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Abstract In this study, comprehensive multi-criteria

decision-making (MCDM) methods are investigated under

bipolar neutrosophic environment. First, the operations of

BNNs are redefined based on the Frank operations con-

sidering the extant operations of bipolar neutrosophic

numbers (BNNs) lack flexibility and robustness. Subse-

quently, the Frank bipolar neutrosophic Choquet weighted

Bonferroni mean operator and the Frank bipolar neutro-

sophic Choquet geometric Bonferroni mean operator are

proposed based on the Frank operations of BNNs. The

proposed operators simultaneously consider the interac-

tions and interrelationships among the criteria by combin-

ing the Choquet integral operator and Bonferroni mean

operators. Furthermore, MCDM methods are developed

based on the proposed aggregation operators. A numerical

example of plant location selection is conducted to explain

the application of the proposed methods, and the influences

of parameters are also discussed. Finally, the proposed

methods are compared with several extant methods to

verify their feasibility.

Keywords Multi-criteria decision-making � Bipolar

neutrosophic set � Frank operations � Choquet integral

operator � Bonferroni mean operator

1 Introduction

With the increasing complexity and uncertainty in decision

environment, the representation of decision information

has varied and is no longer limited to real numbers.

Compared with real numbers, fuzzy numbers have been

widely utilized to describe fuzzy information since the

introduction of fuzzy sets (FSs) [1]. Nevertheless, FSs

cannot tackle complex problems because they only have

one membership. For a highly flexible description of

uncertain information, Atanassov [2] proposed intuitionis-

tic fuzzy sets (IFSs), which include both membership and

non-membership degrees. Thereafter, Atanassov and Gar-

gov [3] presented interval-valued intuitionistic fuzzy sets

(IVIFSs) by extending IFSs. However, IFSs and IVIFSs

cannot represent inconsistent information in practical

decision-making problems. Smarandache [4] then intro-

duced neutrosophic sets (NSs), which utilize the functions

of truth, indeterminacy, and falsity to depict uncertain,

incomplete and inconsistent information. Furthermore,

Wang et al. [5, 6] defined the single-valued neutrosophic

sets (SVNSs) and the interval neutrosophic sets (INSs) to

apply NSs in practical problems.

Positive and negative effects can be generated in human

minds when we make a decision. Positive information

expresses what is possible, satisfactory, permitted, desired,

or acceptable. By contrast, negative information states

what is impossible, rejected, or forbidden [7]. Accept-

able or satisfactory conception refers to positive prefer-

ences, whereas unacceptable conception refers to negative

preferences. Negative preferences correspond to con-

straints, while positive preferences correspond to wishes

[8]. For example, when a decision maker (DM) evaluates

an object, he may express what he considers (more or less)

acceptable or satisfactory; however, he may express what
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he considers unacceptable because of several constraints.

To describe the aforementioned information, Zhang [9]

introduced the concept of bipolar fuzzy sets (BFSs) con-

sisting of the following two parts: positive membership

degree and negative membership degree. Given the

advantages of BFSs and NSs, Deli et al. [10] proposed

bipolar neutrosophic sets (BNSs) that can describe bipolar,

fuzzy, uncertain, and inconsistent information. Recently,

Dey et al. [11] proposed the bipolar neutrosophic TOPSIS

(BN-TOPSIS) method to solve multi-criteria decision-

making (MCDM) problems. Pramanik et al. [12] proposed

bipolar neutrosophic projection, bidirectional projection,

and hybrid projection measures for handling MCDM

problems. Ulucay et al. [13] defined the similarity mea-

sures of BNSs and applied them to practical problems.

The aggregation operators have been widely used in

MCDM methods under various fuzzy environments

[14–16]. However, most aggregation operators assume that

the criteria are independent. In the decision-making pro-

cess, the interactions (e.g., redundancy or complementarity)

among criteria are universal. For example, a company wants

to assess four plant locations in terms of four criteria: cost,

expansion possibility, transportation, and labor. Expansion

possibility and labor can be regarded as redundant, since the

weight of a combination of expansion possibility and labor

is less than the sum of their weighs. To deal with such

situations, the interactions among criteria must be consid-

ered, and the Choquet integral operator represents an

effective solution. Choquet integral operators, proposed by

Grabisch et al. [17], can fully consider the importance of

criteria and the interactions among them [18]. Numerous

researchers extended the Choquet integral operators into all

kinds of fuzzy environments [19–21]. Sun et al. [22]

introduced the interval neutrosophic number Choquet

integral operators. Meng et al. [23] introduced the gener-

alized Banzhaf interval-valued intuitionistic fuzzy geo-

metric Choquet operators. Furthermore, many researchers

proposed several methods by combining the Choquet inte-

gral operator with other theories. Yuan and Li [24] inte-

grated the Choquet integral operators with prospect theory

and proposed the intuitionistic trapezoidal prospect Cho-

quet integral operators. Cheng and Tang [25] introduced the

generalized Shapley function into Choquet integral opera-

tors and defined the generalized Shapley interval-valued

intuitionistic fuzzy geometric Choquet operators.

Aside from the interactions among the criteria, interre-

lationships among them also exist, such as in the case of

plant location selection. In this situation, transportation and

labor may influence cost, and expansion possibility may

depend on the effect of transportation and labor. Dealing

with such kinds of problems requires the introduction of

the Bonferroni mean (BM) operator [26], which is capable

of capturing the interrelationships of input arguments.

However, the BM operator overlooks the importance of

input arguments. To overcome this shortcoming, Xu and

Yager [27] defined the weighted Bonferroni mean (WBM)

operator on the basis of the BM operator. Nonetheless, the

WBM operator does not meet the property of reducibility.

Consequently, Zhou and He [28] introduced the normalized

weighted Bonferroni mean (NWBM) operator. Afterward,

Sun [29] introduced the normalized geometric Bonferroni

mean (NGBM) operator. Since then, the NWBM and

NGBM operators have been widely utilized in various

fuzzy environments [30–32]. Liu and Wang [33] applied

the NWBM operator to solve MCDM problems with

SVNSs. Tian et al. [34] extended the NWBM operator into

the simplified neutrosophic linguistic environment. Fur-

thermore, Liu et al. [35] proposed the multi-valued neu-

trosophic NWBM operator and multi-valued neutrosophic

NGBM operator.

Frank triangular norms share the characteristics of gen-

eral triangular norms, such as algebraic triangular norms,

Einstein triangular norms, and Hamacher triangular norms.

Frank triangular norms are the only type of triangular norms

that satisfy compatibility [36]. They are the generalization

of algebraic triangular norms and Lukasiewicz triangular

norms [37]. Frank triangular norms are also more flexible

and robust than other triangular norms because they have a

parameter that can be selected by DMs [38]. Frank opera-

tions are examples of Frank triangular norms, and several

aggregation operators based on Frank operations are uti-

lized for decision-making problems under fuzzy environ-

ments [36, 39]. Peng et al. [40] defined the Frank Heronian

mean operator with linguistic intuitionistic fuzzy informa-

tion. Qin et al. [38] developed the Frank power aggregation

operator of hesitant fuzzy sets. Ji et al. [41] proposed the

Frank prioritized BM operator with SVNSs.

BNSs can describe bipolar, fuzzy, uncertain, and

inconsistent information involved in practical decision-

making problems. However, studies on the extension of

BNSs are relatively fewer than other fuzzy sets. The

Choquet integral operator can consider the interactions

among criteria, and the BM operators can take into account

the interrelationships among input arguments. The inter-

actions and interrelationships among criteria exist exten-

sively in practical decision-making problems. However, no

study on the bipolar neutrosophic aggregation operator has

been conducted to consider the interactions and interrela-

tionships among criteria simultaneously. In addition,

compared with other operations, Frank operations are more

flexible and robust. Nevertheless, Frank operations for

BNSs have not been investigated.

On the basis of the aforementioned analysis, this study

aims to overcome existing limitations and developing

comprehensive methods. The purposes of this study are as

follows. First, BNSs are utilized to depict evaluation
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information in the decision-making process to avoid infor-

mation loss. Second, the Frank operations of BNNs are

defined. Third, Frank bipolar neutrosophic Choquet BM

operators are proposed by combining the Choquet integral

operators and BM operators on the basis of the Frank

operations of BNNs. Then, MCDM methods are established

based on the proposed operators. Finally, the effectiveness

and flexibility of the proposed methods are further verified

through a numerical example of plant location selection,

parametric analysis, and comparative analysis.

