

Proof. Suppose that B = (⟨bTij, bIij, bFij⟩), then

∣B∣ = ⟨
⋁
�∈Sn

bT1�(1) ∧ ... ∧ bTn�(n),
⋁
�∈Sn

bI1�(1) ∧ ... ∧ bIn�(n),
⋀
�∈Sn

bF1�(1) ∨ ... ∨ bFn�(n)⟩

= ⟨
⋁
�∈Sn

aT1�(1)∧...∧k ai�(i)∧...∧aTn�(n),
⋁
�∈Sn

aI1�(1)∧...∧∧k aIi�(i)...∧...aIn�(n),
⋀
�∈Sn

aF1�(1)∨

... ∨ k aFi�(i)...aFn�(n)⟩

= ⟨k
⋁
�∈Sn

aT1�(1) ∧ ... ∧ aTn�(n), k
⋁
�∈sn

aI1�(1) ∧ ... ∧ aIn�(n), k ∧�∈Sn aF1�(1) ∨ ... ∨ aFn�(n))

= k⟨aTij, aIij, aFij⟩
= k ∣A∣.

Theorem 3.4. Let A = (⟨aTij, aIij, aFij⟩) be an n×n FNSM then det(PA) = det(A) =
det(AP ), where P is a permutation FNSM which is obtained from the identity FNSM
by interchanging row i and row j.

Proof. Let A = (⟨cTij, cIij, cFij⟩). Then for any i, j, the i− tℎ(j − tℎ) row of PA is the
j − tℎ(i− tℎ respectively) row of A.
Infact, P is a permutation FNSM which is generated by a permutation[
i j
j i

]
.

Since, for any permutation � ∈ Sn,[
i j
j i

]
�

= � ∈ Sn ,

∣PA∣=⟨
⋁
�∈Sn

cT1�(1) ∧ ... ∧ cTn�(n),
⋁
�∈Sn

cI1�(1) ∧ ... ∧ cIn�(n),
⋀
�∈Sn

cF1�(1) ∨ ... ∨ cFn�(n)⟩

= ⟨
⋁
�∈Sn

aT1�(1) ∧ ... ∧ aTn�(n),
⋁
�∈Sn

aI1�(1) ∧ ... ∧ aIn�(n),
⋀
�∈Sn

aF1�(1) ∨ ... ∨ aFn�(n)⟩

= ∣A∣ .
The case of AP is similar to the above proof.
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Definition 3.5. Let A = (⟨aTij, aIij, aFij⟩), be a m× n FNSM then the transpose of A
is defined by, AT = (⟨aTji, aIji, aFji⟩).

Theorem 3.6. Let A = (⟨aTij, aIij, aFij⟩) be a FNSM then det(A) = det(AT ), where
AT denotes the transpose of A.

Proof. Let AT = (⟨bTij, bIij, bFij⟩). Since each permutation � is one -to-one function,
we have∣∣AT ∣∣ = ⟨

⋁
�∈Sn

bT1�(1) ∧ ... ∧ bTn�(n),
⋁
�∈Sn

bI1�(1) ∧ ... ∧ bIn�(n),
⋀
�∈Sn

bF1�(1) ∨ ... ∨ bFn�(n)⟩

= ⟨
⋁
�∈Sn

aT�(1)1 ∧ ... ∧ aT�(n)n,
⋁
�∈Sn

aI�(1)1 ∧ ... ∧ aI�(n)n,
⋀
�∈Sn

aF�(1)1 ∨ ... ∨ aF�(n)n⟩

= ⟨
⋁
�∈Sn

aT1�(1) ∧ ... ∧ aTn�(n),
⋁
�∈Sn

aI1�(1) ∧ ... ∧ aIn�(n),
⋀
�∈Sn

aF1�(1) ∨ ... ∨ aFn�(n)⟩,

where the permutations � is induced by the rearrangement of each � in Sn
= ∣A∣ .

Theorem 3.7. Let A = (⟨aTij, aIij,Fij ⟩) be an n × n FNSM. If A contains a zero row
(column) then ∣A∣ = ⟨0, 0, 1⟩.

