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Mobile Ad hoc Networks (MANETs) are wireless networks without fixed infrastructure based on the
cooperation of independent mobile nodes. The proliferation of these networks and their use in critical
scenarios (like battlefield communications or vehicular networks) require new security mechanisms
and policies to guarantee the integrity, confidentiality and availability of the data transmitted. Intrusion
Detection Systems used in wired networks are inappropriate in this kind of networks since different vul-
nerabilities may appear due to resource constraints of the participating nodes and the nature of the com-
munication. This article presents a comparison of the effectiveness of six different classifiers to detect
malicious activities in MANETs. Results show that Genetic Programming and Support Vector Machines
may help considerably in detecting malicious activities in MANETs.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Due to the inherent vulnerabilities of wireless networks, new
security measures need to be developed to efficiently safeguard
them. This work focuses on the detection of malicious activities
in MANETs. Proposed ideas for intrusion detection in these net-
works are required to achieve a trade-off between accurate detec-
tion and limited consumption of resources [1] or the lack of central
management and mobility of nodes [2]. This article presents a
comparison of different classification algorithms applied to detect
intrusions in MANETs. These algorithms can help to discriminate
‘‘normal’’ against ‘‘intrusive’’ behaviour effectively. We use six
well-known classification algorithms, using labelled datasets ob-
tained from a simulated environment. The comparison is fairly per-
formed as several hyper-parameters were tuned and the
experiments have been performed with datasets generated under
various traffic conditions regarding the network mobility and the
number of malicious nodes. We focus on detecting four different
types of attacks: Black Hole [3], Forging [4], Packet Dropping [5]
and Flooding [6].

In Section 2 we present the motivation of our work. Section 3
introduces a review of the state of the art on intrusion detection
in MANETs. Section 4 explains the details of the experimental
setup and Section 5 presents the results obtained. Finally, we
conclude in Section 6.
ll rights reserved.
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1.1. Contribution

This article extends a previous work [7] that compares how
effective intrusions in MANETs are detected by different classifica-
tion algorithms, namely, Naïve Bayes, Gaussian Mixture Model
(GMM), Multilayer Perceptron (MLP), Linear Model and Support
Vector Machines (SVMs). Accordingly, two main contributions are
presented. First, we analyse the promising behaviour of a new
method based on Genetic Programming. Second, different probabil-
ities of attacks are considered tackling a wide set of scenarios.
2. Motivation

2.1. Wireless technology

Wireless networks use the open air medium as communication
channel and electromagnetic waves to send information between
participants. Nodes in wireless networks can communicate with
every other node located within a specific distance, called trans-
mission range. When a node wants to send a packet to another
node that does not belong in its one-hop neighbourhood then it
has to rely to intermediate nodes to forward the packets to the
final destination. Thus, efficient routing protocols are required in
order to optimise the communication paths. Security issues in
wireless communication may also have a serious impact in other
types of network architectures since several network architectures
use wireless channels. For instance, an architecture using the
802.11 standard (usually referred as WIFI or WLAN networks) uses
a fixed infrastructure that communicates with other networks
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using a wired communication, but communicates with the nodes
of its own network using a wireless channel. This architecture re-
quires all the nodes to be placed within the transmission range
of the fixed infrastructure (access point), and any problem regard-
ing this central point may affect the entire network.

Wireless ad hoc networks or Mobile Ad hoc Networks (MANETs)
do not use a fixed infrastructure and all the nodes belonging to the
network may be mobile. There is no central node acting as an ac-
cess point, and mobile nodes share the responsibility of the proper
functionality of the network, since a collaborative behaviour is
required.

2.2. Security in MANETs

The intrinsic nature of MANETs provokes the emergence of new
security risks, while some existing vulnerabilities in wired net-
works are accentuated. The use of security technologies developed
for wired networks in order to safeguard wireless networks is nei-
ther direct nor easy to perform. In the absence of a wire connecting
the nodes, any malicious node may access the network without
physical restrictions. In order to prevent fraudulent outsiders
entering the network, cryptographic algorithms can be used to
authenticate the nodes. However, more complicated problems
arise when an internal benign node is compromised, that is, if
any attacker impersonates the identity of a node that is authorised
in the network. Since the functionality of the network is typically
based on a complete confidence between the participants, a mali-
cious node impersonating a trusted node may cause a serious secu-
rity bridge. Most of the attacks in mobile environments focus on
routing protocols. These protocols were firstly designed to be effi-
cient without taking into account the security issues. They usually
need the cooperation between the participants and assume confi-
dence between them. Nevertheless, a malicious node may modify
its supposed benign functionality disturbing the overall behaviour
of the protocol. Below, we present a list of attacks that we have
considered in order to evaluate the effectiveness of the employed
algorithms for the problem of intrusion detection.