The remainder of this paper is organized as follows.

Section 2 reviews several basic concepts which will be

used in this study. Section 3 defines the Frank operations of

bipolar neutrosophic numbers (BNNs). Section 4 discusses

the proposed new Frank Choquet BM operators and their

desirable properties. In addition, this section proposes

comprehensive MCDM methods based on the proposed

operators. Section 5 provides a numerical example of plant

location selection and discusses the influences of parame-

ters. It likewise demonstrates a comparative analysis with

other methods. Finally, Sect. 6 concludes this paper.

2 Preliminaries

This section reviews the basic concepts of BNSs, BNNs,

Choquet integral operators, BM operators, and Frank

operations. These concepts will be used in subsequent

sections.

2.1 Bipolar Neutrosophic Sets and Bipolar

Neutrosophic Numbers

Definition 1 [10] Let X be a fixed set. Then, the BNS can

be defined as follows:

A xð Þ ¼ hx; Tþ
A xð Þ; IþA xð Þ;Fþ

A xð Þ; T�
A xð Þ; I�A xð Þ;F�

A xð Þi x 2 Xj
� �

;

where Tþ
A xð Þ; IþA xð Þ;Fþ

A xð Þ : X ! 0; 1½ � and T�
A xð Þ; I�A xð Þ;

F�
A xð Þ : X ! �1; 0½ �. The positive membership degrees

Tþ
A xð Þ, IþA xð Þ, and Fþ

A xð Þ are the truth membership, inde-

terminacy membership, and falsity membership degrees of

a point x 2 X corresponding to a BNS A, and the negative

membership degrees T�
A xð Þ; I�A xð Þ;F�

A xð Þ denote the truth

membership, indeterminate membership, and false mem-

bership degrees of a point x 2 X to some implicit counter-

property corresponding to a BNS A. In particular, if X has

only one element, then A xð Þ ¼ hTþ
A xð Þ; IþA xð Þ;Fþ

A xð Þ;
T�
A xð Þ; I�A xð Þ;F�

A xð Þi is called a BNN. For convenience, a

BNN is denoted as A ¼ hTþ
A ; I

þ
A ;F

þ
A ; T

�
A ; I

�
A ;F

�
A i.

Deli et al. [10] defined the algebraic operations of BNNs

as follows.

Definition 2 [10] Let a ¼ Tþ
a ; I

þ
a ;F

þ
a ; T

�
a ; I

�
a ;F

�
a

� �
and

b ¼ Tþ
b ; I

þ
b ;F

þ
b ; T

�
b ; I

�
b ;F

�
b

� �
be two BNNs; then, the

operations of BNNs are defined as follows:

(1) a� b ¼ Tþ
a þ Tþ

b � Tþ
a T

þ
b ; I

þ
a I

þ
b ;F

þ
a F

þ
b ;�T�

a

�

T�
b ;� �I�a � I�b � I�a I

�
b

� �
;� �F�

a � F�
b � F�

a

�

F�
b Þi;

(2) ka ¼ 1 � 1 � Tþ
a

� �k
; Iþa
� �k

; Fþ
a

� �k
;�ð�T�

a Þ
k;�

D

1� ð1� �I�a
� �� �kÞ;� 1� ð1� �F�

a

� �� �kÞi k[0ð Þ;
(3) a� b ¼ Tþ

a T
þ
b ; I

þ
a þ Iþb � Iþa I

þ
b ;F

þ
a þ Fþ

b

�

�Fþ
a F

þ
b ;� �T�

a � T�
b � T�

a T
�
b

� �
;�I�a I

�
b ;�F�

a F
�
b i;

(4) ak ¼ Tþ
a

� �k
; 1 � 1 � Iþa

� �k
; 1 � 1 � Fþ

a

� �k
;

D

� 1�ð1� �T�
a

� �� �kÞ;�ð�I�a Þ
k;�ð�F�

a Þ
ki k[0ð Þ .

Deli et al. [10] proposed a comparison method that

includes score, accuracy, and certainty functions to com-

pare two BNNs.

Definition 3 [10] Let a ¼ Tþ
a ; I

þ
a ;F

þ
a ; T

�
a ; I

�
a ;F

�
a

� �
be a

BNN; then, the score function S að Þ, accuracy function

A að Þ, and certainty function C að Þ are defined as follows:

S að Þ ¼ Tþ
a þ 1 � Iþa þ 1 � Fþ

a þ 1 þ T�
a � I�a � F�

a

6
;

ð1Þ

A að Þ ¼ Tþ
a � Fþ

a þ T�
a � F�

a ; ð2Þ

C að Þ ¼ Tþ
a � F�

a : ð3Þ

Based on Eqs. (1)–(3), the ranking methods of BNNs

can be derived as follows.

Definition 4 [10] Let a ¼ Tþ
a ; I

þ
a ;F

þ
a ; T

�
a ; I

�
a ;F

�
a

� �
and

b ¼ Tþ
b ; I

þ
b ;F

þ
b ; T

�
b ; I

�
b ;F

�
b

� �
be two BNNs. Therefore,

(1) If S að Þ[ S bð Þ, then a[ b;

(2) If S að Þ¼S bð Þ and A að Þ[A bð Þ, then a[ b;

(3) If S að Þ ¼ S bð Þ, A að Þ ¼ A bð Þ, and C að Þ[C bð Þ, then

a[ b;

(4) If S að Þ ¼ S bð Þ, A að Þ ¼ A bð Þ, and C að Þ ¼ C bð Þ, then

a = b.

2.2 Choquet Integral Operators and BM Operators

This subsection reviews the Choquet integral operators and

BM operators.

The Choquet integral operator is the generalization of

the weighted average (WA), ordered WA (OWA), and

max–min operators. The fuzzy measures defined by

Sugeno [42] play an important role in the Choquet integral

operator. Fuzzy measures can capture the importance of
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each criterion and the importance of a combination of

criteria. Therefore, fuzzy measures can be employed to

measure the interactive characteristics among criteria. The

concepts of fuzzy measures and the Choquet integral

operator are defined as follows.

Definition 5 [42] Let C be a set of criteria. Then, a set

function h: P Cð Þ ! 0; 1½ � is called a fuzzy measure if this

set function satisfies the following axioms.

(1) h ;ð Þ ¼ 0: the empty set has no importance.

(2) h Cð Þ ¼ 1: the full set has maximal importance.

(3) If A � C;B � C and A � B, then h Að Þ� h Bð Þ: a

new added criterion cannot diminish the importance

of a criterion set.

Sugeno [42] proposed a special kind of fuzzy measure

based on P(C) which satisfies the finite k-fuzzy measure

and fulfills the following additional property:

h A [ Bð Þ ¼ h Að Þ þ h Bð Þ þ hh Að Þh Bð Þ; ð4Þ

where A \ B ¼ ; for all A;B 2 P Cð Þ, and h[ � 1.

(1) If h = 0, then h A [ Bð Þ ¼ h Að Þ þ h Bð Þ. This condi-

tion is called an additive measure, which indicates

no interaction between A and B.

(2) If h[ 0, then h A [ Bð Þ[ h Að Þ þ h Bð Þ. A positive

synergetic interaction exists between A and B, which

indicates that the set {A, B} has a multiplicative

effect.

(3) If h\ 0, then h A [ Bð Þ\h Að Þ þ h Bð Þ. A negative

synergetic interaction exists between A and B, which

indicates that set {A, B} has a substitutive effect.

Therefore, h can be utilized to represent the interactions

among criteria and it is used in the Choquet integral operator.

Let C be a set of criteria, and [n
j¼1cj ¼ C. The h-fuzzy

measure h can be defined as follows:

h Cð Þ ¼

1

h

Yn

j¼1

1 þ hh cj
� �� �

� 1

 !

