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Abstract: In classical group theory, homomorphism and isomorphism are significant to study the
relation between two algebraic systems. Through this article, we propose neutro-homomorphism and
neutro-isomorphism for the neutrosophic extended triplet group (NETG) which plays a significant
role in the theory of neutrosophic triplet algebraic structures. Then, we define neutro-monomorphism,
neutro-epimorphism, and neutro-automorphism. We give and prove some theorems related to these
structures. Furthermore, the Fundamental homomorphism theorem for the NETG is given and
some special cases are discussed. First and second neutro-isomorphism theorems are stated. Finally,
by applying homomorphism theorems to neutrosophic extended triplet algebraic structures, we have
examined how closely different systems are related.

Keywords: neutro-monomorphism; neutro-epimorphism; neutro-automorphism; fundamental
neutro-homomorphism theorem; first neutro-isomorphism theorem; and second neutro
-isomorphism theorem

1. Introduction

Groups are finite or infinite set of elements which are vital to modern algebra equipped with
an operation (such as multiplication, addition, or composition) that satisfies the four basic axioms of
closure, associativity, the identity property, and the inverse property. Groups can be found in geometry
studied by “Felix klein in 1872” [1], characterizing phenomenality like symmetry and certain types
of transformations. Group theory, firstly introduced by “Galois” [2], with the study of polynomials
has applications in physics, chemistry, and computer science, and also puzzles like the Rubik’s cube
as it may be expressed utilizing group theory. Homomorphism is both a monomorphism and an
epimorphism maintaining a map between two algebraic structures of the same type (such as two
groups, two rings, two fields, two vector spaces) and isomorphism is a bijective homomorphism
defined as a morphism, which has an inverse that is also morphism. Accordingly, homomorphisms
are effective in analyzing and calculating algebraic systems as they enable one to recognize how
intently distinct systems are associated. Similar to the classical one, neuro-homomorphism is the
transform between two neutrosophic triplet algebraic objects N and H. That is, if elements in N satisfy
some algebraic equation involving binary operation “*”, their images in H satisfy the same algebraic
equation. A neutro-isomorphism identifies two algebraic objects with one another. The most common
use of neutro-homomorphisms and neutro-isomorphisms in this study is to deal with homomorphism
theorems which allow for the identification of some neutrosophic triplet quotient objects with certain
other neutrosophic triplet subgroups, and so on.

The neutrosophic logic and a neutrosophic set, firstly made known by Florentin Smarandache [3]
in 1995, has been widely applied to several scientific fields. This study leads to a new
direction, exploration, path of thinking to mathematicians, engineers, computer scientists, and
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many other researchers, so the area of study grew extremely and applications were found
in many areas of neutrosophic logic and sets such as computational modelling [4], artificial
intelligence [5], data mining [6], decision making problems [7], practical achievements [8], and so forth.
Florentin Smarandache and Mumtazi Ali investigated the neutrosophic triplet group and neutrosophic
triplet as expansion of matter plasma, nonmatter plasma, and antimatter plasma [9,10]. By using
the concept of neutrosophic theory Vasantha and Smarandache introduced neutrosophic algebraic
systems and N-algebraic structures [11] and this was the first neutrosofication of algerbraic structures.
The characterization of cancellable weak neutrosophic duplet semi-groups and cancellable NTG are
investigated [12] in 2017. Florentin Smarandache and Mumtaz Ali examined the applications of the
neutrosophic triplet field and neutrosophic triplet ring [13,14] in 2017. Şahin Mehmet and Abdullah
Kargın developed the neutrosophic triplet normed space and neutrosophic triplet inner product [15,16].
The neutrosophic triplet G-module and fixed point theorem for NT partial metric space are given
in literature [17,18]. Similarity measures of bipolar neutrosophic sets and single valued triangular
neutrosophic numbers and their appliance to multi-attribute group decision making investigated
in [19,20]. By utilizing distance-based similarity measures, refined neutrosophic hierchical clustering
methods are achieved in [21]. Single valued neutrosophic sets to deal with pattern recognition problems
are given with their application in [22]. Neutrosophic soft lattices and neutrosophic soft expert sets are
analyzed in [23,24]. Centroid single valued neutrosophic numbers and their applications in MCDM
is considered in [25]. Bal Mikail, Moges Mekonnen Shalla, and Necati Olgun reviewed neutrosophic
triplet cosets and quotient groups [26] by using the concept of NET in 2018. The concepts concerning
neutrosophic sets and neutrosophic modules are described in [27,28], respectively. A method to handle
MCDM problems under the SVNSs are introduced in [29]. Bipolar neutrosophic soft expert set theory
and its basic operations are defined in [30].

The other parts of a paper is coordinated thusly. Subsequently, through the literature analysis
in the first section and preliminaries in the second section, we investigated neutro-monomorphism,
neutro-epimorphism, neutro-isomorphism, and neutro-automorphism in Section 3 and a fundamental
homomorphism theorem for NETG in Section 4. We give and prove the first neutro-isomorphism
theorem for NETG in Section 5, and then the second neutro-isomorphism theorem for NETG is given
in Section 6. Finally, results are given in Section 7.

2. Preliminaries

In this section, we provide basic definitions, notations and facts which are significant to develop
the paper.

2.1. Neutrosophic Extended Triplet

Let U be a universe of discourse, and (N, ∗) a set included in it, endowed with a well-defined
binary law ∗.

Definition 1 ([3]). The set N is called a neutrosophic extended triplet set if for any x ∈ N there exist eneut(x)

∈ N and eanti(x) ∈ N. Thus, a neutrosophic extended triplet is an object of the form (x, eneut(x), eanti(x)) where
eneut(x) is extended neutral of x, which can be equal or different from the classical algebraic unitary element if
any, such that

x ∗ eneut(x) = eneut(x) ∗ x = x

and eanti(x) ∈ N is the extended opposite of x such that

x ∗ eanti(x) = eanti(x) ∗ x = eneut(x)

In general, for each x ∈ N there are many existing eneut(x)′s and eanti(x)′s.

Theorem 1 ([11]). Let (N, ∗) be a commutative NET with respect to ∗ and a, b ∈ N;
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(i) neut(a) ∗ neut(b) = neut(a ∗ b);
(ii) anti(a) ∗ anti(b) = anti(a ∗ b);

Theorem 2 ([11]). Let (N, ∗) be a commutative NET with respect to ∗ and a ