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Abstract: The neutrosophic cubic set can describe complex decision-making problems with its
single-valued neutrosophic numbers and interval neutrosophic numbers simultaneously. The Dombi
operations have the advantage of good flexibility with the operational parameter. In order to
solve decision-making problems with flexible operational parameter under neutrosophic cubic
environments, the paper extends the Dombi operations to neutrosophic cubic sets and proposes a
neutrosophic cubic Dombi weighted arithmetic average (NCDWAA) operator and a neutrosophic
cubic Dombi weighted geometric average (NCDWGA) operator. Then, we propose a multiple
attribute decision-making (MADM) method based on the NCDWAA and NCDWGA operators.
Finally, we provide two illustrative examples of MADM to demonstrate the application and
effectiveness of the established method.

Keywords: neutrosophic cubic sets; neutrosophic cubic Dombi weighted arithmetic average
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1. Introduction

Fuzzy sets were presented by Zadeh [1] to describe fuzzy problems with the membership function.
After Zadeh, some extensions of fuzzy sets have been proposed, including interval-valued fuzzy
sets [2], intuitionistic fuzzy sets [3] and interval-valued intuitionistic fuzzy sets [4]. Interval-valued
fuzzy sets can be described by the membership degree in an interval value of [0, 1]. Intuitionistic
fuzzy sets and interval-valued intuitionistic fuzzy sets can deal with different types of uncertainties
by the non-membership function and membership function. Neutrosophic sets [5] were defined
by Smarandache to express fuzzy problems using the truth, indeterminacy and falsity membership
functions. Based on the neutrosophic sets, some simplified forms of neutrosophic sets were introduced
for engineering applications, including interval neutrosophic sets [6], single valued neutrosophic
sets [7] and simplified neutrosophic sets [8] and so on. The simplified forms of neutrosophic sets
have been widely applied in multiple attribute decision-making (MADM) problems [9–13] and
fault diagnosis [14]. Some extension forms of neutrosophic sets have been proposed by combining
neutrosophic sets and other sets, for instance, multi-valued neutrosophic sets [15,16], intuitionistic
neutrosophic soft set [17], rough neutrosophic sets [18], single-valued neutrosophic hesitant fuzzy [19],
refined single-valued neutrosophic sets [20], neutrosophic soft sets [21], linguistic neutrosophic
number [22,23], normal neutrosophic sets [24] and single-valued neutrosophic hesitant fuzzy set [25].

In the real world, the membership function in some fuzzy problems cannot be described
completely only by an exact value or an interval-value. Hence, Jun et al. defined cubic sets by
the combination of interval-valued fuzzy sets with fuzzy sets [26]. Cubic sets can describe vagueness
and uncertainty using an exact value and an interval-value simultaneously. Recently, Ali et al. extended
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cubic sets to the neutrosophic sets and introduced the definition of neutrosophic cubic sets (NCSs),
containing external NCSs and internal NCSs [27]. Jun et al. discussed the P-union and P-intersection
of NCSs [28]. Furthermore, several related studies have been conducted to solve decision-making
problems based on NCSs. Zhan et al. presented the concepts of weighted geometric operator (GW) and
the weighted average operator (AW) on NCSs to solve multi-criteria decision-making problem [29].
Banerjee et al. introduced the grey relational analysis method of NCSs for MADM [30]. Some similarity
measures of NCSs were introduced for decision-making problems under neutrosophic cubic set
environment [31,32]. Pramanik et al. proposed the NC-TODIM method for solving a multiple attribute
group decision-making problem [33].

Aggregation operators play an important role in decision making. Hence, many researchers have
presented various aggregation operators and their extensions [34–50], such as Harmonic aggregation
operators [34,35], weighted Bonferroni mean operators [36–39], Einstein prioritized weighted
operators [40], generalized weighted aggregation operators [41], Choquet integral operators [42]
and so on. Dombi first developed the Dombi T-norm and T-conorm operations [51]. Recently, Liu et al.
presented Dombi Bonferroni mean operators of intuitionistic fuzzy sets and applied them in MADM
problems [52]. Chen and Ye also extended the Dombi operations to single valued neutrosophic sets
and proposed some single-valued neutrosophic Dombi weighted aggregation operators and applied
them in MADM problems [53]. From the above review, the Dombi operations have the advantage
of good flexibility with the operational parameter [53] and NCSs contain much more incomplete,
inconsistent and indeterminate information to express actual decision-making problems [31]. Hence,
the paper extends the Dombi operations to NCSs and proposes a neutrosophic cubic Dombi weighted
arithmetic average (NCDWAA) operator and a neutrosophic cubic Dombi weighted geometric average
(NCDWGA) operator. In order to solve MADM problems with neutrosophic cubic information, a
MADM method based on the NCDWAA and NCDWGA operators is proposed in this paper.

The remainder of the paper is arranged as follows. Section 2 briefly introduces some concepts of
NCSs to be used for the following study. Some Dombi operations of NCSs are introduced in Section 3.
Section 4 presents the NCDWAA and NCDWGA operators and discusses their properties. In Section 5,
we establish a MADM method based on the NCDWAA and NCDWGA operators. Section 6 presents
two illustrative examples to demonstrate the effectiveness and feasibility of the proposed method.
Conclusions and future research are given in Section 7.

2. Preliminaries

In this section, we firstly present some concepts of interval neutrosophic sets, single-valued
neutrosophic sets, cubic sets and NCSs and then introduce some ranking methods of NCSs based on
their score, accuracy and certainty functions.

Definition 1 ([6]). Let Z be a non-empty set. An interval neutrosophic sets G in Z is defined as follows:

G = {v, <T(v), I(v), F(v)> | v ∈ Z}, (1)

where the intervals T(v) = [T−(v), T+(v)] ⊆ [0, 1], I(v) = [I−(v), I+(v)] ⊆ [0, 1], and
F(v) = [F−(v), F+(v)] ⊆ [0, 1] for v ∈ Z represent respectively the degrees of the truth-membership,
indeterminacy-membership and falsity-membership.

Definition 2 ([7]). Let Z be a universe of discourse. A single-valued neutrosophic sets H in Z is described
as follows:

H = {v, <t(v), i(v), f (v)> | v ∈ Z}, (2)

where the functions t(v), i(v), f (v) ∈ [0, 1] with the condition 0 ≤ t(v) + i(v) + f (v) ≤ 3 for v ∈ Z, represent
respectively the degrees of the truth-membership, the indeterminacy-membership and falsity-membership.
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Definition 3 ([26]). Let Z be a non-empty set, then a cubic set C in Z is constructed as the following form:

C = {v, A(v), ă(v) | v ∈ Z}, (3)

for v ∈ Z. It can be noted by C = {A, ă}. Then, C = {A, ă} in Z is called an internal cubic set if A−(v) ≤ a(v) ≤
A+(v) for v ∈ Z and C = {A, ă} in Z is called an external cubic set if a(v) /∈ [A−(v), A+(v)] for v ∈ Z.

Ali et al. [27] and Jun et al. [28] extended cubic sets to the neutrosophic sets and proposed the
concept of a NCS as follows.