; if h 6¼ 0

Pn

j¼1

h cj
� �

; if h ¼ 0

8
>>><

>>>:

; ð5Þ

where ck \ cj ¼ ; and k 6¼ j. If a subset has one element cj,

then h cj
� �

can be designated as a fuzzy density. Particu-

larly, for every subset A � C, the following expression can

be derived:

h Að Þ ¼
1

h

Y

cj2A
1 þ hh cj

� �� �
� 1

0

@

1

A; if h 6¼ 0

P

cj2A
h cj
� �

; if h ¼ 0

8
>>><

>>>:

: ð6Þ

On the basis of Eq. (5), h can be determined from

h Cð Þ ¼ 1, which can be simplified as follows:

hþ 1 ¼
Yn

j¼1

1 þ hh cj
� �� �

: ð7Þ

Definition 6 [17] Let g be a positive real-valued function

on C and h be a fuzzy measure on C. Thereafter, the discrete

Choquet integral of g with respect to h is defined as follows:

Cg gð Þ ¼
Xn

j¼1

g c jð Þ
� �

h A jð Þ
� �

� h A jþ1ð Þ
� �� 	

; ð8Þ

where g c 1ð Þ
� �

� g c 2ð Þ
� �

� � � � � g c nð Þ
� �

, A jð Þ ¼
c jð Þ; . . .; c nð Þ
� �

and A nþ1ð Þ ¼ ;.

The BM operator introduced by Bonferroni [26]

emphasizes the interrelationships among aggregated argu-

ments. Considering the importance of input arguments,

NWBM [28] and NGBM [29] operators were introduced.

Definition 7 [28] Let s, t C 0, and #i i ¼ 1; 2; . . .; nð Þ be a

collection of nonnegative real numbers. Then, the NWBM

operator is expressed as follows:

NWBMs;t #1; #2; . . .; #nð Þ ¼
Xn

i;j¼1
i 6¼j

wiwj

1 � wi

#s
i#

t
j

0

BB@

1

CCA

1
sþt

: ð9Þ

where w ¼ w1;w2; . . .;wnf g is the weight vector of #i and
Pn

i¼1

wi ¼ 1.

Definition 8 [29] Let s, t C 0, and #i i ¼ 1; 2; . . .; nð Þ be a

collection of nonnegative real numbers. Then, the NGBM

operator is expressed as follows:

NGBMs;t #1; #2; . . .; #nð Þ ¼ 1

sþ t

Yn

i;j¼1
i 6¼j

s#i þ t#j

� �wiwj
1�wi ;

ð10Þ

where w ¼ w1;w2; . . .;wnf g is the weight vector of #i and
Pn

i¼1

wi ¼ 1.

2.3 Frank Operations

Frank triangular norms have been investigated by numer-

ous researchers [43, 44] because of their flexibility and

robustness. Frank operations are examples of Frank trian-

gular norms. Similar to algebraic operations, Einstein

operations, and Hamacher operations, Frank operations

also contain product and sum (accordingly designated as

Frank product and Frank sum).

Definition 9 [45] Let a and b be two real numbers. The

Frank product �F and the Frank sum �F between a and b
are then defined as
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a�F b ¼ 1 � logk 1 þ
k1�a � 1
� �

k1�b � 1
� �

k� 1

 !

;

a�F b ¼ logk 1 þ
ka � 1ð Þ kb � 1

� �

k� 1

 !

;

where a; b 2 ½0; 1� and k 2 ð1;þ1Þ.

Some special cases can be easily proved as well [37].

(1) If k ? 1, then a�F b ! aþ b� ab and

a�F b ! ab. The Frank product and Frank sum

are reduced to the algebraic product and algebraic

sum, respectively.

(2) If k ? ?, then a�F b ! min aþ b; 1ð Þ and

a�F b ! max 0; aþ b� 1ð Þ. The Frank product

and Frank sum are reduced to the Lukasiewicz

product and Lukasiewicz sum, respectively.

3 Frank Operations of BNNs

This section defines the Frank operations of BNNs and

discusses several of their properties.

Given the efficiency and comprehensiveness of Frank

operations, defining Frank operations under bipolar neu-

trosophic environment is beneficial. On the basis of exist-

ing Frank operations, the Frank operations of BNNs are

defined as follows.

Definition 10 Let a ¼ Tþ
a ; I

þ
a ;F

þ
a ; T

�
a ; I

�
a ;F

�
a

� �
and b ¼

Tþ
b ; I

þ
b ;F

þ
b ; T

�
b ; I

�
b ;F

�
b

� �
be two BNNs and k[ 1. Then,

the Frank operations of BNNs are defined as follows.

ð1Þa�F b¼ 1� logk 1þ
k1�Tþ

a �1

 �

k1�Tþ
b �1


 �

k�1

0

@

1

A;logk 1þ
kI

þ
a �1


 �
kI

þ
b �1


 �

k�1

0

@

1

A;logk 1þ
kF

þ
a �1


 �
kF

þ
b �1


 �

k�1

0

@

1

A
*

;

� logk 1þ
k�T�

a �1
� �

k�T�
b �1

� �

k�1

 !

;logk 1þ
k1þI�a �1
� �

k1þI�
b �1

� �

k�1

 !

�1;logk 1þ
k1þF�

a �1
� �

k1þF�
b �1

� �

k�1

 !

�1

+

;

ð2Þa�F b¼ logk 1þ
kT

þ
a �1


 �
kT

þ
b �1


 �

k�1

0

@

1

A;1� logk 1þ
k1�Iþa �1

 �

k1�Iþ
b �1


 �

k�1

0

@

1

A;1� logk 1þ
k1�Fþ

a �1

 �

k1�Fþ
b �1


 �

k�1

0

@

1

A
*

;

logk 1þ
k1þT�

a �1
� �

k1þT�
b �1

� �

k�1

 !

�1;�logk 1þ
k�I�a �1
� �

k�I�
b �1

� �

k�1

 !

;� logk 1þ
k�F�

a �1
� �

k�F�
b �1

� �

k�1

 !+

;

ð3Þk �F a¼ 1� logk 1þ
kT

þ
a �1


 �k

k�1ð Þk�1

0

B@

1

CA;logk 1þ
kI

þ
a �1


 �k

k�1ð Þk�1

0

B@

1

CA;logk 1þ
kF

þ
a �1


 �k

k�1ð Þk�1

0

B@

1

CA

*

;

� logk 1þ
k�T�

a �1
� �k

k�1ð Þk�1

 !

;logk 1þ
k�I�a �1
� �k

k�1ð Þk�1

 !

�1;logk 1þ
k�F�

a �1
� �k

k�1ð Þk�1

 !

�1

+

k[0;

ð4Þa^Fk¼ logk 1þ
kT

þ
a �1


 �k

k�1ð Þk�1

0

B@

1

CA;1� logk 1þ
kI

þ
a �1


 �k

k�1ð Þk�1

0

B@

1

CA;1� logk 1þ
kF

þ
a �1


 �k

k�1ð Þk�1

0

B@

1

CA

*

;

logk 1þ
k�T�

a �1
� �k

k�1ð Þk�1

 !

�1;� logk 1þ
k�I�a �1
� �k

k�1ð Þk�1

 !

;� logk 1þ
k�F�

a �1
� �k

k�1ð Þk�1

 !+

k[0:

Theorem 1 Let a ¼ Tþ
a ; I

þ
a ;F

þ
a ; T

�
a ; I

�
a ;F

�
a

� �
and b ¼

Tþ
b ; I

þ
b ;F

þ
b ; T

�
b ; I

�
b ;F

�
b

� �
be two BNNs, and let c ¼ a�F b,

d ¼ a�F b, e ¼ k �F a k[ 0ð Þ, and f ¼ a^Fk k[ 0ð Þ.
Thereafter, c, d, e, and f are also BNNs.

As Theorem 1 can be easily verified, the proof is omitted

here.

The properties of Frank operations of BNNs will be

discussed as follows.

Theorem 2 Let a ¼ Tþ
a ; I

þ
a ;F

þ
a ; T

�
a ; I

�
a ;F

�
a

� �
and b ¼

Tþ
b ; I

þ
b ;F

þ
b ; T

�
b ; I

�
b ;F

�
b

� �
be two BNNs, and k; k1; k2 [ 0,

and the following properties can be proven easily.

(1) a�F b ¼ b�F a,

(2) a�F b ¼ b�F a,

(3) k �F a�F bð Þ ¼ k �F a�F k �F b,

(4) a�F bð Þ^Fk¼ a^Fk �F b^Fk;

(5) k1 þ k2ð Þ �F a ¼ k1 �F a�F k2 �F a;

(6) a^F k1þk2ð Þ ¼ a^Fk1 �F a^Fk2 :

4 Frank Bipolar Neutrosophic Choquet
Bonferroni Mean Operators

This section proposes the Frank bipolar neutrosophic

Choquet weighted Bonferroni mean (FBNCWBM) and

Frank bipolar neutrosophic Choquet geometric Bonferroni

mean (FBNCGBM) operators and discusses several prop-

erties of these two aggregation operators.

The FBNCWBM and FBNCGBM operators are pro-

posed by combining the Choquet integral and BM opera-

tors on the basis of Frank operations. Such combination

considers the interactions among criteria and the interre-

lationships of input arguments comprehensively, as well as

takes advantage of the Frank operations under bipolar

neutrosophic environment.

4.1 Frank Bipolar Neutrosophic Choquet Weighted

Bonferroni Mean Operator

Definition 11 Let s, t C 0, and ri ¼
Tþ
i ; I

þ
i ;F

þ
i ; T

�
i ; I

�
i ;F

�
i

� �
i ¼ 1; 2; . . .nð Þ be a collection of

BNNs. Then, the FBNCWBM operator is defined as

follows:

FBNCWBMs;t r1; r2; . . .; rnð Þ

¼ �n
F

i:j¼1

i 6¼j

w ið Þw jð Þ
1 � w ið Þ

�F r ið Þ
� �^s

F�F r jð Þ
� �^t

F


 �
0

BB@

1

CCA

^
F 1
sþt

;

ð11Þ

where w ið Þ ¼ h A ið Þ
� �

� h A iþ1ð Þ
� �

and h A ið Þ
� �

is obtained

using Eqs. (6) and (7).
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Theorem 3 Let ri ¼ Tþ
i ; I

þ
i ;F

þ
i ; T

�
i ; I

�
i ;F

�
i

� �
be a col-

lection of BNNs. Then, the value aggregated by Eq. (11) is

also a BNN, and

FBNCWBMs;t r1;r2; . . .;rnð Þ

¼ �n
F

i:j¼1

i 6¼j

w ið Þw jð Þ
1�w ið Þ

�F r ið Þ
� �^Fs� r jð Þ

� �^Ft

 �

0

BB@

1

CCA

^
F 1
sþt

¼ f Tþ
ið Þ;T

þ
jð Þ


 �
;g Iþið Þ;I

þ
jð Þ


 �
;g Fþ

ið Þ;F
þ
jð Þ


 �
;

D

�g �T�
ið Þ;�T�

jð Þ


 �
;�f �I�ið Þ;�I�jð Þ


 �
;�f �F�

ið Þ;�F�
jð Þ


 �E
;

ð12Þ

where w ið Þ ¼ h A ið Þ
� �

�h A iþ1ð Þ
� �

,

f x ið Þ; x jð Þ
� �

¼ logk 1 þ k� 1ð Þ

1 �
Q

i;j¼1

n

j 6¼i

k�1ð Þsþt� k
x ið Þ�1ð Þs k

x jð Þ�1ð Þt
k�1ð Þsþtþ k�1ð Þ k

x ið Þ�1ð Þs k
x jð Þ�1ð Þt

� w ið Þw jð Þ
1�w ið Þ

1 þ k� 1ð Þ
Q

i;j¼1

n

j 6¼i

k�1ð Þsþt� k
x ið Þ�1ð Þs k

x jð Þ�1ð Þt
k�1ð Þsþtþ k�1ð Þ k

x ið Þ�1ð Þs k
x jð Þ�1ð Þt

� w ið Þw jð Þ
1�w ið Þ

0

BBBBBBBB@

1

CCCCCCCCA

1
sþt

0

BBBBBBBBB@

1

CCCCCCCCCA

;

and

g y ið Þ; y jð Þ
� �

¼ 1 � logk 1 þ k� 1ð Þ

1 �
Q

i;j¼1

n

j 6¼i

k�1ð Þsþt� k
1�y ið Þ�1ð Þs k

1�y jð Þ�1ð Þt

k�1ð Þsþtþ k�1ð Þ k
1�y ið Þ�1ð Þs k

1�y jð Þ�1ð Þt
� w ið Þw jð Þ

1�w ið Þ

1 þ k� 1ð Þ
Q

i;j¼1

n

j6¼i

k�1ð Þsþt� k
1�y ið Þ�1ð Þs k

1�y jð Þ�1ð Þt

k�1ð Þsþtþ k�1ð Þ k
1�y ið Þ�1ð Þs k

1�y jð Þ�1ð Þt
� w ið Þw jð Þ

1�w ið Þ

0

BBBBBBBB@

1

CCCCCCCCA

1
sþt

0

BBBBBBBBB@

1

CCCCCCCCCA

:

The proof of Theorem 3 is shown in Appendix.

Similar to [35] and [41], the following theorems of the

FBNCWBM operator can be obtained.

Theorem 4 (Monotonicity). Let ai ¼ Tþ
ai
; Iþai ;F

þ
ai
;

D

T�
ai ; I

�
ai ;F

�
ai i and bi ¼ Tþ

bi
; Iþbi ;F

þ
bi
; T�

bi
; I�bi ;F

�
bi

D E
i ¼ 1; 2;ð

. . .; nÞ be two collections of BNNs. If ai � bi for all i, that
Tþ
ai � Tþ

bi
, Iþai 	 Iþbi , Fþ

ai 	Fþ
bi

, T�
ai 	 T�

bi
, I�ai � I�bi and

F�
ai �F�

bi
for all i, then

FBNCWBMs;t a1; a2; . . .; anð Þ� FBNCWBMs;t b1; b2; . . .; bnð Þ:
ð13Þ

Theorem 5 (Boundedness). Let ai ¼ Tþ
i ; I

þ
i ;F

þ
i ; T

�
i ; I

�
i ;

�

F�
i i i ¼ 1; 2; . . .; nð Þ be a collection of BNNs. Thereafter,

we have

FBNCWBMs;t a�; a�; . . .; a�ð Þ� FBNCWBMs;t a1; a2; . . .; anð Þ
� FBNCWBMs;t aþ; aþ; . . .; aþð Þ;

where

aþ ¼ Tþ
aþ ; I

þ
aþ ;F

þ
aþ ; T

�
aþ ; I

�
aþ ;F

�
aþ

� �

¼ max Tþ
a1
; Tþ

a2
; . . .; Tþ

an


 �
;min Iþa1

; Iþa2
; . . .; Iþan


 �
;

D

min Fþ
a1
;Fþ

a2
; . . .;Fþ

an


 �
;min T�

a1
; T�

a2
; . . .; T�

an ;

 �

max I�a1
; I�a2

; . . .; I�an


 �
;max F�

a1
;F�

a2
; . . .;F�

an


 �E
;

a� ¼ Tþ
a� ; I

þ
a� ;F

þ
a� ; T

�
a� ; I

�
a� ;F

�
a�

� �

¼ min Tþ
a1
; Tþ

a2
; . . .; Tþ

an


 �
;max Iþa1

; Iþa2
; . . .; Iþan


 �
;

D

max Fþ
a1
;Fþ

a2
; . . .;Fþ

an


 �
;max T�

a1
;T�

a2
; . . .;T�

an


 �
;

min I�a1
; I�a2

; . . .; I�an


 �
;min F�

a1
;F�

a2
; . . .;F�

an


 �E
:

Theorem 6 (Reducibility). Let w ¼ 1
n
; 1
n
; . . .; 1

n

� �
. Then we

have

�n
F

i:j¼1

i6¼j

w ið Þw jð Þ
1 � w ið Þ

�F r ið Þ
� �^Fs� r jð Þ

� �^Ft

 �

0

BB@

1

CCA

^
F 1
sþt

¼ 1

n n� 1ð Þ �F �n
F

i:j¼1

i6¼j

rið Þ^Fs� rj
� �^Ft


 �
0

BB@

1

CCA

^
F 1
sþt

: ð14Þ

Theorem 7 (Idempotency). Let r1; r2; . . .; rnf g be a

collection of BNNs. If ri¼r i ¼ 1; 2; . . .; nð Þ, then

FBNCWBMs;t r1; r2; . . .; rnð Þ ¼ r.

Several special cases of the FBNCWBM operator will

be discussed as follows.