� Packet Dropping attack: In this attack, the attacker rejects Route

Error packets leading legitimate nodes to forward packets in
broken links [5].
� Flooding attack: The malicious node broadcasts forged Route

Request packets randomly to all nodes every 100 ms in order
to overload the network [6].
� Black Hole attack [3]: In this attack a malicious node advertises

itself as having the shortest path to other nodes of the network.
Nevertheless, as soon as it receives packets destined for other
nodes, it drops them instead of forwarding to the final destina-
tion. In our simulation scenario, each time a malicious black-
hole node receives a Route Request packet it sends a Route Reply

packet to the destination without checking if it really has a path
towards the selected destination. Thus, the black-hole node is
always the first node that responds to a Route Request packet.
Moreover, the malicious node drops all Route Reply and Data

packets it receives if the packets are destined to other nodes.
� Forging attack [4]: A malicious node modifies and broadcasts to

the victim node Route Error packets leading to repeated link
features.

3. State of the art

3.1. Intrusion detection in MANETs

Intrusion Detection Systems (IDSs) are software or hardware
tools (even a combination of both) that automatically scan and
monitor events in a computer or network, looking for intrusive
evidence [8]. When designing an IDS to be used in a MANET, some
considerations must be taken into account. There are several differ-
ences in the way the detection engine must behave with respect to
a wired network IDS. A rather complete survey about this topic can
be found in [2], where Anjum et al. present the main challenges to
secure wireless mobile networks. More recently, Sen and Clark [9]
have presented a survey about existing intrusion detection ap-
proaches for MANETs.

Traditional anomaly-based IDSs use predefined ‘‘normality’’
models to detect anomalies in the network. This is an approach
that cannot be easily deployed in MANETs, since the mobility
and flexibility of MANET nodes, make hard the definition of ‘‘nor-
mal’’ and ‘‘malicious’’ behaviour. Furthermore, the mobility of
nodes leads to changes of the network topology, increasing the
complexity of the detection process. Additionally, since the MANET
nodes have no fixed location, there is no central management and/
or monitoring point where an IDS could be placed. This implies
that the detection process may be distributed into several nodes,
as well as the collection and analysis of data. Consequently IDS
are classified into collaborative or independent (non-collaborative)
[9]. Independent IDSs are composed of IDS agents placed into the
nodes of the network and being responsible for monitoring their
neighbours and sending alarms whenever they detect any suspi-
cious activity. The major problem of this architecture is deciding
the location of the IDS agents, since nodes are mobile, and some
zones of the network may not be monitored (for example, if the
node hosting an IDS agent of one zone moves to another, the first
remains uncovered). Another problem is that some resources such
as bandwidth, CPU and/or power are scarce in these environments.
Therefore, nodes hosting the IDS agents should be those having
more resources and moreover, a larger transmission range. Maxi-
mising the detection rate subject to resource limitation is an NP-
complete problem and some algorithms have been proposed to
approximate the solution [2].

Several IDS architectures have been proposed to be used in mo-
bile networks. Zhang et al., initially in 2000 [10], and later in 2003
[11], proposed a distributed and collaborative detection architec-
ture. Every node in the network monitors their local neighbours,
locally and independently, to detect any sign of intrusion. The
key idea is that they may share information to perform this intru-
sion search. Each IDS agent is structured in several pieces or mod-
ules. Initially a data collection module gathers audit traces and
activity logs. Then, a local detection engine analyses the data to
look for local anomalies. Two modules are responsible for perform-
ing the response actions: the local and global response modules. To
share information, an extra secure communication module is used
to provide trusted communications. In these approaches [10,?],
Zhang et al. use classifiers to detect anomalies. They use entropy
and conditional entropy to describe the characteristics of ‘‘normal’’
traffic and classification algorithms to build models of ‘‘normal’’
behaviour. Therefore classifiers are trained using ‘‘normal’’ data,
to predict what is normally the next event given the previous n
events. If a detector node monitors an event which is not what
the classifier has predicted, an alarm is triggered.

