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Abstract
This present article, author deduce an explanation of the neutrosophic soft graphs (NSG) w.r.t. a neighborly edge
irregular as well as neighborly edge totally irregular NSG. The results based on the neutrosophic soft graphs with
a constant function to evaluate a neighborly edge irregular as well as totally irregular on edge neighborly NSG.
Abbreviation
1. NS: Neutrosophic set, 2. SVN: Single valued neutrosophic, 3. IFS: intuitionistic fuzzy sets, 4. NSS:
neutrosophic soft set, 5. NSG: neutrosophic soft graph
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1. Introduction
The neutrosophic sets launch by Smarandache [10, 11] is

a great exact implement for the situation uncertainty in the
real world. This uncertainty idea comes from the theories
of fuzzy Theory [5], IFS [2, 4] and interval valued IFS [3].
The representation of the neutrosophic values are truth, inde-
terminacy and falsity value. These T, I, F values belongs to
standard or nonstandard unit interval denoted by ]−0,1+[
[6, 9].

The idea of subclass in the NS and SVNS derived by
Wang et al. [12]. The idea of SVNS initiation by IFS [1, 7],
in this the functions Truth value, Indeterminacy value, Falsity
values are independent and these values are present within
[0,1] [8]. Neutrosophic theory is widely expands in all fields
especially authors discoursed about topology with respect to
neutrosophic [13].

Graph theory has at this time turn into a most important
branch of mathematics. It is the division of combinatory. The
Graph is a extensively important to analyze combinatorial
complication in dissimilar areas in mathematics, optimiza-
tion and computer science. Mainly significant object is well-

known. The uncertainty on the subject of vertices and edges
or both representations to become a neutrosophic concept.

2. Preliminaries
Definition 2.1 (SVN set). A SVN set is explained as the mem-
bership functions represented as a triplet set in W is denoted
by {< w,T, I,F >: w ∈W}, these functions are mapping from
W to [0,1]. Where T denote truth membership, I denote inde-
terminate value and F denote false value of W.

Example 2.2. Let W = {w1,w2,w3} and A= {<w1,0.3,0.2,
0.7 >,< w2,0.5,0.3,0.1 >,< w3,0.8,0.05,0.4 >} is a SVN
set in W.

Definition 2.3 (SVN relation on W ). Let W be a non-empty
set. Then we call mapping Z = (W,T, I,F), F(w) : W ×W →
[0,1]× [0,1], is a SVN relation on W such that Tz(w1,W2) ∈
[0,1], Iz(w1,w2) ∈ [0,1], Fz(w1,W2) ∈ [0,1].

Definition 2.4. Let Z1 = (Tz1 , Iz1 ,Fz1) and Z2 = (Tz2 , Iz2 ,Fz2)
be a SVN graphs on a set W. If Z2 is a SVN relation on
Z1, then Tz2(w1,w2) ≤ min(Tz1(w1),Tz1(w2), Iz2(w1,w2) ≥
max(Iz1(w1), Iz1(w2)), Fz2(w1,w2) ≥ max(Fz1(w1),Fz1(w2)),
for all w1,w2 ∈W.

Definition 2.5. The symmetric property defined on SVN rela-
tion Z on W is explained by Tz(w1,w2)=Tz(w2,w1), Iz(w1,w2)
= Iz(w2,w1), Fz(w1,w2) = Fz(w2,w1).
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Definition 2.6 (SVN Graph). The new graph in SVN is de-
noted by G∗ = (V,E) is a pair G = (Z1,Z2), where Z1 =
(Tz1 , Iz1 ,Fz1) is a BSVNS in V and Z2 = (Tz2 , Iz2 ,Fz2) is SVNS
in V 2 defined as Tz2(w1,w2)≤min(Tz1(w1),Tz1(w2), Iz2(w1,w2)
≥max(Iz1(w1), Iz1(w2)), Fz2(w1,w2)≥max(Fz1(w1),Fz1(w2)),
for all w1,w2 ∈V. SVNSG of an edge denoted by w1w2 ∈V 2.

