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Abstract—The focus of the paper is to furnish the entropy measure
for a neutrosophic set and neutrosophic soft set which is a measure
of uncertainty and it permeates discourse and system. Various char-
acterization of entropy measures are derived. Further we exemplify
this concept by applying entropy in various real time decision making
problems.
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I. INTRODUCTION

THE decision making problems of the real world will

involve many imprecision and inadequate data. Such type

of uncertainties was dealt with the idea of fuzzy logic which

was introduced by L. A. Zadeh [10] in the year 1965, it uses

a membership function in the interval [0, 1]. This idea was

further refined by Atanassov [2] in 1983 which include the

grade of membership and the grade of non membership. The

Neutrosophic set was first of its kind to introduce the idea of

neutralities, as the decision making models will involve some

indeterminate data. It was defined by Smarandache [6], [7].

This logic introduces a component called indeterminacy to

the concept of fuzzy logic. Problems which involve impreci-

sion, indeterminacy and inconsistency can be treated with the

Neutrosophic logic which has degree of truth (T), a degree

of indeterminacy (I) and a degree of falsity (F), where T, I,

F takes the values from real standard or non-standard subsets

of ]-0, 1+[. Entropy, similarity measure and distance measure

are three important notions for measuring uncertainty. Several

researchers like Huang [3], Hung and Yang [4], Majumdar

and Samanta [5], Szmidt and Kacprzy [8], Wang and Qu [9]

have studied the similarity measures distance measure and

entropy on fuzzy sets, intuitionistic fuzzy set, vague soft set

and neutrosophic set. In this paper we have introduced some

new entropy and distance measures for neutrosophic soft set.

II. PRELIMINARIES

Definition 1: [1] Let U be a universe of discourse, and A a

set included in U. An element x from U is defined as A =
〈x, TA(x), IA(x), FA(x)〉 , x ∈ X where T, I, F : X → [0, 1]
and 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3, where T, I and F
represents truth value, indeterministic value and the false value

respectively.

Definition 2: [1] Let X be a non empty set, and A =
〈x, TA(x), IA(x), FA(x)〉, B = 〈x, TB(x), IB(x), FB(x)〉 are

neutrosophic sets. Then A is a subset of B if ∀ x ∈ X

TA(x) ≤ TB(x), IA(x) ≤ IB(x)), FA(x) ≥ FB(x))
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Definition 3: [1] Let X be a non empty set, and A =
〈x, TA(x), IA(x), FA(x)〉, B = 〈x, TB(x), IB(x), FB(x)〉 are

neutrosophic sets.Then

A ∪B = 〈x,max(TA(x), TB(x)),max(IA(x), IB(x)),
min(FA(x), FB(x))〉
A ∩B = 〈x,min(TA(x), TB(x)),min(IA(x), IB(x)),
max(FA(x), FB(x))〉
Definition 4: [1] A collection (F,A) is called a Neutrosophic

soft set iff F : A → P (U), where P (U) is the collection of

all neutrosophic sets on the universal set U and A is a non-

empty subset of the parameter set E.

Definition 5: [1] A void neutrosophic soft set (F,A) over

the universe U with respect to the parameter A is defined as

TF (e) = 0, IF (e) = 0,FF (e) = 1,∀ x ∈ U, ∀ e ∈ A and is

denoted by 0̃.

Definition 6: [1] A neutrosophic soft set (F,A) over the

universe U is said to be absolute neutrosophic soft set with

respect to the parameter A if TF (e) = 1, IF (e) = 1,FF (e) = 0,

∀ x ∈ U, ∀ e ∈ A. It is denoted by 1̃.

Definition 7: [1] A neutrosophic soft set (F,A) is said to be a

subset of neutrosophic soft set (G,B) if A⊆ B and F(e)⊆ G(e)

∀ e ∈ E, u ∈ U. We denote it by (F,A)⊆̃ (G,B).