Huang and Lee [12] presented a cluster-based IDS, in order to
combat the resource constraints of MANETs. The authors use a set
of statistical features obtained from routing tables and apply a
classification decision tree algorithm, the C4.5, in order to
discriminate ‘‘anomalous’’ against ‘‘normal’’ traffic. This approach
allows the identification of the source of the attack, if the attack
occurs within one-hop. Later, in 2004 [13] they proposed a
hybrid system where they use both specification-based and
anomaly-based detection, by using a taxonomy of anomalous
activities and a finite state machine, which represents the correct
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behaviour of the Ad hoc On Demand Distance Vector (AODV) [14]
protocol.

In 2003 Karchirski and Guha [15] proposed the use of multiple
collaborative sensors, where each sensor acts as a lightweight mo-
bile agent. Each agent has a different role: network monitoring,
host monitoring, decision-making and action-taking. The nodes
are divided into clusters, and each cluster has a head node which
monitors packets. Nodes vote to select their cluster head, based
on the connectivity data received after a broadcast step. Karchirski
and Guha focus on minimising the use of resources by the nodes in
the network. However, they do not give details about how the
detection process is performed.

Sun et al. [16] have also dealt with the problem of cooperative-
ness between nodes and presented a non-overlapping zone-based
IDS. In their approach, the nodes of the network are grouped into
zones, such that some of the internal nodes of a zone act as gate-
ways to other zones. The nodes of the network use Markov Chains
to detect intrusions and they send alarms to their corresponding
gateway when they detect some abnormal activity, using the pro-
posed MANET Intrusion Detection Message Exchange Format
(MIDMEF).

Recently, Su [17] has proposed a cooperative intrusion detec-
tion system where some nodes monitor their neighbours in order
to detect packets that are suspicious of being part of a Black Hole

attack. When the number of such suspicious packets sent by a node
exceeds a threshold, the detector node broadcasts a block message
to all the nodes in the network. This block message is firstly
authenticated with the ID of the detector node, and carries infor-
mation indicating that the packets sent by the malicious node
should be ignored. Our approach is different since we do not detect
Black Hole attacks with a specific threshold, but we study the use of
classifiers.

Sen and Clark [18] has presented different evolutive approaches
to detect intrusions. More precisely, the authors use simulated net-
works to obtain the data they use to evolve the programs, imple-
menting different attacks. First, in [18] a grammatical approach
is used to detect Packet Dropping, Flooding and Route Disruption at-
tacks. They achieve good detection rates for the three types of at-
tacks, but with a rather high false positive rate in the Packet

Dropping and Flooding attack. They argue that this is due to packet
losses that usually occurs in these networks, and differentiating
packet losses from malicious droppings is not an easy task. Sec-
ondly, in [19] they use Genetic Programming with a multi-objec-
tive approach to obtain programs that maximise the detection
rate and minimise both the false positive rate and the energy con-
sumption, which is one of the main constraints in MANETs. They
evaluate their approach for two types of attacks, the Flooding attack
and the Route Disruption attack. In both works, different intrusion
detection approaches are employed for each kind of attack and
again almost all the attacks are detected. Our work is different in
several ways. First, although the attacks are similar, the behaviour
of malicious nodes in our experiments is different. For instance, in
their Packet Dropping attack, malicious nodes drop Data packets
whereas our malicious nodes drop Route Error packets, that is a
more general situation that reflects how cheating nodes maintain
broken links. Second, Sen et al. work evolve one classifier for each
attack (resulting in 3 different programs), while in our work we
only generate one classifier to detect all the attacks studied, which
entails a lesser consume of resources and better performance for
constrained devices. Third, some experimental settings used in
our work are different. For example, we use the GlomoSim simula-
tor program whereas they used NS-2, the pause time between
movements of nodes is different (5, 20 and 40 vs. 0, 20, 400 and
700), etc.
3.2. Classification models

The classification models we have considered are six well
known classifiers i.e., the MultiLayer Perceptron (MLP), the Linear
classifier, the Gaussian Mixture Model (GMM), the Naïve Bayes
classifier, Support Vector Machine (SVM) model and Genetic Pro-
gramming (GP) algorithms employed as classifiers.