(1) If t = 0, then Eq. (11) is reduced to the Frank

Bipolar neutrosophic generalized Choquet integral

(FBNGC) operator as follows:

FBNGC r1; r2; . . .; rnð Þ

¼ �n
F

i¼1

h A ið Þ
� �

� h A iþ1ð Þ
� �� �

�F r ið Þ
� �^Fs

� ^
F1
s

:
ð15Þ

(2) If s = 1 and t = 0, then Eq. (11) is reduced to the

Frank Bipolar neutrosophic Choquet (FBNC) integral

operator as follows:

FBNC r1; r2; . . .; rnð Þ ¼ �n
F

i¼1

h A ið Þ
� �

� h A iþ1ð Þ
� �� �

�F r ið Þ:

ð16Þ

(3) If k ? 1, the Frank operations are reduced to the

algebraic operations. Then, Eq. (11) is reduced to the

Bipolar neutrosophic Choquet weighted BM (BNCWBM)

operator as follows.
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lim
k!1

FBNCWBMs;t r1; r2; . . .;rnð Þ

¼ BNCWBMs;t r1;r2; . . .; rnð Þ ¼ �
n

i:j¼1
i6¼j

w ið Þw jð Þ
1 � w ið Þ

rsið Þ � rt jð Þ


 �
0

B@

1

CA

1
sþt

¼ 1 �
Yn

i;j¼1
i 6¼j

1 � Ts
ið ÞT

t
jð Þ


 �w ið Þw jð Þ
1�w ið Þ

0

BB@

1

CCA

1
sþt

;

*

1 � 1 �
Yn

i;j¼1
i6¼j

1 � 1 � I ið Þ
� �s

1 � I jð Þ
� �t
 �w ið Þw jð Þ

1�w ið Þ

0

BB@

1

CCA

1
sþt

;

1 � 1 �
Yn

i;j¼1
i6¼j

1 � 1 � F ið Þ
� �s

1 � F jð Þ
� �t
 �w ið Þw jð Þ

1�w ið Þ

0

BB@

1

CCA

1
sþt

;

� 1 � 1 �
Yn

i;j¼1
i 6¼j

1 � 1 � �T�
ið Þ


 �
 �s
1 � �T�

jð Þ


 �
 �t
 �w ið Þw jð Þ
1�w ið Þ

0

BB@

1

CCA

1
sþt

0

BBB@

1

CCCA
;

� 1 �
Yn

i;j¼1
i6¼j

1 � �I�ið Þ


 �s
�I�jð Þ


 �t
 �w ið Þw jð Þ
1�w ið Þ

0

BB@

1

CCA

1
sþt

;

� 1 �
Yn

i;j¼1
i6¼j

1 � �F�
ið Þ


 �s
�F�

jð Þ


 �t
 �w ið Þw jð Þ
1�w ið Þ

0

BB@

1

CCA

1
sþt+

;

where w ið Þ ¼ h A ið Þ
� �

� h A iþ1ð Þ
� �

.

4.2 Frank Bipolar Neutrosophic Choquet

Geometric Bonferroni Mean Operator

Definition 12 Let s, t C 0, and ri ¼ Tþ
i ; I

þ
i ;F

þ
i ; T

�
i ;

�

I�i ;F
�
i i i ¼ 1; 2; . . .; nð Þ be a collection of BNNs. Then, the

FBNCGBM operator is defined as follows:

FBNCGBMs;t r1; r2; . . .; rnð Þ

¼ 1

sþ t
�n

F
i:j¼1

i 6¼j

s �F r ið Þ
� �

�F t �F r jð Þ
� �� �^F

w ið Þw jð Þ
1�w ið Þ ; ð17Þ

where w ið Þ ¼ h A ið Þ
� �

� h A iþ1ð Þ
� �

.

Several theorems of the FBNCGBM operator will be

proposed in the following parts, and their proofs can be

easily completed in the same manner as the theorems of the

FBNCWBM operator.

Theorem 8 Let ri ¼ Tþ
i ; I

þ
i ;F

þ
i ; T

�
i ; I

�
i ;F

�
i

� �
i ¼ 1; 2;ð

. . .; nÞ be a collection of BNNs. Then, the value aggregated

by Eq. (17) is also a BNN, and

FBNCGBMs;t r1;r2; . . .;rnð Þ

¼ 1

sþ t
�F �n

F
i:j¼1

i6¼j

s �F r ið Þ
� �

�F t �F r jð Þ
� �� �^F

w ið Þw jð Þ
1�w ið Þ

¼ h Tþ
ið Þ;T

þ
jð Þ


 �
;R Iþið Þ; I

þ
jð Þ


 �
;R Fþ

ið Þ;F
þ
jð Þ


 �
;

D

�R �T�
ið Þ;�T�

jð Þ


 �
;�h �I�ið Þ;�I�jð Þ


 �
;�h �F�

ið Þ;�F�
jð Þ


 �E
;

ð18Þ

where w ið Þ ¼ h A ið Þ
� �

� h A iþ1ð Þ
� �

;,

h x ið Þ; x jð Þ
� �

¼ 1 � logk 1 þ k� 1ð Þ

1�
Qn

i;j¼1
j 6¼i

k�1ð Þsþt� k
1�x ið Þ �1

� �s
k
1�x jð Þ �1

� �t

k�1ð Þsþtþ k�1ð Þ k
1�x ið Þ �1

� �s
k

1�x jð Þ �1

� �t

 !w ið Þw jð Þ
1�w ið Þ

1þ k�1ð Þ
Qn

i;j¼1
j 6¼i

k�1ð Þsþt� k
1�x ið Þ �1

� �s
k
1�x jð Þ �1

� �t

k�1ð Þsþtþ k�1ð Þ k
1�x ið Þ �1

� �s
k

1�x jð Þ �1

� �t

 !w ið Þw jð Þ
1�w ið Þ

0

BBBBBBBB@

1

CCCCCCCCA

1
sþt

0

BBBB
BBBBB@

1

CCCC
CCCCCA

;

and

R y ið Þ; y jð Þ
� �

¼ logk 1 þ k� 1ð Þ

1 �
Qn

i;j¼1
j6¼i

k�1ð Þsþt� k
y ið Þ�1ð Þs k

y jð Þ�1ð Þt
k�1ð Þsþtþ k�1ð Þ k

y ið Þ�1ð Þs k
y jð Þ�1ð Þt

� w ið Þw jð Þ
1�w ið Þ

1 þ k� 1ð Þ
Qn

i;j¼1
j6¼i

k�1ð Þsþt� k
y ið Þ�1ð Þs k

y jð Þ�1ð Þt
k�1ð Þsþtþ k�1ð Þ k

y ið Þ�1ð Þs k
y jð Þ�1ð Þt

� w ið Þw jð Þ
1�w ið Þ

0

BBBBBBB@

1

CCCCCCCA

1
sþt

0

BBBBBBBB@

1

CCCCCCCCA

:

Theorem 9 (Monotonicity). Let ai ¼ Tþ
ai ; I

þ
ai ;F

þ
ai ; T

�
ai ;

D

I�ai ;F
�
ai i and bi ¼ Tþ

bi
; Iþbi ;F

þ
bi
; T�

bi
; I�bi ;F

�
bi

D E
i ¼ 1; 2; . . .;ð

nÞ be two collections of BNNs. If a ið Þ � b ið Þ for all i, that

Tþ
a ið Þ

� Tþ
b ið Þ

, Iþa ið Þ
	 Iþb ið Þ

, Fþ
a ið Þ

	Fþ
b ið Þ

, T�
a ið Þ

	 T�
b ið Þ

, I�a ið Þ
� I�b ið Þ

,

and F�
a ið Þ

�F�
b ið Þ

for all i, then

FBNCGBMs;t a1; a2; . . .; anð Þ� FBNCGBMs;t b1;b2; . . .; bnð Þ: ð19Þ

Theorem 10 (Boundedness). Let ai ¼ Tþ
i ; I

þ
i ;F

þ
i ;h

T�
i ; I

�
i ;F

�
i i i ¼ 1; 2; . . .; nð Þ be a collection of BNNs. Then,

we have

FBNCGBMs;t a�; a�; . . .; a�ð Þ� FBNCGBMs;t a1; a2; . . .; anð Þ
� FBNCGBMs;t aþ; aþ; . . .; aþð Þ;

where
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aþ ¼ Tþ
aþ ; I

þ
aþ ;F

þ
aþ ; T

�
aþ ; I

�
aþ ;F

�
aþ

� �

¼ max Tþ
a1
;Tþ

a2
; . . .; Tþ

an


 �
;min Iþa1

; Iþa2
; . . .; Iþan


 �
;min Fþ

a1
;Fþ

a2
; . . .;Fþ

an


 �D
;

min T�
a1
;T�

a2
; . . .; T�

an


 �
;max I�a1

; I�a2
; . . .; I�an


 �
;max F�

a1
;F�

a2
; . . .;F�

an


 �E
:

a� ¼ Tþ
a� ; I

þ
a� ;F

þ
a� ; T

�
a� ; I

�
a� ;F

�
a�

� �

¼ min Tþ
a1
; Tþ

a2
; . . .; Tþ

an


 �
;max Iþa1

; Iþa2
; . . .; Iþan


 �
;max Fþ

a1
;Fþ

a2
; . . .;Fþ

an


 �D
;

max T�
a1
;T�

a2
; . . .;T�

an


 �
;min I�a1

; I�a2
; . . .; I�an


 �
;min F�

a1
;F�

a2
; . . .;F�

an


 �E
:

Theorem 11 (Reducibility). Let w ¼ 1
n
; 1
n
; . . .; 1

n

� �
. Thus,

1

sþ t
�F �n

F
i:j¼1

i6¼j

s �F r ið Þ
� �

�F t �F r jð Þ
� �� �^F

w ið Þw jð Þ
1�w ið Þ

¼ 1

sþ t
�F �n

F
i:j¼1

i6¼j

s �F r ið Þ
� �

�F t �F r jð Þ
� �� �^F

1
n n�1ð Þ:

Theorem 12 (Idempotency). Let r1; r2; . . .; rnf g be a

collection of BNNs. If ri¼r i ¼ 1; 2; . . .; nð Þ, then

FBNCGBMs;t r1; r2; . . .; rnð Þ ¼ r.

4.3 MCDM Methods Based on the FBNCWBM

and FBNCGBM Operators

In this subsection, two comprehensive MCDM methods are

put forward based on the proposed FBNCWBM and

FBNCGBM operators. The following steps depict the main

procedures of the proposed methods.

For MCDM problems with bipolar neutrosophic infor-

mation, let A ¼ A1;A2; . . .;Anf g be a set of alternatives and

C ¼ C1;C2; . . .;Cmf g be a set of criteria. BNNs rij ¼

Tþ
ij ; I

þ
ij ;F

þ
ij ; T

�
ij ; I

�
ij ;F

�
ij

D E
i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;mð Þ

are used to represent the evaluation values of the ith

alternative under the jth criterion.

Step 1 Collect bipolar neutrosophic evaluation information.

Bipolarity, fuzziness, uncertainty, and inconsistency

exist in the practical decision-making process. Therefore,

the evaluation can be considered bipolar neutrosophic

information. Positive information expresses what is satis-

factory, desired, or considered acceptable. Negative infor-

mation indicates what is impossible or rejected. In other

words, when an evaluation object is compared with the

worst object, this evaluation will produce positive prefer-

ences. By contrast, when an evaluation object is compared

with the best object, this evaluation will produce negative

preferences. Tþ
ij , Iþij , and Fþ

ij denote the truth membership,

indeterminate membership, and false membership degrees

of alternative Ai under criterion Cj with respect to positive

preferences. T�
ij , I�ij , and F�

ij signify the truth membership,

indeterminate membership, and false membership degrees

of alternative Ai under criterion Cj with respect to negative

preferences. Therefore, the bipolar neutrosophic evaluation

information can be collected according to the evaluation of

experts.

Step 2 Obtain the score and accuracy values of the col-

lected evaluation.

The score values S rij
� �

and accuracy values A rij
� �

of

alternative Ai can be obtained based on Eqs. (1) and (2).

Step 3 Reorder the evaluation under each criterion.

The score values are utilized to rank rij, such that

S ri jð Þ
� �

\S ri jþ1ð Þ
� �

. If S rij
� �

¼ S rikð Þ, then the accuracy

values are utilized to rank rij, such that A ri jð Þ
� �

\
A ri jþ1ð Þ
� �

.

Step 4 Calculate the fuzzy measures of criteria.

The fuzzy density of each criterion can be obtained

according to expert opinions. Thereafter, all fuzzy mea-

sures can be calculated based on Eqs. (6) and (7).

Step 5 Calculate the comprehensive performance value of

each alternative.

Method 1 Utilize the FBNCWBM operator to compute

the comprehensive performance values, then

ri ¼ FBNCWBMs;t ri1; ri2; . . .; rimð Þ

¼ �m
F

k:j¼1

k 6¼j

wi kð Þwi jð Þ
1 � wi kð Þ

�F ri kð Þ
� �^Fs�F ri jð Þ

� �^Ft

 �

0

BB@

1

CCA

^
F 1
sþt

;

ð20Þ

where wi jð Þ ¼ h Ai jð Þ
� �

� h Ai jþ1ð Þ
� �

.

Method 2 Utilize the FBNCGBM operator to calculate

the comprehensive performance values, then

ri ¼ FBNCGBMs;t ri1; ri2; . . .; rimð Þ

¼ 1

sþ t
�F �m

F
k:j¼1

k 6¼j

s �F ri kð Þ
� �

� t �F ri jð Þ
� �� �^F

wi kð Þwi jð Þ
1�wi kð Þ ; ð21Þ

where wi jð Þ ¼ h Ai jð Þ
� �

� h Ai jþ1ð Þ
� �

.

Step 6 Calculate the score values of each alternative.

Equation (1) is used to compute the score values S rið Þ
of each alternative under these two methods.

Step 7 Rank all alternatives, and select the best one.

On the basis of the obtained score values and the com-

parison method in Definition 4, alternatives can be ranked

in descending order, and the best alternative can be

selected using these two methods.

5 Numerical Example

A numerical example of plant location selection adopted

from Deli et al. [10] is presented here. Moreover, the

flexibility and effectiveness of the proposed methods are

confirmed through parametric analysis and comparative

analysis.
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A manufacturing company considers selecting a location

for building a new plant. Through preliminary screening,

four locations A1, A2, A3, and A4 are selected for further

evaluation. The company invited four groups of experts to

evaluate the information. The experts include investment

experts, manufacturing experts, transportation experts, and

human resource professionals. The four plant locations are

evaluated by the experts according to four criteria: cost

(C1), expansion possibility (C2), transportation (C3), and

labor (C4). These criteria are interactive and interrelated.

5.1 Steps of the Proposed Methods

Step 1 Collect the bipolar neutrosophic evaluation

information.

The evaluation information obtained through expert

discussion is shown in Table 1.

Step 2 Obtain the score and accuracy values of the col-

lected evaluation.

The score values S rij
� �

and accuracy values A rij
� �

of

alternative Ai under criterion Cj can be obtained based on

Eqs. (1) and (2). S rij
� �

and A rij
� �

are shown in Tables 2

and 3, respectively.

Step 3 Reorder the evaluation under each criterion.

The score values are utilized to rank rij, such that

S ri jð Þ
� �

\S ri jþ1ð Þ
� �

. If S rij
� �

¼ S rikð Þ, the accuracy values

are used to rank rij, such that A ri jð Þ
� �

\A ri jþ1ð Þ
� �

. Sub-

sequently, rij is reordered based on S rij
� �

and A rij
� �

(Table 4).

Step 4 Calculate the fuzzy measures of criteria.

According to expert opinions, the fuzzy density of each

criterion can be obtained as follows:

h c1ð Þ ¼ 0:4; h c2ð Þ ¼ 0:25; h c3ð Þ ¼ 0:37, and

h c4ð Þ ¼ 0:2.

Thereafter, the parameter h = -0.44 can be calculated

based on Eq. (7). Using Eq. (6), the following values can

be obtained:

h c1; c2ð Þ ¼ 0:6; h c1; c3ð Þ ¼ 0:7; h c1; c4ð Þ ¼ 0:56;

h c2; c3ð Þ ¼ 0:58; h c2; c4ð Þ ¼ 0:43; h c3; c4ð Þ ¼ 0:54;

h c1; c2; c3ð Þ ¼ 0:88; h c1; c2; c4ð Þ ¼ 0:75; h c1; c3; c4ð Þ ¼
0:84; h c2; c3; c4ð Þ ¼ 0:73; h c1; c2; c3; c4ð Þ ¼ 1:

Step 5 Calculate the comprehensive performance value

of each alternative.