Definition 8: [1] The complement of neutrosophic

soft set (F,A) denoted by (F,A)c and is defined as

(F,A)c = (F c,¬A) where F c : ¬A −→ P (U) is a mapping

given by

F c(α) = 〈x, TFc(x) = FF (x), IFc(x) = 1− IF (x), FFc(x) = TF (x)〉
Definition 9: [1] The union of two neutrosophic soft sets

(F,A) and (G,B) over (U,E) is neutrosophic soft set where C

= A∪B, ∀e ∈ C

H(e) =

⎧⎪⎨
⎪⎩
F (e) if e ∈ A−B

G(e) if e ∈ B −A

F (e) ∪G(e) if e ∈ A ∩B

and is written as (F,A)∪̃(G,B)= (H,C).

Definition 10: [1] The intersection of two neutrosophic soft

sets (F,A) and (G,B) over (U,E) is neutrosophic soft set where

C = A∩B, ∀e ∈ C H(e) = F (e) ∩ G(e) and is written as

(F,A)∩̃(G,B)= (H,C).

III. ENTROPY AND DISTANCE MEASURE OF

NEUTROSOPHIC SOFT SET AND ITS APPLICATION

Definition 11: Let H: NSS(U)→ [0,1] be a mapping, where

NSS(U) denotes the set of all neutrosophic soft sets on U.

For (F,E)∈ NSS(U), H(F,E) is called the entropy of (F,E) if it

satisfies the following conditions:

1) H(F,E)= 0 ⇔ ∀ e ∈E, x ∈U, TF (e)(x) = 0, IF (e)(x) = 0
and FF (e)(x) = 1 or TF (e)(x) = 1, IF (e)(x) = 1 and

FF (e)(x) = 0
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2) H(F,E)=1 ∀ e ∈E, x ∈U,TF (e)(x) = IF (e)(x) =
FF (e)(x) = 0.5

3) H(F,E)= H(F,E)c

4) ∀ e ∈E, x ∈U when (F,E)⊆ (G,E), and TG(e)(x) ≤
FG(e)(x), IF (e)(x) ≤ IG(e)(x) if IG(e)(x) ≤ 0.5 or

(F,E)⊇ (G,E), and TG(e)(x) ≥ FG(e)(x), IF (e)(x) ≥
IG(e)(x) if IG(e)(x) ≥ 0.5 then H(F,E)≤ H(G,E)

Definition 12: Let d:NSS(U)× NSS(U)→ [0,1] be a mapping

for (F,E), (G,E)∈ NSS(U), d((F,E), (G,E)) is called the

degree of distance between (F,E)and (G,E) if it satisfies the

following conditions:

1) d((F,E),(G,E))=d((G,E),(F,E)).

2) d((F,E),(G,E)) ∈[0,1]

3) d((F,E),(G,E))= 1 ⇔ ∀ e ∈E, x ∈U, TF (e)(x) = 0,

IF (e)(x) = 0, FF (e)(x) = 1 and TG(e)(x) = 1,

IG(e)(x) = 1, FG(e)(x) = 0 or TF (e)(x) = 1,

IF (e)(x) = 1 and FF (e)(x) = 0 or TG(e)(x) = 0,

IG(e)(x) = 0 and FG(e)(x) = 1
4) d((F,E),(G,E))=0 ⇔ (F,E)=(G,E)

5) (F,E)⊆(G,E)⊆ (P,E)⇒ d((F,E), (P,E))≥
max(d((F,E),(G,E)), d((G,E),(P,E)), (P,E)∈ NSS(U).

Definition 13: Let U= {x1, x2, .......xn} be the universal set

of elements and E = {e1, e2, .......em} be the universal set of

parameters, then we have

H(F,E) =
1

m

n∑
i=1

Hi(F,E)

where Hi(F,E) =
1

n

max
∑
j

count((F,E) ∩ (F,E)c)

max
∑
j

count((F,E) ∪ (F,E)c)

max
∑
j

count((F,E) ∩ (F,E)c))

=
n∑

j=1

(
T((F,E)∩(F,E)c)(ei)(xj) + I((F,E)∩(F,E)c)(ei)(xj)

)
max

∑
j

count((F,E) ∪ (F,E)c))

=
n∑

j=1

(
T((F,E)∪(F,E)c)(ei)(xj) + I((F,E)∪(F,E)c)(ei)(xj)

)
is the entropy of neutrosophic soft sets.

