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ABSTRACT 

 

In this paper, we introduce the neutrosophic cantractive and neutrosophic mapping. We establish some results 

on fixed points of a neutrosophic mapping. 
Keywords: Neutrosophic Banach contraction, fixed point, complete neutrosophic metric space. 

 

 

1. INTRODUCTION   

 

Fuzzy Sets (FSs) put forward by Zadeh [1] has influenced deeply all the scientific fields since 

the publication of the paper. It is seen that this concept, which is very important for real-life 

situations, had not enough solution to some problems in time. New quests for such problems have 

been coming up. Atanassov [2] initiated Intuitionistic fuzzy sets (IFSs) for such cases. 

Neutrosophic set (NS) is a new version of the idea of the classical set which is defined by 

Smarandache [3]. Examples of other generalizations are FS [1] interval-valued FS [4], IFS [2], 

interval-valued IFS [5], the sets paraconsistent, dialetheist, paradoxist, and tautological [6], 

Pythagorean fuzzy sets [7]. 

Using the concepts Probabilistic metric space and fuzzy, fuzzy metric space (FMS) is 

introduced in [8]. Kaleva and Seikkala [9] have defined the FMS as a distance between two points 

to be a non-negative fuzzy number. In [10] some basic properties of FMS studied and the Baire 

Category Theorem for FMS proved. Further, some properties such as separability, countability are 

given and Uniform Limit Theorem is proved in [11]. Afterward, FMS has used in the applied 

sciences such as fixed point theory, image and signal processing, medical imaging, decision-

making et al. After defined of the intuitionistic fuzzy set (IFS), it was used in all areas where FS 

theory was studied. Park [12] defined IF metric space (IFMS), which is a generalization of FMSs. 

Park used George and Veeramani’s [10] idea of applying t-norm and t-conorm to the FMS 

meanwhile defining IFMS and studying its basic features. 

Fixed point theorem for fuzzy contraction mappings is initiated by Heilpern [13]. Bose and 

Sahani [14] extended the Heilpern’s study. Alaca et al. [15] are given fixed point theorems related 

to intuitionistic fuzzy metric spaces(IFMSs). Fixed point results for fuzzy metric spaces and 

IFMSs are studied by many researchers [16], [17], [18], [19], [20]. 
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Kirisci et al. [21] defined neutrosophic contractive mapping and gave a fixed point results in 

complete neutrosophic metric spaces. In [22], Mohamad studied fixed point aprroach in 

intuitionistic fuzzy metric spaces. Definitions and results of this paper are the generalizations of 

Mohamad’s work [22] to NMSs. 

 

2. PRELIMINARIES 

 

Some definitions related to the fuzziness, intuitionistic fuzziness and neutrosophy are given as 

follows: 

The fuzzy subset 𝐹 of ℝ is said to be a fuzzy number(FN). The FN is mapping 𝐹: ℝ → [0,1] 
that corresponds to each real number 𝑎 to the degree of membership 𝐹(𝑎). 

Let 𝐹 is a FN. Then, it is known that [23] 
 

 If 𝐹(𝑎0) = 1, for 𝑎0 ∈ ℝ, 𝐹 is said to be normal, 

 If for each 𝜇 > 0, 𝐹−1{[0, 𝜏 + 𝜇  } is open in the usual topology ∀𝜏 ∈ [0,1), 𝐹 is said to be 

upper semi continuous, 

 The set [𝐹]𝑇 = {𝑎 ∈  ℝ: 𝐹(𝑎) ≥ 𝜏}, 𝜏 ∈ [0,1] is called 𝜏 −cuts of 𝐹. 
 

Choose non-empty set 𝐹.An IFS in 𝐹 is an object 𝑈 defined by 
 

𝑈 = {〈𝑎, 𝐻𝑈(𝑎), 𝑆𝑈(𝑎)〉: 𝑎 ∈ 𝐹}  
 

where 𝐻𝑈(𝑎): 𝐹 → [0,1] and 𝑆𝑈(𝑎): 𝐹 → [0,1] are functions for all 𝑎 ∈ 𝐹 such that 0 ≤
𝐻𝑈(𝑎) + 𝑆𝑈(𝑎) ≤ 1 [2]. Let 𝑈 be an IFN. Then, 

 

 An IFN subset of the ℝ, 

 If 𝐻𝑈(𝑎) = 1 and, 𝑆𝑈(𝑎) = 0 for 𝑎0 ∈ ℝ, normal, 

 If 𝐻𝑈(𝜆𝑎1 + (1 − 𝜆)𝑎2) ≥ min (𝐻𝑈(𝑎1), 𝐻𝑈(𝑎2) ),  ∀ 𝑎1, 𝑎2 ∈ ℝ and 𝜆 ∈ [0,1], then 

the membership function 𝐻𝑈(𝑎) is called convex, 

 If 𝑆𝑈(𝜆𝑎1 + (1 − 𝜆)𝑎2) ≥ min (𝑆𝑈(𝑎1), 𝑆𝑈(𝑎2) ),  ∀ 𝑎1, 𝑎2 ∈ ℝ and 𝜆 ∈ [0,1], then the 

non-membership function 𝑆𝑈(𝑎) is concave, 

 𝐻𝑈 is semi upper continuous and 𝑆𝑈 is lower semi continuous, 

 𝑠𝑢𝑝𝑝𝑈 = 𝑐𝑙({𝑎 ∈ 𝐹: 𝑆𝑈 < 1}) is bounded. 
 

An IFS  𝑈 = {〈𝑎, 𝐻𝑈(𝑎), 𝑆𝑈(𝑎)〉: 𝑎 ∈ 𝐹} such that 𝐻𝑈(𝑎) and 1 − 𝑆𝑈(𝑎) are FNs, where 

(1 − 𝑆𝑈)(𝑎) = 1 − 𝑆𝑈(𝑎), and 𝐻𝑈(𝑎) + 𝑆𝑈(𝑎) ≤ 1 is called an IFN. 

Let’s consider that 𝐹 is a space of points(objects). Denote the 𝐻𝑈(𝑎) is a truth-MF, 𝑀𝑈(𝑎) is 

an indeterminacy-MF and 𝑆𝑈(𝑎) is a falsity-MF, where 𝑈 is a set in 𝐹 with 𝑎 ∈ 𝐹. Then, if we 

take 𝐼 = ]0−, 1+[ 
 

𝐻𝑈(𝑎): 𝐹 → 𝐼,            𝑀𝑈(𝑎): 𝐹 → 𝐼,               𝑆𝑈(𝑎): 𝐹 → 𝐼.  
 

There is no restriction on the sum of 𝐻𝑈(𝑎), 𝑀𝑈(𝑎),   𝑆𝑈(𝑎). Therefore, 
 

0− ≤ sup 𝐻𝑈(𝑎) + sup 𝑀𝑈(𝑎) + sup 𝑆𝑈(𝑎) ≤ 3+.  
 

The set 𝑈 which consist of with 𝐻𝑈(𝑎), 𝑀𝑈(𝑎),   𝑆𝑈(𝑎) in 𝐹 is called a neutrosophic sets(NS) 

and can be denoted by 
 

𝑈 = {〈𝑎, 𝐻𝑈(𝑎),  𝑀𝑈(𝑎), 𝑆𝑈(𝑎)〉: 𝑎 ∈ 𝐹, 𝐻𝑈(𝑎),  𝑀𝑈(𝑎), 𝑆𝑈(𝑎) ∈ 𝐼 }.                                          (1) 
 

Clearly, NS is an enhancement of [0,1] of IFSs. 

An NS 𝑈 is included in another NS 𝑉, (𝑈 ⊆ 𝑉),  if and only if, 
 

𝑖𝑛𝑓𝐻𝑈(𝑎) ≤ 𝑖𝑛𝑓𝐻𝑉(𝑎),              𝑠𝑢𝑝𝐻𝑈(𝑎) ≤ 𝑠𝑢𝑝𝐻𝑉(𝑎) 

𝑖𝑛𝑓𝑀𝑈(𝑎) ≥ 𝑖𝑛𝑓𝑀𝑉(𝑎),              𝑠𝑢𝑝𝑀𝑈(𝑎) ≥ 𝑠𝑢𝑝𝑀𝑉(𝑎) 

𝑖𝑛𝑓𝑆𝑈(𝑎) ≥ 𝑖𝑛𝑓𝑆𝑉(𝑎),              𝑠𝑢𝑝𝑆(𝑎) ≥ 𝑠𝑢𝑝𝑆𝑉(𝑎) 
 

for any 𝑎 ∈ 𝐹. However, NSs are inconvenient to practice in real problems. To cope with 

inconvenient situation, Wang et. al [24] customized NS’s definition and single-valued NSs 
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(SVNSs) suggested. Ye [25], described the  notion of simplified NSs, which may be characterized 

by three real numbers in the [0,1]. At the same time, the simplified NSs’ operations may be 

impractical, in some cases [25]. Hence, the operations and comparison way between SNSs and the 

aggregation operators for simplified NSs are redefined in [26]. 

According to the Ye [25], a simplification of an NS 𝑈, in (1), is 
 

𝑈 = {〈𝑎, 𝐻𝑈(𝑎),  𝑀𝑈(𝑎), 𝑆𝑈(𝑎)〉: 𝑎 ∈ 𝐹}  
 

which called a simplified NS. Especially, if 𝐹 has only one element 〈 𝐻𝑈(𝑎),  𝑀𝑈(𝑎), 𝑆𝑈(𝑎)〉 
is said to be an simplified NN. Expressly, we may see simplified NSs as a subclass of NSs. 

An simplified NS 𝑈 is comprised in another simplified NS 𝑉 (𝑈 ⊆ 𝑉), if and only if 𝐻𝑈(𝑎) ≤
𝐻𝑉(𝑎), 𝑀𝑈(𝑎) ≥ 𝑀𝑉(𝑎), and 𝑆𝑈(𝑎) ≥ 𝑆𝑉(𝑎) for  any 𝑎 ∈ 𝐹. Then, the following operations are 

given by Ye[25]: 
 

𝑈 + 𝑉 = 〈𝐻𝑈(𝑎) + 𝐻𝑉(𝑎) − 𝐻𝑈(𝑎). 𝐻𝑉(𝑎), 𝑀𝑈(𝑎) + 𝑀𝑉(𝑎) − 𝑀𝑈(𝑎). 𝑀𝑉(𝑎), 𝑆𝑈(𝑎) + 𝑆𝑉(𝑎) −
𝑆𝑈(𝑎). 𝑆𝑉(𝑎) 〉,  

𝑈. 𝑉 = 〈𝐻𝑈(𝑎). 𝐻𝑉(𝑎), 𝑀𝑈(𝑎). 𝑀𝑉(𝑎), 𝑆𝑈(𝑎). 𝑆𝑉(𝑎)〉,  

𝛼. 𝑈 = 〈1 − (1 − 𝐻𝑈(𝑎))
𝛼

, 1 − (1 − 𝑀𝑈(𝑎))
𝛼

 ,   1 − (1 − 𝑆𝑈(𝑎))
𝛼

〉,        𝑓𝑜𝑟 𝛼 > 0,  

𝑈𝛼 = 〈𝐻𝑈
𝛼(𝑎), 𝑀𝑈

𝛼(𝑎), 𝑆𝑈
𝛼(𝑎)〉,       𝑓𝑜𝑟 𝛼 > 0.  

 

Triangular norms (t-norms) (TN) were initiated by Menger [27]. In the problem of computing 

the distance between two elements in space, Menger offered using probability distributions 

instead of using numbers of distance. TNs are used to generalize with the probability distribution 

of triangle inequality in metric space conditions. Triangular conforms (t-conorms) (TC) know as 

dual operations of TNs. TNs and TCs are very significant for fuzzy operations (intersections and 

unions). 
 

Definition 2.1. Give an operation ⨀: [0,1] × [0,1] → [0,1]. If the operation ⨀  is satisfying the 

following conditions, then it is called that the operation ⨀ is continuous TN (CTN): For 

𝑠, 𝑡, 𝑢, 𝑣 ∈ [0,1], 
 

i. 𝑠⨀1 = 𝑠, 
ii. If 𝑠 ≤ 𝑢 and 𝑡 ≤ 𝑣, than 𝑠⨀𝑡 ≤ 𝑢⨀𝑣, 

iii. ⨀ is continuous, 

iv. ⨀ is commutative and associate. 
 

Definition 2.2. Give an operation ⊡: [0,1] × [0,1] → [0,1]. If the operation ⊡ is satisfying the 

following conditions, then it is called that the operation ⊡ is continuous TC (CTC):  
 

i. 𝑠 ⊡ 0 = 𝑠, 
ii. If 𝑠 ≤ 𝑢 and 𝑡 ≤ 𝑣, than 𝑠 ⊡ 𝑡 ≤ 𝑢 ⊡ 𝑣, 

iii. ⊡ is continuous, 

iv. ⊡ is commutative and associate. 
 

From above definitions, we note that if we choose 0 < 휀1, 휀2 < 1 for 휀1 > 휀2, then there exist 

0 < 휀3, 휀4 < 1 such that 휀1⨀휀3 ≥ 휀2, 휀1 ≥ 휀4 ⊡ 휀2. Further, if we choose 휀5 ∈ (0,1), then there 

exist 휀6, 휀7 ∈ (0,1) such that 휀6⨀휀6 ≥ 휀5 and 휀7 ⊡ 휀7 ≥ 휀5. 
 

Remark 2.3. [23] Take ⨀ and ⊡ are CTN and CTC, respectively. For 𝑠, 𝑡, 𝑢, 𝑣 ∈ [0,1], 
 

a. If 𝑠 > 𝑡, then there are 𝑢, 𝑣 such that 𝑠⨀𝑢 ≥ 𝑡 and 𝑠 ≥ 𝑡 ⊡ 𝑣. 

b. There are 𝑝, 𝑡 such that 𝑡⨀𝑡 ≥ 𝑠 and 𝑠 ≥ 𝑝 ⊡ 𝑝. 
 

Definition 2.4. [28] Take 𝐹 be an arbitrary set, ℰ = {〈𝑎, 𝐻𝑈(𝑎),  𝑀𝑈(𝑎), 𝑆𝑈(𝑎)〉: 𝑎 ∈ 𝐹} be a NS 

such that ℰ: 𝐹 × 𝐹 × ℝ+ → [0,1]. Let ⨀ and ⊡ show the CTN and CTC, respectively. The four 

tuple 𝑉 = (𝐹, ℰ, ⨀,⊡) is called neutrosophic metric space(NMS) when the following conditions 

are satisfied. ∀𝑎, 𝑏, 𝑐 ∈ 𝐹, 
 

i. 0 ≤ 𝐻(𝑎, 𝑏, 𝜆) ≤ 1,      0 ≤ 𝑀(𝑎, 𝑏, 𝜆) ≤ 1,      0 ≤ 𝑆(𝑎, 𝑏, 𝜆) ≤ 1         ∀𝜆 ∈ ℝ+, 
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ii. 𝐻(𝑎, 𝑏, 𝜆) + 𝑀(𝑎, 𝑏, 𝜆) + 𝑆(𝑎, 𝑏, 𝜆) ≤ 3,           (𝑓𝑜𝑟   𝜆 ∈ ℝ+), 
iii. 𝐻(𝑎, 𝑏, 𝜆) = 1        (𝑓𝑜𝑟  𝜆 > 0)    𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓  𝑎 = 𝑏, 

iv. 𝐻(𝑎, 𝑏, 𝜆) = 𝐻(𝑏, 𝑎, 𝜆)        (𝑓𝑜𝑟  𝜆 > 0), 

v. 𝐻(𝑎, 𝑏, 𝜆) ⨀ 𝐻(𝑏, 𝑐, 𝜇) ≤ 𝐻(𝑎, 𝑐, 𝜆 + 𝜇)              (𝑓𝑜𝑟  𝜆, 𝜇 > 0), 
vi. 𝐻(𝑎, 𝑏, . ): [0, ∞) → [0,1] is continuous, 

vii. lim𝜆→∞ 𝐻(𝑎, 𝑏, 𝜆) = 1        (∀𝜆 > 0), 

viii. 𝑀(𝑎, 𝑏, 𝜆) = 0        (𝑓𝑜𝑟  𝜆 > 0)    𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓  𝑎 = 𝑏, 

ix. 𝑀(𝑎, 𝑏, 𝜆) = 𝑀(𝑏, 𝑎, 𝜆)        (𝑓𝑜𝑟  𝜆 > 0), 

x. 𝑀(𝑎, 𝑏, 𝜆) ⊡  𝑀(𝑏, 𝑐, 𝜇) ≥ 𝑀(𝑎, 𝑐, 𝜆 + 𝜇)              (𝑓𝑜𝑟  𝜆, 𝜇 > 0) 

xi. 𝑀(𝑎, 𝑏, . ): [0, ∞) → [0,1] is continuous, 

xii. lim𝜆→∞ 𝑀(𝑎, 𝑏, 𝜆) = 0        (∀𝜆 > 0), 

xiii. 𝑆(𝑎, 𝑏, 𝜆) = 0        (𝑓𝑜𝑟  𝜆 > 0)    𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓  𝑎 = 𝑏 

xiv. 𝑆(𝑎, 𝑏, 𝜆) = 𝑆(𝑏, 𝑎, 𝜆)        (𝑓𝑜𝑟  𝜆 > 0), 

xv. 𝑆(𝑎, 𝑏, 𝜆) ⊡  𝑆(𝑏, 𝑐, 𝜇) ≥ 𝑆(𝑎, 𝑐, 𝜆 + 𝜇)              (𝑓𝑜𝑟  𝜆, 𝜇 > 0), 

xvi. 𝑆(𝑎, 𝑏, . ): [0, ∞) → [0,1] is continuous, 

xvii. lim𝜆→∞ 𝑆(𝑎, 𝑏, 𝜆) = 0        (∀𝜆 > 0) 

xviii. If 𝜆 ≤ 0, then 𝐻(𝑎, 𝑏, 𝜆) = 0, 𝑀(𝑎, 𝑏, 𝜆) = 1,   𝑆(𝑎, 𝑏, 𝜆) = 1. 
 

Then ℰ = (𝐻, 𝑀, 𝑆) is called Neutrosophic metric (NM) on 𝐹. 

The functions 𝐻(𝑎, 𝑏, 𝜆), 𝑀(𝑎, 𝑏, 𝜆),   𝑆(𝑎, 𝑏, 𝜆) denote the degree of nearness, the degree of 

neutralness and the degree of non-nearness between 𝑎 and 𝑏 with respect to 𝜆, respectively. 
 

Definition 2.5. [28] Give 𝑉 be a NMS, 0 < 휀 < 1,    𝜆 > 0  and 𝑎 ∈ 𝐹. The set 𝐷(𝑎, 휀, 𝜆) =
{𝑏 ∈ 𝐹:  𝐻(𝑎, 𝑏, 𝜆) > 1 − 휀,   𝑀(𝑎, 𝑏, 𝜆) < 휀,    𝑆(𝑎, 𝑏, 𝜆) < 휀} is said to be the open ball (OB) 

(center 𝑎 and radius 휀 with respect to 𝜆). 
 

Lemma 2.6. [28] Every OB 𝐷(𝑎, 휀, 𝜆) is an open set (OS). 
 

Definition 2.7. Let (𝐴𝑛)  be a sequence in 𝑉 = (𝐹, ℰ, ⨀,⊡). Then the sequence converges to a 

point 𝑎 ∈ 𝐹 if and only if for given 휀 ∈ (0,1), 𝜆 > 0, there exists 𝑛0 ∈ ℕ such that for all 𝑛 ≥ 𝑛0 
 

𝐻(𝑎𝑛, 𝑎, 𝜆) > 1 − 휀,       𝑀(𝑎𝑛, 𝑎, 𝜆) < 휀,       𝑆(𝑎𝑛, 𝑎, 𝜆) < 휀,  
 

or 
 

lim𝑛→∞ 𝐻(𝑎𝑛, 𝑎𝑚, 𝜆) = 1,       lim
𝑛→∞

𝑀(𝑎𝑛, 𝑎𝑚, 𝜆) = 0,       lim
𝑛→∞

𝑆(𝑎𝑛, 𝑎𝑚, 𝜆) = 0                          (2) 
 

as 𝜆 → ∞. 
 

Definition 2.8. [28] Take 𝑉 to be a NMS. A sequence (𝑎𝑛) in 𝐹 is called Cauchy if for each 

휀 > 0 and each 𝜆 > 0, there exist 𝑛0 ∈ ℕ such that 
 

𝐻(𝑎𝑛, 𝑎𝑚, 𝜆) > 1 − 휀,       𝑀(𝑎𝑛, 𝑎𝑚, 𝜆) < 휀,       𝑆(𝑎𝑛, 𝑎𝑚 , 𝜆) < 휀,  
 

for all 𝑛, 𝑚 ≥ 𝑛0. 𝑉 is called complete if every Cauchy sequence is convergent with respect to 

𝜏ℰ. 
 

Remark 2.9. We can define the topology induced by NMS with the using Definition 2.5 and 

Lemma 2.6. The set 
 

𝜏ℰ = {𝐴 ⊂ 𝐹:  𝑓𝑜𝑟 𝑒𝑎𝑐ℎ   𝑎 ∈ 𝐴,    𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡  𝜆 > 0  𝑎𝑛𝑑  휀 ∈ (0,1)  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝐷(𝑎, 휀, 𝜆) ⊂
𝐴}  

 

is topology on 𝐹. It can be easily seen that every NM ℰ on 𝐹 generates a topology 𝜏ℰ on 𝐹 

which has as a base the family of Oss of the form {𝐷(𝑎, 휀, 𝜆):  𝑎 ∈ 𝐹,    휀 ∈ (0,1),   𝜆 > 0}. Let 

{𝐷 (𝑎,
1

𝑛
,

1

𝑛
) :   𝑛 ∈ ℕ} be a local base at 𝑎. Then, 𝜏ℰ is the first countable and for 𝐷𝑛 =

{(𝑎, 𝑏):   𝐻 (𝑎, 𝑏,
1

𝑛
) > 1 −

1

𝑛
 ,     𝑀 (𝑎, 𝑏,

1

𝑛
) <

1

𝑛
,    𝑆 (𝑎, 𝑏,

1

𝑛
) <

1

𝑛
},   𝒟 = {𝐷𝑛:   𝑛 ∈ ℕ} is a 
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countable uniformly on 𝐹 whose induced topology coincides with the topology 𝜏ℰ. Therefore, 
(𝐹, 𝜏ℰ  ) is metrizable. 

 

3. NEUTROSOPHIC CONTRACTIVE MAPPING 

 

The following definitions and results are given in [21]: 
 

Proposition 3.1. Let 𝑉 be the NMS. For any 휀 ∈ (0,1], define ℎ: 𝐹 × 𝐹 × ℝ+ as follows: 
 

ℎ𝜀(𝑎, 𝑏) = 𝑖𝑛𝑓{𝜆 > 0:   𝐻(𝑎, 𝑏, 𝜆) > 1 − 휀, 𝑀(𝑎, 𝑏, 𝜆) < 휀, 𝑆(𝑎, 𝑏, 𝜆) < 휀}  
 

Then, 
 

i. (𝐹, ℎ𝜀: 휀 ∈ (0,1]) is generating space of quasi-metric family. 

ii.  The topology 𝜏ℰ on (𝐹, ℎ𝜀: 휀 ∈ (0,1]) coincides with the ℰ −topology on 𝑉, that is, ℎ𝜀 is 

a compatible symmetric for 𝜏ℰ. 

 

Definition 3.2. Let 𝑉 be a NMS. The mapping 𝑓: 𝐹 → 𝐹 is called neutrosophic contraction (NC) 

if there exists 𝑘 ∈ (0,1) such that 
  

1

𝐻(𝑓(𝑎),𝑓(𝑏),𝜆)
− 1 ≤ 𝑘 (

1

𝐻(𝑎,𝑏,𝜆)−1
),  

𝑀(𝑓(𝑎), 𝑓(𝑏), 𝜆) ≤ 𝑘𝑀(𝑎, 𝑏, 𝜆),  
𝑆(𝑓(𝑎), 𝑓(𝑏), 𝜆) ≤ 𝑘𝑆(𝑎, 𝑏, 𝜆),  

 

for each 𝑎, 𝑏, ∈ 𝐹 and 𝜆 > 0. 
 

Definition 3.3. Let 𝑉 be a NMS and let 𝑓: 𝐹 → 𝐹 be a NC mapping. Then there exists 𝑐 ∈ 𝐹 such 

that 𝑐 = 𝑓(𝑐). That is, 𝑐 is called neutrosophic fixed point (NFP) of 𝑓. 
 

Proposition 3.4. Suppose that 𝑓 is a NC. Then, 𝑓𝑛 is also a NC. Furthermore, if 𝑘 is the constant 

for 𝑓, then 𝑘𝑛 is the constant for 𝑓𝑛. 
 

Proposition 3.5. Let 𝑓 be a NC and 𝑎 ∈ 𝐹. 𝑓[𝐷(𝑎, 휀, 𝜆)] ⊂ 𝐷(𝑎, 휀, 𝜆) for large enough values of 

휀. 
 

Proposition 3.6. The inclusion  𝑓𝑛[𝐷(𝑎, 휀, 𝜆)] ⊂ 𝐷(𝑓𝑛(𝑎), 휀∗, 𝜆) is hold for all 𝑛, where 

휀∗ = 𝑘𝑛 × 휀.  
 

Now, we will give new definitions and results: 
 

Definition 3.7. Choose two NMSs (𝐹, ℰ1, ⨀,⊡) and (𝐺, ℰ2, ⨀,⊡). Let 𝒟𝑖 the uniformly 

generated by ℰ𝑖 (𝑖 = 1,2). A mapping 𝑓: 𝐹 → 𝐺 is uniformly continuous with respect to 𝒟1 and 

𝒟2 if and only if for a given 휀2 ∈ (0,1) and 𝜆2 > 0, there exists 휀1 ∈ (0,1) and 𝜆1 > 0 such that 

𝐻1(𝑎, 𝑏, 𝜆1) ≥ 1 − 휀1, 𝑀1(𝑎, 𝑏, 𝜆1) ≤ 휀1, 𝑆1(𝑎, 𝑏, 𝜆1) ≤ 휀1 implies 𝐻2(𝑓(𝑎), 𝑓(𝑏), 𝜆2) ≥ 1 − 휀2, 

𝑀2(𝑓(𝑎), 𝑓(𝑏), 𝜆2) ≤ 휀2, 𝑀2(𝑓(𝑎), 𝑓(𝑏), 𝜆2) ≤ 휀2  for each 𝑎, 𝑏 ∈ 𝐹. 
 

Definition 3.8. Take a NMS 𝑉. The mapping 𝑓: 𝐹 → 𝐹 is called 𝜆 −uniformly continuous if for 

each 𝜂, (𝜂 ∈ (0,1)), there exists 0 < 휀 < 1 such that 𝐻(𝑎, 𝑏, 𝜆) ≥ 1 − 𝜂,  𝑀(𝑎, 𝑏, 𝜆) ≤ 𝜂, 

𝑆(𝑎, 𝑏, 𝜆) ≤ 𝜂 implies 𝐻(𝑓(𝑎), 𝑓(𝑏), 𝜆) ≥ 1 − 𝜂, 𝑀(𝑓(𝑎), 𝑓(𝑏), 𝜆) ≤ 𝜂, 𝑆(𝑓(𝑎), 𝑓(𝑏), 𝜆) ≤ 𝜂, 

for each 𝑎, 𝑏 ∈ 𝐹 and 𝜆 > 0. 
 

Definition 3.9. Let 𝑉 be a NMS. A mapping 𝑓: 𝐹 → 𝐹 is NC, if there exists 𝑘 ∈ (0,1) such that 
  

1

𝐻(𝑓(𝑎),𝑓(𝑏),𝜆)
− 1 ≤ 𝑘 (

1

𝐻(𝑎,𝑏,𝜆)
− 1),  

1

𝑀(𝑓(𝑎),𝑓(𝑏),𝜆)
− 1 ≥

1

𝑘
(

1

𝑀(𝑎,𝑏,𝜆)
− 1),  

1

𝑆(𝑓(𝑎),𝑓(𝑏),𝜆)
− 1 ≥

1

𝑘
(

1

𝑆(𝑎,𝑏,𝜆)
− 1)  

 

for each 𝑎, 𝑏 ∈ 𝐹 and 𝜆 > 0. 

In this definition, 𝑘 is said to the contractive constant of 𝑓. 
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Proposition 3.10. Let 𝑉 be a NMS and 𝑓: 𝐹 → 𝐹 a mapping. Then, 𝑓 is 𝜆 −uniformly continuous 

if and only if for each 𝛿 > 0 there exists 𝜂 > 0 such that 
 

1

𝐻(𝑎,𝑏,𝜆)
− 1 ≤ 𝜂,               

𝑀(𝑎,𝑏,𝜆)

1−𝑀(𝑎,𝑏,𝜆)
≤ 𝜂,            

𝑆(𝑎,𝑏,𝜆)

1−𝑆(𝑎,𝑏,𝜆)
≤ 𝜂  

 

implies 
 

1

𝐻(𝑓(𝑎),𝑓(𝑏),𝜆)
− 1 ≤ 𝛿,               

𝑀(𝑓(𝑎),𝑓(𝑏),𝜆)

1−𝑀(𝑓(𝑎),𝑓(𝑏),𝜆)
≤ 𝛿,            

𝑆(𝑓(𝑎),𝑓(𝑏),𝜆)

1−𝑆(𝑓(𝑎),𝑓(𝑏),𝜆)
≤ 𝛿  

 

for each 𝑎, 𝑏 ∈ 𝐹 and 𝜆 > 0. 
 

Proposition 3.11. Let (𝐹, 𝑑) be a metric space. Then the mapping 𝑓: 𝐹 → 𝐹 is metric contractive 

on the metric space (𝐹, 𝑑) with contractive constant 𝑘 if and only if 𝑓 is NC, with contractive 

constant 𝑘, on the standard NMS (𝐹, ℰ, ⨀,⊡) induced by 𝑑. 
 

Remark 3.12. It is known that the sequence (𝑎𝑛) in a metric space (𝐹, 𝑑) is called contractive, if 

there exists 𝑘 ∈ (0,1) such that 𝑑(𝑎𝑛+1, 𝑎𝑛+2) ≤ 𝑘. 𝑑(𝑎𝑛, 𝑎𝑛+1) for all 𝑛 ∈ ℕ. 
 

Proposition 3.13. Let 𝑉 be a NMS induced by the metric 𝑑 on 𝐹. The sequence (𝑎𝑛) in 𝐹 is 

contractive in (𝐹, 𝑑) if and only if (𝑎𝑛) is NC in 𝑉. 
 

The above propositions can be easily proved. Now, we will give Banach fixed point theorem 

for NC mappings as follows: 
 

Theorem 3.14. Let 𝑉 be a complete NMS with (2) in which NC sequences are Cauchy. Let 

𝑇: 𝐹 → 𝐹 be a NC mapping. Then, 𝑇 has a unique fixed point. 
 

Proof. Let 𝑎 ∈ 𝐹 and 𝑎𝑛 = 𝑇𝑛(𝑎), 𝑛 ∈ ℕ. For each 𝜆 > 0, 
 

1

𝐻(𝑇(𝑎),𝑇2(𝑎),𝜆)
− 1 ≤ 𝑘 (

1

𝐻(𝑎,𝑎1,𝜆)
− 1),  

1

𝑀(𝑇(𝑎),𝑇2(𝑎),𝜆)
− 1 ≥

1

𝑘
(

1

𝑀(𝑎,𝑎1,𝜆)
− 1),  

1

𝑆(𝑇(𝑎),𝑇2(𝑎),𝜆)
− 1 ≥

1

𝑘
(

1

𝑆(𝑎,𝑎1,𝜆)
− 1).  

 

By induction we have, for 𝑛 ∈ ℕ, 
 

1

𝐻(𝑎𝑛+1,𝑎𝑛+2,𝜆)
− 1 ≤ 𝑘 (

1

𝐻(𝑎𝑛,𝑎𝑛+1,𝜆)
− 1),  

1

𝑀(𝑎𝑛+1,𝑎𝑛+2,𝜆)
− 1 ≥

1

𝑘
(

1

𝑀(𝑎𝑛,𝑎𝑛+1,𝜆)
− 1),  

1

𝑆(𝑎𝑛+1,𝑎𝑛+2,𝜆)
− 1 ≥

1

𝑘
(

1

𝑆(𝑎𝑛,𝑎𝑛+1,𝜆)
− 1).  

 

Then (𝑎𝑛) is a NC sequence. Therefore, it is a Cauchy sequence. Hence (𝑎𝑛) converges to 𝑏, 

for some 𝑏 ∈ 𝐹. Now, we must show that 𝑏 is a fixed point for 𝑇. Recall that 
 

𝑀(𝑇(𝑏),𝑇(𝑎𝑛),𝜆)

1−𝑀(𝑇(𝑏),𝑇(𝑎𝑛),𝜆)
≤ 𝑘 (

𝑀(𝑏,𝑎𝑛,𝜆)

1−𝑀(𝑏,𝑎𝑛,𝜆)
)  

 

and 
 

𝑆(𝑇(𝑏),𝑇(𝑎𝑛),𝜆)

1−𝑆(𝑇(𝑏),𝑇(𝑎𝑛),𝜆)
≤ 𝑘 (

𝑆(𝑏,𝑎𝑛,𝜆)

1−𝑆(𝑏,𝑎𝑛,𝜆)
).  

 

Therefore, by completeness, for 𝑛 → ∞, 
 

1

𝐻(𝑇(𝑏),𝑇(𝑎𝑛),𝜆)
− 1 ≤ 𝑘 (

1

𝐻(𝑏,𝑎𝑛,𝜆)
− 1) → 0  

 

and 
 

𝑀(𝑇(𝑏),𝑇(𝑎𝑛),𝜆)

1−𝑀(𝑇(𝑏),𝑇(𝑎𝑛),𝜆)
≤ 𝑘 (

𝑀(𝑏,𝑎𝑛,𝜆)

1−𝑀(𝑏,𝑎𝑛,𝜆)
) → 0,  

𝑆(𝑇(𝑏),𝑇(𝑎𝑛),𝜆)

1−𝑆(𝑇(𝑏),𝑇(𝑎𝑛),𝜆)
≤ 𝑘 (

𝑆(𝑏,𝑎𝑛,𝜆)

1−𝑆(𝑏,𝑎𝑛,𝜆)
) → 0.  
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Then lim𝑛 𝐻(𝑇(𝑏), 𝑇(𝑎𝑛), 𝜆) = 1 and lim𝑛 𝑀(𝑇(𝑏), 𝑇(𝑎𝑛), 𝜆) = 0, lim𝑛 𝑆(𝑇(𝑏), 𝑇(𝑎𝑛), 𝜆) =
0 for every 𝜆 > 0. Therefore, lim𝑛 𝑇(𝑎𝑛) = 𝑇(𝑏),  that is, lim𝑛 𝑎𝑛+1 = 𝑇(𝑏) and then 𝑇(𝑏) = 𝑏. 

To show uniqueness, assume 𝑇(𝑐) = 𝑐 for some 𝑐 ∈ 𝐹. Then, for 𝜆 > 0, we have, for 𝑛 → ∞, 
 

1

𝐻(𝑏,𝑐,𝜆)
− 1 =

1

𝐻(𝑇(𝑏),𝑇(𝑐),𝜆)
− 1 ≤ 𝑘 (

1

𝐻(𝑏,𝑐,𝜆)
− 1) = 𝑘 (

1

𝐻(𝑇(𝑏),𝑇(𝑐),𝜆)
− 1)  

≤ 𝑘2 (
1

𝐻(𝑏,𝑐,𝜆)
− 1) ≤ ⋯ ≤ 𝑘𝑛 (

1

𝐻(𝑏,𝑐,𝜆)
− 1) → 0.  

 

As well as for 𝑛 → ∞, 
 

𝑀(𝑏,𝑐,𝜆)

1−𝑀(𝑏,𝑐,𝜆)
=

𝑀(𝑇(𝑏),𝑇(𝑐),𝜆)

1−𝑀(𝑇(𝑏),𝑇(𝑐),𝜆)
≤ 𝑘 (

𝑀(𝑏,𝑐,𝜆)

1−𝑀(𝑏,𝑐,𝜆)
) = 𝑘 (

𝑀(𝑇(𝑏),𝑇(𝑐),𝜆)

1−𝑀(𝑇(𝑏),𝑇(𝑐),𝜆)
)  

≤ 𝑘2 (
𝑀(𝑏,𝑐,𝜆)

1−𝑀(𝑏,𝑐,𝜆)
) ≤ ⋯ ≤ 𝑘𝑛 (

𝑀(𝑏,𝑐,𝜆)

1−𝑀(𝑏,𝑐,𝜆)
) → 0,  

𝑆(𝑏,𝑐,𝜆)

1−𝑆(𝑏,𝑐,𝜆)
=

𝑆(𝑇(𝑏),𝑇(𝑐),𝜆)

1−𝑆(𝑇(𝑏),𝑇(𝑐),𝜆)
≤ 𝑘 (

𝑆(𝑏,𝑐,𝜆)

1−𝑆(𝑏,𝑐,𝜆)
) = 𝑘 (

𝑆(𝑇(𝑏),𝑇(𝑐),𝜆)

1−𝑆(𝑇(𝑏),𝑇(𝑐),𝜆)
)  

≤ 𝑘2 (
𝑆(𝑏, 𝑐, 𝜆)

1 − 𝑆(𝑏, 𝑐, 𝜆)
) ≤ ⋯ ≤ 𝑘𝑛 (

𝑆(𝑏, 𝑐, 𝜆)

1 − 𝑆(𝑏, 𝑐, 𝜆)
) → 0. 

 

Thus, 𝐻(𝑏, 𝑐, 𝜆) = 1, 𝑀(𝑏, 𝑐, 𝜆) = 0, 𝑆(𝑏, 𝑐, 𝜆) = 0 and hence 𝑏 = 𝑐. 
From Proposition 3.13 and Theorem 3.14, we can give the following corollary: 

 

Corollary 3.15. Let 𝑉 be a complete NMS and 𝑇: 𝐹 → 𝐹 an NC mapping. Then 𝑇 has a unique 

fixed point. 
 

Definition 3.16. A sequence (𝜆𝑛) is called 𝑠 −increasing sequence if there exists 𝑚0 ∈ ℕ such 

that 𝜆𝑚 + 1 ≤ 𝜆𝑚+1, for all 𝑚 ≥ 𝑚0. 
 

Now, we define the infinite “product” with ⨀ in 𝑉, as follows: 
 

∏ 𝐻(𝑎, 𝑏, 𝜆𝑖) = 𝐻(𝑎, 𝑏, 𝜆1)∞
𝑖=1 ⨀𝐻(𝑎, 𝑏, 𝜆2)⨀ ⋯ ⨀𝐻(𝑎, 𝑏, 𝜆𝑛)⨀ ⋯,  

∏ 𝑀(𝑎, 𝑏, 𝜆𝑖) = 𝑀(𝑎, 𝑏, 𝜆1)∞
𝑖=1 ⨀𝑀(𝑎, 𝑏, 𝜆2)⨀ ⋯ ⨀𝑀(𝑎, 𝑏, 𝜆𝑛)⨀ ⋯,  
∏ 𝑆(𝑎, 𝑏, 𝜆𝑖) = 𝑆(𝑎, 𝑏, 𝜆1)∞

𝑖=1 ⨀𝑆(𝑎, 𝑏, 𝜆2)⨀ ⋯ ⨀𝑆(𝑎, 𝑏, 𝜆𝑛)⨀ ⋯.  
 

The following property holds in the classical infinite product of real numbers: 
∏ 𝑑𝑖

∞
𝑖=1  is convergent, if the sequence of the successive products 𝑒𝑛 = ∏ 𝑑𝑖

∞
𝑖=1  is convergent, 

i.e., (𝑒𝑛) converges to a nonzero real number as 𝑛 → ∞. 
 

Theorem 3.17. Let 𝑉 be a complete NMS with (2) such that for each 𝜂 > 0 and an 𝑠 −increasing 

sequence (𝜆𝑛) there exists 𝑛0 ∈ ℕ such that ∏ 𝐻(𝑎, 𝑏, 𝜆𝑛)𝑛≥𝑛0
> 1 − 𝜂,  ∏ 𝑀(𝑎, 𝑏, 𝜆𝑛)𝑛≥𝑛0

< 𝜂,  

∏ 𝑆(𝑎, 𝑏, 𝜆𝑛)𝑛≥𝑛0
< 𝜂. Choose 𝑘 ∈ (0,1). Let 𝑇: 𝐹 → 𝐹 be a mapping satisfying 

𝐻(𝑇(𝑎), 𝑇(𝑏), 𝑘𝜆) ≥ 𝐻(𝑎, 𝑏, 𝜆),  𝑀(𝑇(𝑎), 𝑇(𝑏), 𝑘𝜆) ≥ 𝑀(𝑎, 𝑏, 𝜆) and 𝑆(𝑇(𝑎), 𝑇(𝑏), 𝑘𝜆) ≥
𝑆(𝑎, 𝑏, 𝜆) for all 𝑎, 𝑏 ∈ 𝐹. Then, 𝑇 has a unique fixed point. 
 

Proof. Let 𝑎 ∈ 𝐹 and 𝑎𝑛 = 𝑇𝑛(𝑎), 𝑛 ∈ ℕ. We have, 
 

𝐻(𝑎1, 𝑎2, 𝜆) = 𝐻(𝑇(𝑎), 𝑇2(𝑎), 𝜆) ≥ 𝐻 (𝑎, 𝑇(𝑎),
𝜆

𝑘
) = 𝐻 (𝑎, 𝑎1,

𝜆

𝑘
),  

𝑀(𝑎1, 𝑎2, 𝜆) = 𝑀(𝑇(𝑎), 𝑇2(𝑎), 𝜆) ≤ 𝑀 (𝑎, 𝑇(𝑎),
𝜆

𝑘
) = 𝑀 (𝑎, 𝑎1,

𝜆

𝑘
),  

𝑆(𝑎1, 𝑎2, 𝜆) = 𝑆(𝑇(𝑎), 𝑇2(𝑎), 𝜆) ≤ 𝑆 (𝑎, 𝑇(𝑎),
𝜆

𝑘
) = 𝑆 (𝑎, 𝑎1,

𝜆

𝑘
).  

 

By induction, for 𝑛 ∈ ℕ, 
 

𝐻(𝑎𝑛, 𝑎𝑛+1, 𝜆) > 𝐻 (𝑎, 𝑎1,
𝜆

𝑘𝑛),        𝑀(𝑎𝑛, 𝑎𝑛+1, 𝜆) < 𝑀 (𝑎, 𝑎1,
𝜆

𝑘𝑛),           𝑆(𝑎𝑛, 𝑎𝑛+1, 𝜆) <

𝑆 (𝑎, 𝑎1,
𝜆

𝑘𝑛).  
 

Let 𝜆, 𝜂 > 0. For 𝑚, 𝑛 ∈ ℕ, we suppose 𝑛 < 𝑚, if we take 𝑠𝑖 > 0, (𝑖 = 𝑛, ⋯ , 𝑚 − 1), 

satisfying 𝑠𝑛 + ⋯ + 𝑠𝑚−1 ≤ 1, then 
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𝐻(𝑎𝑛, 𝑎𝑚, 𝜆) > 𝐻(𝑎𝑛, 𝑎𝑛+1, 𝑠𝑛𝜆) ⨀ ⋯ ⨀𝐻(𝑎𝑚−1, 𝑎𝑚, 𝑠𝑚−1𝜆) ≥  

𝐻 (𝑎, 𝑎1,
𝑠𝑛𝜆

𝑘𝑛 ) ⨀ ⋯ ⨀𝐻 (𝑎, 𝑎1,
𝑠𝑚−1𝜆

𝑘𝑚−1 ),  

𝑀(𝑎𝑛, 𝑎𝑚, 𝜆) < 𝑀(𝑎𝑛, 𝑎𝑛+1, 𝑠𝑛𝜆)⨀ ⋯ ⨀𝑀(𝑎𝑚−1, 𝑎𝑚, 𝑠𝑚−1𝜆) ≤

𝑀 (𝑎, 𝑎1,
𝑠𝑛𝜆

𝑘𝑛
) ⨀ ⋯ ⨀𝑀 (𝑎, 𝑎1,

𝑠𝑚−1𝜆

𝑘𝑚−1
),  

𝑆(𝑎𝑛, 𝑎𝑚, 𝜆) < 𝑆(𝑎𝑛, 𝑎𝑛+1, 𝑠𝑛𝜆)⨀ ⋯ ⨀𝑆(𝑎𝑚−1, 𝑎𝑚, 𝑠𝑚−1𝜆) ≤

𝑆 (𝑎, 𝑎1,
𝑠𝑛𝜆

𝑘𝑛
) ⨀ ⋯ ⨀𝑆 (𝑎, 𝑎1,

𝑠𝑚−1𝜆

𝑘𝑚−1
).  

 

In particular case, since ∑
1

𝑛(𝑛+1)
= 1∞

𝑛=1 , we can take 𝑠𝑖 =
1

𝑖(𝑖+1)
, (𝑖 = 𝑛, ⋯ 𝑚 − 1), and then 

 

𝐻(𝑎𝑛, 𝑎𝑚, 𝑏) ≥ 𝐻 (𝑎, 𝑎1,
𝜆

𝑛(𝑛+1)𝑘𝑛
) ⨀ ⋯ ⨀𝐻 (𝑎, 𝑎1,

𝜆

𝑚(𝑚−1)𝑘𝑚−1
) ≥ ∏ 𝐻 (𝑎, 𝑎1,

𝜆

𝑛(𝑛+1)𝑘𝑛
)∞

𝑛=1 ,  

𝑀(𝑎𝑛, 𝑎𝑚, 𝑏) ≤ 𝑀 (𝑎, 𝑎1,
𝜆

𝑛(𝑛+1)𝑘𝑛) ⨀ ⋯ ⨀𝑀 (𝑎, 𝑎1,
𝜆

𝑚(𝑚−1)𝑘𝑚−1) ≤ ∏ 𝑀 (𝑎, 𝑎1,
𝜆

𝑛(𝑛+1)𝑘𝑛)∞
𝑛=1 ,  

𝑆(𝑎𝑛, 𝑎𝑚, 𝑏) ≤ 𝑆 (𝑎, 𝑎1,
𝜆

𝑛(𝑛+1)𝑘𝑛) ⨀ ⋯ ⨀𝑆 (𝑎, 𝑎1,
𝜆

𝑚(𝑚−1)𝑘𝑚−1) ≤ ∏ 𝑆 (𝑎, 𝑎1,
𝜆

𝑛(𝑛+1)𝑘𝑛)∞
𝑛=1 .  

 

If we write 𝜆𝑛 =
𝜆

𝑛(𝑛+1)𝑘𝑛, it is easy to prove that (𝜆𝑛+1 − 𝜆𝑛) → ∞, as 𝑛 → ∞, so (𝜆𝑛) is an 

𝑠 −increasing sequence, and then there exists 𝑛0 ∈ ℕ such that 
 

∏ 𝐻 (𝑎, 𝑎1,
𝜆

𝑛(𝑛+1)𝑘𝑛
) > 1 − 𝜂∞

𝑛=𝑛0
,      ∏ 𝑀 (𝑎, 𝑎1,

𝜆

𝑛(𝑛+1)𝑘𝑛
) < 𝜂∞

𝑛=𝑛0
,      

∏ 𝑆 (𝑎, 𝑎1,
𝜆

𝑛(𝑛+1)𝑘𝑛) < 𝜂∞
𝑛=𝑛0

.  
 

Therefore, 𝐻(𝑎𝑛, 𝑎𝑚, 𝜆) > 1 − 𝜂, 𝑀(𝑎𝑛, 𝑎𝑚, 𝜆) < 𝜂, 𝑆(𝑎𝑛, 𝑎𝑚, 𝜆) < 𝜂, for 𝑚, 𝑛 ≥ 𝑛0. 

Hence (𝑎𝑛) is a Cauchy sequence. Since 𝐹 is complete, there is 𝑏 ∈ 𝐹 such that lim𝑛 𝑎𝑛 = 𝑏. We 

must show that 𝑏 is a fixed point for 𝑇. We have, for 𝑛 → ∞, 
 

𝐻(𝑇(𝑏), 𝑏, 𝜆) ≥ 𝐻 (𝑇(𝑏), 𝑇(𝑎𝑛),
𝜆

2
) ⨀𝐻 (𝑎𝑛+1, 𝑏,

𝜆

2
) ≥ 𝐻 (𝑏, 𝑎𝑛,

𝜆

2𝑘
) ⨀𝐻 (𝑎𝑛+1, 𝑏,

𝜆

2
) → 1⨀1,  

𝑀(𝑇(𝑏), 𝑏, 𝜆) ≤ 𝑀 (𝑇(𝑏), 𝑇(𝑎𝑛),
𝜆

2
) ⊡ 𝑀 (𝑎𝑛+1, 𝑏,

𝜆

2
) ≤ 𝑀 (𝑏, 𝑎𝑛,

𝜆

2𝑘
) ⊡ 𝑀 (𝑎𝑛+1, 𝑏,

𝜆

2
) → 0 ⊡

0,  

𝑆(𝑇(𝑏), 𝑏, 𝜆) ≤ 𝑆 (𝑇(𝑏), 𝑇(𝑎𝑛),
𝜆

2
) ⊡ 𝑆 (𝑎𝑛+1, 𝑏,

𝜆

2
) ≤ 𝑆 (𝑏, 𝑎𝑛,

𝜆

2𝑘
) ⊡ 𝑆 (𝑎𝑛+1, 𝑏,

𝜆

2
) → 0 ⊡ 0  

 

by definition of convergence sequence and by the continuity of ⨀ and ⊡. 

So 𝐻(𝑇(𝑏), 𝑏, 𝜆) = 1, 𝑀(𝑇(𝑏), 𝑏, 𝜆) = 0,   𝑆(𝑇(𝑏), 𝑏, 𝜆) = 0 and then we get 𝑇(𝑏) = 𝑏. 

Now, let’s show the uniqueness. Assume 𝑇(𝑐) = 𝑐 for some 𝑐 ∈ 𝐹. Then, 
 

1 ≥ 𝐻(𝑐, 𝑏, 𝜆) = 𝐻(𝑇(𝑐), 𝑇(𝑏), 𝜆) ≥ 𝐻 (𝑐, 𝑏,
𝜆

𝑘
) = 𝐻 (𝑇(𝑐), 𝑇(𝑏),

𝜆

𝑘
) ≥ 𝐻 (𝑐, 𝑏,

𝜆

𝑘2) ≥ ⋯ ≥

𝐻 (𝑐, 𝑏,
𝜆

𝑘𝑛),  

0 ≤ 𝑀(𝑐, 𝑏, 𝜆) = 𝑀(𝑇(𝑐), 𝑇(𝑏), 𝜆) ≤ 𝑀 (𝑐, 𝑏,
𝜆

𝑘
) = 𝑀 (𝑇(𝑐), 𝑇(𝑏),

𝜆

𝑘
) ≤ 𝑀 (𝑐, 𝑏,

𝜆

𝑘2
) ≤ ⋯ ≤

𝑀 (𝑐, 𝑏,
𝜆

𝑘𝑛
),  

0 ≤ 𝑆(𝑐, 𝑏, 𝜆) = 𝑆(𝑇(𝑐), 𝑇(𝑏), 𝜆) ≤ 𝑆 (𝑐, 𝑏,
𝜆

𝑘
) = 𝑆 (𝑇(𝑐), 𝑇(𝑏),

𝜆

𝑘
) ≤ 𝑆 (𝑐, 𝑏,

𝜆

𝑘2) ≤

⋯ 𝑆 (𝑐, 𝑏,
𝜆

𝑘𝑛).  
 

Now, it is easy to verify that (
𝑡

𝑘𝑛) is an 𝑠 −increasing sequence, then by assumption, for a 

given 𝜂 ∈ (0,1), there exists 𝑛0 ∈ ℕ such that 

∏ 𝐻 (𝑐, 𝑏,
𝜆

𝑘𝑛) ≥ 1 − 𝜂,     ∏ 𝑀 (𝑐, 𝑏,
𝜆

𝑘𝑛) ≤ 𝜂,     ∏ 𝑆 (𝑐, 𝑏,
𝜆

𝑘𝑛) ≤ 𝜂  𝑛≥𝑛0𝑛≥𝑛0𝑛≥𝑛0
and clearly 

lim𝑛 𝐻 (𝑐, 𝑏,
𝜆

𝑘𝑛) = 1,   lim𝑛 𝑀 (𝑐, 𝑏,
𝜆

𝑘𝑛) = 0,   lim𝑛 𝑆 (𝑐, 𝑏,
𝜆

𝑘𝑛) = 0. Hence, 𝐻(𝑐, 𝑏, 𝜆) = 1,

𝑀(𝑐, 𝑏, 𝜆) = 0,   𝑆(𝑐, 𝑏, 𝜆) = 0 and so 𝑐 = 𝑏.  
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4. CONCLUSION 

 

Neutrosophic metric space with CTN and CTC is defined by Kirisci and Simsek[28]. Kirisci 

et al [21] argued fixed point results for NMS. In this paper, fixed point results in NMS were 

discussed. New infinite products are defined by CTN. The Banach Contraction Theorem for NMS 

is proved by the new defined infinite products. 
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