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Abstract: As an extension of an intuitionistic fuzzy set, a single-valued neutrosophic set is described
independently by the membership functions of its truth, indeterminacy, and falsity, which is a subclass
of a neutrosophic set (NS). However, in existing exponential operations and their aggregation
methods for neutrosophic numbers (NNs) (basic elements in NSs), the exponents (weights) are
positive real numbers in unit intervals under neutrosophic decision-making environments. As a
supplement, this paper defines new exponential operations of single-valued NNs (basic elements
in a single-valued NS), where positive real numbers are used as the bases, and single-valued NNs
are used as the exponents. Then, we propose a single-valued neutrosophic weighted exponential
aggregation (SVNWEA) operator based on the exponential operational laws of single-valued NNs
and the SVNWEA operator-based decision-making method. Finally, an illustrative example shows
the applicability and rationality of the presented method. A comparison with a traditional method
demonstrates that the new decision-making method is more appropriate and effective.

Keywords: single-valued neutrosophic set; exponential operational law; single-valued neutrosophic
weighted exponential aggregation (SVNWEA) operator; decision making

1. Introduction

Real life problems often call for decision-making under uncertainty, meaning we have to make
a choice based on incomplete and indeterminate data. To deal with indeterminate and inconsistent
information, a neutrosophic set (NS) [1] can express and handle the indeterminate and inconsistent
information, while an intuitionistic fuzzy set (IFS) and an interval-valued IFS cannot. In an NS, the
membership functions of its truth, falsity, and indeterminacy are in a real standard or nonstandard
interval ]−0, 1+[. Because the NS concept was introduced by Smarandache [1] from a philosophical
point of view, it implies the difficulty of real scientific and engineering applications. Thus, the concepts
of a single-valued NS [1,2] and an interval NS [3] were presented as the NS subclasses to be easily used
for actual applications. After that, a simplified NS [4] was presented as an NS subclass, including the
concepts of single-valued and interval NSs, which is the extension of an IFS and an interval-valued
IFS. Recently, single-valued and interval NSs, and simplified NSs have received great attention and
obtained their applications [5–13]. Some basic operations [1–3] on NSs have been introduced, including
“intersection”, “union”, “supplement”, “multiplication”, “addition”, and so on. Then, Ye [4] defined
some basic operations of simplified NSs, as well as weighted arithmetic and geometric averaging
operators of simplified NSs for aggregating simplified neutrosophic information, and used the two
aggregation operators for multiple attribute decision-making (MADM). However, Zhang et al. [13]
found shortcomings in some of the operational laws of single-valued NSs, and improved some of
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the operational laws of interval NSs and some aggregation operators of interval NSs for MADM
problems. Liu and Wang [14] further introduced normalized weighted Bonferroni mean operators
of single-valued NSs for MADM problems. Furthermore, some generalized neutrosophic number
Hamacher aggregation (GNNHA) operators were put forward by Liu et al. [15], and applied to group
decision making. Ye [16] proposed interval neutrosophic ordered weighted aggregation operators, and
the possibility degree ranking method for interval neutrosophic MADM problems. Liu and Wang [17]
presented an interval neutrosophic prioritized ordered weighted averaging operator for MADM. Liu
and Teng [18] further put forward a normal neutrosophic generalized weighted power averaging
operator for MADM. Sun et al. [19] proposed an interval neutrosophic numbers Choquet integral
operator for MADM. Zhao et al. [20] presented a generalized weighted aggregation operator for interval
NSs and applied it to MADM. Furthermore, Ye [21] presented credibility-induced interval neutrosophic
weighted arithmetic and geometric average operators, and a projection measure-based ranking method
for interval neutrosophic numbers (NNs), and then applied them to interval neutrosophic MADM
problems with credibility information. Wu et al. [22] introduced a cross-entropy and prioritized
aggregation operator of simplified NNs (basic elements in a simplified NS) and applied them to
MADM problems. Zhang et al. [23] presented an outranking method for multicriteria decision-making
problems with interval-valued neutrosophic information.

However, in the existing literature, we notice that the basic element in the weighted geometric
average operator of simplified NNs is composed of a positive real number and simplified NNs,
including single-valued and interval NNs. Then, in an intuitionistic fuzzy number (IFN) (a basic
element in IFS) environment, Gou et al. [24] defined exponential operational laws of IFNs, where
the positive real numbers are used as the bases and IFNs are used as the exponents, and proposed
an intuitionistic fuzzy exponential aggregation method for MADM problems. In existing simplified
neutrosophic (including single-valued and interval neutrosophic) MADM problems, positive real
numbers are used as the exponents (weights) in all the existing exponential operations and their
aggregation methods for simplified NNs. In fact, when decision-makers give the weighted values
of attributes importance in a complex decision-making process, the weighted values also imply
incomplete, indeterminate, and inconsistent information, due to the indeterminacy and inconsistency
of the decision-makers’ thinking patterns for the complexity and ambiguity in the decision-making
process. Then, the single-valued NN is concerned with truth, falsity, and indeterminacy degrees,
while the IFN is only concerned with truth and falsity degrees. Hence, the single-valued NN
contains more information than the IFN and extends the IFN concept. However, IFNs cannot
express indeterminate and inconsistent information, while single-valued NNs can express incomplete,
indeterminate, and inconsistent information, and are very suitable for the expression of truth, falsity,
and indeterminacy degrees for the attribute weights in indeterminate decision-making situations.
Unfortunately, all existing studies do not present the operational laws and aggregation operators
using single-valued neutrosophic exponential weights in a single-valued neutrosophic environment.
Motivated by the exponential operational law of IFNs and the corresponding aggregation method of
intuitionistic fuzzy information [24], it is necessary that exponential operational laws of single-valued
NNs and a corresponding single-valued neutrosophic aggregation method are developed as an
important supplement to the existing simplified neutrosophic aggregation techniques. To present the
operational laws and aggregation operators using single-valued neutrosophic exponential weights
in a single-valued neutrosophic environment, this paper first defines new exponential operational
laws of single-valued NSs and single-valued NNs, where positive real numbers are used as the
bases and single-valued NSs and single-valued NNs are used as the exponents, and proposes a
single-valued neutrosophic weighted exponential aggregation (SVNWEA) operator based on the
exponential operational laws of single-valued NNs, and discusses its properties. Then, we develop a
single-valued neutrosophic MADM method by using the SVNWEA operator. In the MADM problem
with single-valued neutrosophic weight information, the data in the decision matrix that is given by
decision-makers (DMs) are given by positive real numbers, and the attribute weights are provided
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by single-valued NNs. However, the traditional aggregation operators of single-valued NNs cannot
deal with such a decision-making problem, while the proposed exponential aggregation operator of
single-valued NNs can effectively solve this issue.

The rest of the paper is constructed below. Section 2 introduces some basic notation for
single-valued NSs. Section 3 proposes some exponential operational laws of single-valued NSs
and single-valued NNs. Section 4 presents the exponential aggregation operator of single-valued
NNs by using the exponential operational laws of single-valued NNs, and discusses its properties.
A MADM method is developed by using the SVNWEA operator in Section 5. Section 6 provides
an illustrative example to show the applicability of the presented method. Section 7 contains some
conclusions and future research directions.

2. Preliminaries of Single-Valued NSs

For the expression of indeterminate and inconsistent information in the real world,
Smarandache [1] presented NSs from a philosophical point of view. For a NS B in a universe of
discourse U, it is described independently by its truth, falsity, and indeterminacy membership functions
TB(x), FB(x), and IB(x) in the real standard interval [0, 1] or the nonstandard interval ]−0, 1+[, such that
TB(x): U→ ]−0, 1+[, FB(x): U→ ]−0, 1+[, IB(x): U→ ]−0, 1+[, and −0 ≤ sup TB(x) + sup IB(x) + sup
FB(x) ≤ 3+ for x ∈ U.

Obviously, an NS is difficult to apply in a practical problem since its three functions lie in
the nonstandard interval ]−0, 1+[. Thus, the concept of a single-valued NS was introduced by
Smarandache [1] and Wang et al. [2]. When the three functions in an NS can be constrained in
the real standard interval [0, 1] as an NS subclass, it is easily applied in real science and engineering
areas. Then, the definition of a single-valued NS [1,2] is introduced below.

Definition 1. [1,2]. Let U be a universe of discourse. A single-valued NS S in U is described independently by
its truth, falsity, and indeterminacy membership functions TS(x), FS(x), IS(x), where TS(x), IS(x), FS(x) ∈ [0, 1]
satisfy the condition 0 ≤ TS(x) + IS(x) + FS(x) ≤ 3 for x ∈ U. Then, the single-valued NS S can be denoted as
S = {〈x, TS(x), IS(x), FS(x)〉|x ∈ U}.

For convenience, a basic element 〈x, TS(x), IS(x), FS(x)〉 in a single-valued NS S is denoted by
s = <Ts, Is, Fs> for short, which is called a single-valued NN.

Suppose that two single-valued NNs are s1 = 〈Ts1 , Is1 , Fs1〉 and s2 = 〈Ts2 , Is2 , Fs2〉, then there are
the following relations [2,13,14]:

(1) sc
1 = 〈Fs1 , 1− Is1 , Ts1〉 (the complement of s1);

(2) s1 ⊆ s2 if and only if Ts1 ≤ Ts2 , Is1 ≥ Is2 , and Fs1 ≥ Fs2 ;
(3) s1 = s2 if and only if s2 ⊆ s1 and s1 ⊆ s2;
(4) s1 ⊕ s2 = 〈Ts1 + Ts2 − Ts1 Ts2 , Is1 Is2 , Fs1 Fs2〉;
(5) s1 ⊗ s2 = 〈Ts1 Ts2 , Is1 + Is2 − Is1 Is2 , Fs1 + Fs2 − Fs1 Fs2〉;
(6) ρs1 =

〈
1− (1− Ts1)

ρ, (Is1)
ρ, (Fs1)

ρ〉 for p > 0; and
(7) (s1)

ρ =
〈
(Ts1)

ρ, 1− (1− Is1)
ρ, 1− (1− Fs1)

ρ 〉 for p > 0.

For any single-valued NN s = <Ts, Is, Fs>, its score and accuracy functions [13,14] can be
introduced, respectively, as follows:

P(s) = (2 + Ts − Is − Fs)/3, P(s) ∈ [0, 1], (1)

Q(s) = Ts − Fs, Q(s) ∈ [−1, 1]. (2)

According to the two functions P(s) and Q(s), the comparison and ranking of two single-valued
NNs is introduced by the following definition [13,14].
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Definition 2. Let s1 = 〈Ts1 , Is1 , Fs1〉 and s2 = 〈Ts2 , Is2 , Fs2〉 be two single-valued NNs. We can define the
following ranking method:

(1) If P(s1) > P(s2), then s1 > s2;
(2) If P(s1) = P(s2) and Q(s2) > Q(s1), then s2 > s1;
(3) If P(s1) = P(s2) and Q(s1) = Q(s2), then s2 = s1.

Let si = 〈Tsi , Isi , Fsi 〉 (i = 1, 2, . . . , n) be a collection of single-valued NNs. Based on the weighted
aggregation operators of interval NNs [13], the single-valued neutrosophic weighted arithmetic
averaging operator (SVNWAA) and the single-valued neutrosophic weighted geometric averaging
operator (SVNWGA) can be introduced as follows:

SVNWAA(s1, s2, ..., sn) =
n

∑
i=1

wisi =

〈
1−

n

∏
i=1

(1− Tsi )
wi ,

n

∏
i=1

(Isi )
wi ,

n

∏
i=1

(Fsi )
wi

〉
, (3)

SVNWGA(s1, s2, ..., sn) =
n

∏
i=1

(si)
wi =

〈
n

∏
i=1

(Tsi )
wi , 1−

n

∏
i=1

(1− Isi )
wi , 1−

n

∏
i=1

(1− Fsi )
wi

〉
, (4)

where wi (i = 1, 2, . . . , n) is the weight of si (i = 1, 2, . . . , n), wi ∈ [0, 1], and ∑n
i=1 wi = 1.

3. Exponential Operational Laws of Single-Valued NSs and Single-Valued NNs

As a supplement to the existing operational laws of single-valued NSs, this section defines
new exponential operational laws of single-valued NSs and single-valued NNs, where the positive
real numbers are used as the bases and the single-valued NSs and single-valued NNs are used as
the exponents.

Definition 3. Let S = {<x, TS(x), IS(x), FS(x)>|x ∈ U} be a single-valued NS in a universe of discourse U.
Then, an exponential operational law of the single-valued NS S is defined as

µS =


{〈

x, µ1−TS(x), 1− µIS(x), 1− µFS(x)
〉∣∣∣x ∈ U

}
, µ ∈ (0, 1){〈

x, (1/µ)1−TS(x), 1− (1/µ)IS(x), 1− (1/µ)FS(x)
〉∣∣∣x ∈ U

}
, µ ≥ 1

(5)

where TS(x) ∈ [0, 1], IS(x) ∈ [0, 1], FS(x) ∈ [0, 1], and 0 ≤ TS(x) + IS(x) + FS(x) ≤ 3 for x ∈ U. Obviously,
µS is also a single-valued NS. Let us discuss the following two cases:

(1) If µ ∈ [0, 1], the membership functions of the truth, indeterminacy, and falsity are
µ1−TS(x) ∈ [0, 1], µIS(x) ∈ [0, 1], and µFS(x) ∈ [0, 1] for any x ∈ U, respectively. Thus,{〈

x, µ1−TS(x), 1− µIS(x), 1− µFS(x)
〉∣∣∣x ∈ U

}
is a single-valued NS.

(2) If µ ≥ 1, then there is 0 ≤ 1/µ ≤ 1. It is obvious that{〈
x, (1/µ)1−TS(x), 1− (1/µ)IS(x), 1− (1/µ)FS(x)

〉∣∣∣x ∈ U
}

is also a single-valued NS.

Similarly, we can also propose an operational law for a single-valued NN.

Definition 4. Let s = <Ts, Is, Fs> be a single-valued NN, then an exponential operational law of the single-valued
NN s is defined as follows:

µs =

{ 〈
µ1−Ts , 1− µIs , 1− µFs

〉
, µ ∈ (0, 1)〈

(1/µ)1−Ts , 1− (1/µ)Is , 1− (1/µ)Fs
〉

, µ ≥ 1
(6)

It is obvious that µs is also a single-valued NN. Let us consider the following example.
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Example 1. Assume that a single-valued NN s is s = <0.5, 0.3, 0.2>, and µ 1 = 0.6 and µ2 = 5 are two real
numbers. Then, according to Definition 4, we can obtain

µs
1 = 0.6<0.5,0.3,0.2> =

〈
0.61−0.5, 1− 0.60.3, 1− 0.60.2

〉
= 〈0.7746, 0.1421, 0.0971〉,

µs
2 = 5<0.5,0.3,0.2> =

〈
(1/5)1−0.5, 1− (1/5)0.3, 1− (1/5)0.2

〉
= 〈0.4472, 0.3830, 0.2752〉.

In the following, the properties of the exponential operational laws of single-valued NNs only are
discussed when µ ∈ (0, 1) because the properties of µs for µ ∈ (0, 1) are almost the same as µ ≥ 1.

Theorem 1. Let s1 = 〈Ts1 , Is1 , Fs1〉 and s2 = 〈Ts2 , Is2 , Fs2〉 be two single-valued NNs, and µ ∈ (0, 1). Then,
there are the following commutative laws:

(1) µs2 ⊕ µs1 = µs1 ⊕ µs2 ;
(2) µs2 ⊗ µs1 = µs1 ⊗ µs2 .

Obviously, the commutative laws are true. Their proofs are omitted here.

Theorem 2. Let s1 = 〈Ts1 , Is1 , Fs1〉, s2 = 〈Ts2 , Is2 , Fs2〉, and s3 = 〈Ts3 , Is3 , Fs3〉 be three single-valued NNs,
and µ ∈ (0, 1). Then, there are the following associative laws:

(1) (µs2 ⊕ µs3)⊕ µs1 = µs2 ⊕ (µs3 ⊕ µs1);
(2) (µs2 ⊗ µs3)⊗ µs1 = µs2 ⊗ (µs3 ⊗ µs1).

Obviously, the associative laws are also true. Their proofs are omitted here.

Theorem 3. Let s = <Ts, Is, Fs> be a single-valued NN. If µ1 ≥ µ2, then one can obtain (µ1)s ≥ (µ2)s for µ1,
µ2 ∈ (0, 1) and (µ1)s ≤ (µ2)s for µ1, µ2 ≥ 1.

Proof. When µ1 ≥ µ2 and µ1, µ2 ∈ (0, 1), based on Definition 4, we can obtain

(µ1)
s =

〈
(µ1)

1−Ts , 1− (µ1)
Is , 1− (µ1)

Fs
〉

and(µ2)
s =

〈
(µ2)

1−Ts , 1− (µ2)
Is , 1− (µ2)

Fs
〉

.

Since (µ1)
1−Ts ≥ (µ2)

1−Ts , 1 − (µ1)
Is ≤ 1 − (µ2)

Is , and 1 − (µ1)
Fs ≤ 1 − (µ2)

Fs

for µ1 ≥ µ2, their scores areP((µ1)
s) =

[
(µ1)

1−Ts + 2− (1− (µ1)
Is)− (1− (µ1)

Fs)
]
/3 =[

(µ1)
1−Ts + (µ1)

Is + (µ1)
Fs
]
/3 and P((µ2)

s) =
[
(µ2)

1−Ts + 2− (1− (µ2)
Is)− (1− (µ2)

Fs)
]
/3 =[

(µ2)
1−Ts + (µ2)

Is + (µ2)
Fs
]
/3. Thus, there are the following two cases:

(a) If P((µ2)
s) > P((µ1)

s), then (µ2)s > (µ1)s.

(b) If P((µ2)
s) = P((µ1)

s), then we can only obtain (µ1)
1−Ts = (µ2)

1−Ts , 1− (µ1)
Is = 1− (µ2)

Is , and
1− (µ1)

Fs = 1− (µ2)
Fs for µ1 = µ2, i.e., (µ1)s = (µ2)s.

According to the above two cases, there is (µ1)s ≥ (µ2)s. Then, when µ1, µ2 ≥ 1 and µ1 ≥ µ2, we
can know 0 < 1/µ1 ≤ 1/µ2 ≤ 1. As discussed above, we can obtain (µ1)s ≤ (µ2)s. This completes
the proof.

Meanwhile, µs implies some special values when µ takes some values:

(1) If µ = 1, then µs =
〈
µ1−Ts , 1− µIs , 1− µFs

〉
= 〈1, 0, 0〉 for every single-valued NN s;

(2) If s = <1, 0, 0>, then µs =
〈
µ1−Ts , 1− µIs , 1− µFs

〉
= 〈1, 0, 0〉 for every value of µ;

(3) If s = <0, 1, 1>, then µs =
〈
µ1−Ts , 1− µIs , 1− µFs

〉
= 〈µ, 1− µ, 1− µ〉 for every value of µ.
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4. Single-Valued Neutrosophic Weighted Exponential Aggregation Operator

Based on Definition 4, this section develops a SVNWEA operator, where the bases are a collection
of positive real numbers of µi (i =1, 2, . . . , n) and the exponents are a collection of single-valued NNs
for si = 〈Tsi , Isi , Fsi 〉 (i =1, 2, . . . , n).

Definition 5. Let si = 〈Tsi , Isi , Fsi 〉 for i = 1, 2, . . . , n be a collection of single-valued NNs, µi ∈ (0, 1) for
i = 1, 2, . . . , n, and SVNWEA: Ωn → Ω. If the function SVNWEA is defined as

SVNWEA(s1, s2, · · · , sn) =
n

∏
i=1

(µi)
si , (7)

then the function SVNWEA is called a SVNWEA operator, where si (i = 1, 2, . . . , n) is the exponential
weight of µi (i = 1, 2, . . . , n).

Theorem 4. Let si = 〈Tsi , Isi , Fsi 〉 for i = 1, 2, . . . , n be a collection of single-valued NNs. Then the aggregated
value of the SVNWEA operator is a single-valued NN, where

SVNWEA(s1, s2, · · · , sn) =

〈
n

∏
i=1

(µi)
1−Tsi , 1−

n

∏
i=1

(µi)
Isi , 1−

n

∏
i=1

(µi)
Fsi

〉
(8)

and si (i = 1, 2, . . . , n) is the exponential weight of µi (i = 1, 2, . . . , n).

Proof. By using mathematical induction, we can prove Equation (8).

(1) When n = 2, we have

SVNWEA(s1, s2) = (µ1)
s1 ⊗ (µ2)

s1

=

〈
(µ1)

1−Ts1 (µ2)
1−Ts2 , 1− (µ1)

Is1 + 1− (µ2)
Is2 −

(
1− (µ1)

Is1

)(
1− (µ2)

Is2

)
,

1− (µ1)
Fs1 + 1− (µ2)

Fs2 −
(

1− (µ1)
Fs1

)(
1− (µ2)

Fs2

) 〉

=

〈
2

∏
i=1

(µi)
1−Tsi , 1−

2
∏
i=1

(µi)
Isi , 1−

2
∏
i=1

(µi)
Fsi

〉
.

(9)

(2) When n = k, according to Equation (8) there is the following formula:

SVNWEA(s1, s2, · · · , sk) =

〈
k

∏
i=1

(µi)
1−Tsi , 1−

k

∏
i=1

(µi)
Isi , 1−

k

∏
i=1

(µi)
Fsi

〉
. (10)

(3) When n = k+1, we have the following results based on the operational laws of Definition 4 and
combining (9) and (10)

SVNWEA(s1, s2, · · · , sk, sk+1) =

〈
k

∏
i=1

(µi)
1−Tsi , 1−

k
∏
i=1

(µi)
Isi , 1−

k
∏
i=1

(µi)
Fsi

〉
⊗ (µk+1)

sk+1

=

〈
k+1
∏
i=1

(µi)
1−Tsi , 1−

k+1
∏
i=1

(µi)
Isi , 1−

k+1
∏
i=1

(µi)
Fsi

〉
.

Therefore, for the above results we can obtain that Equation (8) holds for any n.
Thus, the proof is completed.

It is obvious that the SVNWEA operator contains the following properties:
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(1) Boundedness: Let si = 〈Tsi , Isi , Fsi 〉 (i = 1, 2, . . . , n) be a collection of

single-valued NNs, and let smin =

〈
min

i
(Tsi ), max

i
(Isi ), max

i
(Fsi )

〉
, smax =〈

max
i

(Tsi ), min
i
(Isi ), min

i
(Fsi )

〉
for i = 1, 2, . . . , n, s+ = SVNWEA(smax, smax, · · · , smax) =〈

n
∏
i=1

(µi)
1−max

i
(Tsi ), 1−

n
∏
i=1

(µi)
min

i
(Isi ), 1−

n
∏
i=1

(µi)
min

i
(Fsi )

〉
, s− =

SVNWEA(smin, smin, · · · , smin) =

〈
n
∏
i=1

(µi)
1−min

i
(Tsi ), 1−

n
∏
i=1

(µi)
max

i
(Isi ), 1−

n
∏
i=1

(µi)
max

i
(Fsi )

〉
,

then there is s− ≤ SVNWEA(s1, s2, · · · , sn) ≤ s+.

(2) Monotonicity: Let si = 〈Tsi , Isi , Fsi 〉 and s∗i =
〈

Ts∗i
, Is∗i

, Fs∗i

〉
for i = 1, 2, . . . , n be two collections of

single-valued NNs. If si ≤ s∗i , then SVNWEA(s1, s2, · · · , sn) ≤ SVNWEA(s∗1 , s∗2 , · · · , s∗n).

Proof. (1) For any i, we have min
i
(Tsi ) ≤ Tsi ≤ max

i
(Tsi ), min

i
(Isi ) ≤ Isi ≤ max

i
(Isi ), and

min
i
(Fsi ) ≤ Fsi ≤ max

i
(Fsi ). Then

n
∏
i=1

(µi)
1−Tsi ≥

n
∏
i=1

(µi)
1−min

i
(Tsi ),

n
∏
i=1

(µi)
1−Tsi ≤

n
∏
i=1

(µi)
1−max

i
(Tsi ),

1 −
n
∏
i=1

(µi)
Isi ≤ 1 −

n
∏
i=1

(µi)
max

i
(Isi ), 1 −

n
∏
i=1

(µi)
Isi ≥ 1 −

n
∏
i=1

(µi)
min

i
(Isi ), 1 −

n
∏
i=1

(µi)
Fsi ≤

1 −
n
∏
i=1

(µi)
max

i
(Fsi ), and 1−

n
∏
i=1

(µi)
Fsi ≥ 1−

n
∏
i=1

(µi)
min

i
(Fsi ).

Let SVNWEA(s1, s2, · · · , sn) = s = 〈Ts, Is, Fs〉, s− = 〈Ts− , Is− , Fs−〉, and s+ = 〈Ts+ , Is+ , Fs+〉, then
their score values are as follows:

P(s) = (2 + Ts − Is − Fs)/3 = 1
3

[
n
∏
i=1

(µi)
1−Tsi +

n
∏
i=1

(µi)
Isi +

n
∏
i=1

(µi)
Fsi

]
≥ P(s−) = (2 + Ts− − Is− − Fs−)/3 = 1

3

[
n
∏
i=1

(µi)
1−min

i
(Tsi ) +

n
∏
i=1

(µi)
max

i
(Isi ) +

n
∏
i=1

(µi)
max

i
(Isi )
] ,

P(s) = (2 + Ts − Is − Fs)/3 = 1
3

[
n
∏
i=1

(µi)
1−Tsi +

n
∏
i=1

(µi)
Isi +

n
∏
i=1

(µi)
Fsi

]
≤ P(s+) = (2 + Ts+ − Is+ − Fs+)/3 = 1

3

[
n
∏
i=1

(µi)
1−max

i
(Tsi ) +

n
∏
i=1

(µi)
min

i
(Isi ) +

n
∏
i=1

(µi)
min

i
(Isi )
] .

Thus, there are the following three cases:

(a) If P(s−) < P(s) < P(s+), then s− < SVNWEA(s1, s2, · · · , sn) < s+ holds obviously.
(b) If P(s) = P(s−), then there is 2 + Ts − Is − Fs = 2 + Ts− − Is− − Fs− . Thus, we can obtain Ts = Ts− ,

Fs = Fs− , and Is = Is− . Hence, there is Q(s) = Ts − Fs = Ts− − Fs− = Q(s−). Based on
Definition 2, we have s = SVNWEA(s1, s2, · · · , sn) = s−.

(c) If P(s) = P(s+), then there is 2 + Ts − Is − Fs = 2 + Ts+ − Is+ − Fs+ . Thus, we can obtain Ts = Ts+ ,
Fs = Fs+ , and Is = Is+ . Hence, there is Q(s) = Ts − Fs = Ts+ − Fs+ = Q(s+). Based on Definition
2, we have s = SVNWEA(s1, s2, · · · , sn) = s+.

Based on the above three cases, there is s− ≤ SVNWEA(s1, s2, · · · , sn) ≤ s+.

(2) If si ≤ s∗i , this implies Tsi ≤ Ts∗i
, Isi ≥ Is∗i

, and Fsi ≥ Fs∗i
for any i. Then, we have µ1−Tsi ≤ µ

1−Ts∗i ,

µIsi ≥ µ
Is∗i , and µFsi ≥ µ

Fs∗i . Hence, there are
n
∏
i=1

µ1−Tsi ≤
n
∏
i=1

µ
1−Ts∗i , 1 −

n
∏
i=1

µIsi ≤ 1 −
n
∏
i=1

µ
Is∗i ,

and 1−
n
∏
i=1

µFsi ≤ 1−
n
∏
i=1

µ
Fs∗i .

Let SVNWEA(s1, s2, · · · , sn) = s = 〈Ts, Is, Fs〉 and s∗ = 〈Ts∗ , Is∗ , Fs∗〉. Then, according to
Equation (1), the score values are as follows:
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P(s) = (2 + Ts − Is − Fs)/3 = 1
3

[
n
∏
i=1

µ1−Tsi +
n
∏
i=1

µIsi +
n
∏
i=1

µFsi

]
≤ P(s∗) = (2 + Ts∗ − Is∗ − Fs∗)/3 = 1

3

[
n
∏
i=1

µ
1−Ts∗i +

n
∏
i=1

µ
Is∗i +

n
∏
i=1

µ
Fs∗i

] .

Hence, there are the following two cases:

(a) If P(s) < P(s*), then there is SVNWEA(s1, s2, · · · , sn) < SVNWEA(s∗1 , s∗2 , · · · , s∗n).
(b) If P(s) = P(s*), then there is 2 + Ts − Is − Fs = 2 + Ts∗ − Is − Fs∗ . Thus, we can obtain Ts = Ts∗ ,

Fs = Fs∗ , and Is = Is∗ . Hence, there is Q(s) = Ts − Fs = Ts∗ − Fs∗ = Q(s∗). Based on Definition 2,
we have SVNWEA(s1, s2, · · · , sn) = SVNWEA(s∗1 , s∗2 , · · · , s∗n).

According to the above two cases, there is SVNWEA(s1, s2, · · · , sn) ≤ SVNWEA(s∗1 , s∗2 , · · · , s∗n).
Therefore, we complete the proofs.

5. MADM Method Based on the SVNWEA Operator

By the SVNWEA operator, we can deal with some MADM problems, where the weight of an
attribute can be expressed as a single-valued NN si (i = 1, 2, . . . , n), and µi ∈ (0, 1) (i = 1, 2, . . . , n) can
be represented as the attribute value for an alternative. Thus, we can establish a MADM method.

In a MADM problem, let B = {B1, B2, . . . , Bm} be a set of alternatives and R = {R1, R2, . . . , Rn} be
a set of attributes. The suitable judgment (satisfaction evaluation) of an attribute Ri (i = 1, 2, . . . , n)
for an alternative Bj (j = 1, 2, . . . , m) is given by decision-makers, and then the evaluation values are
expressed by a positive real/fuzzy number µji ∈ (0, 1) (j = 1, 2, . . . , m; i = 1, 2, . . . , n). Therefore, a
decision matrix D = (µji)m × n can be established. Then, the single-valued NN si = 〈Tsi , Isi , Fsi 〉 is given
as the weight of the attribute Ri (i = 1, 2, . . . , n), where Tsi ∈ [0, 1] indicates the degree to which a DM
prefers the attribute Ri, Isi ∈ [0, 1] indicates the indeterminate degree to which a DM prefers/does not
prefer the attribute Ri, and Fsi ∈ [0, 1] indicates the degree to which a DM does not prefer the attribute
Ri. Then, the decision-making steps are described below:

Step 1: Use Equation (8) to get the overall attribute value dj = SVNWEA(s1, s2, . . . , sn) (j = 1, 2, . . . , m)
for the alternatives Bj (j = 1, 2, . . . , m).

Step 2: Utilize Equation (1) to calculate the score values of P(dj) (j = 1, 2, . . . , m). Then the accuracy
degrees of Q(di) and Q(dj) are calculated if the two score values P(di) and P(dj) are equal.

Step 3: According to the score values (the accuracy degrees), the alternatives are ranked and the best
one is selected.

Step 4: End.

6. Illustrative Example

This section gives an illustrative example of the selection problem of global suppliers for a
manufacturing company as the single-valued neutrosophic MADM problem to show the application
and rationality of the presented decision-making method based on the SVNWEA operator.

Let us consider a manufacturing company, which needs to choose the best global supplier
corresponding to the core competencies of suppliers. The manufacturing company provides a set
of four suppliers B = {B1, B2, B3, B4}, which need to satisfy the four attributes: (1) R1 (the level of
technology innovation); (2) R2 (reputation); (3) R3 (the ability of management); and (4) R4 (the level of
service).

Then, the suitable judgment (satisfaction evaluation) of an attribute Ri (i = 1, 2, 3, 4) for an
alternative Bj (j = 1, 2, 3, 4) is given by decision-makers, and then the evaluation values are represented
by the positive real/fuzzy values of µji ∈ (0, 1) (j, i = 1, 2, 3, 4), which are established by the following
decision matrix D:
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D =


0.6 0.7 0.8 0.7
0.6 0.8 0.7 0.9
0.7 0.6 0.8 0.7
0.8 0.7 0.6 0.8

.

Then, the single-valued neutrosophic weight vector for the four attributes is S = (s1, s2, s3, s4) =
(<0.6, 0.2, 0.4>, <0.7, 0.1, 0.2>, <0.7, 0.2, 0.1>, <0.8, 0.3, 0.2>).

The proposed MADM method is applied to solve the supplier selecting problem, and then its
decision-making steps are given as follows:

Step 1: Use Equation (8) to calculate the overall value of attributes for each supplier Bj (j = 1, 2, 3, 4):
When j = 1, we can obtain

d1 = SVNWEA(s1, s2, s3, s4) =

〈
4

∏
i=1

(µ1i)
1−Tsi , 1−

4
∏
i=1

(µ1i)
Isi , 1−

4
∏
i=1

(µ1i)
Fsi

〉
= 〈0.6379, 0.2513, 0.3088〉

.

By the similar calculation, we can obtain the rest of the results:

d2 = <0.6708, 0.2034, 0.2634>, d3 = <0.6478, 0.2397, 0.2872>, and d4 = <0.6743, 0.2207, 0.2261>.
Step 2: Compute the score values of dj (j = 1, 2, 3, 4) by Equation (1):

P(d1) = 0.6926, P(d2) = 0.7346, P(d3) = 0.7070, and P(d4) = 0.7425.

Step 3: Since the ranking order of the score values is P(d4) > P(d2) > P(d3) > P(d1), the ranking order
of the four alternatives is B4 > B2 > B3 > B1. Therefore, B4 is the best supplier among the
four suppliers.

For a convenient comparison, we use the single-valued neutrosophic weighted arithmetic
averaging (SVNWAA) operator of Equation (3) to solve the decision-making problem.

Step 1: Use Equation (3) to compute the overall value of attributes for each supplier Bj (j = 1, 2, 3, 4):

When j = 1, we can obtain

d1
′ = SVNWAA(s1, s2, s3, s4) =

4
∑

i=1
siµ1i =

〈
1−

n
∏
i=1

(1− Tsi )
µ1i ,

n
∏
i=1

(Isi )
µ1i ,

n
∏
i=1

(Fsi )
µ1i

〉
= 〈0.9693, 0.0090, 0.0096〉

Similarly, we can calculate the overall attribute values of the rest of the suppliers for Bj
(j = 2, 3, 4):

d2
′ = <0.9777, 0.0066, 0.0075>, d3

′ = <0.9684, 0.0097, 0.0103>, and d4
′ = <0.9723, 0.0080, 0.0108>.

Step 2: Compute the score values of dj’ (j = 1, 2, 3, 4) by Equation (1) as follows:

P(d1
′) = 0.9835, P(d2

′) = 0.9879, P(d3
′) = 0.9828, and P(d4

′) = 0.9845.
Step 3: Since the ranking order of the four score values is P(d2

′) > P(d4
′) > P(d1

′) > P(d3
′), the ranking

order of the four alternatives is B2 > B4 > B1 > B3 and the best supplier is B2.

For comparative convenience between the two methods, their results are shown in Table 1.

Table 1. The results of the two decision-making methods.

Aggregated Method Score Value Ranking

SVNWEA operator P(d1) = 0.6926, P(d2) = 0.7346, P(d3) = 0.7070, P(d4) = 0.7425 B4 > B2 > B3 > B1

SVNWAA operator P(d1
′) = 0.9835, P(d2

′) = 0.9879, P(d3
′) = 0.9828, P(d4

′) = 0.9845 B2 > B4 > B1 > B3
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From the results of Table 1, we can give the comparative analyses between the SVNWEA operator
and the SVNWAA operator as follows:

(1) In Step 1, the SVNWEA operator needs to utilize the attribute weight of the single-valued NN
si and the characteristic value µji ∈ (0, 1) of an attribute Ri for an alternative Bj; while the SVNWAA
operator needs to exchange the roles of sj and µji to use it, by the attribute weight µji ∈ (0, 1) and the
characteristic value si of an attribute Ri for an alternative Bj. Therefore, the SVNWAA operator used in
this case is unreasonable while the SVNWEA operator used in this case is reasonable, because we do
not change the positions and the meanings of the attribute values and the weights.

(2) The two ranking orders derived by using the SVNWEA operator and the SVNWAA operator
are obviously different. The main reason is that the positions and meanings of the attribute
values and the weights are necessarily exchanged, respectively, which may result in unreasonable
decision-making results.

Furthermore, compared with the existing method introduced in an IFN environment [24], our
method uses single-valued neutrosophic weights, which contain truth, falsity, and indeterminacy
degrees, and can deal with the incomplete, indeterminate, and inconsistent problems in a
decision-making process; the existing method [24] uses intuitionistic fuzzy weights, which contain
truth and falsity degrees, and cannot handle the incomplete, indeterminate, and inconsistent
decision-making problems. Since an IFN is only a special case of a single-valued NN, our method is
the extension of the existing method [24], and then the existing method [24] is only a special case of
our method.

Besides, existing NN decision-making methods based on NN weighted aggregation operators also
cannot deal with decision-making problems using single-valued neutrosophic exponential weights as
presented in this paper.

Obviously, using single-valued neutrosophic weights can make the decision-making process more
appropriate and effective, and more suitably reflect the real decision-making process. Therefore, our
method not only extends the existing methods, but also provides a new way for decision-makers in a
single-valued neutrosophic environment.

7. Conclusions

This paper proposed new exponential operational laws of single-valued NSs and single-valued
NNs as a useful supplement to the existing operational laws of single-valued NSs and single-valued
NNs. Then, we presented the SVNWEA operator for aggregating single-valued neutrosophic
information, and discussed its properties. Next, we established the MADM method by use of the
SVNWEA operator to solve MADM problems with single-valued neutrosophic exponential weights.
Finally, an illustrative example was provided to show the applicability and rationality of the presented
method. In future work, we shall further extend the developed method to interval NNs and apply it to
other fields, such as medical diagnosis and image processing.
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