Proof. Each term in ∣A∣ contains a factor of each row(column) and hence a factor
of zero row (column). Thus each term of ∣A∣ is equal to zero, and consequently
∣A∣ = ⟨0, 0, 1⟩. Hence zero means element of the form ⟨0, 0, 1⟩.

Theorem 3.8. Let A = ⟨(aTij, aIij, aFij⟩) be an n × n FNSM, If A is triangular, then
the determinant of A,

∣A∣ =
〈 ⋀

1≤i≤n
aTii,

⋀
1≤i≤n

aIii,
⋁

1≤i≤n
aFii

〉
Proof. Suppose that A =

〈
(aTij, a

I
ij, a

F
ij

〉
) is lower triangular. We consider the term of

∣A∣ that
taT =

⋀
1≤i≤n

ai�(i), taI =
⋀

1≤i≤n
ai�(i), taF =

⋁
1≤i≤n

ai�(i).

Let �(1) ∕= 1. Then 1 < �(1) and so aT1�(1) = 0, aI1�(1) = 0, aF1�(1) = 1.
This means that taT = 0, taI = 0, taF = 1.
If �(1) ∕= 1. Now, let �(1) = 1 and �(2) ∕= 2 then 2 < �(2) and aT2�(2) = 0, aI2�(2) =

0, aF2�(2) = 1, and taT = 0, taI = 0, taF = 1, This means that taT = 0, taI = 0, taF = 1,

if �(1) ∕= 1 or �(2) ∕= 2.
Therefore, in this method, we know that each of terms taT , taI , taF , for �(1) ∕=
1, �(2) ∕= 2...�(n) ∕= n must be zero, zero, one respectively, Consequently,
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∣A∣ =
(
⟨
⋀

1≤i≤n
aTii,

⋀
1≤i≤n

aIii,
⋁

1≤i≤n
aFii⟩
)

.

The following theorem is evident from the definition of determinant of FNSM.

Theorem 3.9. Let A and B be two FNSM. Then ∣AB∣ ≥ ∣A∣ ∣B∣ .

4 The Adjoint of FNSM

Definition 4.1. The adjoint of an n × n FNSM A denoted by adjA, is defined as
follows bij = ∣Aji∣ is the determinant of the (n−1)×(n−1) FNSM formed by deleting
row j and column i from A and B = adjA.

Remark 4.2. We can write the element bij of adjA = B = (bij) as follows:

bij =
∑

�∈Snjni

∏
t∈nj

〈
aTt�(t), a

I
t�(t), a

F
t�(t)

〉
where nj = {1, 2, 3.....n} ∖ {j} and Snjni is the set of all permutation of set nj over
the set ni.

Example 4.3. Let A =

[
⟨0.2, 0.5, 0⟩ ⟨0.2, 0.3, 0.5⟩
⟨0.6, 0.2, 0.3⟩ ⟨0.6, 0.7, 0.3⟩

]
,

then adjA =
[
A11 A21
A12 A22

]
A11 = ⟨0.6, 0.7, 0.3⟩
A12 = ⟨0.6, 0.2, 0.3⟩
A21 = ⟨0.2, 0.3, 0.5⟩
A22 = ⟨0.2, 0.5, 0⟩

adjA =

[
⟨0.6, 0.7, 0.3⟩ ⟨0.2, 0.3, 0.5⟩
⟨0.6, 0.2, 0.3⟩ ⟨0.2, 0.5, 0⟩

]
Proposition 4.4. For n× n FNSM A and B we have the following
1. A ≤ B implies adjA ≤ adjB,
2. adjA+ adjB ≤ adj(A+B),
3. adjAT = (adjA)T .