Definition 4 ([27,28]). Let Z be a universe of discourse, then a neutrosophic cubic set X in Z is denoted as the
following form:

X = {v, <T(v), I(v), F(v)>, <t(v), i(v), f (v)> | v ∈ Z}, (4)

where <T(v), I(v), F(v)> is an interval neutrosophic set [6] in Z and the intervals T(v) = [T−(v), T+(v)] ⊆
[0, 1], I(v) = [I−(v), I+(v)] ⊆ [0, 1], and F(v) = [F−(v), F+(v)] ⊆ [0, 1] for v ∈ Z represent the truth,
indeterminacy and falsity membership degrees, respectively; then <t(v), i(v), f (v)> is a single valued neutrosophic
set [5,7] in Z and t(v), i(v), f (v) ∈ [0, 1] for v ∈ Z represent the membership degrees of truth, indeterminacy and
falsity, respectively.

Then, a neutrosophic cubic sets X = {v, <T(v), I(v), F(v)>, <t(v), i(v), f (v)> | v ∈ Z} is called an
internal NCS if T−(v) ≤ t(v) ≤ T+(v), I−(v) ≤ i(v) ≤ I+(v), and F−(v) ≤ f (v) ≤ F+(v), for v ∈
Z; and a NCS X is called an external NCS if t(v)
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For convenient expression, a basic element (v, <T(v), I(v), F(v)>, <t(v), i(v), f (v)>) in a NCS X

is denoted by x = (< [T−, T+], [I−, I+], [F−, F+] >,< t, i, f >), which is called a neutrosophic
cubic number (NCN) [31], where [T−, T+], [I−, I+], [F−, F+] ⊆ [0, 1] and t, i, f ∈ [0, 1] satisfy the
condition 0 ≤ T+ + I+ + F+ ≤ 3 and 0 ≤ t + i + f ≤ 3.

For any neutrosophic cubic number, we provide the following score, accuracy and certainty functions.

Definition 5 ([54]). Let x = (< [T−, T+], [I−, I+], [F−, F+] >,< t, i, f >) be a neutrosophic cubic
number. Then, its score, accuracy and certainty functions are defined as follows:

S(x) = [(4 + T− + T+ − I− − I+ − F− − F+) + (2 + t− i− f )]/9 (5)

A(x) = [(T− + T+ − F− − F+) + (t− f )]/3 (6)

C(x) = (T− + T+ + t)/3 (7)

where, S(x), A(x) and C(x) represent the score, accuracy and certainty functions of the NCNs, respectively.

The score function S(x) is a useful index in ranking NCNs. For a NCN, the bigger the
truth-membership is, the greater the NCN is. At the same time, the smaller the memberships of
indeterminacy and falsity are, the greater the NCN is. As to the accuracy function A(x), the larger the
difference between truth-membership and falsity-membership is, the more effective the statement
is. For the certainty function C(x), if the truth membership is bigger, then the NCN is more certainty.
Hence, the score, accuracy and certainty functions are defined as shown above.

According to the three functions S(x), A(x) and C(x), the comparison and ranking of two NCNs
are defined as following definition.

Definition 6 ([54]). Let x1 = (< [T−1 , T+
1 ], [I−1 , I+1 ], [F−1 , F+

1 ] >,< t1, i1, f1 >) and x2 = (<

[T−2 , T+
2 ], [I−2 , I+2 ], [F−2 , F+

2 ] >,< t2, i2, f2 >) be two neutrosophic cubic numbers. Then their ranking
method is defined as follows:
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(1) If S(x1) > S(x2), then x1 � x2;
(2) If S(x1) = S(x2) and A(x1) > A(x2), then x1 � x2;
(3) If S(x1) = S(x2), A(x1) = A(x2) and C(x1) > C(x2), then x1 � x2;
(4) If S(x1) = S(x2), A(x1) = A(x2) and C(x1) = C(x2), then x1 ~x2.

Example 1. Let Ψ1 and Ψ2 be two NCNs.

(1) Assume that Ψ1 = (<[0.8, 0.9], [0.1, 0.2], [0.2, 0.3]>, <0.7, 0.1, 0.2>) and Ψ2 = (<[0.5, 0.6], [0.3, 0.4],
[0.4, 0.5]>, <0.5, 0.3, 0.4>). Referring to Definition 5, S(Ψ1) = 0.8111, S(Ψ2) = 0.5889, A(Ψ1) = 0.5667,
A(Ψ2) = 0.1000, C(Ψ1) = 0.8000, C(Ψ2) = 0.5333. According to Definition 6, S(Ψ1) > S(Ψ2), therefore,
Ψ1 � Ψ2.

(2) Assume that Ψ1 = (<[0.5, 0.6], [0.2, 0.3], [0.3, 0.4]>, <0.5, 0.2, 0.3>) and Ψ2 = (<[0.3, 0.4], [0.1, 0.2],
[0.2, 0.3]>, <0.3, 0.1, 0.2>). Referring to Definition 5, S(Ψ1) = 0.6556, S(Ψ2) = 0.6556, A(Ψ1) = 0.2000,
A(Ψ2) = 0.1000, C(Ψ1) = 0.5333, C(Ψ2) = 0.3333. According to Definition 6, S(Ψ1) = S(Ψ2), A(Ψ1) >
A(Ψ2), therefore, Ψ1 � Ψ2.

(3) Assume that Ψ1 = (<[0.5, 0.6], [0.2, 0.3], [0.3, 0.4]>, <0.5, 0.2, 0.3>) and Ψ2 = (<[0.3, 0.4], [0.2, 0.3],
[0.1, 0.2]>, <0.3, 0.2, 0.1>). Referring to Definition 5, S(Ψ1) = 0.6556, S(Ψ2) = 0.6556, A(Ψ1) = 0.2000,
A(Ψ2) = 0.2000, C(Ψ1) = 0.5333, C(Ψ2) = 0.3333. According to Definition 6, S(Ψ1) = S(Ψ2), A(Ψ1) =
A(Ψ2), C(Ψ1) > C(Ψ2) therefore, Ψ1 � Ψ2.

3. Some Dombi Operations of NCNs

Definition 7 ([51]). Let g and h be two real numbers, then the Dombi T-norm and T-conorm between g and h
are defined as follows:

D(g, h) =
1

1 + { ( 1−g
g )ρ + ( 1−h

h )ρ}
1/ρ

, (8)

Dc(g, h) = 1− 1

1 + { ( g
1−g )ρ + ( h

1−h )ρ}1/ρ
, (9)

where (g, h) ∈ (0, 1) × (0, 1) and if ρ > 0 then the operator D(g, h) is conjunctive and Dc(g, h) is disjunctive,
satisfying D(0, 0) = D(0, 1) = D(1, 0) = 0, D(1, 1) = 1, Dc(0, 1) = Dc(1, 0) = Dc(1, 1) = 1 and Dc(0, 0) = 0 [51]
and if ρ < 0 then the operator D(g, h) is disjunctive and the operator Dc(g, h) is conjunctive.

According to Equations (8) and (9), some Dombi operations of NCNs are provided as
following definition.