An instance of an MLP can be considered as a function
g : X ! Y, where g can be defined as a composition of other func-
tions zi : X ! Z. This decomposition can be written as
g(x) = Kw0z(x) where x 2 X , w is a parameter vector and K denotes
a kernel and the function z(x) = [z1(x),z2(x), . . .] is called hidden
layer. For each of those hidden layers, it holds ziðxÞ ¼ Ki v 0ix

� �
where

each vi is a parameter vector, V = [v1,v2, . . .] denotes the parameter
matrix of the hidden layer and Ki denotes an arbitrary kernel. For
the problem of intrusion detection we use an MLP m, as a model
for the conditional probability given the observations i.e.,:

PðY ¼ yjX ¼ x;M¼ mÞ; y ¼ gðxÞ:

If there is no hidden layer then it holds zi = xi and the model m cor-
responds to the Linear model.

The GMM model is used to model the conditional observation
density of each class y i.e.,:

PðX ¼ xjY ¼ y;M¼ mÞ:

This is achieved by using a separate set of mixtures Uy for modeling
the observation density of each class y. Thus, for a given class y the
density at each point x is calculated by marginalizing over the mix-
ture components u 2 Uy, for the class, i.e.,:

PðX ¼ xjY ¼ yÞ ¼
X

u

PðX ¼ xjU ¼ uÞPðU ¼ ujY ¼ yÞ:

The likelihood function PðX ¼ xjU ¼ uÞ has a Gaussian form with
parameters the covariance matrix

P
u and the mean vector lu, while

the term PðU ¼ ujY ¼ yÞ represents the component weight. Finally,
by estimating PðY ¼ yÞ from the data, we obtain the conditional
probability given the observations, i.e.,:

PðY ¼ yjX ¼ yÞ ¼ 1
ZPðX ¼ xjY ¼ yÞPðY ¼ yÞ

where Z ¼
P

y 2 YPðX ¼ xjY ¼ yÞPðY ¼ yÞ does not depend on y.
The Naïve Bayes model can be derived from the GMM model

when there is only one Gaussian Mixture.
We have also used the Support Vector Machine (SVM) [20]

model that uses Lagrangian methods to minimise a regularised
function of the empirical classification error. The SVM algorithm
finds a linear hyperplane separation with a maximal margin in this
hyperspace. The points that are lying on the margin are called sup-
port vectors. The main parameters of the algorithm is c which rep-
resents the trade-off between the size of the margin and the
number of violated constraints and the kernel K(xi,xj). More pre-
cisely, we use SVMs with a gaussian kernel of the form

Kðxi; xjÞ ¼ 1ffiffiffiffi
2p
p

r exp �kxi�xjk2

r2

� �
, 8xi; xj 2 X , where X is the observation

space.
Given a problem, Genetic Programming (GP) performs a heuris-

tic search for an optimal solution over a big exploration space [21].
It manages a population of individuals (programs), randomly ini-
tialized, which are evolved regarding natural selection procedures.
Each program (individual) has a tree structure where the root and
intermediate nodes are functions and leafs are terminals. In each
step or generation of the algorithm, programs are evaluated using
a fitness function that tests the individuals, thus establishing an
order of the individuals. At each generation a new population is



Table 1
Features of the dataset.

Name Description

RREQ sent/
received

Number of Route Request packets sent/received

RREP sent/
received

Number of Route Reply packets sent/received

RError sent/
received

Number of Route Error packets sent/received

Data sent/
received

Number of bytes sent/received

# of
neighbours

Number of one-hop neighbours of each node

PCR Percentage of the changed routed entries in the routing
table of each node

PCH Percentage of the changes of the sum of hops of all routing
entries for each node [28]
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obtained by selecting the best individuals from the previous gener-
ation (the first generation is randomly established). Some individ-
uals are mutated (changing an internal subtree by any other) or
crossed (interchanging subtrees from two different individuals).
After a given number of generations the algorithm stops, and the
best individual of the last generation is given as the optimal
solution.