Proof. (i) Let C = adjA and D = adjB. That is
cij =

∑
�∈Snjni

∏
t∈nj
⟨aTt�(t), aIt�(t), aFt�(t)⟩ and

dij =
∑

�∈Snjni

∏
t∈nj
⟨bTt�(t), bIt�(t), bFt�(t)⟩.
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It is clear that cij ≤ dij since
aTt�(t) ≤ bTt�(t)
aIt�(t) ≤ bIt�(t)
aFt�(t) ≥ bFt�(t) for every t ∕= j, �(t) ∕= i.

(ii) Since A , B ≤ A+B, it is clear that
adjA, adjB ≤ adj(A+B) and so adjA+ adjB ≤ adj(A+B).

(iii)Let B = adjA and C = adjAT . Then
bij =

∑
�∈Snjni

∏
t∈nj
⟨aTt�(t), aIt�(t), aFt�(t)⟩ and

cij =
∑

�∈Snjni

∏
�(t)∈nj

⟨aTt�(t), aIt�(t), aFt�(t)⟩,

which is the element bji . Hence (adjA)T = adjAT .

Proposition 4.5. Let A be an n× n FNSM. Then
(1) A adjA ≥ ∣A∣ In,
(2) (adjA)A ≥ ∣A∣ In.

Proof. (1) Let C = A adjA. The i-th row of A is (⟨aTi1, aIi1, aFi1⟩
⟨aTi2, aIi2, aFi2⟩..., ⟨aTin, aIin, aFin⟩). By the definition of adjA, the j-th column of adjA is
given by (∣Aj1∣ , ∣Aj2∣ , ..., ∣Ajn∣)T . So that
⟨cTij, cIij, cFij⟩ =

∑n
k=1⟨aTik, aIik, aFik⟩ ∣Ajk∣ ≥ 0 and hence ⟨cTii, cIii, cFii⟩ =

∑n
k=1⟨aTik, aIik, aFik⟩ ∣Aik∣

which is equal to ∣A∣. Thus C = AadjA ≥ ∣A∣ In.
(2) The proof is similar to (1).

Proposition 4.6. If a FNSM matrix A has a zero row then (adjA)A = (⟨0, 0, 1⟩)
(the zero matrix).

Proof. Let H = (adjA)A. That is, ℎij =
∑
k

∣Aki∣ ⟨aTkjaIkjaFkj⟩. If the i-th row of A

is zero, that means (⟨0, 0, 1⟩) , then Aki contains a zero row where k ∕= i and so
∣Aki∣ = ⟨0, 0, 1⟩ (by the Theorem 3.7)
for every k ∕= i and if k = i, then aij = 0 for every j and hence∑
k

∣Aki∣ ⟨aTkj, aIkj, aFkj⟩ = (⟨0, 0, 1⟩).

Thus (adjA)A = (⟨0, 0, 1⟩)
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Theorem 4.7. For a FNSM A we have ∣A∣ = ∣adjA∣ .

Proof. Since adjA =

⎡⎢⎣∣A11∣ ∣A21∣ ⋅ ⋅ ⋅ ∣An1∣
∣A12∣ ∣A22∣ ⋅ ⋅ ⋅ ∣An2∣

...
...

...
...

∣A1n∣ ∣A2n∣ ⋅ ⋅ ⋅ ∣Ann∣

⎤⎥⎦
we have
∣adjA∣ =

∑
�∈Sn

∣∣A1�(1)

∣∣ ∣∣A2�(2)

∣∣ ... ∣∣An�(n)∣∣
=
∑
�∈Sn

n∏
i=1

∣∣Ai�(i)∣∣
=
∑
�∈Sn

[
n∏
i=1

(
∑

�∈Snin�(i)

∏
t∈ni
⟨aTt�(t), aIt�(t), aFt�(t)⟩)]

=
∑
�∈Sn

[(
∑

�∈Sn1n�(1)

∏
t∈n1

⟨aTt�(t), aIt�(t), aFt�(t)⟩)(
∑

�∈Sn2n�(2)

∏
t∈n2

⟨aTt�(t), aIt�(t), aFt�(t)⟩)...