Definition 8. Let X = {x1, x2, . . . , xn} be a NCS, wherexj = (< [T−j , T+
j ], [I−j , I+j ],[F−j , F+

j ] >,<

tj, ij, f j >) for j = 1, 2, . . . , n is a collection of NCNs and T−j , T+
j , I−j , I+j , F−j , F+

j , tj, ij, f j ∈ (0, 1) and
λ > 0 and ρ > 0. Then, the Dombi T-norm and T-conorm operations of NCNs are defines as follows:

(i) x1 ⊕ x2 =



〈
1− 1

1+{ (
T−1

1−T−1
)ρ+ (

T−2
1−T−2

)ρ}
1/ρ , 1− 1

1+{ (
T+1

1−T+1
)ρ+ (

T+2
1−T+2

)ρ}
1/ρ

 ,

 1

1+{ (
1−I−1

I−1
)ρ+ (

1−I−2
I−2

)ρ}
1/ρ ,

1

1+{ (
1−I+1

I+1
)ρ+ (

1−I+2
I+2

)ρ}
1/ρ

,

 1

1+{ (
1−F−1

F−1
)ρ+ (

1−F−2
F−2

)ρ}
1/ρ , 1

1+{ (
1−F+1

F+1
)ρ+ (

1−F+2
F+2

)ρ}
1/ρ


〉

,

〈
1− 1

1+{ (
t1

1−t1
)ρ+ (

t2
1−t2

)ρ}
1/ρ , 1

1+{ (
1−i1

i1
)ρ+ (

1−i2
i2

)ρ}
1/ρ , 1

1+{ (
1− f1

f1
)ρ+ (

1− f2
f2

)ρ}
1/ρ

〉


; (10)
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(ii) x1 ⊗ x2 =



〈
 1

1+{ (
1−T−1

T−1
)ρ+ (

1−T−2
T−2

)ρ}
1/ρ , 1

1+{ (
1−T+1

T+1
)ρ+ (

1−T+2
T+2

)ρ}
1/ρ

 ,

1− 1

1+{ (
I−1

1−I−1
)ρ+ (

I−2
1−I−2

)ρ}
1/ρ ,

1− 1

1+{ (
I+1

1−I+1
)ρ+ (

I+2
1−I+2

)ρ}
1/ρ

,

1− 1

1+{ (
F−1

1−F−1
)ρ+ (

F−2
1−F−2

)ρ}
1/ρ , 1− 1

1+{ (
F+1

1−F+1
)ρ+ (

F+2
1−F+2

)ρ}
1/ρ


〉

,

〈
1

1+{ (
1−t1

t1
)ρ+ (

1−t2
t2

)ρ}
1/ρ , 1− 1

1+{ (
i1

1−i1
)ρ+(

i2
1−i2

)ρ}
1/ρ , 1− 1

1+{ (
f1

1− f1
)ρ+(

f2
1− f2

)ρ}
1/ρ

〉


; (11)

(iii) λx1 =



〈
1− 1

1+{ λ(
T−1

1−T−1
)

ρ

}
1/ρ , 1− 1

1+{ λ(
T+1

1−T+1
)

ρ

}
1/ρ

 ,

 1

1+{ λ(
1−I−1

I−1
)

ρ

}
1/ρ ,

1

1+{ λ(
1−I+1

I+1
)

ρ

}
1/ρ

,

 1

1+{ λ(
1−F−1

F−1
)

ρ

}
1/ρ , 1

1+{ λ(
1−F+1

F+1
)

ρ

}
1/ρ


〉

,

〈
1− 1

1+{ λ(
t1

1−t1
)

ρ
}

1/ρ , 1

1+{ λ(
1−i1

i1
)

ρ
}

1/ρ , 1

1+{ λ(
1− f1

f1
)

ρ
}

1/ρ

〉


; (12)

(iv) x1
λ =



〈
 1

1+{ λ(
1−T−1

T−1
)

ρ

}
1/ρ , 1

1+{ λ(
1−T+1

T+1
)

ρ

}
1/ρ

 ,

1− 1

1+{ λ(
I−1

1−I−1
)

ρ

}
1/ρ , 1− 1

1+{ λ(
I+1

1−I+1
)

ρ

}
1/ρ

 ,

1− 1

1+{ λ(
F−1

1−F−1
)

ρ

}
1/ρ , 1− 1

1+{ λ(
F+1

1−F+1
)

ρ

}
1/ρ


〉

,

〈
1

1+{ λ(
1−t1

t1
)

ρ
}

1/ρ , 1− 1

1+{ λ(
i1

1−i1
)

ρ
}

1/ρ , 1− 1

1+{ λ(
f1

1− f1
)

ρ
}

1/ρ

〉


. (13)

If some of the memberships (T−j , T+
j , I−j , I+j , F−j , F+

j , tj, ij, f j) are 0 or 1, then the above Dombi
operations of NCNs are calculated by conjunction and disjunction according to Definition 7.

Example 2. Let Ψ3 and Ψ4 be two NCNs. Assume that Ψ3 = (<[0, 0.5], [0, 0.2], [0, 0.4]>, <0.5, 0, 0>),
Ψ4 = (<[0.5, 1], [0.7, 1], [0, 0]>, <1, 1, 0>) and ρ = 1. According to Definitions 7 and 8, Ψ3⊕Ψ4 is calculated
as follows:

Ψ3 ⊕Ψ4 =

〈
[

1− 1
1+{0+ ( 0.5

1−0.5 )} , 1
]

,
[

0, 1
1+{ ( 1−0.2

0.2 )+ 0}

]
, [0, 0]

〉
, < 1, 0, 0 >


= ( < [0.5, 1], [ 0, 0.2 ], [ 0, 0] >, < 1, 0, 0 >).

4. Dombi Weighted Aggregation Operators of NCSs

In this section, two Dombi weighted aggregation operators of NCNs are proposed based on the
Dombi operators of NCNs in Definition 8 and then their properties are investigated.

Definition 9. Let X = {x1, x2, . . . , xn} be a neutrosophic cubic set, where xj = (<

[T−j , T+
j ], [I−j , I+j ], [F−j , F+

j ] >,< tj, ij, f j >) for j = 1, 2, . . . , n is a collection of neutrosophic cubic
numbers and their corresponding weight vector is ω = (ω1, ω2, . . . , ωn), satisfying ωj∈[0, 1] and ∑n

j=1 ωj = 1.
Then, the neutrosophic cubic Dombi weighted arithmetic average and neutrosophic cubic Dombi weighted
geometric average operators are defined, respectively, as follows:

NCDWAA(x1, x2, . . . , xn) =
n
⊕

j=1
ωjxj, (14)
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NCDWGA(x1, x2, . . . , xn) =
n
⊗

j=1
xj

ωj . (15)

Theorem 1. Let xj = (< [T−j , T+
j ], [I−j , I+j ], [F−j , F+

j ] >,< tj, ij, f j >) (j = 1, 2, . . . , n) is a collection of
NCNs and their corresponding weight vector is ω = (ω1, ω2, . . . , ωn), satisfying ωj∈[0, 1] and ∑n

j=1 ωj = 1.
Then, the aggregated value of the NCDWAA operator is still a NCN, which can be calculated as follows:

NCDWAA(x1, x2, . . . , xn) =



〈
1− 1

1+{
n
∑

j=1
ωj(

T−j
1−T−j

)

ρ

}
1/ρ , 1− 1

1+{
n
∑

j=1
ωj(

T+j
1−T+j

)

ρ

}
1/ρ

 ,

 1

1+{
n
∑

j=1
ωj(

1−I−j
I−j

)

ρ

}
1/ρ ,

1

1+{
n
∑

j=1
ωj(

1−I+j
I+j

)

ρ

}
1/ρ

,

 1

1+{
n
∑

j=1
ωj(

1−F−j
F−j

)

ρ

}
1/ρ , 1

1+{
n
∑

j=1
ωj(

1−F+j
F+j

)

ρ

}
1/ρ


〉

〈
1− 1

1+{
n
∑

j=1
ωj(

tj
1−tj

)
ρ

}
1/ρ , 1

1+{
n
∑

j=1
ωj(

1−ij
ij

)
ρ

}
1/ρ , 1

1+{
n
∑

j=1
ωj(

1− f j
f j

)
ρ

}
1/ρ

〉



. (16)

We can prove Theorem 1 by the mathematical induction.