Definition 14: Let U= {x1, x2, .......xn} be the universal set

of elements and E = {e1, e2, .......em} be the universal set

of parameters, then we define normalized Euclidean distance

based on Hausdorff metric as

d1((F,E), (G,E)) =
1

mn

m∑
i=1

n∑
j=1

max(|TF (ei)(xj)− TG(ei)(xj)|,
|IF (ei)(xj)− IG(ei)(xj)|, |FF (ei)(xj)− FG(ei)(xj)|)
and normalized Hamming distance based on Hausdorff metric

as

d2((F,E), (G,E)) =

{ 1

mn

∑m
i=1

∑n
j=1 max(

(
TF (ei)(xj)− TG(ei)(xj)

)2
,(

IF (ei)(xj)− IG(ei)(xj)
)2

,
(
FF (ei)(xj)− FG(ei)(xj)

)2
)} 1

2

Theorem 1: Let (F,E), (G,E) and (H,E) be Neutrosophic soft

set over U, then distance measure di((F,E), (G,E)) for i =

1,2 between (F,E) and (G,E) satisfies the following properties.

(i) 0 ≤ di((F,E), (G,E)) ≤ 1
(ii) di((F,E), (G,E)) = 0 if and only if (F,E) = (G,E)

(iii) di((F,E), (G,E)) = di((G,E), (F,E))
(iv) If F ⊆ G ⊆ H , then di((F,E), (G,E)) ≤

di((F,E), (H,E)) and di((G,E), (H,E)) ≤
di((F,E), (H,E))

Proof:
(i) As truth-membership, indeterminacy-membership and

falsity-membership functions lies between 0 and 1, the

distance measure based on these function also lies be-

tween 0 to 1.

(ii) If di((F,E), (G,E)) = 0 implies

|TF (ei)(uj)− TG(ei)(uj)| = 0
|IF (ei)(uj)− IG(ei)(uj)| = 0
|FF (ei)(uj)− FG(ei)(uj)| = 0 implies

TF (ei)(uj) = TG(ei)(uj),
IF (ei)(uj) = IG(ei)(uj), FF (ei)(uj) = FG(ei)(uj)
i.e., (F,E) = (G,E).

Conversely, Let (F,E) = (G,E), implies

TF (ei)(uj) = TG(ei)(uj), IF (ei)(uj) =
IG(ei)(uj), FF (ei)(uj) = FG(ei)(uj), implies

|TF (ei)(uj) − TG(ei)(uj)| = |IF (ei)(uj) −
IG(ei)(uj)| = |FF (ei)(uj) − FG(ei)(uj)| = 0
ie., di((F,E), (G,E)) = 0.

(iii) Clearly d((F,A), (G,B)) = d((G,B), (F,A)).
(iv) Let D((F,E), (G,E)) = max(|TF (ei)(xj) −

TG(ei)(xj)|, |IF (ei)(xj) − IG(ei)(xj)|, |FF (ei)(xj) −
FG(ei)(xj)|).
F ⊆ G ⊆ H implies

TF (ei)(uj) ≤ TG(ei)(uj) ≤ TH(ei)(uj)
IF (ei)(uj) ≤ IG(ei)(uj) ≤ IH(ei)(uj)
FF (ei)(uj) ≥ FG(ei)(uj) ≥ FH(ei)(uj)
To Prove: d1((F,E), (G,E)) ≤ d1((F,E), (H,E)) and

d1((G,E), (H,E)) ≤ d1((F,E), (H,E))
Case: 1 If |TF (ei)(uj) − TH(ei)(uj)| ≥
|IF (ei)(uj)−IH(ei)(uj)| ≥ |FF (ei)(uj)−FH(ei)(uj)|
then D((F,E), (G,E)) = |TF (ei)(uj)− TH(ei)(uj)|

(i) |IF (ei)(uj) − IG(ei)(uj)| ≤ |IF (ei)(uj) −
IH(ei)(uj)| ≤ |TF (ei)(uj)− TH(ei)(uj)|,
∀ i and j

|FF (ei)(uj) − FG(ei)(uj)| ≤ |FF (ei)(uj) −
FH(ei)(uj)| ≤ |TF (ei)(uj)− TH(ei)(uj)|,
∀ i and j