Definition 2.7. Let G = (Z1,Z2) be a SVNSG and a,b ∈
V . A path P : a = w0,w1,w2 . . . ,wk−1,wk = b in G is se-
quence of distinct vertices such that (Ts(wm−1,wm) > 0),
(Is(wm−1,wm) > 0), (Fs(wm−1,wm) > 0),m = 1,2, . . . ,k and
length of the path is k, here a is said to be initial vertex and b
is terminal vertex in the path.

Definition 2.8. Let µ be the universal and N(µ) be the neu-
trosophic Universal. X be the variables that indicate the
members of µ and A⊆ X. A two of a kind (T,A) is the NSS
over µ , here T is a function T : A→ N(µ). In the NSS (T,A)
is varies given by {S(ek),k = 1,2,3,e ∈ A}.

Definition 2.9. Let X1, X2 ∈ X, (F1,X1), (F2,X2) are two NSS
over µ then (F1,X1) is to be a neutrosophic soft sub set of
(F2,X2) if

(i) X1 ⊆ X2

(ii) TF1(e)(x) ≤ TF2(e)(x), IF1(e)(x) ≤ IF2(e)(x), FF1(e)(x) ≤
FF2(e)(x), for all e ∈ X1, x ∈ µ .

Thus, (F1,X1)⊆ (F2,X2)

Definition 2.10. Suppose (F1,X1) and (F2,X2) are two NSS to
be equal if (F1,X1) is a NS contained in (F2,X2) and (F2,X2)
is a NS contained in (F1,X1) vise versa then (F1,X1)= (F2,X2).

Definition 2.11. Let µ be an universe, K be the set of vari-
ables.

(a) (F1,K) is to be a relative complete NSS (with respect
to the variable set K), represented by fK , if TF1(e) = 1,
IF1(e) = 1, FF1(e) = 0 for all e ∈ K, x ∈ µ .

(b) (F2,K) is to be a relative void NSS (with respect to
the variable set K), represented by fK , if TF2(e) = 0,
IF2(e) = 0, FF2(e) = 1 for all e ∈ K, x ∈ µ .

The relative complete NSS with respect to the set of variables
K is known as the complete NSS over µ and notated by µA.
For comparable method the relative null NSS with respect to
K is the null NSS over µ and is notated by fK .

Definition 2.12. Let G∗ be a graph and K be the set of vari-
ables. Consider N(V ) be the set of all NS in V . The NSG,
means 4-tuple GN = (G∗,A,F1,F2), here F1 : K→ Ns(V ), F2 :
K→ Ns(V ×V ) it gives F1(e) = F1e = {< w,TF1e(w), IF1e(w),
FF1e(w)>: w∈V} and F2(e)=F2e={< (w1,w2),TF2e(w1,w2),
IF2e(w1,w2), FF2e(w1,w2) >: (w1,w2) ∈ V ×V} are NS over
V and V ×V correspondingly, such that TF2e(w1,w2)≤min
{TF1e(w1),TF1e(w2)}, IF2e(w1,w2)≤min{I f e(w1),Tf e(w2)},
FF2e(w1,w2)≥max{FF1e(w1),FF1e(w2)} for all (w1,w2)∈V×

V and e∈K. Also represented a NSG by GN =(G∗,A,F1,F2)=
{N(e) : e∈K} which is a varied class of graphs N(e), we call
it as NSG.

Example 2.13. Let G∗ be a graph with vertex set V = {a,b,c}
selection of edges A= {e1,e2,e3}. A NSG is followed by in Ta-
ble.1 and TF2e(wi,w j) = IF2e(wi,w j) = 0 and FF2e(wi,w j) = 1
for all (wi,w j) ∈V ×V {(w1,w2),(w2,w3),(w3,w1)} and ev-
ery e ∈ A.