Proof. If n = 2, according to the Dombi operations of NCNs in Definition 8, we can get the
following result:

NCDWAA(x1, x2) = ω1x1 ⊕ω2x2

=



〈
1− 1

1+{ω1(
T−1

1−T−1
)

ρ

+ω2(
T−2

1−T−2
)

ρ

}
1/ρ , 1− 1

1+{ω1(
T+1

1−T+1
)

ρ

+ω2(
T+2

1−T+2
)

ρ

}
1/ρ

 ,

 1

1+{ω1(
1−I−1

I−1
)

ρ

+ω2(
1−I−2

I−2
)

ρ

}
1/ρ ,

1

1+{ω1(
1−I+1

I+1
)

ρ

+ω2(
1−I+2

I+2
)

ρ

}
1/ρ

 ,

 1

1+{ω1(
1−F−1

F−1
)

ρ

+ω2(
1−F−2

F−2
)

ρ

}
1/ρ , 1

1+{ω1(
1−F+1

F+1
)

ρ

+ω2(
1−F+2

F+2
)

ρ

}
1/ρ


〉

,

〈
1− 1

1+{ω1(
t1

1−t1
)

ρ
+ω2(

t2
1−t2

)
ρ
}

1/ρ , 1

1+{ω1(
1−i1

i1
)

ρ
+ω2(

1−i2
i2

)
ρ
}

1/ρ , 1

1+{ω1(
1− f1

f1
)

ρ
+ω2(

1− f2
f2

)
ρ
}

1/ρ

〉



=



〈
1− 1

1+{
2
∑

j=1
ωj(

T−j
1−T−j

)

ρ

}
1/ρ , 1− 1

1+{
2
∑

j=1
ωj(

T+j
1−T+j

)

ρ

}
1/ρ

 ,

 1

1+{
2
∑

j=1
ωj(

1−I−j
I−j

)

ρ

}
1/ρ , 1

1+{
2
∑

j=1
ωj(

1−I+j
I+j

)

ρ

}
1/ρ

 ,

 1

1+{
2
∑

j=1
ωj(

1−F−j
F−j

)

ρ

}
1/ρ , 1

1+{
2
∑

j=1
ωj(

1−F+j
F+j

)

ρ

}
1/ρ


〉

,

〈
1− 1

1+{
2
∑

j=1
ωj(

tj
1−tj

)
ρ

}
1/ρ , 1

1+{
2
∑

j=1
ωj(

1−ij
ij

)
ρ

}
1/ρ , 1

1+{
2
∑

j=1
ωj(

1− f j
f j

)
ρ

}
1/ρ

〉



.

(17)

If n = k, by Equation (16), we obtain the following formula:

NCDWAA(x1, x2, . . . , xk) =



〈
1− 1

1+{
k
∑

j=1
ωj(

T−j
1−T−j

)

ρ

}
1/ρ , 1− 1

1+{
k
∑

j=1
ωj(

T+j
1−T+j

)

ρ

}
1/ρ

 ,

 1

1+{
k
∑

j=1
ωj(

1−I−j
I−j

)

ρ

}
1/ρ ,

1

1+{
k
∑

j=1
ωj(

1−I+j
I+j

)

ρ

}
1/ρ

,

 1

1+{
k
∑

j=1
ωj(

1−F−j
F−j

)

ρ

}
1/ρ , 1

1+{
k
∑

j=1
ωj(

1−F+j
F+j

)

ρ

}
1/ρ


〉

,

〈
1− 1

1+{
k
∑

j=1
ωj(

tj
1−tj

)
ρ

}
1/ρ , 1

1+{
k
∑

j=1
ωj(

1−ij
ij

)
ρ

}
1/ρ , 1

1+{
k
∑

j=1
ωj(

1− f j
f j

)
ρ

}
1/ρ

〉



. (18)
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If n = k + 1, based on Equations (17) and (18), we have the following result:

NCDWAA(x1, x2, . . . , xk, xk+1) =



〈
1− 1

1+{
k
∑

j=1
ωj(

T−j
1−T−j

)

ρ

}
1/ρ , 1− 1

1+{
k
∑

j=1
ωj(

T+j
1−T+j

)

ρ

}
1/ρ

 ,

 1

1+{
k
∑

j=1
ωj(

1−I−j
I−j

)

ρ

}
1/ρ ,

1

1+{
k
∑

j=1
ωj(

1−I+j
I+j

)

ρ

}
1/ρ

,

 1

1+{
k
∑

j=1
ωj(

1−F−j
F−j

)

ρ

}
1/ρ , 1

1+{
k
∑

j=1
ωj(

1−F+j
F+j

)

ρ

}
1/ρ


〉

,

〈
1− 1

1+{
k
∑

j=1
ωj(

tj
1−tj

)
ρ

}
1/ρ , 1

1+{
k
∑

j=1
ωj(

1−ij
ij

)
ρ

}
1/ρ , 1

1+{
k
∑

j=1
ωj(

1− f j
f j

)
ρ

}
1/ρ

〉



⊕ωk+1xk+1

=



〈
1− 1

1+{
k+1
∑

j=1
ωj(

T−j
1−T−j

)

ρ

}
1/ρ , 1− 1

1+{
k+1
∑

j=1
ωj(

T+j
1−T+j

)

ρ

}
1/ρ

 ,

 1

1+{
k+1
∑

j=1
ωj(

1−I−j
I−j

)

ρ

}
1/ρ ,

1

1+{
k+1
∑

j=1
ωj(

1−I+j
I+j

)

ρ

}
1/ρ

,

 1

1+{
k+1
∑

j=1
ωj(

1−F−j
F−j

)

ρ

}
1/ρ , 1

1+{
k+1
∑

j=1
ωj(

1−F+j
F+j

)

ρ

}
1/ρ


〉

,

〈
1− 1

1+{
k+1
∑

j=1
ωj(

tj
1−tj

)
ρ

}
1/ρ , 1

1+{
k+1
∑

j=1
ωj(

1−ij
ij

)
ρ

}
1/ρ , 1

1+{
k+1
∑

j=1
ωj(

1− f j
f j

)
ρ

}
1/ρ

〉


Thus, Equation (16) holds for all n. Hence, Theorem 1 is true. The proof is finished. �

Then, the NCDWAA operator contains the following properties:

(i) Reducibility: If ω = (1/n, 1/n, . . . , 1/n), then there exists

NCDWAA(x1, x2, . . . , xn) =



〈
1− 1

1+{
n
∑

j=1

1
n (

T−j
1−T−j

)ρ}
1/ρ , 1− 1

1+{
n
∑

j=1

1
n (

T+j
1−T+j

)ρ}
1/ρ

 ,

 1

1+{
n
∑

j=1

1
n (

1−I−j
I−j

)ρ}
1/ρ ,

1

1+{
n
∑

j=1

1
n (

1−I+j
I+j

)ρ}
1/ρ

,

 1

1+{
n
∑

j=1

1
n (

1−F−j
F−j

)ρ}
1/ρ , 1

1+{
n
∑

j=1

1
n (

1−F+j
F+j

)ρ}
1/ρ


〉

,

〈
1− 1

1+{
n
∑

j=1

1
n (

tj
1−tj

)ρ}
1/ρ , 1

1+{
n
∑

j=1

1
n (

1−ij
ij

)ρ}
1/ρ , 1

1+{
n
∑

j=1

1
n (

1− f j
f j

)ρ}
1/ρ

〉



. (19)

(ii) Idempotency: Let xj = (< [T−j , T+
j ], [I−j , I+j ], [F−j , F+

j ] >,< tj, ij, f j >) (j = 1, 2, ..., n) be a
group of NCNs. When xj = x for j = 1, 2, . . . , n, there is NCDWAA (x1, x2, . . . , xn) = x.

(iii) Commutativity: Suppose the NCSs
(
x′1, x′2, . . . , x′n

)
be any permutation of (x1, x2, . . . , xn). Then,

NCDWAA
(

x′1, x′2, . . . , x′n
)
= NCDWAA (x1, x2, . . . , xn).

(iv) Boundedness: Let xmin = (< [min
j
(T−j ), min

j
(T+

j )], [max
j

(I−j ), max
j

(I+j )], [max
j

(F−j ),

max
j

(F+
j )] >, < min

j
(tj), max

j
(ij), max

j

( f j) >) and xmax = (< [max
j

(T−j ), max
j

(T+
j )],

[min
j
(I−j ), min

j
(I+j )], [min

j
(F−j ), min

j
(F+

j )] >,< max
j

(tj), min
j
(ij), min

j
( f j) >). Then, xmin ≤

NCDWAA (x1, x2, . . . , xn) ≤ xmax.

Proof. (i) The property is obvious by Equation (16).
(ii) Let xj = (< [T−j , T+

j ], [I−j , I+j ], [F−j , F+
j ] >,< tj, ij, f j >) = x (j = 1, 2, ..., n). Then, based

on Equation (16), we can get the result as follows:
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NCDWAA(x1, x2, . . . , xn) =



〈
1− 1

1+{
n
∑

j=1
ωj(

T−j
1−T−j

)

ρ

}
1/ρ , 1− 1

1+{
n
∑

j=1
ωj(

T+j
1−T+j

)

ρ

}
1/ρ

 ,

 1

1+{
n
∑

j=1
ωj(

1−I−j
I−j

)

ρ

}
1/ρ ,

1

1+{
n
∑

j=1
ωj(

1−I+j
I+j

)

ρ

}
1/ρ

,

 1

1+{
n
∑

j=1
ωj(

1−F−j
F−j

)

ρ

}
1/ρ , 1

1+{
n
∑

j=1
ωj(

1−F+j
F+j

)

ρ

}
1/ρ


〉

,

〈
1− 1

1+{
n
∑

j=1
ωj(

tj
1−tj

)
ρ

}
1/ρ , 1

1+{
n
∑

j=1
ωj(

1−ij
ij

)
ρ

}
1/ρ , 1

1+{
n
∑

j=1
ωj(

1− f j
f j

)
ρ

}
1/ρ

〉



=



〈
1− 1

1+{( T−
1−T− )ρ}

1/ρ , 1− 1

1+{( T+

1−T+
)ρ}

1/ρ

 ,

 1

1+{( 1−I−
I− )ρ}

1/ρ , 1

1+{( 1−I+

I+
)ρ}

1/ρ

 , 1

1+{( 1−F−
F− )ρ}

1/ρ , 1

1+{( 1−F+
+
j

)ρ}
1/ρ


〉

,

〈
1− 1

1+{( t
1−t )ρ}1/ρ , 1

1+{( 1−i
i )ρ}

1/ρ , 1

1+{( 1− f
f )ρ}

1/ρ

〉



=


〈[

1− 1
1+ T−

1−T−
, 1− 1

1+ T+

1−T+

]
,

[
1

1+ 1−I−
I−

, 1
1+ 1−I+

I+

]
,

[
1

1+ 1−F−
F−

, 1
1+ 1−F+

F+

]〉
,〈

1− 1
1+ t

1−t
, 1

1+ 1−i
i

, 1
1+ 1− f

f

〉


= (< [T−, T+], [I−, I+], [F−, F+] >,< t, i, f >) = x

Hence, NCDWAA (x1, x2, . . . , xn) = x holds.
(iii) The property is obvious.
(iv) Since min

j
(T−j ) ≤ T−j ≤ max

j
(T−j ), min

j
(T+

j ) ≤ T+
j ≤ max

j
(T+

j ), min
j
(I−j ) ≤

I−j ≤ max
j

(I−j ), min
j
(F−j ) ≤ F−j ≤ max

j
(F−j ), min

j
(tj) ≤ tj ≤ max

j
( f j), min

j
(ij) ≤ ij ≤

max
j

( f j), and min
j
( f j) ≤ f j ≤ max

j
( f j). Then we have the following inequalities:

1− 1

1+{
n
∑

j=1
ωj(

min
j
(tj)

1−min
j
(tj)

)

ρ

}
1/ρ ≤ 1− 1

1+{
n
∑

j=1
ωj(

tj
1−tj

)
ρ

}
1/ρ ≤ 1− 1

1+{
n
∑

j=1
ωj(

max
j

(tj)

1−max
j

(tj)
)

ρ

}
1/ρ

1

1+{
n
∑

j=1
ωj(

1−min
j
(ij)

min
j
(ij)

)

ρ

}
1/ρ ≤ 1

1+{
n
∑

j=1
ωj(

1−ij
ij

)
ρ

}
1/ρ ≤ 1

1+{
n
∑

j=1
ωj(

1−max
j

(ij)

max
j

(ij)
)

ρ

}
1/ρ

1

1+{
n
∑

j=1
ωj(

1−min
j
( f j)

min
j
( f j)

)

ρ

}
1/ρ ≤ 1

1+{
n
∑

j=1
ωj(

1− f j
f j

)
ρ

}
1/ρ ≤ 1

1+{
n
∑

j=1
ωj(

1−max
j

( f j)

max
j

( f j)
)

ρ

}
1/ρ

We can obtain the similar inequalities for T−j , T+
j , I−j , I+j , F−j , and F+

j . Hence, xmin ≤ NCDWAA
(x1, x2, . . . , xn) ≤ xmax holds. �

Theorem 2. Let xj = (< [T−j , T+
j ], [I−j , I+j ], [F−j , F+

j ] >,< tj, ij, f j >) (j = 1, 2, ..., n) be a group of
NCNs. The weight vector of NCN xj is ω = (ω1, ω2, . . . , ωn), satisfying ωj∈[0, 1] and ∑n

j=1 ωj = 1. Then,
the aggregated value of the NCDWGA operator is still a NCN, which can be calculated as follows:

NCDWGA(x1, x2, . . . , xn) =



〈
 1

1+{
n
∑

j=1
ωj(

1−T−j
T−j

)