(ii) |IG(ei)(uj) − IH(ei)(uj)| ≤ |IF (ei)(uj) −
IH(ei)(uj)| ≤ |TF (ei)(uj)− TH(ei)(uj)|,
∀ i and j

|FG(ei)(uj) − FH(ei)(uj)| ≤ |FF (ei)(uj) −
FH(ei)(uj)| ≤ |TF (ei)(uj)− TH(ei)(uj)|,
∀ i and j

(iii) |TF (ei)(uj) − TG(ei)(uj)| ≤ |TF (ei)(uj) −
TH(ei)(uj)|,
|TG(ei)(uj) − TH(ei)(uj)| ≤ |TF (ei)(uj) −
TH(ei)(uj)|,
∀ i and j.

Combining (i) - (iii) we have D((F,E), (G,E)) ≤
D((F,E), (H,E)) and D((G,E), (H,E)) ≤
D((F,E), (H,E)). Therefore d1((F,E), (G,E)) ≤
d1((F,E), (H,E)) and d1((G,E), (H,E)) ≤
d1((F,E), (H,E))
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Case: 2 If |TF (ei)(uj) − TH(ei)(uj)| ≤
|FF (ei)(uj)−FH(ei)(uj)| ≤ |IF (ei)(uj)−IH(ei)(uj)|
then D((F,E), (G,E)) = |IF (ei)(uj)− IH(ei)(uj)|

(i) |TF (ei)(uj) − TG(ei)(uj)| ≤ |TF (ei)(uj) −
TH(ei)(uj)| ≤ |IF (ei)(uj)− IH(ei)(uj)|,
∀ i and j

|FF (ei)(uj) − FG(ei)(uj)| ≤ |FF (ei)(uj) −
FH(ei)(uj)| ≤ |IF (ei)(uj)− IH(ei)(uj)|,
∀ i and j

(ii) |TG(ei)(uj) − TH(ei)(uj)| ≤ |TF (ei)(uj) −
TH(ei)(uj)| ≤ |IF (ei)(uj)− IH(ei)(uj)|,
∀ i and j

|FG(ei)(uj) − FH(ei)(uj)| ≤ |FF (ei)(uj) −
FH(ei)(uj)| ≤ |IF (ei)(uj)− IH(ei)(uj)|,
∀ i and j

(iii) |IF (ei)(uj) − IG(ei)(uj)| ≤ |IF (ei)(uj) −
IH(ei)(uj)|,
|IG(ei)(uj) − IH(ei)(uj)| ≤ |IF (ei)(uj) −
IH(ei)(uj)|,
∀ i and j.

Combining (i)-(iii) we have D((F,E), (G,E)) ≤
D((F,E), (H,E)) and D((G,E), (H,E)) ≤
D((F,E), (H,E)). Therefore d1((F,E), (G,E)) ≤
d1((F,E), (H,E)) and d1((G,E), (H,E)) ≤
d1((F,E), (H,E))
Case: 3 If |TF (ei)(uj) − TH(ei)(uj)| ≤
|IF (ei)(uj)−IH(ei)(uj)| ≤ |FF (ei)(uj)−FH(ei)(uj)|
then D((F,E), (G,E)) = |FF (ei)(uj) − FH(ei)(uj)|
Proof is similar to Case 1 and Case 2.

Hence from Case 1 Case 2 and Case 3 we have if F ⊆
G ⊆ H , then d1((F,E), (G,E)) ≤ d1((F,E), (H,E))
and d1((G,E), (H,E)) ≤ d1((F,E), (H,E)).
Similarly we can prove that if F ⊆ G ⊆ H ,

then d2((F,E), (G,E)) ≤ d2((F,E), (H,E)) and

d2((G,E), (H,E)) ≤ d2((F,E), (H,E)).

Theorem 2: Let d((F,E),(G,E)) be the distance measure

between two neutrosophic soft sets (F,E) and (G,E). Define

H(F,E) =
1− d((F,E), (F,E)c)

1 + d((F,E), (F,E)c)
then H(F,E) is an entropy

of neutrosophic soft sets.