Genetic Programming has been proven to be a good paradigm in
the scenario of Network Intrusion Detection Systems (NIDSs)
development [22–24]. The main reason is that the functions used
by GP can be defined ad hoc for a particular scenario and then
the algorithm selects and combines them in order to optimise
the solution to the given problem. Accordingly, it is appropriate
for the complex intrusion detection domain. For instance, in a re-
cent work Kavitha et al. [25] use GP along with Neutrosophic Logic
(a generalisation of fuzzy logics) to generate intrusion detection
rules. GP has also been used to model the internal behaviour of a
NIDS considered as a black box [26].
4. Experimental setup

The main goal of this work is to analyse the performance of six
classifiers when trying to detect fraudulent actions that may occur
in a MANET. These classification models can be used in an indepen-
dent detection engine, where nodes hosting the IDS engine (agent),
work independently to detect malicious activities.
4.1. Dataset

We have simulated a Mobile Ad hoc Network (MANET) using
the Glomosim [27] library. We assume that the network has no
pre-existing infrastructure and that the employed ad hoc routing
protocol is the Ad hoc On Demand Distance Vector (AODV) [14].
We have simulated a network of 50 nodes placed randomly within
a 850 � 850 m2 area. These conditions are similar to those used by
Sen and Clark [18]. Each node has a radio propagation range of
250 m and the channel capacity is equal to 2 Mbps. The nodes
move according to the ‘random way point model’. The minimum
and maximum speed is set to 0 and 20 m/s, respectively and the
pause times at 0, 200, 400 and 700 s. The simulation time of the
experiments was 700 s, thus a pause time equal to 0 s corresponds
to the continuous motion of the node and a pause time of 700 s
corresponds to the time that the node is stationary. Each node gen-
erates Constant Bit Rate (CBR) network traffic while the size of the
packets varies from 128 to 1024 bytes what simulates a demand-
ing and realistic case scenario. Additionally, we have generated dif-
ferent datasets depending on the number of malicious nodes that
exist in the network 5, 15 or 25 malicious nodes while the sam-
pling interval (i.e., time period after which data are collected from
each node of the network) is 15 s.

Finally, in order to discriminate ‘‘normal’’ and ‘‘attack’’ network
activity we have used the features described in Table 1.

In intrusion detection, the prevalence of attacks, defined as the
number of traces belonging to one class divided by the total num-
ber of traces, is critical to compare the effectiveness of different
proposals. The original generated dataset had 80% of attacks, which
means that 80 out of 100 events in the network are hostile.
Although the possibilities of being attacked in mobile networks
are considerably greater than in wired networks [18], this is a pes-
simistic view, as most of the events are malicious. In order to study
our approach in different environments, we have modified the ori-
ginal dataset by reducing the prevalence. We have run the experi-
ments three times to study different scenarios with different
prevalence of attacks (both in training and testing subsets): 80%
(the original dataset), 4% and 1%. Although these environments
are simulated, they represent real situations where different secu-
rity measures may be applied. On the one hand, a MANET can be
physically accessible by everyone. In this case, several attackers
can access the network and perform a huge number of attacks thus
raising the prevalence of the attacks. On the other hand, if the ac-
cess to the network is restricted with some authentication method
or access control, fewer attackers may access it. This could be the
case of a private MANET inside a corporation. In such a case, fewer
number of attacks would be expected with respect to the total
number of events in the network.
4.2. Two-class classification

Fig. 1 shows a schematic view of the different datasets used. The
original dataset contains labelled packets; labels may be normal
(non-malicious behaviour) or any of the four attacks performed
in the simulated network. In order to study two-class classification
(normal or attack), we have modified the dataset by representing
any attack with the label 1 (malicious trace) and the remainder,
non-malicious, with the label 0. With this dataset our aim is to
identify hostile actions in the network without identifying the spe-
cific type of attacks. Summarizing, we have studied four different
scenarios, one in which we have to identify the exact type of attack
(multiclass classification) when the percentage of attacks in the
dataset is 80%, and three scenarios where the classifiers may detect
attacks without identifying the exact type of them (i.e. binary clas-
sification) when the percentage of attacks in the dataset is 80%, 4%
and 1%.
4.2.1. Performance comparison metrics
When comparing algorithms, it is important to use the same

measure of quality. We make the comparison of the different clas-
sifiers in terms of two different measures: the classification error
(CE) and the intrusion detection capability (Cid).

For a given classification algorithm f : X ! Y, where X is the
observation space and Y is the set of classes, the classification error
(CE) measured over an independent set D is given by:

bEðCEjDÞ ¼ 1
jDj
X

d2D
CEðf ðxdÞ; ydÞ

where xd is the observation of example d and yd is its class and
CE(y0,y) = 0 when y = y0 and 1 otherwise.