Table 1
f a B c

e1 (0.3, 0.5, 0.7) (0.4, 0.6, 0.8) (0, 0, 1)
e2 (0.2, 0.3, 0.5) (0.1, 0.2, 0.6) (0.1, 0.3, 0.4)
e3 (0.1, 0.2, 0.4) (0.2, 0.4, 0.6) (0.3, 0.5, 0.7)
g (x1,x2) (x2,x3) (x3,x1)
e1 (0.2, 0.4, 0.9) (0, 0, 1) (0, 0, 1)
e2 (0.1, 0.1, 0.7) (0, 0, 1) (0.1, 0.1, 0.6)
e3 (0.1, 0.2, 0.7) (0.1, 0.2, 0.8) (0.2, 0.3, 0.8)

Figure 1. N(e1) Corresponding to e1

Figure 2. N(e2) Corresponding to e2

Figure 3. N(e3) Corresponding to e3

Definition 2.14. A NSG G = (G∗,K1,F1
1 ,F

2
2 ) is a neutro-

sophic soft sub graph of G = (G∗,K,F1,F2) if

(i) K1 ⊆ K
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(ii) F1
1e ⊆ F1, which gives TF1

1e
(w) ≤ TF1e(w), IF1

1e
(w) ≤

IF1e(w), FF1
1e
(w)≥ FF1e(w)

(iii) F1
2e ⊆ F2, which gives TF1

2e
(w1,w2)≤ TF2e(w1,w2),

IF1
2e
(w1,w2)≤ IF2e(w1,w2), FF1

2e
(w1,w2)≥FF2e(w1,w2)

for every e ∈ K1.

Definition 2.15. Let GN = (G∗,A,F1,F2) be an NSS of G∗. If
H(e) is a neighborly edge irregular NSG for all e ∈ A then G
is the neighborly edge irregular NSG. Consistently, if any two
neighboring edges have different degrees in H(e) for arbitrary
e ∈ A then a NSG G is a irregular on neighborly edge.

Definition 2.16. Let GN = (G∗,A,F1,F2) be a NSG of G∗.
The neighborly edge totally irregular NG H(e) for all e ∈
A then GN is a totally irregular on neighborly edge NSG.
Consistently, if any two neighboring edges have different total
degrees in H(e) for all e ∈ A then a NSG G is the totally
irregular on neighborly edge NSG.

Theorem 2.17. Consider GN = (G∗,A,F1,F2) be NSG of G∗

and F2 is a constant function. If G is a neighborly edge
irregular (totally irregular on neighborly edge) NSG, then G is
totally irregular on neighborly edge (irregular on neighborly
edge) NSG.

Proof. Let us F2 is a constant function, F2ei(w1w2) = (ki,k1
i )

for all, w1w2 ∈ V ×V , ei ∈ A, where ki and k1
i are constants

where i = 1,2, . . . ,k. Let w1w2 and w2w3 be pair of adjacent
edges in A. Assume G is a neighborly edge irregular NSG.
Then degG(w1w2)(ei) 6= degG(w2w3)(ei) for every ei ∈A, this
gives

(degµ(w1w2)(ei),degv(w1w2)(ei))

6= (degµ(w2w3)(ei),degv(w2w3)(ei))

(degµ(w1w2)(ei),degv(w1w2)(ei))+(ci,c′i)

6= (degµ(w2w3)(ei),degv(w2w3)(ei))+(ki,k′i)

degG(w1w2)(ei)+F2(w1w2)(ei)

6= degG(w2w3)(ei)+F2(w2w3)(ei)

tdegG(w1w2)(ei) 6= tdegG(w2w3)(ei)

where w1w2 and w2w3 are adjacent edges in A. Hence, G is a
neighborly edge totally irregular NSG.

Theorem 2.18. Let GN = (G∗,A,F1,F2) be connected NSG
on G∗ and F2 is a constant function. If G is a neighborly edge
totally irregular NSG, then G is neighborly edge irregular
NSG.

Remark 2.19. Let GN = (G∗,A,F1,F2) be connected NSG
on G∗ and F2 is a constant function. If G is both a neighborly
edge irregular NSG and neighborly edge totally irregular
NSG Then F2 not required be a constant function.

Theorem 2.20. Let GN = (G∗,A,F1,F2) be connected NSG
of G∗ and F2 is a constant function. If G is a neighborly edge
irregular NSG then G is an irregular NSG.

Proof. Let G be connected NSG of G∗ and F2 is a constant
function. F2ei(w1w2) = (ki,k1

i ), where ki and k1
i are constants.

Assume that G is a neighborly edge irregular NSG. Consider
w1w2 and w2w3 are two adjacent edges in G with different
degrees,

(degµ(w1w2)(ei),degv(w1w2)(ei))

6= (degµ(w2w3)(ei),degv(w2w3)(ei))

degµ(w1w2)(ei) 6= degµ(w2w3)(ei) or
degv(w1w2)(ei) 6= degv(w2w3)(ei)

degµ(w1)(ei)+degµ(w2)(ei)−2ki

6= degµ(w2)(ei)+degµ(w3)(ei)−2ki or
degv(w1)(ei)+degv(w2)(ei)−2ki

6= degv(w2)(ei)+degv(w3)(ei)−2ki

degµ(w1)(ei) 6= degµ(w3)(ei) or
degv(w1)(ei) 6= degv(w3)(ei)

(degµ(w1)(ei),degv(w1)(ei))

6= (degµ(w3)(ei),degv(w3)(ei))

degG(w1)(ei) 6= degG(w3)(ei)

Hence, there exist w2 a vertex which is adjacent to the vertices
w2 and w3 have different degree. Hence, G is an irregular
NSG.

Theorem 2.21. Let GN = (G∗,A,F1,F2) be connected NSG
on G∗ and F2 is a constant function. If G is a neighborly edge
totally irregular NSG, then G is an irregular NSG.

Theorem 2.22. Let GN = (G∗,A,F1,F2) be connected NSG
on G∗ and F2 is a constant function. Then G is a neighborly
edge irregular NSG iff G is extremely irregular NSG.

Proof. Let G be connected NSG of G∗ and F2 is a constant
function. F2ei(w1w2)(ei)= (ki,k1

i ), for every, w1w2 ∈A, where
ki and k1

i are constants. Let w1 be the vertex adjacent with w2,
w3 and t. w1w2w3 and w1t are adjacent edges in G. Assume
G is a neighborly edge irregular NSG, gives that every pair of
adjacent edges in G with different degrees, then

degG(w2w1)(ei) 6= degG(w1w3)(ei) 6= degG(w1t)(ei)

(degµ(w2w1)(ei),degv(w2w1)(ei))

6= (degµ(w1w3)(ei),degv(w1w3)(ei))

6= (degµ(w1t)(ei),degv(w1t)(ei))

Consider

(degµ(w2w1)(ei),degv(w2w1)(ei))

6= (degµ(w1w3)(ei),degv(w1w3)(ei))

degµ(w2w1)(ei) 6= degµ(w1w3)(ei) or
degv(w2w1)(ei) 6= degv(w1w3)(ei)

degµ(w1)(ei)+degµ(w2)(ei)−2ki

6= degµ(w1)(ei)+degµ(w3)(ei)−2ki or
degv(w1)(ei)+degv(w2)(ei)−2ki

6= degv(w1)(ei)+degv(w3)(ei)−2ki
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degµ(w2)(ei) 6= degµ(w3)(ei) or
6= degv(w2)(ei) 6= degv(w3)(ei)

degµ(w2)(ei),degv(w2)(ei)

6= degµ(w3)(ei) 6= degv(w3)(ei)

degG(w2) 6= degG(w3).

In the same way, degG(w3) 6= degG(t)⇒ degG(w2) 6= degG(w3)
6= degG(t), obviously, any vertex w1 is adjacent to the vertices
w2, w3 and t with different degrees. Hence G is extremely
irregular NSG.
Conversely, let w2w1 and w1w3 are arbitrarily two adjacent
edges in G. Assume that G is extremely irregular NSG, then
any vertex adjacent to the vertices in H(ei) for every ei ∈ A
contains different degrees, such that degG(w2) 6= degG(w3)

degµ(w2)(ei)+degµ(w1)(ei)−2ki

6= degµ(w3)(ei)+degµ(w1)(ei)−2ki or
degv(w2)(ei)+degv(w1)(ei)−2ki

6= degv(w3)(ei)+degv(w1)(ei)−2ki

degµ(w2w1)(ei) 6= degµ(w1w3)(ei) or
degv(w1w2)(ei) 6= degv(w1w3)(ei)

(degµ(w1w2)(ei),degv(w1w2)(ei))

6= (degµ(w1w3)(ei),degv(w1w2)(ei))

= degG(w1w2) 6= degG(w1w3)

Hence G is a neighborly edge irregular NSG.
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