(
∑

�∈Snnn�(n)

∏
t∈nn
⟨aTt�(t), aIt�(t), aFt�(t)⟩)]

=
∑
�∈sn

[(
∏
t∈n1

⟨aTt�1(t), a
I
t�1(t)

, aFt�n(t)⟩)(
∏
t∈n1

⟨aTt�2(t), a
I
t�2(t)

, aFt�2(t)⟩)(
∏
t∈n1

⟨aTt�n(t), a
I
t�n(t)

, aFt�n(t)⟩)]

for some �1 ∈ Sn1n�(1) , �2 ∈ Sn2n�(1) , ...�n ∈ Snnn�(n)
=
∑
�∈Sn

[(a2�1(2)a3�1(3)...an�1(n))(a1�2(1)a3�2(3)...an�2(n))...(a1�n(1)a2�n(2)...an−1�n(n−1))]

=
∑
�∈Sn

[(a1�2(1)a1�3(1)...a1�n(1))(a2�1(2)a2�1(2)...a2�n(2))(a3�1(3)a3�2(3)a3�4(3)

...a3�n(3))...(an�1(n)an�2(n)...an�n(n))]
=
∑
�∈Sn

[(a1�f1(1)a2�f2(2) ...an�fn(n)
] for some fℎ ∈ {1, 2, ..., n} ∖ {ℎ}, ℎ = 1, 2, ..., n. How-

ever because aℎ�fℎ (ℎ) ∕= aℎ�(fℎ). We can see that aℎ�fℎℎ = aℎ�(fℎ) therefore,
∣adjA∣ =

∑
�∈Sn

a1�(1)a2�(2)...an�(n),

which is the expansion of ∣A∣. This complete the proof.

Definition 4.8. An m×n FNSM A is said to be constant if ⟨aTik, aIik, aFik⟩ = ⟨aTjk, aIjk, aFjk⟩
for all i, j, k, that is its row are equal to each other.

Proposition 4.9. Let A be an n× n constant FNSM Then we have:
(1). (adjA)T is constant,
(2). C = A(adjA) is constant and Cij = ∣A∣ which is the least element in A.

Proof. (1)Let B = adjA. Then
bij =

∑
�∈Snjni

∏
t∈nj

(⟨aTt�(t), aIt�(t), aFt�(t)⟩) and bik =
∑

�∈Snkni

∏
t∈nk

(⟨aTt�(t), aIt�(t), aFt�(t)⟩).

10



We notice that bij = bik since the numbers �(t) of columns cannot be changed in the
two expansion of bij and bik. So that (adjA)T is constant.
(2) Since A is constant we can see that Ajk = Aik and so ∣Ajk∣ = ∣Aik∣ for every
i, j ∈ {1, 2, ..., n}. Thus

cij =
n∑
k=1

(⟨aTik, aIik, aFik⟩) ∣Ajk∣

=
n∑
k=1

(⟨aTik, aIik, aFik⟩) ∣Aik∣

= ∣A∣ .

Now,
∣A∣ =

∑
�∈Sn

a1�(1)a2�(2)...an�(n)

= a2�(2)a3�(3)...an�(n)
for any � ∈ Sn (since A is constant). Taking � as the identity permutation we get
∣A∣ = a11a22...ann which is the least element in A.

Definition 4.10. For a FNSM A ∈ ℱn×n we have the following
(1) If A ≥ In, then A is called reflexive.
(2) If aii ≥ aij, then A is called weakely reflexive for all i, j ∈ {1, 2, ..., n} where
A = (aij) = (⟨aTij, aIij, aFij⟩)
(3)If A = AT , then A is called symmetric
(4)If A = A2, then A is called idempotent
(5)If A2 ≤ A, then A is called transitive.

Proposition 4.11. Let A be an n× n reflexive FNSM. Then adjA = Ak where Ak

is idempotent and k ≤ n− 1.

Proof. The proof of the proposition is similar to fuzzy matrices refer[?].

Proposition 4.12. Let A be an n× n reflexive FNSM. Then we have the following:
(1)adjA2 = (adjA)2 = adjA,
(2)If A is idempotent, then adjA = A,
(3)adjA is reflexive,
(4)adj(adjA) = adjA,
(5)adjA ≥ A,
(6)A(adjA) = (adjA)A = adjA.

11



Proof. (1) Since A is reflexive, we get A2 is also reflexive and adjA2 = (A2)k =
(Ak)2 = (adjA)2. But since Ak is idempotent, we have (adjA)2 = (adjA).
(2)We have by proposition 2.10 that adjA = Ak(k ≤ n − 1). But we have also that
A is idempotent. So Ak = A. Thus adjA = A.

(3) Let B = adjA. That is,
(⟨bTiibIiibFii⟩) =

∑
�∈Sni

∏
t∈ni
⟨aTt�(t), aIt�(t), aFt�(t)⟩.

Taking the identity permutation �(t) = t we get
(⟨bTii, bTii, bTii⟩) ≥ ⟨aT11aT22...aTi−1i−1aTi+1i+1...a

T
nn, a

I
11a

I
22...a

I
i−1i−1a

I
i+1i+1...a

I
nn,

aF11a
F
22...a

F
i−1i−1a

F
i+1i+1...a

F
nn⟩ = (⟨1, 1, 0⟩) that is ⟨bTii, bIii, bFii⟩ = ⟨1, 1, 0⟩ and adjA is

thus reflexive.
(4) Since A is reflexive, we get adjA is idempotent by the above proposition and
reflexive by (3). So that by (2) adj(adjA) = adjA.
(5) Let B = adjA. That is
(⟨bTijbIijbFij⟩) =

∑
�∈Snjni

∏
t∈nj
⟨aTt�(t), aIt�(t), aFt�(t)⟩.

Taking the identity permutation �(ℎ) = ℎ, �(i) = j, ℎ ∕= i, that is the permutation[
1 2 3 ⋅ ⋅ ⋅ i ⋅ ⋅ ⋅ j − 1 j + 1 ⋅ ⋅ ⋅n
1 2 3 ⋅ ⋅ ⋅ j ⋅ ⋅ ⋅ j − 1 j + 1 ⋅ ⋅ ⋅n

]
then ⟨aT11aT22...aTi−1i−1aTi+1i+1...a

T
nn,

aI11a
I
22...a

I
i−1i−1a

I
i+1i+1...a

I
nn, a

F
11a

F
22...a

F
i−1i−1a

F
i+1i+1...a

F
nn⟩

is a term of ⟨bTij, bIij, bFij⟩. So that
⟨bTij, bIij, bFij⟩ ≥ ⟨aT11, aT22...aTi−1i−1aTi+1i+1...a

T
nn = ⟨aTij, aIij, aFij⟩.

Therefore B = adjA ≥ A.
(6) Let C = A(adjA) and D = (adjA)A. Then

⟨cTij, cIij, cFij⟩ =
n∑
k=1

⟨aTik, aIik, aFik⟩ ∣Ajk∣

≥ ⟨aTii, aIii, aFii⟩ ∣Aji∣ = ∣Aji∣ = (⟨bTij, bIij, bFij⟩) and dij =
n∑
k=1

∣Aki∣ ⟨aTkj, aIkj, aFkj⟩

≥ ∣Aji∣ ⟨aTjj, aIjj, aFjj⟩
= ∣Aji∣ = (⟨bTij, bIij, bFij⟩).
Thus we have A(adjA) ≥ adjA and (adjA)A ≥ adjA. But by (1) and (5) and
proposition [4.11] we see that adjA = (adjA)(adjA) ≥ AadjA. So that A(adjA) =
adjA. Also adjA = (adjA)(adjA) ≥ (adjA)A so that (adjA)A = adjA. Thus we get
A(adjA) = (adjA)A = adjA.
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Example 4.13.

LetA =

[
⟨1, 1, 0⟩ ⟨0.2, 0.3, 0.5⟩

⟨0.6, 0.2, 0.3⟩ ⟨1, 1, 0⟩

]
Tℎen

A11 = ⟨1, 1, 0⟩,
A12 = ⟨0.6, 0.2, 0.3⟩
A21 = ⟨0.2, 0.3, 0.5⟩,
A22 = ⟨1, 1, 0⟩

A2 =

[
⟨1, 1, 0⟩ ⟨0.2, 0.3, 0.5⟩

⟨0.6, 0.2, 0.3⟩ ⟨1, 1, 0⟩

] [
⟨1, 1, 0⟩ ⟨0.2, 0.3, 0.5⟩

⟨0.6, 0.2, 0.3⟩ ⟨1, 1, 0⟩

]
=

[
⟨1, 1, 0⟩ ⟨0.2, 0.3, 0.5⟩

⟨0.6, 0.2, 0.3⟩ ⟨1, 1, 0⟩

]
A2 ≤ Aistransitive.

adjA =
[
A11 A21
A12 A22

]
adjA =

[
⟨1, 1, 0⟩ ⟨0.2, 0.3, 0.5⟩

⟨0.6, 0.2, 0.3⟩ ⟨1, 1, 0⟩

]
A(adjA) =

[
⟨1, 1, 0⟩ ⟨0.2, 0.3, 0.5⟩

⟨0.6, 0.2, 0.3⟩ ⟨1, 1, 0⟩

] [
⟨1, 1, 0⟩ ⟨0.2, 0.3, 0.5⟩

⟨0.6, 0.2, 0.3⟩ ⟨1, 1, 0⟩

]
=

[
⟨1, 1, 0⟩ ⟨0.2, 0.3, 0.5⟩

⟨0.6, 0.2, 0.3⟩ ⟨1, 1, 0⟩

]
(adjA)A =

[
⟨1, 1, 0⟩ ⟨0.2, 0.3, 0.5⟩

⟨0.6, 0.2, 0.3⟩ ⟨1, 1, 0⟩

] [
⟨1, 1, 0⟩ ⟨0.2, 0.3, 0.5⟩

⟨0.6, 0.2, 0.3⟩ ⟨1, 1, 0⟩

]
=

[
⟨1, 1, 0⟩ ⟨0.2, 0.3, 0.5⟩

⟨0.6, 0.2, 0.3⟩ ⟨1, 1, 0⟩

]
(adjA)A = AadjA.

It is clear that the above example satisfies of the above Theorem.

Definition 4.14. An n× n FNSM A is called circular if and only if (A2)T ≤ A, or
more explicitly, ⟨aTjk, aIjk, aFjk⟩⟨aTki, aIki, aFki⟩ ≤ ⟨aTij, aIij, aFij⟩ for every k = 1, 2, ...n.

Theorem 4.15. For an n× n FNSM A we have the following:
(1)If A is symmetric, then adjA is symmetric,
(2)If A is transitive, then adjA is transitive,
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(3) If A is circular, then adjA is circular.

Proof. (1) Let B = adjA. Then
⟨bTij, bIij, bFij⟩ =

∑
�∈Snjni

∏
t∈nj
⟨aTt�(t), aIt�(t), aFt�(t)⟩∑

�∈Sninj

∏
t∈ni
⟨aT�(t)t, aI�(t)t, aF�(t)t⟩ = (⟨bTij, bIij, bFij⟩).

(since A is symmetric).
(2)Let D = Aij. We can determine the elements of D in terms of the elements of A
as follows:

⟨dTℎk, dIℎk, dkℎk⟩ =

⎧⎨⎩
⟨aTℎk, aIℎk, aFℎk⟩ if ℎ < i, k < j,

⟨aT(ℎ+1)k, a
I
(ℎ+1)k, a

F
(ℎ+1)k⟩ if ℎ ≥ i, k < j,

⟨aTℎ(k+1), a
I
ℎ(k+1), a

F
ℎ(k+1)⟩ if ℎ < i, k ≥ j,

⟨aT(ℎ+1)(k+1), a
I
(ℎ+1)(k+1), a

F
(ℎ+1)(k+1)⟩ if ℎ ≥ i, k ≥ j,

where Aij denotes the (n−1)× (n−1) FNSM obtained from A by deleting the i− tℎ
row and column j.
Now we show that AstAtu ≤ Asu for every t ∈ {1, 2, ...n}. Let R = Ast, C =
Atu, F = Asu and W = AstAtu. Note that A is transitive. Then ⟨wTij, wIij, wFij⟩ =
n−1∑
k=1

⟨rTik, rIik, rFik⟩⟨cTkj, cIkj, cFkj⟩

=
n−1∑
k=1

⟨aTikaTkj, aIikaIkj, aFikaFkj⟩ ≤ ⟨aTij, aIij, aFij⟩

= ⟨fTij , f Iij, fFij ⟩ if i < s, k < t, j < u,

=
n−1∑
k=1

⟨aTikaTk(j+1), a
I
ika

I
k(j+1), a

F
ika

F
k(j+1)⟩ ≤ ⟨aTi(j+1), a

I
i(j+1), a

F
i(j+1)⟩

= ⟨fTij , f Iij, fFij ⟩ if i < s, k < t, j ≥ u,

=
n−1∑
k=1

⟨aTi(k+1)a
T
(k+1)j, a

I
i(k+1)a

I
(k+1)j, a

F
i(k+1)a

F
(k+1)j⟩ ≤ ⟨aTij, aIij, aFij⟩

= ⟨fTij , f Iij, fFij ⟩ if i < s, k ≥ t, j < u,

=
n−1∑
k=1

⟨aTi(k+1)a
T
(k+1)(j+1), a

I
i(k+1)a

I
(k+1)(j+1), a

F
i(k+1)a

F
(k+1)(j+1)⟩

≤ ⟨aTi(j+1), a
I
i(j+1), a

F
i(j+1)⟩ = ⟨fTij , f Iij, fFij ⟩ if i < s, k ≥ t, j ≥ u,

=
n−1∑
k=1

⟨aT(i+1)ka
T
kj, a

I
(i+1)ka

I
kj, a

F
(i+1)ka

F
kj⟩

≤ ⟨aT(i+1)j, a
I
(i+1)j, a

F
(i+1)j⟩ = ⟨fTij , f Iij, fFij ⟩ if i ≥ s, k < t, j < u,
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=
n−1∑
k=1

⟨aT(i+1)(k+1)a
T
(k+1)j, a

I
(i+1)(k+1)a

I
(k+1)j, a

F
(i+1)(k+1)a

F
(k+1)j⟩

≤ ⟨aT(i+1)j, a
I
(i+1)j, a

F
(i+1)j⟩ = ⟨fTij , f Iij, fFij ⟩ if i ≥ s, k ≥ t, j < u,

=
n−1∑
k=1

⟨aT(i+1)(k+1)a
T
(k+1)(j+1), a

I
(i+1)(k+1)a

I
(k+1)(j+1), a

F
(i+1)(k+1)a

F
(k+1)(j+1)⟩

≤ ⟨aT(i+1)(j+1), a
I
(i+1)(j+1), a

F
(i+1)(j+1)⟩ = ⟨fTij , f Iij, fFij ⟩ if i ≥ s, k ≥ t, j < u,

=
n−1∑
k=1

⟨aT(i+1)ka
T
k(j+1), a

I
(i+1)ka

I
k(j+1), a

F
(i+1)ka

F
k(j+1)⟩

≤ ⟨aT(i+1)(j+1), a
I
(i+1)(j+1), a

F
(i+1)(j+1)⟩ = ⟨fTij , f Iij, fFij ⟩ if i ≥ s, k < t, j ≥ u, Thus wij ≤

fij in every case and therefore ⟨aTst, aIst,aFst⟩ ∣Atu∣ ≤ ∣Asu∣ . for every t ∈ {1, 2, ...n}
By theorem (3.9)
we get ∣Ast∣ ∣Atu∣ ≤ ∣Asu∣ , This means that ⟨bTts, bIts, bFts⟩⟨bTut, bIut, bFut⟩
≤ ⟨bTus, bIus, bFus⟩, that is ⟨bTut, bIut, bFut⟩⟨bTts, bIts, bFts⟩ ≤ ⟨bTus, bIus, bFus⟩, for every t ∈ 1, 2, ..., n.
Hence B = adjA is transitive.
(3) Similarly, as in (2) we can show that AstAtu ≤ Aus. For every t ∈ 1, 2, ..., n so
that
∣Ast∣ ∣Atu∣ ≤

∣∣ATus∣∣ = ∣Aus∣ . Thus ⟨bTst, bIst, bFst⟩⟨bTtu, bItu, bFtu⟩ ≤ ⟨bTus, bIus, bFus⟩, and
B = adjA is circular.

Corollary 4.16. If a FNSM A is similarity then AadjA is also Similarity.

Theorem 4.17. For any n× n FNSM A , the FNSM AadjA is transitive.

Proof.

Let C = AadjA, tℎatis

cij =
n∑
k=1

⟨aTik, aIik, aFik⟩ ∣Ajk∣

= ⟨aTif , aIif , aFif⟩ ∣Ajf ∣ forsomef ∈ {1, 2, 3, ..n}, and

c2ij =
n∑
s=1

ciscsj

=
n∑
s=1

(
n∑
l=1

(⟨aTil , aIil, aFil ⟩ ∣Asl∣)
n∑
t=1

⟨aTst, aIst, aFst⟩ ∣Ajt∣

=
n∑
s=1

⟨aTiℎ, aIiℎ, aFiℎ⟩ ∣Asℎ∣ ⟨aTsu, aIsu, aFsu⟩ ∣Aju∣

≤ ⟨aTiℎ, aIiℎ, aFiℎ⟩ ∣Aju∣
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≤ ⟨aTif , aIjf , aFjf⟩ ∣Ajf ∣ ,

forsomeℎ, u ∈ {1, 2, ..., n}.Tℎus(AadjA)2 ≤ AadjA.

Example 4.18. LetA be a FNSM

[
⟨0.1, 0, 0.3⟩ ⟨0.5, 0.6, 0.7⟩
⟨0.2, 0.5, 0.3⟩ ⟨0.6, 0.2, 0.3⟩

]
.

Then (adjA) =

[
⟨0.6, 0.2, 0.3⟩ ⟨0.5, 0.6, 0.7⟩
⟨0.2, 0.5, 0.3⟩ ⟨0.1, 0, 0.3⟩

]
A(adjA) =

[
⟨0.1, 0, 0.3⟩ ⟨0.5, 0.6, 0.7⟩
⟨0.2, 0.5, 0.3⟩ ⟨.6, .2, 0.3⟩

] [
⟨0.6, 0.2, 0.3⟩ ⟨0.5, 0.6, 0.7⟩
⟨0.2, 0.5, 0.3⟩ ⟨0.1, 0, 0.3⟩

]
=

[
⟨0.2, 0.5, 0.3⟩ ⟨0.1, 0, 0.7⟩
⟨0.2, 0.2, 0.3⟩ ⟨0.2, 0.5, 0.3⟩

]
(AadjA)2 =

[
⟨0.2, 0.5, 0.3⟩ ⟨0.1, 0.0, 0.7⟩
⟨0.2, 0.2, 0.3⟩ ⟨0.2, 0.5, 0.3⟩

] [
⟨0.2, 0.5, 0.3⟩ ⟨0.1, 0, 0.7⟩
⟨0.2, 0.2, 0.3⟩ ⟨0.2, 0.5, 0.3⟩

]
(AadjA)2 =

[
⟨0.2, 0.5, 0.3⟩ ⟨0.1, 0, 0.7⟩
⟨0.2, 0.2, 0.3⟩ ⟨0.2, 0.5, 0.3⟩

]
(AadjA)2 ≤ (AadjA) is also transitive.

We omit the proofs for type-II FNSM as the proofs are analogous to type-I FNSM.
Conclusion:

In this paper we have introduced determinant and adjoint of two types of FNSMs
and discussed some of its properties.
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