The intrusion detection capability (Cid) is a novel measure used in
the intrusion detection domain [29]. It measures the amount of
uncertainty of the input resolved once the IDS output is obtained,
and takes into account the attack prevalence in the dataset besides
the Detection rate (DR) and the False Alarm (FA) rate [30].
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This measure takes also into consideration the effect of an
imbalanced distribution. It is defined as:

Cid ¼ �B � DR log
B � DR

B � DRþ DR � FA
� Bð1� DRÞ

� log
Bð1� DRÞ

Bð1� DRÞ þ ð1� BÞð1� FAÞ � ð1� BÞð1� FAÞ

� log
ð1� BÞð1� FAÞ

ð1� BÞð1� FAÞ þ Bð1� FAÞ � ð1

� BÞFA log
ð1� BÞFA

ð1� BÞFAþ BDR

where B is the prevalence of attacks, DR the detection rate and FA

the false alarm rate, defined as:

DR ¼ TP

TPþ FN
; FA ¼ FP

TNþ FP
ð1Þ

where TP, TN, FP, FN, denote the number of true (TP,TN) and false
(FP,FN) positives and negatives respectively.

4.3. Multiclass classification

As previously stated, a GP execution produces programs that are
intended to solve a specific problem. As the problem faced in this
work is to classify instances, GP has been set up to behave as a clas-
sification algorithm. A two-class classification problem, where
there are only two classes, is typically less complex than a multi-
class classification, where the program must classify more than
two-classes. In addition, using GP for two-class classification ben-
efits from the use of boolean functions (see the operators in Table
3). In order to optimise the effectiveness of GP regarding the mul-
ticlass classification, we have slightly modified the detection algo-
rithm. In the following section we give details on this modification.

4.3.1. Modification of the GP algorithm

Algorithm 1. Return the class of trace
output Program_0 (trace)
if output is 0 then

return 0
end if
output Program_1 (trace)
if output is 0 then

return 1
end if
output Program_2 (trace)
if output is 0

return 2
end if
output Program_3 (trace)
if output is 0 then

return 3
end if return 4

In the multiclass scenario there are five different classes: nor-
mal (label 0), and each of the four different attacks (labels 1, 2, 3
and 4). In order to reduce the complexity of the problem, the
five-class problem is translated into four two-class problems fol-
lowing the idea presented in [31]. Thus, four different programs
were employed, each one specialised in detecting one specific class
from the remainder, but which are intended to be executed to-
gether (thus, it is a unique intrusion detection module):
� Program_0: determines whether the trace is class 0 (it returns 0)
or 1, 2, 3 or 4 (it returns 1).
� Program_1: determines whether the trace is class 1 (it returns 0)

or 2, 3 or 4 (it returns 1).
� Program_2: determines whether the trace is class 2 (it returns 0)

or 3 or 4 (it returns 1).
� Program_3: determines whether the trace is class 3 (it returns 0)

or 4 (it returns 1).

Programs may return 0 (if they detect the specific class) or 1
(the trace belongs to any other of the remainder classes). At first,
the Program_0 is run, if it outputs a 0, a 0 is returned, otherwise
the Program_1 is executed. If this outputs a 0, that means that
the trace belongs to class 1, so a 1 is returned, otherwise, the Pro-

gram_2 is executed, and so on (see the Algorithm 1).

4.3.2. Performance comparison metrics
As in the multi-classification problem, the dataset is composed

of traces of four different attacks, it does not make sense to talk
about a single attack prevalence. Therefore, in multiclass problems
the intrusion detection capability (Cid) is not an appropriate metric
(as originally presented in [29]). To compare the classification algo-
rithms we use the false alarm rate (FA), the detection rate (DR) and
the classification error (CE). In a multiclass scenario, the detection
rate and the false alarm rate are computed differently from the
two-class case (Eq. (1)).

More precisely these metrics are calculated using composed
probabilities and given by the equations below.

DR0 ¼
Pn

i¼1PðAi & IiÞPn
i¼0

Pn
j¼1PðAi & IjÞ

FA0 ¼
Xn

i¼1

Xn

j¼0;j–i

PðAi & IjÞ

In these equations, each P(Ai & Ij) represent the number of traces of
the class j classified as i by the detector (thus, when i = j, is a cor-
rectly classified trace), divided by the total number of traces (n). Ta-
ble 2 shows a description of contingency matrix for this case.