Method 1 Using FBNCWBM operator in Eq. (20) and

supporting s, t = 1, k = 2 to obtain the comprehensive

performance value ri of each alternative, then

r1 ¼ 0:4476; 0:5977; 0:4478; 0:6844; 0:4856; 0:6059h i;
r2 ¼ 0:7977; 0:5142; 0:6395; 0:521; 0:5587; 0:3247h i;
r3 ¼ 0:5599; 0:4157; 0:3142; 0:5222; 0:4133; 0:3653h i;
r4 ¼ 0:5525; 0:4888; 0:3621; 0:5027; 0:5843; 0:2261h i: T
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Method 2 Using FBNCGBM operator in Eq. (21) and

supporting s, t = 1, k = 2 to obtain the comprehensive

performance value of each alternative, then

r1 ¼ 0:4401; 0:5987; 0:4388; 0:6865; 0:4761; 0:6011h i;
r2 ¼ 0:791; 0:5164; 0:6364; 0:5167; 0:547; 0:2957h i;
r3 ¼ 0:5653; 0:4186; 0:3079; 0:5229; 0:406; 0:3761h i;
r4 ¼ 0:5718; 0:4875; 0:3732; 0:4866; 0:5837; 0:2188h i:

Step 6 Calculate the score values of each alternative.

Equation (1) is used to compute the score value S rið Þ.
Method 1 The score values obtained using the FBNCWBM

operator are as follows.

S r1ð Þ ¼ 0:4682; S r2ð Þ ¼ 0:5011; S r3ð Þ ¼ 0:5144;

S r4ð Þ ¼ 0:5016.

Method 2 The score values obtained using the FBNCGBM

operator are as follows.

S r1ð Þ ¼ 0:4655; S r2ð Þ ¼ 0:4940; S r3ð Þ ¼ 0:5163;

S r4ð Þ ¼ 0:5045.

Step 7 Rank all alternatives in descending order and select

the best one.

On the basis of the score values and the comparison

method in Definition 4, the alternatives can be ranked in

descending order and the best alternative can be selected.

Method 1 According to the score values obtained using the

FBNCWBM operator, the ranking order is

A3 
 A4 
 A2 
 A1. Thus, A3 is optimal.

Method 2 According to the score values obtained using the

FBNCGBM operator, the ranking order is

A3 
 A4 
 A2 
 A1. Thus, A3 is optimal.

5.2 Influences of the Parameters

This subsection discusses the influences of parameters s, t,

and k in detail.

First, the influences of parameters s and t on the proposed

operators is discussed. Table 5 presents the corresponding

rankings with respect to the FBNCWBM and FBNCGBM T
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[Table 2 Score values S rij

� �
C1 C2 C3 C4

A1 0.47 0.50 0.50 0.40

A2 0.47 0.37 0.67 0.52

A3 0.52 0.58 0.50 0.48

A4 0.48 0.47 0.57 0.50

Table 3 Accuracy values

A rij
� � C1 C2 C3 C4

A1 0.4 0.2 0.4 -0.9

A2 1 0.5 -0.1 -0.6

A3 0 0 0.8 0.6

A4 1.4 0.4 -0.1 -0.5
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operators as the value of s changes from 0 to 5 and the value of

t changes from 0.1 to 5. With dissimilar parameters s and t,

different final rankings can be obtained. Thus, parameters s and

t of the FBNCWBM and FBNCGBM operators can affect the

decision results. Specifically, when different values of

parameters s and t are used in the proposed methods, dissimilar

interrelationships among criteria can be captured, such that the

ranking results are different. Clearly, the worst location is

alwaysA1. The best alternative obtained using the FBNCWBM

operator is either location A2 or A3, whereas the optimal

location obtained using the FBNCGBM operator is A3.

Further analysis of the selection of appropriate values of

parameters s and t according to the preferences of the DMs

is conducted in this part. With alternative A1 as an example,

the scores of alternative A1 obtained using the FBNCWBM

and FBNCGBM operators with different values of s and

t are shown in Figs. 1 and 2, respectively. Figure 1 indi-

cates that the greater the values of parameters s and t, the

greater the scores of the alternative obtained using the

FBNCWBM operator. By contrast, Fig. 2 exhibits that the

greater the values of parameters s and t, the smaller the

scores of the alternative obtained using the FBNCGBM

operator. The comparison of Figs. 1 and 2 shows that the

scores in Fig. 1 are greater than those in Fig. 2, indicating

that the FBNCWBM operator can achieve positive results,

whereas the FBNCGBM operator can obtain passive

results. Therefore, when the DMs want to attain positive

results, the FBNCWBM operator with greater values of

parameters s and t can be utilized. Conversely, when the

DMs want to acquire negative results, the FBNCGBM

operator with greater values of parameters s and t can be

applied.

Second, the influence of parameter k of the proposed

operators on the plant location selection problem is analyzed.

Figures 3 and 4, respectively, illustrate the scores of alter-

natives obtained using the FBNCWBM and FBNCGBM

operators as the value of k changes from 1 to 50.

Figures 3 and 4 illustrate that the rankings remain

constant with different values of parameter k. Therefore, k
does not influence the ranking results. However, the

alternative scores change different with FBNCWBM and

FBNCGBM operators. Figure 3 exhibits that the scores

obtained using the FBNCWBM operator increase as the

value of k increases, while Fig. 4 shows that the scores

obtained using the FBNCGBM operator decrease as the

value of k increases. In practice, when DMs have the same

ranking, the scores may be dissimilar with different values

of k. Therefore, when DMs seek to obtain positive results,

the FBNCWBM operator with high values of k or the

FBNCGBM operator with low values of k can be adopted.

Fig. 2 Scores of A1 obtained using the FBNCGBM operator

Table 5 Rankings with different parameters of the FBNCWBM and

FBNCGBM operators

s, t FBNCWBM FBNCGBM

s = 0, t = 0.1 A3 
 A4 
 A2 
 A1 A3 
 A4 
 A2 
 A1

s = 0, t = 1 A2 
 A4 
 A3 
 A1 A3 
 A4 
 A2 
 A1

s = 0, t = 2 A2 
 A4 
 A3 
 A1 A3 
 A4 
 A2 
 A1

s = 0, t = 5 A2 
 A4 
 A3 
 A1 A3 
 A4 
 A2 
 A1

s = t = 0.1 A3 
 A4 
 A2 
 A1 A3 
 A4 
 A2 
 A1

s = t = 1 A3 
 A4 
 A2 
 A1 A3 
 A4 
 A2 
 A1

s = t = 2 A2 
 A3 
 A4 
 A1 A3 
 A4 
 A2 
 A1

s = t = 5 A2 
 A3 
 A4 
 A1 A3 
 A4 
 A2 
 A1

s = 1, t = 0.1 A2 
 A4 
 A3 
 A1 A3 
 A4 
 A2 
 A1

s = 2, t = 0.1 A2 
 A4 
 A3 
 A1 A3 
 A4 
 A2 
 A1

s = 2, t = 1 A3 
 A2 
 A4 
 A1 A3 
 A4 
 A2 
 A1

s = 5, t = 1 A2 
 A4 
 A3 
 A1 A3 
 A4 
 A2 
 A1

s = 5, t = 2 A2 
 A4 
 A3 
 A1 A3 
 A4 
 A2 
 A1

Fig. 1 Scores of A1 obtained using the FBNCWBM operator
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5.3 Comparative Analysis

This subsection presents a comparative analysis with extant

methods under bipolar neutrosophic environment to vali-

date the effectiveness and advantages of the proposed

methods using the same evaluation information shown in

Table 1.

Given that the proposed MCDM methods are based on

the proposed operators, a comparison of the existing

MCDM methods based on the bipolar neutrosophic oper-

ators is first conducted. Deli et al. [10] proposed BNSs and

two aggregation operators based on the algebraic opera-

tions, namely bipolar neutrosophic WA (Aw) operator and

bipolar neutrosophic weighted geometric (Gw) operator.

Deli et al. [10] assumed that the weight vector of the cri-

teria is W1 ¼ 0:5; 0:25; 0:125; 0:125ð Þ. Thereafter, the

proposed methods are compared with the BN-TOPSIS

method proposed by Dey et al. [11]. Dey et al. [11] used

the maximizing deviation method to obtain criteria weight

vector W2 ¼ 0:2585; 0:2552; 0:2278; 0:2585ð Þ. The pro-

posed methods are then compared with the BN-TOPSIS

method using the criteria weight vector W1 ¼ 0:5; 0:25;ð
0:125; 0:125Þ and W2 ¼ 0:2585; 0:2552; 0:2278; 0:2585ð Þ.
Table 6 presents the rankings of these methods.