ρ

}
1/ρ , 1

1+{
n
∑

j=1
ωj(

1−T+j
T+j

)

ρ

}
1/ρ

 ,

1− 1

1+{
n
∑

j=1
ωj(

I−j
1−I−j

)

ρ

}
1/ρ ,

1− 1

1+{
n
∑

j=1
ωj(

I+j
1−I+j

)

ρ

}
1/ρ

,

 1− 1

1+{
n
∑

j=1
ωj(

F−j
1−F−j

)

ρ

}
1/ρ , 1− 1

1+{
n
∑

j=1
ωj(

F+j
1−F+j

)

ρ

}
1/ρ


〉

〈
1

1+{
n
∑

j=1
ωj(

1−tj
tj

)
ρ

}
1/ρ , 1− 1

1+{
n
∑

j=1
ωj(

ij
1−ij

)
ρ

}
1/ρ , 1− 1

1+{
n
∑

j=1
ωj(

f j
1− f j

)
ρ

}
1/ρ

〉



. (20)
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Theorem 2 can be proved by a similar proof process as Theorem 1. Hence, it is not repeated here.
Obviously, the NCDWGA operator also satisfies the following properties:

(i) Reducibility: If ω = (1/n, 1/n, . . . , 1/n), then there exists

NCDWGA(x1, x2, . . . , xn) =



〈
 1

1+{
n
∑

j=1

1
n (

1−T−j
T−j

)ρ}
1/ρ , 1

1+{
n
∑

j=1

1
n (

1−T+j
T+j

)ρ}
1/ρ

 ,

1− 1

1+{
n
∑

j=1

1
n (

I−j
1−I−j

)ρ}
1/ρ ,

1− 1

1+{
n
∑

j=1

1
n (

I+j
1−I+j

)ρ}
1/ρ

,

1− 1

1+{
n
∑

j=1

1
n (

F−j
1−F−j

)ρ}
1/ρ , 1− 1

1+{
n
∑

j=1

1
n (

F+j
1−F+j

)ρ}
1/ρ


〉

,

〈
1

1+{
n
∑

j=1

1
n (

1−tj
tj

)ρ}
1/ρ , 1− 1

1+{
n
∑

j=1

1
n (

ij
1−ij

)ρ}
1/ρ , 1− 1

1+{
n
∑

j=1

1
n (

f j
1− f j

)ρ}
1/ρ

〉



. (21)

(ii) Idempotency: Let xj = x for j = 1, 2, . . . , n, there is NCDWGA (x1, x2, . . . , xn) = x.

(iii) Commutativity: Suppose the NCSs
(
x′1, x′2, . . . , x′n

)
be any permutation of (x1, x2, . . . , xn). Then,

NCDWGA
(

x′1, x′2, . . . , x′n
)
= NCDWGA (x1, x2, . . . , xn).

(iv) Boundedness: Let xmin = (< [min
j
(T−j ), min

j
(T+

j )], [max
j

(I−j ), max
j

(I+j )], [max
j

(F−j ), max
j

(F+
j )] > ,

< min
j
(tj), max

j
(ij), max

j
( f j) >) and xmax = (< [max

j
(T−j ), max

j
(T+

j )], [min
j
(I−j ), min

j
(I+j )],

[min
j
(F−j ), min

j
(F+

j )] >,< max
j

(tj), min
j
(ij), min

j
( f j) >). Then, xmin ≤ NCDWGA (x1, x2, . . . ,

xn) ≤ xmax.

We can prove these properties by the same way as that of Theorem 1. Thus, they are omitted here.

5. MADM Method Using the NCDWAA or NCDWGA Operators

In this section, a MADM method based on the NCDWAA operator or the NCDWGA operator is
proposed to handle MADM problems with neutrosophic cubic information.

In a MADM problem with NCN information, let X = {X1, X2, . . . , Xm} be a set of m alternatives
and Y = {Y1, Y2, . . . , Yn} be a set of attributes. Suppose that ωY = (ωY1, ωY2, . . . , ωYn) is the weight
vector of the attributes Yj (j = 1, 2, . . . , n) with ωY j∈[0, 1] and ∑n

j=1 ωYj = 1. The evaluation value
of an alternative Xk (k = 1, 2, . . . , m) under an attribute Yj (j = 1, 2, . . . , n) is expressed by a NCN
xkj = (< [T−kj , T+

kj ], [I−kj , I+kj ], [F−kj , F+
kj ] >,< tkj, ikj, fkj >) (k = 1, 2, . . . , m; j = 1, 2, . . . , n), where

[T−kj , T+
kj ], [I

−
kj , I+kj ], [F

−
kj , F+

kj ] ⊆, and tkj, ikj, fkj ∈ [0, 1].[0, 1] Then, we can construct a NCN decision
matrix M = (xkj)m×n.

In this case, we present a MADM method based on the NCDWAA operator or the NCDWGA
operator to handle MADM problems with NCN information and the decision steps can be described
as following:

Step 1. Derive the collective NCN xk (k = 1, 2, . . . , m) for the alternative Xk (k = 1, 2, . . . , m) by
using the NCDWAA operator:

xk = NCDWAA(xk1, xk2, . . . , xkn)

=



〈
1− 1

1+{
n
∑

j=1
ωYj(

T−kj
1−T−kj

)

ρ

}
1/ρ , 1− 1

1+{
n
∑

j=1
ωYj(

T+kj
1−T+kj

)

ρ

}
1/ρ

 ,

 1

1+{
n
∑

j=1
ωYj(

1−I−kj
I−kj

)

ρ

}
1/ρ ,

1

1+{
n
∑

j=1
ωYj(

1−I+kj
I+kj

)

ρ

}
1/ρ

,

 1

1+{
n
∑

j=1
ωYj(

1−F−kj
F−kj

)

ρ

}
1/ρ , 1

1+{
n
∑

j=1
ωYj(

1−F+kj
F+kj

)

ρ

}
1/ρ


〉

〈
1− 1

1+{
n
∑

j=1
ωYj(

tkj
1−tkj

)
ρ

}
1/ρ , 1

1+{
n
∑

j=1
ωYj(

1−ikj
ikj

)
ρ

}
1/ρ , 1

1+{
n
∑

j=1
ωYj(

1− fkj
fkj

)
ρ

}
1/ρ

〉



,
(22)
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or by using the NCDWGA operator:

xk = NCDWGA(xk1, xk2, . . . , xkn)

=



〈
 1

1+{
n
∑

j=1
ωYj(

1−T−kj
T−kj

)

ρ

}
1/ρ , 1

1+{
n
∑

j=1
ωYj(

1−T+kj
T+kj

)

ρ

}
1/ρ

 ,

1− 1

1+{
n
∑

j=1
ωYj(

I−kj
1−I−kj

)

ρ

}
1/ρ ,

1− 1

1+{
n
∑

j=1
ωYj(

I+kj
1−I+kj

)

ρ

}
1/ρ

,

 1− 1

1+{
n
∑

j=1
ωYj(

F−kj
1−F−kj

)

ρ

}
1/ρ , 1− 1

1+{
n
∑

j=1
ωYj(

F+kj
1−F+kj

)

ρ

}
1/ρ


〉

〈
1

1+{
n
∑

j=1
ωYj(

1−tkj
tkj

)
ρ

}
1/ρ , 1− 1

1+{
n
∑

j=1
ωYj(

ikj
1−ikj

)
ρ

}
1/ρ , 1− 1

1+{
n
∑

j=1
ωYj(

fkj
1− fkj

)
ρ

}
1/ρ

〉



,
(23)

where ωYj ∈[0, 1] and ∑n
j=1 ωYj = 1 for j = 1, 2, . . . , n.