Proof:
(1) H(F,E)= 0 ⇔ 1 − d((F,E), (F,E)c = 0

⇔ d((F,E), (F,E)c = 1 ⇔ ∀ e ∈ E, x ∈U,

TF (e)(x) = 0, IF (e)(x) = 0 and FF (e)(x) = 1 or

TF (e)(x) = 1, IF (e)(x) = 1 and FF (e)(x) = 0

(2) H(F,E)= 1 ⇔ 1 − d((F,E), (F,E)c) =
1 + d((F,E), (F,E)c) ⇔ d((F,E), (F,E)c) = 0
⇔ (F,E) = (F,E)c ⇔ ∀e ∈ E, x ∈U,

TF (e)(x) = IF (e)(x) = FF (e)(x) = 0.5

(3) H(F,E)c =
1− d((F,E)c, ((F,E)c)c)

1 + d((F,E)c, ((F,E)c)c)

=
1− d((F,E)c, ((F,E))

1 + d((F,E)c, ((F,E))
= H(F,E)

(4) ∀ e ∈E, x ∈U when (F,E)⊆ (G,E), and TG(e)(x) ≤

FG(e)(x), IF (e)(x) ≤ IG(e)(x) if IG(e)(x) ≤ 0.5
implies TF (e) ≤ TG(e) ≤ FG(e) ≤ FF (e); also

IF (e) ≤ IG(e) ≤ 1 − IG(e) ≤ 1 − IF (e) hence

|TF (e)(x) − FF (e)(x)| ≥ |TG(e)(x) − FG(e)(x)| and

|IF (e)(x)−(1−IF (e)(x))| ≥ |IG(e)(x)−(1−IG(e)(x))|.
Therefore d((F,E), (F,E)c) ≥ d((G,E), (G,E)c).

Also f(x) =
1− x

1 + x
is monotone decreasing. So we

have H(F,E) ≤ H(G,E). Similarly we can prove in

the other case.

Definition 15: Let α+
i = (1, 1, 0) (i =1,2,3...m) be the largest

neutrosophic number and we call A+ = (α+
1 , α

+
2 , ...α

+
m) as

neutrosophic ideal solution.

IV. APPLICATION OF DISTANCE AND ENTROPY

MEASURES OF NEUTROSOPHIC SOFT SET

A. Application Using Entropy Measure

In order to obtain an efficient risk management in the

field of construction, certain risks are classified along with

some parameters and these risks are evaluated by the team of

experts. Assume that there is a set of 3 experts evaluating

the five different kinds of risks namely construction risk,

design risk, physical risk, financial and economic risk and

natural risk with the set of parameters unclear detail design

or specification, inadequate or insufficient site information,

material and equipment quality, shortage of labour, material

and equipment, labour injuries, funding shortage and natural

disasters.

Let U denote the set of risks U = {x1, x2, x3, x4, x5}
Let E denote the set of parameters E = {e1, e2, e3, e4, e5}

The neutrosophic soft set (F,E) describes the evaluation of

expert A.

F (e1)(x1) = (0.7,0.2,0.1), F (e2)(x1) = (0.5,0.5,0.5),

F (e3)(x1) = (0.7,0.2,0.1), F (e4)(x1) = (0.6,0.7,0.8),

F (e5)(x1) = (0.7,0.5,0.4)

F (e1)(x2) = (0.8,0.3,0.4), F (e2)(x2) = (0.7,0.3,0.2),

F (e3)(x2) = (0.6,0.8,0.9), F (e4)(x2) = (0.8,0.1,0.9),

F (e5)(x2) = (0.8,0.2,0.1)

F (e1)(x3) = (0.4,0.6,0.2), F (e2)(x3) = (0.3,0.7,0.2),

F (e3)(x3) = (0.2,0.9,0.2), F (e4)(x3) = (0.4,0.6,0.5),

F (e5)(x3) = (0.3,0.8,0.7)

F (e1)(x4) = (0.4,0.5,0.3), F (e2)(x4) = (0.3,0.6,0.5),

F (e3)(x4) = (0.3,0.5,0.4), F (e4)(x4) = (0.3,0.4,0.5),

F (e5)(x4) = (0.4,0.8,0.3)

F (e1)(x5) = (0.3,0.2,0.7), F (e2)(x5) = (0.2,0.7,0.1),

F (e3)(x5) = (0.3,0.5,0.4), F (e4)(x5) = (0.3,0.6,0.9),

F (e5)(x5) = (0.4, 0.2,0.1)

The neutrosophic soft set (G,E) describes the evaluation of

expert B.