Fig. 3 Scores of alternatives obtained using the FBNCWBM operator with k

Table 6 Rankings obtained by the different methods

Method Final ranking

Aw operator [10] A3 
 A4 
 A2 
 A1

Gw operator [10] A3 
 A4 
 A2 
 A1

BN-TOPSIS method (W1) A4 
 A2 
 A3 
 A1

BN-TOPSIS method (W2) [11] A3 
 A2 
 A4 
 A1

FBNCWBM operator (s, t = 1) A3 
 A4 
 A2 
 A1

FBNCGBM operator (s, t = 1) A3 
 A4 
 A2 
 A1

Fig. 4 Scores of alternatives obtained using the FBNCGBM operator with k
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Table 6 indicates that the best alternative is A4 for the

BN-TOPSIS method (W1) and A3 for the other methods.

The worst alternative is A1 for all methods. Meanwhile, the

proposed methods generate the same rankings as the Aw

and Gw operators. However, the proposed methods produce

dissimilar rankings to the BN-TOPSIS methods.

The rankings obtained by the proposed methods and the

Aw and Gw operators are the same, which demonstrates the

effectiveness of the proposed operators. In contrast to the

Aw and Gw operators, the proposed operators consider the

interactions and interrelationships among criteria and can

select the appropriate parameters according to the prefer-

ences of the DMs. In other words, the proposed operators

fully take advantages of the BM operator, Choquet integral

operator, and Frank operations. They are more flexible and

comprehensive than the Aw and Gw operators. The com-

parison of the BN-TOPSIS (W1) and BN-TOPSIS (W2)

methods shows that they differ in rankings from the dif-

ferent weights. Therefore, the importance of weights has a

significant role in the final ranking result. In contrast to the

proposed methods, the TOPSIS method ignores the influ-

ence of the relationships among criteria. However, in

practical MCDM problems, only a few cases with inde-

pendent criteria occur. The BM operator considers the

interrelationships among criteria, and the Choquet integral

operator can flexibly describe the relative importance and

interactions of the decision criteria. Therefore, the pro-

posed methods are more applicable in practice.

6 Conclusion

BNSs can describe bipolar, uncertain, and inconsistent

information. The FBNCWBM and FBNCGBM operators

were defined by combining the BM and the Choquet

integral operators based on the Frank operations to ensure

that the bipolar neutrosophic aggregation operator is flex-

ible and reliable. Subsequently, a numerical example was

provided to prove the proposed methods and discuss the

influence of different parameters (s, t, and k). Finally, the

accuracy and reliability of the proposed methods were

further demonstrated through a comparative analysis with

other methods.

The contributions and novelties of this study are as

follows. First, BNSs were employed to depict the decision-

making evaluation information. Second, Frank operations

were extended to bipolar neutrosophic environment. Third,

two novel bipolar neutrosophic aggregation operators were

proposed by combining the BM and Choquet integral

operators based on the Frank operations that simultane-

ously considered the interrelationships and interactions

among criteria. Fourth, MCDM methods were developed

based on the proposed operators. Finally, the practicality,

flexibility, and efficiency of the proposed methods were

confirmed through a numerical example and a comparative

analysis.

In the future, the FBNCWBM and FBNCGBM opera-

tors can be extended to other fuzzy environments, such as

bipolar interval neutrosophic sets and bipolar neutrosophic

soft expert sets. In addition, future research can explore

other possible approaches to deal with bipolar neutrosophic

information.
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Appendix

Proof of Theorem 3.

Proof Theorem 3 will be proven by utilizing the mathe-

matical induction of n as follows:

xi ¼ Tþ
i ; I

�
i ;F

�
i and yi ¼ Iþi ;F

þ
i ; T

�
i are utilized to

simplify the process. First, Eq. (22) must be proven.
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(a) For n = 2, the following equations can be easily

calculated:

w 1ð Þw 2ð Þ
1 � w 1ð Þ

�F r 1ð Þ
� �^Fs�F r 2ð Þ

� �^F t

 �
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and
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1 � w 2ð Þ

�F r 2ð Þ
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� �^F t
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Then,
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That is, when n = 2, Eq. (22) is correct.

(b) Equation (22) is assumed to be correct when n = k.

That is,

�F

k

i:j¼1
i 6¼j
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Thereafter, when n = k ? 1, the following equation can

be obtained:

�F

kþ1

i;j¼1
i 6¼j
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�F r ið Þ
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Equations (27) and (28) must be proven to prove

Eq. (26).

�F

k

i¼1

w ið Þw kþ1ð Þ
1 � w ið Þ
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�F

k

j¼1

w kþ1ð Þw jð Þ

1 � w kþ1ð Þ
�F r kþ1ð Þ

� �^Fs�F r jð Þ
� �^Ft


 �

¼ 1 � logk 1 þ k� 1ð Þ
Yk

j¼1

k� 1ð Þsþt� kx kþ1ð Þ � 1ð Þs kx jð Þ � 1ð Þt

k� 1ð Þsþtþ k� 1ð Þ kx kþ1ð Þ � 1ð Þs kx jð Þ � 1ð Þt
� w kþ1ð Þw jð Þ

1�w kþ1ð Þ

0

@

1

A;

0

@

logk 1 þ k� 1ð Þ
Yk

j¼1

k� 1ð Þsþt� k1�y kþ1ð Þ � 1
� �s

k1�y jð Þ � 1
� �t

k� 1ð Þsþtþ k� 1ð Þ k1�y kþ1ð Þ � 1
� �s

k1�y jð Þ � 1
� �t

 !w kþ1ð Þw jð Þ
1�w kþ1ð Þ

0

B@

1

CA

1

CA:

ð28Þ

(1) Equation (27) can be proven by utilizing the

mathematical induction of k as follows:

� For k = 2, the following equation can be obtained

easily:
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i¼1
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` Equation (27) is assumed to be correct when k = l.

That is,

�F

l

i¼1
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Subsequently, when k = l ? 1, the following equation

can be obtained:

�F

lþ1

i¼1

w ið Þw lþ2ð Þ
1 � w ið Þ

�F r ið Þ
� �^Fs�F r lþ2ð Þ

� �^Ft

 �

¼ �F

l

i¼1

w ið Þw lþ2ð Þ

1 � w ið Þ
�F r ið Þ

� �^Fs�F r lþ2ð Þ
� �^Ft


 �
�F

w lþ1ð Þw lþ2ð Þ

1 � w lþ1ð Þ
�F r lþ1ð Þ

� �^Fs�F r lþ2ð Þ
� �^Ft


 �

¼ 1 � logk 1 þ k� 1ð Þ
Yl

i¼1

k� 1ð Þsþt� kx ið Þ � 1ð Þs kx lþ2ð Þ � 1ð Þt

k� 1ð Þsþtþ k� 1ð Þ kx ið Þ � 1ð Þs kx lþ2ð Þ � 1ð Þt
� w ið Þw lþ2ð Þ

1�w ið Þ

0

@

1

A;

0

@

logk 1 þ k� 1ð Þ
Yl

i¼1

k� 1ð Þsþt� k1�y ið Þ � 1
� �s

k1�y lþ2ð Þ � 1
� �t

k� 1ð Þsþtþ k� 1ð Þ k1�y ið Þ � 1
� �s

k1�y lþ2ð Þ � 1
� �t

 !w ið Þw lþ2ð Þ
1�w ið Þ

0

B@

1

CA

1

CA

�F 1 � logk 1 þ k� 1ð Þ k� 1ð Þsþt� kx lþ1ð Þ � 1ð Þs kx lþ2ð Þ � 1ð Þt
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Thereafter, when k = l ? 1, Eq. (27) is correct. There-

fore, Eq. (27) is correct for all k.

(2) Similarly, Eq. (28) can be proven.
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Subsequently, when Eqs. (25), (27), and (28) are used,

Eq. (26) can be converted into the following form:
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Thus, when n = k ? 1, Eq. (22) is correct. Then,

Eq. (22) is correct for all n.

Therefore, Eq. (18) can be easily proven.
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