4.4. Algorithmic technical details

Our analysis is an extension of a previous work [7], where five
different classifiers were used to detect malicious activity. In that
work, it was stated that the best classifier was the Support Vector
Machine (SVM), which uses Lagrangian methods to minimise a reg-
ularized function of the empirical classification error. In this work,
we extend the comparison with a new classifier, based on Genetic
Programming. In addition, we study new different simulated envi-
ronments (with a lower prevalence of attacks) and use new perfor-
mance comparison metrics (i.e., the Cid).

In order to tune the classification models, we have performed
10-fold cross validation [32] on the training datasets, which were
created with random sampling. For each of the 10 folds we selected
1/10th of the dataset for evaluation and the remaining for training.
Finally, we use the selected parameters for each classification algo-
rithm to train each model.

More precisely, for the MLP we tuned three parameters, i.e., the
learning rate (g) and the number of iterations (T) used in the sto-
chastic gradient descent optimisation as well as the number of hid-
den units (nh). We kept nh equal to 0 and selected the appropriate
g among values that range between 0.0001 and 0.1 with step 0.1
and the appropriate T was selected among 10, 100, 500 and
1000. After selecting the appropriate g and the appropriate T, we
examined various values in order to select the appropriate nh.
We selected the best among 10, 20, 40, 60, 80, 100, 120, 140, 160



Table 2
Contingency matrix showing the joint probabilities for a multiclass classifier.
Columns (Ii) represent intrusion events of type i (0 denotes a normal event) and
rows (Aj) correspond to the alarms of type i generated by the IDS (0 denotes the
absence of an alarm).

Intrusion

I0 I1 . . . In

IDS A0 P(A0 & I0) P(A0 & I1) . . . P(A0 & In)
A1 P(A1 & I0) P(A1 & I1) . . . P(A1 & In)
. . . . . . . . . . . . . . .

An P(An & I0) P(An & I1) . . . P(An & In)

Table 3
GP parameters and operators used in the experiments.

Number of
generations

193

Size of
population

942

Size of
tournament

7

Crossover rate 13%
Mutation rate 49%
Operators ADD, AND, DIV, GREATER, LEAST, MULT, OR, MAX, MIN,

ROTATE_LEFT, NOT

Fig. 2. Results achieved for the original two-class dataset with an attack prevalence
of 80%.

Fig. 1. Setup of the datasets.

222 S. Pastrana et al. / Knowledge-Based Systems 36 (2012) 217–225
and 320. For the Linear model we used the MLP model with no hid-
den units.

For the GMM, we tuned three parameters, i.e., the threshold (h),
the number of iterations (T) and the number of Gaussian Mixtures
(ng). Keeping ng equal to 20, we selected the h among values that
range between 0.0001 and 0.1 with range 0.1 and the most suitable
T among 25, 100, 500 and 1000. Finally, in order to select ng, after
selecting the appropriate h and the appropriate T we selected the
best value for ng among 10, 20, 40, 60, 80, 100, 120, 140, 160
and 320.

For the SVM algorithm we tuned two parameters, i.e., the stan-
dard deviation (r) for the gaussian kernel and the regularisation
parameter c which represents the trade-off between the size of
the margin and the number of misclassified examples. For the
selection of the appropriate combination of r and c, we examined
various values for the r (1, 10, 100, 1000) and the c (1, 10, 100,
1000) and selected the best.

For the Genetic Programming algorithm we tuned the following
parameters:

� Crossover rate: Percentage of individuals on the population to be
crossed. We examined any possible decimal value between 0
and 100.
� Mutation rate: Percentage of individuals on the population to be

mutated. We have investigated possible values between 0 and
50.
� Size of the population: Number of individuals in the population.

Values are restricted to be greater than 500 and lower than
1300.
� Number of generations: Normally, the larger the better, but if the

evolution remains stagnant, using high values may be ineffi-
cient. The range of possible values given is from 60 to 200.
� Tournament size: It is the number of individuals selected to per-
form the tournament selection (see [21] for more information).
We accept integer values between 3 and 8.

We have run 140 experiments, with 140 different configura-
tions. Table 3 shows the parameters obtained that finally were
used in the experiments. and the list of functions (internal nodes
of the trees) used. The list of terminals, described in Table 1, corre-
sponds to the set of features in the dataset. As mentioned above,
the fitness function is a critical component as it defines the way
the individuals must evolve to solve the problem. The experiments
were performed using two different fitness functions, i.e. minimis-
ing the classification error (CE) and maximising the intrusion detec-
tion capability (Cid).