G(e1)(x1) = (0.4 0.3,0.2), G(e2)(x1) = (0.3,0.1,0.1),

G(e3)(x1) = (0.5,0.5,0.9), G(e4)(x1) = (0.4,0.5,0.4),

G(e5)(x1) = (0.4,0.2,0.1)

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:11, No:4, 2017 

151International Scholarly and Scientific Research & Innovation 11(4) 2017 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:1
1,

 N
o:

4,
 2

01
7 

w
as

et
.o

rg
/P

ub
lic

at
io

n/
10

00
68

79



G(e1)(x2) = (0.3,0.4,0.5), G(e2)(x2) = (0.3,0.4,0.2),

G(e3)(x2) = (0.3,0.6,0.7), G(e4)(x2) = (0.4,0.9,0.1),

G(e5)(x2) = (0.3,0.2,0.1)

G(e1)(x3) = (0.4,0.6,0.5), G(e2)(x3) = (0.3,0.9,0.8),

G(e3)(x3) = (0.3,0.8,0.1), G(e4)(x3) = (0.4,0.7,0.8),

G(e5)(x3) = (0.2,0.4,0.6)

G(e1)(x4) = (0.3,0.2,0.1), G(e2)(x4) = (0.3,0.1,0.2),

G(e3)(x4) = (0.3,0.2,0.5), G(e4)(x4) = (0.5,0.3,0.4),

G(e5)(x4) = (0.4,0.6,0.8)

G(e1)(x5) = (0.4,0.6,0.8), G(e2)(x5) = (0.3,0.7,0.8),

G(e3)(x5) = (0.4,0.2,0.6), G(e4)(x5) = (0.4,0.2,0.1),

G(e5)(x5) = (0.3,0.4,0.8)

The neutrosophic soft set (P,E) describes the evaluation of

expert C.

P (e1)(x1) = (0.4,0.5,0.1), P (e2)(x1) = (0.3,0.1,0.1),

P (e3)(x1) = (0.3,0.2,0.3), P (e4)(x1) = (0.3,0.4,0.7),

P (e5)(x1) = (0.5,0.5,0.1)

P (e1)(x2) = (0.3,0.4,0.5), P (e2)(x2) = (0.2,0.1,0.3),

P (e3)(x2) = (0.3,0.2,0.1), P (e4)(x2) = (0.3,0.5,0.6),

P (e5)(x2) = (0.5,0.4,0.1)

P (e1)(x3) = (0.3,0.7,0.9), P (e2)(x3) = (0.3,0.1,0.5),

P (e3)(x3) = (0.3,0.5,0.4), P (e4)(x3) = (0.3,0.9,0.8),

P (e5)(x3) = (0.3,0.1,0.7)

P (e1)(x4) = (0.3,0.2,0.6), P (e2)(x4) = (0.3,0.3,0.2),

P (e3)(x4) = (0.3,0.5,0.6), P (e4)(x4) = (0.3,0.8,0.9),

P (e5)(x4) = (0.3,0.1,0.8)

P (e1)(x5) = (0.4,0.5,0.9), P (e2)(x5) = (0.4,0.5,0.9),

P (e3)(x5) = (0.4,0.5,0.7), P (e4)(x5) = (0.3,0.7,0.8),

P (e5)(x5) = (0.3,0.2,0.6)

Using the definition 12 we have

H1(F,E)=0.0906, H2(F,E)=0.1148, H3(F,E)=0.0984,

H4(F,E)=0.1143, H5(F,E)=0.0746

H1(G,E)=0.1069, H2(G,E)=0.0646, H3(G,E)=0.0923,

H4(G,E)=0.0918, H5(G,E)=0.0857

H1(P,E)=0.1031, H2(P,E)=0.0742, H3(P,E)=0.1222,

H4(P,E)=0.0822, H5(P,E)=0.0706

Therefore, H(F,E)=0.0985, H(G,E)=0.0883, H(P,E)= 0.0905.