Step 2. Calculate the score values of S(xk) (the accuracy values of A(xk) or certainty values C(xk) if
necessary) of the collective NCN xk (k = 1, 2, . . . , m) by using Equations (5)–(7).

Step 3. Rank all the alternatives and select the best one(s) according to the values of S(xk), A(xk)
and C(xk).

Step 4. End.

6. Illustrative Examples and Comparison Analysis

6.1. Illustrative Examples

In order to demonstrate the application of the proposed MADM method, in this section, we
provide two illustrative examples with neutrosophic cubic information adapted from [29].

Example 3 ([29]). A passenger needs to make a travel decision from four possible vans (alternatives) Xj (j =
1, 2, 3, 4). The customer needs to evaluate the four alternatives according to the following four attributes: (1)
Y1 is the facility; (2) Y2 is the rent saving; (3) Y3 is the comfort; (4) Y4 is the safety. The weight vector of the
attributes is given by ωY = (0.5, 0.0.25, 0.125, 0.125). Thus, the decision matrix can be constructed using the
form of NCNs as follows:

M1 =


(< [0.2, 0.5] , [0.3, 0.7] , [0.1, 0.2]>,< 0.9, 0.7, 0.2 >) (< [0.2, 0.4] , [0.4, 0.5] , [0.2, 0.5]>,< 0.7, 0.4, 0.5 >)

(< [0.3, 0.9] , [0.2, 0.7] , [0.3, 0.5]>,< 0.5, 0.7, 0.5 >) (< [0.3, 0.7] , [0.6, 0.8] , [0.2, 0.4]>,< 0.7, 0.6, 0.8 >)

(< [0.3, 0.4] , [0.4, 0.8] , [0.2, 0.6]>,< 0.1, 0.4, 0.2 >) (< [0.2, 0.4] , [0.2, 0.3] , [0.2, 0.5]>,< 0.2, 0.2, 0.2 >)

(< [0.5, 0.9] , [0.1, 0.8] , [0.2, 0.6]>,< 0.1, 0.7, 0.2 >) (< [0.3, 0.5] , [0.5, 0.7] , [0.1, 0.2]>,< 0.3, 0.5, 0.2 >)

(< [0.2, 0.7] , [0.4, 0.9] , [0.5, 0.7]>,< 0.7, 0.7, 0.5 >) (< [0.1, 0.6] , [0.3, 0.4] , [0.5, 0.8]>,< 0.5, 0.5, 0.7 >)

(< [0.3, 0.9] , [0.4, 0.6] , [0.6, 0.8]>,< 0.9, 0.4, 0.6 >) (< [0.2, 0.5] , [0.4, 0.9] , [0.5, 0.8]>,< 0.5, 0.2, 0.7 >)

(< [0.4, 0.9] , [0.1, 0.2] , [0.4, 0.5]>,< 0.9, 0.5, 0.5 >) (< [0.6, 0.7] , [0.3, 0.6] , [0.3, 0.7]>,< 0.7, 0.5, 0.3 >)

(< [0.5, 0.6] , [0.2, 0.4] , [0.3, 0.5]>,< 0.5, 0.4, 0.5 >) (< [0.3, 0.7] , [0.7, 0.8] , [0.6, 0.7]>,< 0.4, 0.2, 0.8 >)



Then, we apply the NCDWAA operator or the NCDWGA operator to solve the MADM problem
with NCN information.

Now, we use the NCDWAA operator to handle this decision-making problem as follows:
Step 1. By using Equation (22) for ρ = 1, the collective NCNs for the alternatives Xj (j = 1, 2, 3, 4)

can be obtained based on the NCDWAA as follows:

X1 = (<[0.1887, 0.5340], [0.3310, 0.6004], [0.1481, 0.2999]>, <0.8462, 0.5657, 0.2887>)

X2 = (<[0.2889, 0.8636], [0.2824, 0.7278], [0.2963, 0.5161]>, <0.7000, 0.4835, 0.5283>)

X3 = (<[0.3538, 0.6571], [0.2400, 0.4364], [0.2233, 0.5676]>, <0.6055, 0.3333, 0.2308>)

X4 = (<[0.3824, 0.8395], [0.1586, 0.6892], [0.1778, 0.3981]>, <0.2706, 0.4647, 0.2564>)
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Step 2. By using Equation (5), the score values of S(Xj) of the collective NCN for the alternatives
Xj (j = 1, 2, 3, 4) can be calculated as the following results:

S(X1) = 0.5928, S(X2) = 0.5576, S(X3) = 0.6206, S(X4) = 0.5942.

Step 3. According to the above score values, the ranking order of the alternatives is X3 � X4 � X1

� X2 and thus X3 is the best alternative.
Or we can use the NCDWGA operator for the MADM problem as follows:
Step 1’. By using Equation (23) for ρ = 1, the collective NCNs for the alternatives Xj (j = 1, 2, 3, 4)

can be obtained based on the NCDWGA as follows:

X1 = (<[0.1778, 0.4970], [0.3412, 0.7241], [0.2690, 0.5385]>, <0.7456, 0.6364, 0.4419>)

X2 = (<[0.2824, 0.7683], [0.4000, 0.7767], [0.3708, 0.6250]>, <0.5727, 0.6235, 0.6643>)

X3 = (<[0.2909, 0.4561], [0.3166, 0.6993], [0.2449, 0.5862]>, <0.1523, 0.3924, 0.2680>)

X4 = (<[0.4000, 0.6933], [0.3859, 0.7600], [0.2826, 0.5514]>, <0.1564, 0.6049, 0.4483>)

Step 2’. By using Equation (5), the score values of S(Xj) of the collective NCN for the alternatives
Xj (j = 1, 2, 3, 4) can be calculated as the following results:

S(X1) = 0.4966, S(X2) = 0.4626, S(X3) = 0.4880, S(X4) = 0.4685.

Step 3’. According to the above score values, the ranking order of the alternatives is X1 � X3 �
X4 � X2 and thus X1 is the best alternative.

Further, all the ranking results of alternatives are listed in Tables 1 and 2 when the parameter ρ is
changed from 1 to 5 in the NCDWAA and NCWGA operators.

Table 1. Ranking results of the NCDWAA operator for different operational parameters.

ρ S(x1) S(x2) S(x3) S(x4) Ranking Order The Best Alternative

1 0.5928, 0.5576, 0.6206, 0.5942 X3 � X4 � X1 � X2 X3
2 0.6176, 0.5896, 0.6763, 0.6360 X3 � X4 � X1 � X2 X3
3 0.6334, 0.6091, 0.7047, 0.6631 X3 � X4 � X1 � X2 X3
4 0.6441, 0.6210, 0.7215, 0.6802 X3 � X4 � X1 � X2 X3
5 0.6516, 0.6289, 0.7323, 0.6916 X3 � X4 � X1 � X2 X3

Table 2. Ranking results of the NCDWGA operator for different operational parameters.