Fig. 3. Results achieved for the modified two-class dataset with an attack prevalence of 4%.

Fig. 4. Results achieved for the modified two-class dataset with an attack
prevalence of 1%.
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5. Results

SVM was the best classifier of the five studied previously
(excluding GP) [7]. Therefore, the comparison regarding the two-
class classification is made between SVM and the new classifier
we are analysing, i.e., the one based on GP. Fig. 2 shows the com-
parison of SVM with the two GP individuals obtained using the ori-
ginal dataset with an attack prevalence of 80%. From now on, we
Fig. 5. Graphical comparison of the classifi
denote as GP1 to the model obtained trying to maximise the Cid,
and GP2 the model obtained minimising the classification error
(CE). GP improves the results obtained with SVM, as the classifica-
tion error (CE) of both models are lower than the SVM and the Cid is
quite higher.

When the number of attacks in the dataset is reduced, we can
see in both Fig. 3 (4% of attack prevalence) and Fig. 4 (1% of attack
prevalence) that the classification error (CE) is lower when the GP
algorithm is employed. Regarding the Cid, when using the dataset
with a 1% of prevalence (Fig. 4), the Cid is better for both GP mod-
els. The GP1 model maximises the Cid, so it obviously achieves the
best value (0.29 approximately). The GP2 model accomplishes the
lower classification error (CE) in all cases. However, as we can ob-
serve in Fig. 3, regarding the Cid the SVM model has slightly better
performance than the GP algorithm.

Regarding the multiclass dataset, as stated in the Section 4.3 the
comparison is done in terms of detection rate (DR), the false alarm
rate (FA) and the classification error (CE). Fig. 5 and Table 4 show
the performance results for all the classifiers studied. It can be seen
that the best performance is achieved by the MultiLayer Percep-
tron (MLP) and the SVM, with nearly equal performance. The GP
classifier has a lower detection rate (DR), but also a lower false
alarm rate (FA), so the classification error (CE) is quite high, as the
multiclass dataset has a high prevalence (80%). Therefore, if the
GP algorithm detects an attack, it is known with a higher certainty
that this attack is actually happening, since the probability of giv-
ing false alarms (FA) is one of the lowest for all the classifiers. Fig. 6
ers regarding the multiclass dataset.



Table 4
False alarm rate (FA), detection rate (DR) and classification error (CE) incurred by each
classifier using the multiclass dataset. Highlighted in bold are the best values
achieved for each rate.

FA DR CE

GMM 0.08 0.77 0.21
MLP 0.05 0.77 0.18
LINEAR 0.05 0.76 0.19
NAIVE 0.14 0.72 0.26
SVM 0.06 0.77 0.19
GP 0.05 0.73 0.21

Fig. 6. Detection rates of each attack by each classifier regarding the multiclass
dataset.
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shows the detection rate (DR) for all the classifiers and for each at-
tack. The attack with the highest detection rate for the GP algo-
rithm is the Flooding attack. It can be seen that, although GP is
not a good multiclass classifier, it has better performance than
other classifiers for some attacks. For instance, it detects a Forging

attack better than the MLP, the Linear and Naïve Bayes classifier,
and presents almost equal performance with the SVM classifier.
This implies that the technique of dividing a multi-classification
problem into several two-class classification problems may work
under certain conditions or attacks. This is a further line to inves-
tigate in the future.
6. Conclusions

Detecting malicious activities in MANETs is a complex task be-
cause of the inherent features of these networks, such as the
mobility of the nodes, the lack of a fixed architecture as well as
the severe resource constraints. There is an urgent need to safe-
guard these communication networks and to propose efficient
mechanisms in order to detect malicious behaviour.

In this article we provide a comparison of the effectiveness of
different classifiers that can be employed as intrusion detection
algorithms in MANETs. Results show that Genetic Programming
may be a good paradigm to use when the goal is just to detect
an intruder, although if the objective is to indicate which is the
particular attack launched then it is better to use a SVM classifier.
The evaluation of the classifiers is performed considering that the
intrusion detection process is completely distributed and each
node of the network hosts an independent intrusion detection
agent. As future work we will examine which network architecture
is more efficient regarding the placement of the intrusion detection
agents in the network.
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