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Abstract: We extend for the second time the nonstandard analysis by adding the left monad closed to
the right, and right monad closed to the left, while besides the pierced binad (we introduced in 1998)
we add now the unpierced binad—all these in order to close the newly extended nonstandard space
under nonstandard addition, nonstandard subtraction, nonstandard multiplication, nonstandard
division, and nonstandard power operations. Then, we extend the Nonstandard Neutrosophic
Logic, Nonstandard Neutrosophic Set, and Nonstandard Probability on this Extended Nonstandard
Analysis space, and we prove that it is a nonstandard neutrosophic lattice of first type (endowed
with a nonstandard neutrosophic partial order) as well as a nonstandard neutrosophic lattice of
second type (as algebraic structure, endowed with two binary neutrosophic laws: infN and supN).
Many theorems, new terms introduced, better notations for monads and binads, and examples of
nonstandard neutrosophic operations are given.

Keywords: nonstandard analysis; extended nonstandard analysis; open and closed monads to the
left/right; pierced and unpierced binads; MoBiNad set; infinitesimals; infinities; nonstandard reals;
standard reals; nonstandard neutrosophic lattices of first type (as poset) and second type (as algebraic
structure), nonstandard neutrosophic logic; extended nonstandard neutrosophic logic; nonstandard
arithmetic operations; nonstandard unit interval; nonstandard neutrosophic infimum; nonstandard
neutrosophic supremum

1. Short Introduction

In order to more accurately situate and fit the neutrosophic logic into the framework of extended
nonstandard analysis [1–3], we present the nonstandard neutrosophic inequalities, nonstandard
neutrosophic equality, nonstandard neutrosophic infimum and supremum, and nonstandard
neutrosophic intervals, including the cases when the neutrosophic logic standard and nonstandard
components T, I, F get values outside of the classical unit interval [0, 1], and a brief evolution of
neutrosophic operators [4].

2. Theoretical Reason for the Nonstandard Form of Neutrosophic Logic

The only reason we have added the nonstandard form to neutrosophic logic (and similarly to
neutrosophic set and probability) was in order to make a distinction between Relative Truth (which is
truth in some Worlds, according to Leibniz) and Absolute Truth (which is truth in all possible Words,
according to Leibniz as well) that occur in philosophy.

Another possible reason may be when the neutrosophic degrees of truth, indeterminacy, or
falsehood are infinitesimally determined, for example a value infinitesimally bigger than 0.8 (or 0.8+),
or infinitesimally smaller than 0.8 (or −0.8). But these can easily be overcome by roughly using interval
neutrosophic values, for example (0.80, 0.81) and (0.79, 0.80), respectively.
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3. Why the Sum of Neutrosophic Components Is Up to 3

We was more prudent when we presented the sum of single valued standard neutrosophic
components [5–9], saying

Let T, I, F be single valued numbers, T, I, F ∈ [0, 1], such that 0 ≤ T + I + F ≤ 3. (1)

The sum of the single-valued neutrosophic components, T + I + F is up to 3 since they are
considered completely (100%) independent of each other. But if the two components T and F are
completely (100%) dependent, then T + F ≤ 1 (as in fuzzy and intuitionistic fuzzy logics), and let us
assume the neutrosophic middle component I is completely (100%) independent from T and F, then
I ≤ 1, whence T + F + I ≤ 1 + 1 = 2.

But the degree of dependence/independence [10] between T, I, F all together, or taken two by two,
may be, in general, any number between 0 and 1.

4. Neutrosophic Components outside the Unit Interval [0, 1]

Thinking out of box, inspired from the real world, was the first intent, i.e., allowing neutrosophic
components (truth/indeterminacy/falsehood) values be outside of the classical (standard) unit real
interval [0, 1] used in all previous (Boolean, multivalued, etc.) logics if needed in applications, so
neutrosophic component values < 0 and > 1 had to occurs due to the Relative/Absolute stuff, with

−0 <N 0 and 1+ >N 1 (2)

Later on, in 2007, I found plenty of cases and real applications in Standard Neutrosophic Logic
and Set (therefore, not using the Nonstandard Neutrosophic Logic, Set, and Probability), and it was
thus possible the extension of the neutrosophic set to Neutrosophic Overset (when some neutrosophic
component is > 1), and to Neutrosophic Underset (when some neutrosophic component is < 0), and
to Neutrosophic Offset (when some neutrosophic components are off the interval [0, 1], i.e., some
neutrosophic component > 1 and some neutrosophic component < 0). Then, similar extensions to
Neutrosophic Over/Under/Off Logic, Measure, Probability, Statistics, etc., [11–14], extending the unit
interval [0, 1] to

[Ψ, Ω], with Ψ ≤ 0 < 1 ≤ Ω, (3)

where Ψ, Ω are standard (or nonstandard) real numbers.

5. Refined Neutrosophic Logic, Set, and Probability

We wanted to get the neutrosophic logic as general as possible [15], extending all previous logics
(Boolean, fuzzy, intuitionistic fuzzy logic, intuitionistic logic, paraconsistent logic, and dialethism),
and to have it able to deal with all kind of logical propositions (including paradoxes, nonsensical
propositions, etc.).

That is why in 2013 we extended the Neutrosophic Logic to Refined Neutrosophic Logic / Set /

Probability (from generalizations of 2-valued Boolean logic to fuzzy logic, also from the Kleene’s and
Lukasiewicz’s and Bochvar’s 3-symbol valued logics or Belnap’s 4-symbol valued logic, to the most
general n-symbol or n-numerical valued refined neutrosophic logic, for any integer n ≥ 1), the largest
ever so far, when some or all neutrosophic components T, I, F were split/refined into neutrosophic
subcomponents T1, T2, . . . ; I1, I2, . . . ; F1, F2, . . . , which were deduced from our everyday life [16].

6. From Paradoxism Movement to Neutrosophy Branch of Philosophy and then to
Neutrosophic Logic

We started first from Paradoxism (that we founded in the 1980s in Romania as a movement
based on antitheses, antinomies, paradoxes, contradictions in literature, arts, and sciences), then we
introduced the Neutrosophy (as generalization of Dialectics of Hegel and Marx, which is actually the
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ancient YinYang Chinese philosophy), neutrosophy is a branch of philosophy studying the dynamics
of triads, inspired from our everyday life, triads that have the form

<A>, its opposite <antiA>, and their neutrals <neutA>, (4)

where <A> is any item or entity [17]. (Of course, we take into consideration only those triads that
make sense in our real and scientific world.)

The Relative Truth neutrosophic value was marked as 1, while the Absolute Truth neutrosophic
value was marked as 1+ (a tinny bigger than the Relative Truth’s value): 1+ >N 1, where >N is a
neutrosophic inequality, meaning 1+ is neutrosophically bigger than 1.

Similarly for Relative Falsehood/Indeterminacy (which is falsehood/indeterminacy in some Worlds)
and Absolute Falsehood/Indeterminacy (which is falsehood/indeterminacy in all possible worlds).

7. Introduction to Nonstandard Analysis

An infinitesimal (or infinitesimal number) (ε) is a number ε, such that |ε| < 1/n, for any non-null
positive integer n. An infinitesimal is close to zero, and so small that it cannot be measured.

The infinitesimal is a number smaller, in absolute value, than anything positive nonzero.
Infinitesimals are used in calculus.
An infinite (or infinite number) (ω) is a number greater than anything:

1 + 1 + 1 + . . . + 1 (for any finite number terms) (5)

The infinites are reciprocals of infinitesimals.
The set of hyperreals (or nonstandard reals), denoted as R*, is the extension of set of the real numbers,

denoted as R, and it comprises the infinitesimals and the infinites, that may be represented on the
hyperreal number line:

1/ε = ω/1. (6)

The set of hyperreals satisfies the transfer principle, which states that the statements of first order in
R are valid in R* as well.

A monad (halo) of an element a ∈ R*, denoted by µ(a), is a subset of numbers infinitesimally close
to a.

8. First Extension of Nonstandard Analysis

Let us denote by R+* the set of positive nonzero hyperreal numbers.
We consider the left monad and right monad, and the (pierced) binad that we have introduced as

extension in 1998 [5]:
Left Monad {that we denote, for simplicity, by (−a) or only −a} is defined as:

µ(−a) = (−a) = −a =
−
a = {a− x, x ∈ R+

∗
| x is in f initesimal}. (7)

Right Monad {that we denote, for simplicity, by (a+) or only by a+} is defined as:

µ(a+) = (a+) = a+ =
+
a = {a + x, x ∈ R+

∗
| x is in f initesimal}. (8)

Pierced Binad {that we denote, for simplicity, by (−a+) or only −a+} is defined as:

µ(−a+) = (−a+) = −a+ =
−+
a = {a− x, x ∈ R+

∗
| x is in f initesimal} ∪ {a + x, x ∈ R+

∗
| x is in f initesimal}

= {a± x, x ∈ R+
∗
| x is in f initesimal}.

(9)

The left monad, right monad, and the pierced binad are subsets of R*.
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9. Second Extension of Nonstandard Analysis

For the necessity of doing calculations that will be used in nonstandard neutrosophic logic in
order to calculate the nonstandard neutrosophic logic operators (conjunction, disjunction, negation,
implication, and equivalence) and in order to have the Nonstandard Real MoBiNad Set closed under
arithmetic operations, we extend, for the time being, the left monad to the Left Monad Closed to the
Right, the right monad to the Right Monad Closed to the Left, and the Pierced Binad to the Unpierced
Binad, defined as follows [18–21].

Left Monad Closed to the Right

µ
(
−0
a
)
=

(
−0
a
)
=
−0
a ={a− x | x = 0, or x ∈ R+

∗ and x is in f initesimal} = µ(−a)∪ {a} = (−a) 0∪

{a} = −a∪ {a}.
(10)

Right Monad Closed to the Left

µ
(

0+
a
)
=

(
0+
a
)
=

0+
a ={a + x | x = 0, or x ∈ R+

∗ and x is in f initesimal} = µ(a+)∪ {a} = (a+) 0∪

{a} = a+ ∪ {a}.
(11)

Unpierced Binad

µ
(
−0+

a
)
=

(
−0+

a
)
=
−0+

a = {a− x
∣∣∣x ∈ R+

∗andxisin f initesimal} ∪ {a + x|x ∈ R+
∗and

xisin f initesimal}∪{a} = {a± x
∣∣∣x = 0, orx ∈ R+

∗andxisin f initesimal} = µ(−a+)∪
{a} = (−a+)∪{a} =− a+ ∪ {a}

(12)

The element {a} has been included into the left monad, right monad, and pierced binad respectively.

10. Nonstandard Neutrosophic Function

In order to be able to define equalities and inequalities in the sets of monads, and in the sets of
binads, we construct a nonstandard neutrosophic function that approximates the monads and binads
to tiny open (or half open and half closed respectively) standard real intervals as below. It is called
‘neutrosophic’ since it deals with indeterminacy: unclear, vague monads and binads, and the function
approximates them with some tiny real subsets.

Taking an arbitrary infinitesimal

ε1 > 0, and writing −a = a− ε1, a+ = a + ε1, and −a+ = a± ε1, (13)

or taking an arbitrary infinitesimal ε2 ≥ 0, and writing

−0
a = (a− ε2, a],

0+
a = [a, a + ε2),

−0+
a = (a− ε2, a + ε2) (14)

We meant to actually pick up a representative from each class of the monads and of the binads.
Representations of the monads and binads by intervals is not quite accurate from a classical point

of view, but it is an approximation that helps in finding a partial order and computing nonstandard
arithmetic operations on the elements of the nonstandard set NRMB.

Let ε be a generic positive infinitesimal, while a be a generic standard real number.
Let P(R) be the power set of the real number set R.

µN : NRMB → P(R) (15)
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For any a ∈ R, the set of real numbers, one has

µN((−a)) =N (a − ε, a), (16)

µN((a+)) =N (a, a + ε), (17)

µN((−a+)) =N (a − ε, a) ∪ (a, a + ε), (18)

µN

((
−0
a
))

=N (a− ε, a], (19)

µN

((
0+
a
))

=N [a, a + ε
)
, (20)

µN

((
−0+

a
))

=N (a− ε, a + ε), (21)

µN

((
0
a
))

=N µN(a) =N a = [a, a], (22)

in order to set it as real interval too.

11. General Notations for Monads and Binads

Let a ∈ R be a standard real number. We use the following general notation for monads and binads.

m
a ∈

{
a,
−
a,
−0
a ,

+
a ,

0+
a ,
−+
a ,
−0+

a
}

and by convention
0
a = a; (23)

or
m ∈ { , −, −0, +, +0, −+, −0+} = {0, −, −0, +, +0, −+, −0+}; (24)

therefore “m” above a standard real number “a” may mean anything: a standard real number (0, or
nothing above), a left monad (−), a left monad closed to the right (−0), a right monad (+), a right monad
closed to the left (0+), a pierced binad (−+), or a unpierced binad (−0+), respectively.

The notations of monad’s and binad’s diacritics above (not laterally) the number a as

−
a,
−0
a ,

+
a ,

0+
a ,
−+
a ,
−0+

a (25)

are the best, since they also are designed to avoid confusion for the case when the real number a is
negative.

For example, if a = −2, then the corresponding monads and binads are respectively represented as:

−
−2,

−0
−2,

+
−2,

0+
−2,
−+
−2,
−0+
−2 (26)

Classical and Neutrosophic Notations
Classical notations on the set of real numbers:

<, ≤, >, ≥, ∧, ∨,→,↔, ∩, ∪, ⊂, ⊃, ⊆, ⊇, =, ∈,
+, −, ×,÷, ˆ, *

(27)

Operations with real subsets:
~ (28)

Neutrosophic notations on nonstandard sets (that involve indeterminacies, approximations, and
vague boundaries):

<N, ≤N, >N, ≥N, ∧N, ∨N,→N,↔N, ∩N, ∪N, ⊂N, ⊃N, ⊆N, ⊇N, =N, ∈N + N, − N, ×N, ÷N, ˆN, *N (29)
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12. Neutrosophic Strict Inequalities

We recall the neutrosophic strict inequality which is needed for the inequalities of nonstandard
numbers.

Let α and β be elements in a partially ordered set M.
We have defined the neutrosophic strict inequality

α >N β (30)

and read as
“α is neutrosophically greater than β”

if α in general is greater than β, or α is approximately greater than β, or subject to some indeterminacy
(unknown or unclear ordering relationship between α and β) or subject to some contradiction (situation
when α is smaller than or equal to β) α is greater than β.

It means that in most of the cases, on the set M, α is greater than β.
And similarly for the opposite neutrosophic strict inequality

α <N β (31)

13. Neutrosophic Equality

We have defined the neutrosophic inequality

α =N β (32)

and read as
“α is neutrosophically equal to β”

if α in general is equal to β, or α is approximately equal to β, or subject to some indeterminacy (unknown
or unclear ordering relationship between α and β) or subject to some contradiction (situation when α is
not equal to β) α is equal to β.

It means that in most of the cases, on the set M, α is equal to β.

14. Neutrosophic (Nonstrict) Inequalities

Combining the neutrosophic strict inequalities with neutrosophic equality, we get the ≥N and ≤N
neutrosophic inequalities.

Let α and β be elements in a partially ordered set M.
The neutrosophic (nonstrict) inequality

α ≥N β (33)

and read as
“α is neutrosophically greater than or equal to β”

if α in general is greater than or equal to β, or α is approximately greater than or equal to β, or subject
to some indeterminacy (unknown or unclear ordering relationship between α and β) or subject to some
contradiction (situation when α is smaller than β) α is greater than or equal to β.

It means that in most of the cases, on the set M, α is greater than or equal to β.
And similarly for the opposite neutrosophic (nonstrict) inequality

α ≤N β. (34)
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15. Neutrosophically Ordered Set

Let M be a set. (M, <N) is called a neutrosophically ordered set if

∀α, β ∈M, onehas : eitherα <N β, orα =N β, orα >N β. (35)

16. Neutrosophic Infimum and Neutrosophic Supremum

As an extension of the classical infimum and classical supremum, and using the neutrosophic
inequalities and neutrosophic equalities, we define the neutrosophic infimum (denoted as infN) and
the neutrosophic supremum (denoted as supN).

Neutrosophic Infimum.
Let (S, <N) be a set that is neutrosophically partially ordered, and M a subset of S.
The neutrosophic infimum of M, denoted as infN(M) is the neutrosophically greatest element in S

that is neutrosophically less than or equal to all elements of M:
Neutrosophic Supremum.
Let (S, <N) be a set that is neutrosophically partially ordered and M a subset of S.
The neutrosophic supremum of M, denoted as supN(M) is the neutrosophically smallest element

in S that is neutrosophically greater than or equal to all elements of M.

17. Definition of Nonstandard Real MoBiNad Set

Let R be the set of standard real numbers, and R∗ be the set of hyper-reals (or nonstandard reals)
that consists of infinitesimals and infinites.

The Nonstandard Real MoBiNad Set is now defined for the first time as follows

NRMB =N

 ε, ω, a, (−a) ,
(
−a0

)
, (a+),

(
0a+

)
, (−a+),

(
−a0+

)
|where ε are infinitesimals,

with ε ∈ R∗; ω = 1/ε are infinites, with ω ∈ R∗; and a are real numbers, with a ∈ R

 (36)

Therefore

NRMB =N R∗ ∪R∪ µ(−R)∪ µ
(
−R0

)
∪ µ

(
R+

)
∪ µ

(
0R+

)
∪ µ

(
−R+

)
∪ µ

(
−R0 +

)
, (37)

where

µ(−R) is the set of all real left monads,

µ
(
−R0

)
is the set of all real left monads closed to the right,

µ(R+) is the set of all real right monads,

µ
(
0R+

)
is the set of all real right monads closed to the left,

µ(−R+) is the set of all real pierced binads,

and µ
(
−R0 +

)
is the set of all real unpierced binads.

Also,

NRMB =N

{
ε, ω,

m
a
∣∣∣∣where ε, ω ∈ R∗, ε are infinitesimals, ω = 1

ε are infinities;

a ∈ R; and m ∈
{

,− ,− 0 ,+ ,+ 0 ,− + ,− 0 +
}} (38)

NRMB is closed under addition, subtraction, multiplication, division (except division by
m
a, with a

= 0 and m ∈
{

,− ,− 0 ,+ ,0+ ,− + ,− 0 +
}
), and power

{
(

m1a
)(m2

b )

with: either a > 0, or a = 0 and m∈
{

,+ ,0+
}

and b > 0, or a < 0 but b =
p
r (irreducible

fraction) and p, r are integers with r an odd positive integer r ∈ {1, 3, 5, . . . }}.
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These mobinad (nonstandard) above operations are reduced to set operations, using Set Analysis
and Neutrosophic Analysis (both introduced by the author [22] (page 11), which are generalizations of
Interval Analysis), and they deal with sets that have indeterminacies.

18. Etymology of MoBiNad

MoBiNad comes from monad + binad, introduced now for the first time.

19. Definition of Nonstandard Complex MoBiNad Set

The Nonstandard Complex MoBiNad Set, introduced here for the first time, is defined as

NCMB =N
{
α+ βi|where i =

√

−1; α, β ∈ NRMB
}

(39)

20. Definition of Nonstandard Neutrosophic Real MoBiNad Set

The Nonstandard Neutrosophic Real MoBiNad Set, introduced now for the first time, is defined as

NNRMB =N
{
α+ βI|where I = literal indeterminacy, I2 = I; α, β ∈ NRMB

}
. (40)

21. Definition of Nonstandard Neutrosophic Complex MoBiNad Set

The Nonstandard Neutrosophic Complex MoBiNad Set, introduced now for the first time, is
defined as

NNCMB =N
{
α+ βI|where I = literal indeterminacy, I2 = I; α, β ∈ NCMB

}
(41)

22. Properties of the Nonstandard Neutrosophic Real Mobinad Set

Since in nonstandard neutrosophic logic we use only the nonstandard neutrosophic real mobinad
set, we study some properties of it.

Theorem 1. The nonstandard real mobinad set (NRMB, ≤N), endowed with the nonstandard neutrosophic
inequality is a lattice of first type [as partially ordered set (poset)].

Proof. The set NRMB is partially ordered, because (except the two-element subsets of the form{
a,
−+
a
}
, and

{
a,
−0+

a
}
, with a ∈ R, beetwen which there is no order) all other elements are ordered:

If a < b, where a, b ∈ R, then:
m1a <N

m2
b , for any monads or binads

m1, m2 ∈N
{

,− ,− 0 ,+ ,0+ ,− + ,− 0 +
}
. (42)

If a = b, one has:
−a <N a, (43)

a− <N a+ (44)

a <N a+ (45)

−a ≤N
−a+, (46)

−a ≤N
−a+, (47)

and there is no neutrosophic ordering relationship between a and −a+,

nor between a and
−0+

a (that is why ≤N on NRMB is a partial ordering set). (48)
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If a > b, then :
m1a >N

m2
b , for any monads or binads m1, m2. (49)

�

Any two-element set
{
α, β

}
⊂N NRMB has a neutrosophic nonstandard infimum (meet, or greatest

lower bound) that we denote by infN, and a neutrosophic nonstandard supremum (joint, or least upper
bound) that we denote by supN, where both

infN
{
α, β

}
and supN

{
α, β

}
∈ NRMB. (50)

For the nonordered elements a and −a+:

infN
{
a,− a+

}
=N
−a ∈N NRMB, (51)

supN

{
a,− a+

}
=N a+ ∈N NRMB (52)

And similarly for nonordered elements a and −a0 +:

infN
{
a,− a0 +

}
=N

−a ∈N NRMB, (53)

supN

{
a,− a0 +

}
=N a+ ∈N NRMB. (54)

Dealing with monads and binads which neutrosophically are real subsets with indeterminate
borders, and similarly a = [a, a] can be treated as a subset, we may compute infN and supN of each
of them.

infN(
−a) =N

−a and supN(
−a) =N

−a (55)

infN
(
a+

)
=N a+ and supN

(
a+

)
=N a+; (56)

infN
(
−a+

)
=N

−a and supN

(
−a+

)
=N a+; (57)

infN
(
−a0 +

)
=N

−a and supN

(
−a0 +

)
=N a+. (58)

Also,
infN(a) =N a and supN(a) =N a. (59)

If a < b, then
m1a <N

m2
b , hence

infN

{
m1a ,

m2
b
}
=N infN

(
m1a

)
and supN

{
m1a ,

m2
b
}
=N supN

m2
b , (60)

which are computed as above.
Similarly, if

a > b, with
m1a <N

m2
b . (61)

If a = b, then: infN

{
m1a ,

m2a
}
=N the neutrosophically smallest (<N) element among

infN

{
m1a

}
and infN

{
m2a

}
. (62)

While supN

{
m1a ,

m2a
}
=N the neutrosophically greatest (>N) element among

supN

{
m1a

}
and supN

{
m2a

}
. (63)
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Examples:
infN

(
−a, a+

)
=N

−a and supN

(
−a, a+

)
=N a+; (64)

infN
(
−a,− a+

)
=N
−a and supN

(
−a,− a+

)
=N a+; (65)

infN
(
−a+, a+

)
=N
−a and supN

(
−a+, a+

)
=N a+. (66)

Therefore, (NRMB, ≤N) is a nonstandard real mobinad lattice of first type (as partially ordered set).
Consequence
If we remove all pierced and unpierced binads from NRMB and we denote the new set by

NRM =
{
ε, ω, a,− a,− a0, a+,0 a+, where ε are infinitesimals, ω are infinites, and a ∈ R

}
we obtain a

totally neutrosophically ordered set.

Theorem 2. Any finite non-empty subset L of (NRMB,≤N) is also a sublattice of first type.

Proof. It is a consequence of any classical lattice of first order (as partially ordered set). �

Theorem 3. (NRMB, ≤N) is bounded neither to the left nor to the right, since it does not have a minimum
(bottom, or least element), or a maximum (top, or greatest element).

Proof. Straightforward, since NRMB includes the set of real number R = (−∞, +∞) which is clearly
unbounded to the left and right-hand sides. �

Theorem 4. (NRMB, in fN, supN), where in fN and supN are two binary operations, dual to each other, defined
before as a lattice of second type (as an algebraic structure).

Proof. We have to show that the two laws in fN and supN are commutative, associative, and verify the
absorption laws.

Let α, β, γ ∈ NRMB be two arbitrary elements.
Commutativity Laws
(i)

infN
{
α, β

}
=N infN

{
β, α

}
(67)

(ii)
supN

{
α, β

}
=N supN

{
β, α

}
(68)

Their proofs are straightforward.
Associativity Laws
(i)

infN
{
α, infN

{
β,γ

}}
=N infN

{
infN

{
α, β

}
, γ

}
. (69)

�

Proof.
infN

{
α, infN

{
β,γ

}}
=N infN

{
α, β, γ

}
, (70)

and
infN

{
infN

{
α, β

}
, γ

}
=N infN

{
α, β, γ

}
, (71)

where we have extended the binary operation infN to a trinary operation infN.
(ii)

supN

{
α, supN

{
β,γ

}}
=N supN

{
supN

{
α, β

}
, γ

}
(72)

�
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Proof.
supN

{
α, supN

{
β,γ

}}
=N supN

{
α, β, γ

}
, (73)

and
supN

{
α, supN

{
β,γ

}}
=N supN

{
α, β, γ

}
, (74)

where similarly we have extended the binary operation supN to a trinary operation supN.
Absorption Laws (as peculiar axioms to the theory of lattice)
(i) We need to prove that

infN
{
α, supN

{
α, β

}}
=N α. (75)

Let α ≤N β, then
infN

{
α, supN

{
α, β

}}
=N infN{α,α} =N α. (76)

Let α >N β, then
infN

{
α, supN

{
α, β

}}
=N infN{α,α} =N α. (77)

(ii) Now, we need to prove that

supN
{
α, infN

{
α, β

}}
=N α. (78)

Let α ≤N β, then
supN

{
α, infN

{
α, β

}}
=N supN{α, α} =N α. (79)

Let α >N β, then
supN

{
α, infN

{
α, β

}}
=N supN

{
α, β

}
=N α. (80)

Consequence
The binary operations infN and supN also satisfy the idempotent laws:

infN{α, α} =N α, (81)

supN{α, α} =N α. (82)

�

Proof. The axioms of idempotency follow directly from the axioms of absorption proved above. �

Thus, we have proved that (NRMB, infN, supN) is a lattice of second type (as algebraic structure).

23. Definition of General Nonstandard Real MoBiNad Interval

Let a, b ∈ R, with
−∞ < a ≤ b < ∞, (83)

]−a, b+[MB=
{
x ∈ NRMB,− a ≤N x ≤N b+

}
. (84)

As particular edge cases:
]−a, a+[MB=N

{
−a, a,− a+, a+

}
, (85)

a discrete nonstandard real set of cardinality 4.

]−a, −a[MB=N
{
−a

}
; (86)

]a+, a+[MB =N
{
a+

}
(87)

]a, a+[MB =N
{
a, a+

}
(88)

]−a, a[MB=N
{
−a, a

}
(89)
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]−a, −a+[MB=N
{
−a,− a+, a+

}
, (90)

where a <]−a,− a+[MB since a �N
−a+ (there is no relation of order between a and −a+);

]−a+, a+[MB=N
{
−a+, a+

}
. (91)

Theorem 5. (
]−a, b+[, ≤N

)
is a nonstandard real mobinad sublattice o f f irst type (poset). (92)

Proof. Straightforward since ]−a, b+[ is a sublattice of the lattice of first type NRMB. �

Theorem 6. (
]−a, b+[, infN, supN,− a, b+

)
is a nonstandard bounded real mobinad sublattice

o f second type (as algebraic structure).
(93)

Proof. ]−a, b+[MB as a nonstandard subset of NRMB is also a poset, and for any two-element subset{
α, β

}
⊂N ]−0, 1+[MB (94)

one obviously has the triple neutrosophic nonstandard inequality:

−a ≤N infN
{
α, β

}
≤N supN

{
α, β

}
≤N b+ (95)

hence ( ]−a, b+[MB≤N) is a nonstandard real mobinad sublattice of first type (poset), or sublattice of
NRMB.

Further on, ]−a, b+[, endowed with two binary operations infN and supN, is also a sublattice of
the lattice NRMB, since the lattice axioms (Commutative Laws, Associative Laws, Absortion Laws, and
Idempotent Laws) are clearly verified on ]−a, b+[.

The nonstandard neutrosophic modinad Identity Join Element (Bottom) is −a, and the nonstandard
neutrosophic modinad Identity Meet Element (Top) is b+, or

infN]
−a, b+[=N

− and supN]
−a, b+[=N b+. (96)

The sublattice Identity Laws are verified below.

Let α ∈N]
−a, b+[, whence −a ≤N α ≤N b+. (97)

Then:
infN

{
α, b+

}
=N α, and supN

{
α,− a

}
=N α. (98)

�

24. Definition of Nonstandard Real MoBiNad Unit Interval

]−0, 1+[MB=N
{
x ∈ NRMB,− 0 ≤N x ≤N 1+

}
=N

 ε, a,
−
a,
−0
a ,

+
a ,

0+
a ,
−+
a ,
−0+

a
∣∣∣∣∣ where ε are in f initesimals,

ε ∈ R∗, with ε > 0, and a ∈ [0, 1]

 (99)
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This is an extension of the previous definition (1998) [5] of nonstandard unit interval

]−0, 1+[=N (−0 )∪ [0, 1] ∪
(
1+

)
(100)

Associated to the first published definitions of neutrosophic set, logic, and probability was used.
One has

]−0, 1+[⊂N ]−0, 1+[MB (101)

where the index MB means: all monads and binads included in ]−0, 1+[, for example,

(−0.2), (−0.30), (0.5+), (−0.7+), (−0.80+) etc. (102)

or, using the top diacritics notation, respectively,

−

0.2 ,
−0
0.3 ,

+
0.5 ,

−+
0.7 ,

−0+
0.8 etc. (103)

Theorem 7. The Nonstandard Real MoBiNad Unit Interval ]−0, 1+[MB is a partially ordered set (poset)
with respect to ≤N, and any of its two elements have an in fN and supN hence ]−0, 1+[MB is a nonstandard
neutrosophic lattice of first type (as poset).

Proof. Straightforward. �

Theorem 8. The Nonstandard Real MoBiNad Unit Interval ]−0, 1+[MB, endowed with two binary operations
in fN and supN, is also a nonstandard neutrosophic lattice of second type (as an algebraic structure).

Proof. Replace a = 0 and b = 1 into the general nonstandard real mobinad interval ]−a, b+[. �

25. Definition of Extended General Neutrosophic Logic

We extend and present in a clearer way our 1995 definition (published in 1998) of neutrosophic logic.
LetU be a universe of discourse of propositions and P ∈ U be a generic proposition.
A General Neutrosophic Logic is a multivalued logic in which each proposition P has a degree

of truth (T), a degree of indeterminacy (I), and a degree of falsehood (F), and where T, I, and F are
standard real subsets or nonstandard real mobinad subsets of the nonstandard real mobinat unit
interval ]−0, 1+[MB,

With
T, I, F ⊆N]

−0, 1+[MB (104)

where
−0 ≤N infNT + infNI + infNF ≤N supNT + supNI + supNF ≤ 3+. (105)

26. Definition of Standard Neutrosophic Logic

If in the above definition of general neutrosophic logic all neutrosophic components, T, I, and F
are standard real subsets, included in or equal to the standard real unit interval, T, I, F ⊆ [0, 1], where

0 ≤ infT + infI + infF ≤ supT + supI + supF ≤ 3 (106)

we have a standard neutrosophic logic.
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27. Definition of Extended Nonstandard Neutrosophic Logic

If in the above definition of general neutrosophic logic at least one of the neutrosophic components
T, I, or F is a nonstandard real mobinad subset, neutrosophically included in or equal to the nonstandard
real mobinad unit interval ]−0, 1+[MB, where

−0 ≤N infNT + infNI + infNF ≤N supNT + supNI + supNF ≤ 3+, (107)

we have an extended nonstandard neutrosophic logic.

Theorem 9. If M is a standard real set, M ⊂ R, then

in fN(M) = in f (M) and supN(M) = sup(M). (108)

Proof. The neutrosophic infimum and supremum coincide with the classical infimum and supremum
since there is no indeterminacy on the set M, meaning M contains no nonstandard numbers. �

28. Definition of Extended General Neutrosophic Set

We extend and present in a clearer way our 1995 definition of neutrosophic set.
LetU be a universe of discourse of elements and S ∈ U a subset.
A Neutrosophic Set is a set such that each element x from S has a degree of membership (T), a

degree of indeterminacy (I), and a degree of nonmembership (F), where T, I, and F are standard real
subsets or nonstandard real mobinad subsets, neutrosophically included in or equal to the nonstandard
real mobinat unit interval

]−0, 1+[MB, with T, I, F ⊆N]
−0, 1+[MB, (109)

where
−0 ≤N infNT + infNI + infNF ≤N supNT + supNI + supNF ≤ 3+. (110)

29. Definition of Standard Neutrosophic Set

If in the above general definition of neutrosophic set all neutrosophic components, T, I, and F, are
standard real subsets included in or equal to the classical real unit interval, T, I, F ⊆ [0, 1], where

0 ≤ infT + infI + infF ≤ supT + supI + supF ≤ 3, (111)

we have a standard neutrosophic set.

30. Definition of Extended Nonstandard Neutrosophic Set

If in the above general definition of neutrosophic set at least one of the neutrosophic components T,
I, or F is a nonstandard real mobinad subsets, neutrosophically included in or equal to ]−0, 1+[MB, where

−0 ≤N infNT + infNI + infNF ≤N supNT + supNI + supNF ≤ 3+, (112)

we have a nonstandard neutrosophic set.

31. Definition of Extended General Neutrosophic Probability

We extend and present in a clearer way our 1995 definition of neutrosophic probability.
LetU be a universe of discourse of events, and E ∈ U be an event.
A Neutrosophic Probability is a multivalued probability such that each event E has a chance of

occuring (T), an indeterminate (unclear) chance of occuring or not occuring (I), and a chance of not
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occuring (F), and where T, I, and F are standard or nonstandard real mobinad subsets, neutrosophically
included in or equal to the nonstandard real mobinat unit interval

]−0, 1+[MB, T, I, F ⊆N]
−0, 1+[MB, where −0 ≤N infNT + infNI + infNF ≤N supNT+

supNI + supNF ≤ 3+.
(113)

32. Definition of Standard Neutrosophic Probability

If in the above general definition of neutrosophic probability all neutrosophic components, T, I,
and F are standard real subsets, included in or equal to the standard unit interval T, I, F ⊆ [0, 1], where

0 ≤ infT + infI + infF ≤ supT + supI + supF ≤ 3, (114)

we have a standard neutrosophic probability.

33. Definition of Extended Nonstandard Neutrosophic Probability

If in the above general definition of neutrosophic probability at least one of the neutrosophic
components T, I, F is a nonstandard real mobinad subsets, neutrosophically included in or equal to
]−0, 1+[MB, where

−0 ≤N infNT + infNI + infNF ≤N supNT + supNI + supNF ≤ 3+, (115)

we have a nonstandard neutrosophic probability.

34. Classical Operations with Real Sets

Let A, B ⊆ R be two real subsets. Let ~ and * denote any of the real subset classical operations
and real number classical operations respectively: addition (+), subtraction (−), multiplication (×),
division (÷), and power (ˆ).

Then,
A~ B = {a ∗ b, where a ∈ A and b ∈ B} (116)

Thus
A⊕ B = {a + b|a ∈ A, b ∈ B} (117)

A	 B = {a− b|a ∈ A, b ∈ B} (118)

A⊗ B = {a× b|a ∈ A, b ∈ B} (119)

A� B = {a÷ b|a ∈ A; b ∈ B, b , 0} (120)

AB =
{
ab

∣∣∣a ∈ A, a > 0; b ∈ B
}

(121)

For the division (÷), of course, we consider b , 0. While for the power (ˆ), we consider a > 0.

35. Operations on the Nonstandard Real MoBiNad Set (NRMB)

For all nonstandard (addition, subtraction, multiplication, division, and power) operations

α, β ∈N NRMB, α *N β =N µN(α) ~ µN(β) (122)

where *N is any neutrosophic arithmetic operations with neutrosophic numbers (+N, −N, ×N, ÷N, ˆN),
while the corresponding ~ is an arithmetic operation with real subsets.

So, we approximate the nonstandard operations by standard operations of real subsets.
We sink the nonstandard neutrosophic real mobinad operations into the standard real subset

operations, then we resurface the last ones back to the nonstandard neutrosophic real mobinad set.
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Let ε1 and ε2 be two non-null positive infinitesimals. We present below some particular cases, all
others should be deduced analogously.

Nonstandard Addition
First Method

(−a) + (−b) =N (a− ε1, a) + (b− ε2, b) =N (a + b− ε1 − ε2, a + b) =N (a + b− ε, a + b) =N
−(a + b), (123)

where we denoted ε1 + ε2 = ε (the addition of two infinitesimals is also an infinitesimal).
Second Method

(−a) + (−b) =N (a− ε1) + (b− ε2) =N (a + b− ε1 − ε2) =N
−(a + b) (124)

Adding two left monads, one also gets a left monad.
Nonstandard Subtraction
First Method

(−a) − (−b) =N (a− ε1, a)
−(b− ε2, b) =N (a− ε1 − b, a− b + ε2) =N (a− b− ε1, a− b

+ε2) =N

(
− 0 +

a− b

) (125)

Second Method

(−a) − (−b) =N (a− ε1) − (b− ε2) =N a− b− ε1 + ε2, (126)

since ε1 and ε2 may be any positive infinitesimals,

=N


−(a− b), when ε1 > ε2;(

0
a− b

)
, when ε1 = ε2

(a− b)+, when ε1 < ε2.

=N

(
0

a− b

)
=N a − b; (127)

Subtracting two left monads, one obtains an unpierced binad (that is why the unpierced binad
had to be introduced).

Nonstandard Division
Let a, b > 0.

(−a) ÷ (−b) =N (a− ε1, a) ÷ (b− ε2, b) =N

(a− ε1

b
,

a
b− ε2

)
(128)

Since
ε1 > 0 and ε2 > 0,

a− ε1

b
<

a
b

and
a

b− ε2
>

a
b

, (129)

while between a−ε1
b and a

b−ε2
there is a continuum whence there are some infinitesimals ε0

1 and ε0
2 such

that
a−ε0

1
b−ε0

2
= a

b , or ab− bε0
1 = ab− aε0

2, and for a given ε0
1 there exists an

ε0
2 = ε0

1·
b
a

(130)

Hence
(−a)
(−b)

=N

(
− 0 +

a
b

)
(131)

For a or/and b negative numbers, it is similar but it is needed to compute the in fN and supN of the
products of intervals.
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Dividing two left monads, one obtains an unpierced binad.
Nonstandard Multiplication
Let a, b ≥ 0.(

−a0
)
×

(
−b0 +

)
=N (a− ε1, a]
×(b− ε2, b + ε2) =N ((a− ε1)·(b− ε2), a·(b + ε2)) =N

(
−ab0 +

) (132)

Since
(a− ε1)·(b− ε2) < a·b and a·(b + ε2) > a·b. (133)

For a or/and b negative numbers, it is similar but it is needed to compute the in fN and supN of the
products of intervals.

Multiplying a positive left monad closed to the right, with a positive unpierced binad, one obtains
an unpierced binad.

Nonstandard Power
Let a, b > 1.

(0a+)
(−b0)

=N [a, a + ε1)
(b−ε2, b] =N (ab−ε2 , (a + ε1)

b) =N

(
− 0 +

ab

)
(134)

since ab−ε1< ab and (a + ε1)
b >ab. (135)

Raising a right monad closed to the left to a power equal to a left monad closed to the right, for
both monads above 1, the result is an unpierced binad.

Consequence
In general, when doing arithmetic operations on nonstandard real monads and binads, the result

may be a different type of monad or binad.
That is why is was imperious to extend the monads to closed monads, and the pierced binad to

unpierced binad, in order to have the whole nonstandard neutrosophic real mobinad set closed under
arithmetic operations.

36. Conditions of Neutrosophic Nonstandard Inequalities

Let NRMB be the Nonstandard Real MoBiNad. Let’s endow (NRMB, <N) with a neutrosophic
inequality.

Let α, β ∈ NRMB, where α, β may be real numbers, monads, or binads.
And let (

−
a
)
,
(
−0
a
)
,
(
+
a
)
,
(

0+
a
)
,
(
−+
a
)
,
(
−0+

a
)
∈ NRMB, and(

−

b
)
,
(
−0
b
)
,
(
+
b
)
,
(

0+
b
)
,
(
−+
b
)
,
(
−0+

b
)
∈ NRMB,

(136)

be the left monads, left monads closed to the right, right monads, right monads closed to the left, and
binads, and binads nor pierced of the elements (standard real numbers) a and b, respectively. Since all
monads and binads are real subsets, we may treat the single real numbers

a = [a, a] and b = [b, b] as real subsets too (137)

as real subsets too.
NRMB is a set of subsets, and thus we deal with neutrosophic inequalities between subsets.

(i) If the subset α has many of its elements above all elements of the subset β,
(ii) then α >N β (partially).
(iii) If the subset α has many of its elements below all elements of the subset β,
(iv) then α <N β (partially).



Symmetry 2019, 11, 515 18 of 25

(v) If the subset α has many of its elements equal with elements of the subset β,
(vi) then α =N β (partially).

If the subset α verifies (i) and (iii) with respect to subset β, then α ≥N β.
If the subset α verifies (ii) and (iii) with respect to subset β, then α ≤N β.
If the subset α verifies (i) and (ii) with respect to subset β, then there is no neutrosophic order

(inequality) between α and β.

For example, between a and (−a+) there is no neutrosophic order, similarly between a and
−0+

a .
Similarly, if the subset α verifies (i), (ii) and (iii) with respect to subset β, then there is no

neutrosophic order (inequality) between α and β.

37. Open Neutrosophic Research

The quantity or measure of “many of its elements” of the above (i), (ii), or (iii) conditions depends
on each neutrosophic application and on its neutrosophic experts.

An approach would be to employ the Neutrosophic Measure [23,24], that handles indeterminacy,
which may be adjusted and used in these cases.

In general, we do not try in purpose to validate or invalidate an existing scientific result, but
to investigate how an existing scientific result behaves in a new environment (that may contain
indeterminacy), or in a new application, or in a new interpretation.

38. Nonstandard Neutrosophic Inequalities

For the neutrosophic nonstandard inequalities, we propose, based on the previous six neutrosophic
equalities, the following.

(−a) <N, a <N (a+) (138)

Since the standard real interval (a − ε, a) is below a, and a is below the standard real interval (a, a +

ε) by using the approximation provided by the nonstandard neutrosophic function µ, or because

∀x ∈ R∗+, a− x < a < a + x (139)

where x is of course a (nonzero) positive infinitesimal (the above double neutrosophic inequality
actually becomes a double classical standard real inequality for each fixed positive infinitesimal).

The converse double neutrosophic inequality is also neutrosophically true:

(a+) >N, a >N (−a) (140)

Another nonstandard neutrosophic double inequality:

(−a) ≤N (−a+) ≤N (a+) (141)

This double neutrosophic inequality may be justified since (−a+) = (−a)∪(a+) and, geometrically,
on the Real Number Line, the number a is in between the subsets −a = (a − ε, a) and a+ = (a, a + ε), so

(−a) ≤N (−a) ∪ (a+) ≤N (a+) (142)

Hence the left side of the inequality’s middle term coincides with the inequality first term, while
the right side of the inequality middle term coincides with the third inequality term.

Conversely, it is neutrosophically true as well:

(a+) ≥N (−a) ∪ (a+) ≥N (−a) (143)
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Also,
−
a ≤N

−0
a ≤N a ≤N

0+
a ≤N

+
a and

−
a ≤N

−+
a ≤N

−0+
a ≤N

+
a (144)

Conversely, they are also neutrosophically true:

+
a ≥N

0+
a ≥N a ≥N

−0
a ≥N

−
a and

+
a ≥N

−0+
a ≥N

−+
a ≥N

−
a respectively. (145)

If a > b, which is a (standard) classical real inequality, then we have the following neutrosophic
nonstandard inequalities.

a >N (−b), a >N
(
b+

)
, a >N

(
−b+

)
, a >N

−0
b , a >N

0+
b , a >N

−0+
b ; (146)

(−a) >N b, (−a) >N (−b), (−a) >N
(
b+

)
, (−a) >N

(
−b+

)
,
−
a >N

−0
b ,
−
a >N

0+
b ,
−
a >N

−0+
b ; (147)(

a+
)
>N b,

(
a+

)
>N (−b),

(
a+

)
>N

(
b+

)
,
(
a+

)
>N

(
−b+

)
,
+
a >N

−0
b ,

+
a >N

0+
b ,

+
a >N

−0+
b ; (148)

(−a+) >N b, (−a+) >N (−b), (−a+) >N (b+), (−a+) >N (−b+), etc. (149)

No Ordering Relationships
For any standard real number a, there is no relationship of order between the elements a and (−a+),

or between the elements a and (
−0+

a
)

(150)

Therefore, NRMB is a neutrosophically partially order set.

If one removes all binads from NRMB, then (NRMB, ≤N) is neutrosophically totally ordered. (151)

Theorem 10. Using the nonstandard general notation one has:
If a > b, which is a (standard) classical real inequality, then

m1a >N
m2
b for any m1, m2 ∈

{
, −, −0, +, +0, −0, −0+

}
. (152)

Conversely, if a < b, which is a (standard) classical real inequality, then

m1a <N
m2
b for any m1, m2 ∈

{
, −, −0, +, +0, −0, −0+

}
. (153)

39. Nonstandard Neutrosophic Equalities

Let a, b be standard real numbers; if a = b that is a (classical) standard equality, then

(−a) =N (−b), (a+) =N (b+), (−a+) =N (−b+), (154)(
−0
a
)
=N

(
−0
b
)
,
(

0+
a
)
=N

(
0+
b
)
,
(
−0+

a
)
=N

(
−0+

b
)

(155)

40. Nonstandard Neutrosophic Belongingness

On the nonstandard real set NRMB, we say that

m
c ∈N]

m1a ,
m2
b [ iff

m1a ≤N
m
c ≤N

m2
b , (156)
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where
m1, m2, m ∈ {, −, −0, +, +0, −+, −0+}. (157)

We use the previous nonstandard neutrosophic inequalities.

41. Nonstandard Hesitant Sets

Nonstandard Hesitant sets are sets of the form:

A = {a1, a2, . . . , an}, 2 ≤ n < ∞, A ⊂N NRMB, (158)

where at least one element ai0 , 1 ≤ i0 ≤ n, is an infinitesimal, a monad, or a binad (of any type); while
other elements may be standard real numbers, infinitesimals, or also monads or binads (of any type).

If the neutrosophic components T, I, and F are nonstandard hesitant sets, then one has a
Nonstandard Hesitant Neutrosophic Logic/Set/Probability.

42. Nonstandard Neutrosophic Strict Interval Inclusion

On the nonstandard real set NRMB,

]
m1a ,

m2
b [⊂N]

m3c ,
m4
d [ (159)

iff
m3c ≤N

m1a <N
m2
b <N

m4
d or

m3c <N
m1a <N

m2
b ≤N

m4
d or

m3c <N
m1a <N

m2
b <N

m4
d (160)

43. Nonstandard Neutrosophic (Nonstrict) Interval Inclusion

On the nonstandard real set NRMB,

]
m1a ,

m2
b [⊆N]

m3c ,
m4
d [ iff (161)

m3c ≤N
m1a <N

m2
b ≤N

m4
d . (162)

44. Nonstandard Neutrosophic Strict Set Inclusion

The nonstandard set A is neutrosophically strictly included in the nonstandard set B, A ⊂N B, if:

∀x ∈N A, x ∈N B, and ∃y ∈N B : y <N A. (163)

45. Nonstandard Neutrosophic (Nonstrict) Set Inclusion

The nonstandard set A is neutrosophically not strictly included in the nonstandard set B,

A ⊆N B, iff: (164)

∀x ∈N A, x ∈N B. (165)

46. Nonstandard Neutrosophic Set Equality

The nonstandard sets A and B are neutrosophically equal,

A =N B, iff: (166)

A ⊆N B and B ⊆N A. (167)
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47. The Fuzzy, Neutrosophic, and Plithogenic Logical Connectives ∧, ∨,→

All fuzzy, intuitionistic fuzzy, and neutrosophic logic operators are inferential approximations, not
written in stone. They are improved from application to application.

Let’s denote:

∧F, ∧N, ∧P representing respectively the fuzzy conjunction, neutrosophic
conjunction, and plithogenic conjunction;

(168)

similarly

∨F, ∨N, ∨P representing respectively the fuzzy disjunction, neutrosophic
disjunction, and plithogenic disjunction,

(169)

and
→F,→N,→P representing respectively the fuzzy implication, neutrosophic

implication, and plithogenic implication.
(170)

I agree that my beginning neutrosophic operators (when I applied the same fuzzy t-norm, or the
same fuzzy t-conorm, to all neutrosophic components T, I, F) were less accurate than others developed
later by the neutrosophic community researchers. This was pointed out in 2002 by Ashbacher [25] and
confirmed in 2008 by Rivieccio [26]. They observed that if on T1 and T2 one applies a fuzzy t-norm,
for their opposites F1 and F2, one needs to apply the fuzzy t-conorm (the opposite of fuzzy t-norm),
and reciprocally.

About inferring I1 and I2, some researchers combined them in the same directions as T1 and T2.
Then,

(T1, I1, F1) ∧N (T2, I2, F2) = (T1 ∧F T2, I1 ∧F I2, F1 ∨F F2), (171)

(T1, I1, F1) ∨N (T2, I2, F2) = (T1 ∨F T2, I1 ∨F I2, F1 ∧F F2), (172)

(T1, I1, F1)→N (T2, I2, F2) = (F1, I1, T1) ∨N (T2, I2, F2) = (F1 ∨F T2, I1 ∨F I2, T1 ∧ F F2). (173)

others combined I1 and I2 in the same direction as F1 and F2 (since both I and F are negatively qualitative
neutrosophic components, while F is qualitatively positive neutrosophic component), the most used
one is as follows.

(T1, I1, F1) ∧N (T2, I2, F2) = (T1 ∧F T2, I1∨F I2, F1 ∨F F2), (174)

(T1, I1, F1) ∨N (T2, I2, F2) = (T1 ∨F T2, I1 ∧F I2, F1 ∧F F2), (175)

(T1, I1, F1)→N (T2, I2, F2) = (F1, I1, T1) ∨N (T2, I2, F2) = (F1 ∨F T2, I1 ∧F I2, T1 ∧F F2). (176)

Even more, recently, in an extension of neutrosophic set to plithogenic set [27] (which is a set
whose each element is characterized by many attribute values), the degrees of contradiction c( , ) between
the neutrosophic components T, I, and F have been defined (in order to facilitate the design of the
aggregation operators), as follows:

c(T, F) = 1 (or 100%, because they are totally opposite), c(T, I) = c(F, I) = 0.5
(or 50%, because they are only half opposite).

(177)

Then,

(T1, I1, F1) ∧P (T2, I2, F2) = (T1 ∧F T2, 0.5(I1∧F I2) + 0.5(I1∨F I2), F1 ∨F F2), (178)

(T1, I1, F1) ∨P (T2, I2, F2) = (T1 ∨F T2, 0.5(I1∨F I2) + 0.5(I1∧F I2), F1 ∧F F2), (179)

(T1, I1, F1)→N (T2, I2, F2) = (F1, I1, T1) ∨N (T2, I2, F2) = (F1 ∨F T2, 0.5(I1∨F I2) + 0.5(I1∧F I2),
T1 ∧ F F2).

(180)
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48. Fuzzy t-norms and Fuzzy t-conorms

The most used ∧F (Fuzzy t-norms), and ∨F (Fuzzy t-conorms) are as follows.
Let

a, b ∈ [0, 1]. (181)

Fuzzy t-norms (fuzzy conjunctions, or fuzzy intersections):

a ∧F b = min{a, b}; (182)

a ∧F b = ab; (183)

a ∧F b = max{a + b − 1, 0}. (184)

Fuzzy t-conorms (fuzzy disjunctions, or fuzzy unions):

a ∨F b = max{a, b}; (185)

a ∨F b = a + b - ab; (186)

a ∨F b = min{a + b, 1} (187)

49. Nonstandard Neutrosophic Operators

Nonstandard Neutrosophic Conjunctions

(T1, I1, F1) ∧N (T2, I2, F2) = (T1 ∧F T2, I1∨F I2, F1 ∨F F2) =

(inf N(T1, T2), supN(I1, I2), supN(F1, F2))
(188)

(T1, I1, F1) ∧N (T2, I2, F2) = (T1 ∧F T2, I1∨F I2, F1 ∨F F2) =

(T1 ×N T2, I1 +N I2 −N I1 ×N I2, F1 +N F2 −N F1 ×N F2)
(189)

Nonstandard Neutrosophic Disjunctions

(T1, I1, F1) ∨N (T2, I2, F2) = (T1 ∨F T2, I1 ∧F I2, F1 ∧F F2) =

(supN(T1, T2), inf N(I1, I2), inf N(F1, F2))
(190)

(T1, I1, F1) ∨N (T2, I2, F2) = (T1 ∨F T2, I1 ∧F I2, F1 ∧F F2) =

(T1 +N T2 −N T1 ×N T2, I1 ×N I2, F1 ×N F2)
(191)

Nonstandard Neutrosophic Negations

¬(T1, I1, F1) = (F1, I1, T1) (192)

¬(T1, I1, F1) = (F1, (1+) -N I1, T1) (193)

Nonstandard Neutrosophic Implications

(T1, I1, F1)→N (T2, I2, F2) = (F1, I1, T1) ∨N (T2, I2, F2) = (F1 ∨F T2, I1 ∧F I2, T1 ∧ F F2)
= (F1 +N T2 −N F1 ×N T2, I1 ×N I2, T1 ×N F2)

(194)
(T1, I1, F1)→N (T2, I2, F2) = (F1, (1+) −N I1, T1) ∨N (T2, I2, F2)

= (F1 ∨F T2, ((1+) −N I1) ∧F I2, T1 ∧ F F2) = (F1 +N T2 −N F1 ×N T2, ((1+) −N I1) ×N I2, T1 ×N F2)
(195)

Let P1(T1, I1, F1) and P2(T2, I2, F2) be two nonstandard neutrosophic logical propositions, whose
nonstandard neutrosophic components are, respectively,

T1, I1, F1, T2, I2, F2 ∈N NRMB. (196)
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50. Numerical Examples of Nonstandard Neutrosophic Operators

Let us take a particular numeric example, where

P1 =N (
0+
0.3 ,

−+
0.2 , 0.4), P2 =N (

−0
0.6 ,

−0+
0.1 ,

+
0.5 ) (197)

are two nonstandard neutrosophic logical propositions.
We use the nonstandard arithmetic operations previously defined Numerical Example of Nonstandard

Neutrosophic Conjunction

0+
0.3 ×

−0
0.6 =N [0.3, 0.3 + ε1) × (0.6− ε2, 0.6) = (0.18− 0.3ε2, 0.18 + 0.6ε1) =N

−0+
0.18 (198)

−+
0.2 +N

−0+
0.1 −N

−+
0.2 ×N

−0+
0.1 =N [(0.2− ε1, 0.2)∪ (0.2, 0.2 + ε1)] + (0.1− ε2, 0.1 + ε2)

−[(0.2− ε1, 0.2)∪ (0.2, 0.2 + ε1)] × (0.1− ε2, 0.1 + ε2)

= [(0.3− ε1 − ε2, 0.3 + ε2)∪ (0.3− ε2, 0.3 + ε1 + ε2)]

−[(0.2− ε1) × (0.1− ε2), (0.02 + 0.2ε2)]∪ [(0.02− 0.2ε2), (0.2 + ε1) × (0.1 + ε2)]

= [
−0+
0.3 ∪

−0+
0.3 ] − [

−0+
0.02 ∪

−0+
0.02 ] = [

−0+
0.3 ] − [

−0+
0.02 ] = 0.3

−0+
− 0.02 =N

−0+
0.28

(199)

0.4 +N
+

0.5 =N [0.4, 0.4] + (0.5, 0.5 + ε1) − [0.4, 0.4] × (0.5, 0.5 + ε1)

= (0.4 + 0.5, 0.4 + 0.5 + ε1) − (0.4× 0.5, 0.4× 0.5 + 0.4ε1)

= (0.9, 0.9 + ε1) − (0.2, 0.2 + 0.4ε1)

= (0.9− 0.2− 0.4ε1, 0.9 + ε1 − 0.2) = (0.7− 0.4ε1, 0.7 + ε1) =N
−0+
0.70

(200)

Hence

P1 ∧ P2 =N (
−0+
0.18 ,

−0+
0.28 ,

−0+
0.70 ) (201)

Numerical Example of Nonstandard Neutrosophic Disjunction

0+
0.3 +N

−0
0.6 −

0+
0.3 ×N

−0
0.6 =N

{
[0.3, 0.3 + ε1) + (0.6− ε1, 0.6]

}
−

{
[0.3, 0.3 + ε1) × (0.6− ε1, 0.6]

}
= (0.9− ε1, 0.9 + ε1) − (0.18− 0.3ε1, 0.18 + 0.6ε1) = (0.72− 1.6ε1, 0.72 + 1.3ε1) =N

−0+
0.72

(202)

−+
0.2 ×N

−0+
0.1 =N

(
0.2
−0+
× 0.1

)
=N

−0+
0.02 (203)

0.4×N
+

0.5 =N

(
0.4

+
× 0.5

)
=N

+
0.20 (204)

Hence

P1 ∨N P2 =N (
−0+
0.72,

−0+
0.02,

+
0.20) (205)

Numerical Example of Nonstandard Neutrosophic Negation

¬NP1 =N ¬N(
0+
0.3 ,

−+
0.2 , 0.4) =N (0.4,

−+
0.2 ,

0+
0.3 ) (206)

Numerical Example of Nonstandard Neutrosophic Implication

(P1 → NP2) ⇔ N(¬NP1 ∨N P2) =N (0.4,
−+
0.2 ,

0+
0.3 )∨N (

−0
0.6 ,

−0+
0.1 ,

+
0.5 ) (207)
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Afterwards,

0.4 +N
−0
0.6 − 0.4×N

−0
0.6 =N

(
0.4
−0
+ 0.6

)
−N

(
0.4
−0
× 0.6

)
=N

−0
1.0 −N

−0
0.24 =N

−0+
0.76 (208)

−+
0.2 ×N

−0+
0.1 = N

−0+
0.02 (209)

0+
0.3 ×

+
0.5 =N

+
0.15 (210)

whence

¬NP1 =N (
−0+
0.76 ,

−0+
0.02 ,

+
0.15 ) (211)

Therefore, we have showed above how to do nonstandard neutrosophic arithmetic operations on
some concrete examples.

51. Conclusions

In the history of mathematics, critics on nonstandard analysis, in general, have been made by
Paul Halmos, Errett Bishop, Alain Connes, and others.

That’s why we have extended in 1998 for the first time the monads to pierced binad, and then in
2019 for the second time we extended the left monad to left monad closed to the right, the right monad
to right monad closed to the left, and the pierced binad to unpierced binad. These were necessary
in order to construct a general nonstandard neutrosophic real mobinad space, which is closed under
the nonstandard neutrosophic arithmetic operations (such as addition, subtraction, multiplication,
division, and power), which are needed in order to be able to define the nonstandard neutrosophic
operators (such as conjunction, disjunction, negation, implication, and equivalence) on this space, and
to transform the newly constructed nonstandard neutrosophic real mobinad space into a lattice of first
order (as partially ordered nonstandard set, under the neutrosophic inequality ≤N) and a lattice of
second type (as algebraic structure, endowed with two binary laws: neutrosophic infimum (infN) and
neutrosophic supremum (supN)).

As a consequence of extending the nonstandard analysis, we also extended the nonstandard
neutrosophic logic, set, measure, probability and statistics.

As future research it would be to introduce the nonstandard neutrosophic measure, and to find
applications of extended nonstandard neutrosophic logic, set, probability into calculus, since in calculus
one deals with infinitesimals and their aggregation operators, due to the tremendous number of
applications of the neutrosophic theories [28].
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