Entropy is an important notion for measuring uncertain

information. The less uncertainty information has the larger

possibility to select the optimal. From the computation we

have H(G,E) ≤ H(P,E)≤ H(F,E). Therefore, the expert B has

larger possibility to make the decision on risk management

than expert A and C. According to expert B H1(G,E)=0.1069

has the largest entropy value between the risks. Hence, con-

struction risk has to be minimized to have an efficient risk

management system, this in turn points out that the parameters

related with the construction risk namely, material and equip-

ment quality and shortage of labour has to be given a proper

attention for a qualitative and quantitative risk management

system.

B. Application Using Distance Measure

For a Multi attribute decision making problem of the eval-

uation of university faculty for tenure and promotion. There

are six faculty candidates (alternatives) Aj (j =1, 2, .... 6) to

be evaluated, the criteria (attributes) used at some universities

are e1:teaching, e2: research, and e3: service. Let U denote

the tenure and promotion U = {x1}
Let E denote the set of parameters E = {e1, e2, e3}

The neutrosophic soft sets (F1, A1), (F2, A2),.....(F6, A6)
describes the evaluation of university faculty A1.A2,.....A6

respectively.

F1(e1)(x1) = (0.4,0.5,0.3), F1(e2)(x1) = (0.6,0.4,0.1),

F1(e3)(x1) = (0.5,0.6,0.4).

F2(e1)(x1) = (0.5,0.4,0.2), F2(e2)(x1) = (0.3,0.6,0.4),

F2(e3)(x1) = (0.8,0.2,0.1).

F3(e1)(x1) = (0.7,0.4,0.2), F3(e2)(x1) = (0.3,0.6,0.7),

F3(e3)(x1) = (0.6,0.1,0.2).

F4(e1)(x1) = (0.4,0.6,0.3), F4(e2)(x1) = (0.6,0.4,0.2),

F4(e3)(x1) = (0.7,0.4,0.1).

F5(e1)(x1) = (0.6,0.8,0.2), F5(e2)(x1) = (0.5,0.7,0.1),

F5(e3)(x1) = (0.4,0.7,0.6).

F6(e1)(x1) = (0.6,0.1,0.3), F6(e2)(x1) = (0.7,0.5,0.2),

F6(e3)(x1) = (0.5,0.6,0.4).

The neutrosophic soft ideal solution (F,A+) is given by

F (e1)(x1) = (1,1,0), F (e2)(x1) = (1,1,0),F (e3)(x1) = (1,1,0)

Using definition 12 we have

d1((F1, A1), (F,A
+))= 0.5667, d1((F2, A2), (F,A

+))= 0.7,

d1((F3, A3), (F,A
+))= 0.7333, d1((F4, A4), (F,A

+))= 0.6,

d1((F5, A5), (F,A
+))= 0.5, d1((F6, A6), (F,A

+))= 0.6333.

Since

d1((F5, A5), (F,A
+)) < d1((F1, A1), (F,A

+)) <
d1((F4, A4), (F,A

+)) < d1((F6, A6), (F,A
+)) <

d1((F2, A2), (F,A
+)) < d1((F3, A3), (F,A

+))
then

(F5, A5) > (F1, A1) > (F4, A4) > (F6, A6) > (F2, A2) >
(F3, A3)

Hence the most desirable alternative is A5

V. CONCLUSION

An efficient risk management system saves time, labour and

economy, if the risks are given proper attention, according

to their order of severity. The identification and analysis

demonstrates the application and efficiency of the entropy

measure in decision making.Finally we have developed the
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model that utilizes the neutrosophic ideal solution and the

distance measures to find the best alternative, based on which

some practical procedures have been established to determine

the ranking of all alternatives. In future work we can extend

the model using interval valued neutrosophic soft set.
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