ρ S(x1) S(x2) S(x3) S(x4) Ranking Order The Best Alternative

1 0.4966, 0.4626, 0.4880, 0.4685 X1 � X3 � X4 � X2 X1
2 0.4524, 0.4246, 0.4645, 0.4112 X3 � X1 � X2 � X4 X3
3 0.4238, 0.3980, 0.4483, 0.3781 X3 � X1 � X2 � X4 X3
4 0.4053, 0.3803, 0.4364, 0.3584 X3 � X1 � X2 � X4 X3
5 0.3925, 0.3680, 0.4274, 0.3456 X3 � X1 � X2 � X4 X3

Example 4 ([29]). A customer wishes to buy a mobile phone and needs to evaluate three models (alternatives)
Qk (k = 1, 2, 3) according to the following three attributes (specifications): H1 = Processor; H2 = Camera; (3)
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H3 = Battery. The weight vector of the attributes is given by ωH =
(

1
2 , 1

3 , 1
6

)
. The decision matrix can be

constructed under the NCS environment as follows:

M2 =

 (< [0.2, 0.7] , [0.3, 0.7] , [0.3, 0.8]>,< 0.3, 0.4, 0.1 >) (< [0.4, 0.7] , [0.3, 0.7] , [0.5, 0.8]>,< 0.2, 0.4, 0.5 >)

(< [0.2, 0.7] , [0.3, 0.7] , [0.4, 0.6]>,< 0.9, 0.6, 0.2 >) (< [0.2, 0.3] , [0.3, 0.6] , [0.1, 0.4]>,< 0.6, 0.7, 0.6 >)

(< [0.2, 0.5] , [0.2, 0.7] , [0.1, 0.2]>,< 0.5, 0.7, 0.2 >) (< [0.1, 0.6] , [0.2, 0.6] , [0.3, 0.4]>,< 0.4, 0.5, 0.6 >)

(< [0.2, 0.8] , [0.2, 0.7] , [0.1, 0.6]>,< 0.1, 0.3, 0.5 >)

(< [0.2, 0.7] , [0.4, 0.7] , [0.1, 0.3]>,< 0.3, 0.5, 0.7 >)

(< [0.2, 0.5] , [0.3, 0.4] , [0.3, 0.4]>,< 0.2, 0.4, 0.6 >)



Then, we use the NCDWAA operator or the NCDWGA operator to solve the MADM problem
with NCN information. By the same steps as that of Example 2, we obtain the ranking results of the
alternatives. Tables 3 and 4 list the ranking results of the NCDWAA operator and NCWGA operator,
respectively, when the parameter ρ is changed from 1 to 5.

Table 3. Ranking results of the NCDWAA operator for different operational parameters.

ρ S(Q1) S(Q2) S(Q3) Ranking Order The Best Alternative

1 0.5241, 0.5739, 0.5437 Q2 � Q3 � Q1 Q2
2 0.5410, 0.5934, 0.5474 Q2 � Q3 � Q1 Q2
3 0.5534, 0.6041, 0.5513 Q2 � Q1 � Q3 Q2
4 0.5626, 0.6109, 0.5547 Q2 � Q1 � Q3 Q2
5 0.5697, 0.6158, 0.5574 Q2 � Q1 � Q3 Q2

Table 4. Ranking results of the NCDWGA operator for different operational parameters.

ρ S(Q1) S(Q2) S(Q3) Ranking Order The Best Alternative

1 0.4760, 0.4856, 0.5095 Q3 � Q2 � Q1 Q3
2 0.4604, 0.4502, 0.4883 Q3 � Q1 � Q2 Q3
3 0.4509, 0.4300, 0.4737 Q3 � Q1 � Q2 Q3
4 0.4448, 0.4176, 0.4637 Q3� Q1 � Q2 Q3
5 0.4406, 0.4093, 0.4567 Q3 � Q1 � Q2 Q3

6.2. Comparison Analysis

From Tables 1–4, we see that the ranking orders corresponding to the NCDWAA and NCDWGA
operators show obvious difference in the MADM problem. In Example 3, Table 1 indicates that
the different parameters of ρ may not influence the ranking orders corresponding to the NCDWAA
operator; while Table 2 shows the different parameters of ρ can change the ranking orders based on
the NCDWGA operator. In Table 2, when ρ = 1, the best alternative is X1, while the worst alternative
is X2; when ρ = 2, ρ = 3, ρ = 4 and ρ = 5, the ranking order is changed and the best alternative is X3

and the worst alternative is X4. In Example 4, Tables 3 and 4 indicate that the different values of ρ can
change the ranking orders based on the NCDWGA and NCDWGA operators. In Table 3, when ρ = 1
and ρ = 2, Q1 is the worst alternative; when ρ = 3, ρ = 4 and ρ = 5, the ranking order is changed and Q3

is the worst alternative. In Table 4, when ρ = 1, Q1 is the worst alternative; when ρ = 2, ρ = 3, ρ = 4 and
ρ = 5, the ranking order is changed and Q2 is the worst alternative.

From the results of Tables 1–4, we can say that the NCDWAA and NCDWGA operators are
sensitive to ρ. Hence, decision makers can specify some parameter ρ according to actual requirements
and/or their preference.

Compared with the existing MADM method for NCSs introduced in [29], Table 5 lists the MADM
results using NCDWAA and NCDWGA operators proposed in this paper and the weighted average
operator (AW) of NCSs in the relevant paper [29], respectively. From Table 5, we see that the ranking
orders based on the Dombi operators proposed in this paper and the weighted average operator (AW) of
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NCSs have obvious difference since different aggregation operators may be result in different ranking
orders. Due to no parameter selected in [29], the proposed MADM based on Dombi aggregation
operators is more flexible than the approach provided in [29].

Table 5. Decision results of MADM problem with neutrosophic cubic information.

Example MADM Method Ranking Order The Best Alternative

Example 3
NCDWAA (ρ = 1) X3 � X4 � X1 � X2 X3
NCDWGA (ρ = 1) X1 � X3 � X4 � X2 X1

Weighted average operator (AW) [29] X4 � X2 � X3 � X1 X4

Example 4
NCDWAA (ρ = 1) Q2 � Q3 � Q1 Q2
NCDWGA (ρ = 1) Q3 � Q2 � Q1 Q3

Weighted average operator (AW) [29] Q3 � Q1 � Q2 Q3

For further comparison, the existing related decision-making approaches [51–53] based on
some Dombi operations cannot deal with the decision-making problem with NCSs. However,
the decision-making method presented in this paper can describe attributes with interval neutrosophic
sets and single valued neutrosophic sets information simultaneously. Therefore, the paper provides
a new effective way for decision makers to deal with MADM problems under neutrosophic
cubic environment.

7. Conclusions

This paper proposed the NCDWAA and NCDWGA operators and discussed their properties.
Then, we presented a MADM method based on the NCDWAA and NCDWGA operators to handle
MADM problems under a NCN environment, in which attribute values of the alternatives were ranked
and the best one(s) was determined according to their score (accuracy) function values. Finally, two
illustrative examples were provided to illustrate the application and effectiveness of the established
MADM method. The developed MADM method can effectively solve decision-making problems with
flexible operational parameter under neutrosophic cubic environments. In future work, we will further
develop more aggregation operators for hesitant neutrosophic cubic sets and apply them in these areas,
such as decision-making problems and fault diagnosis.
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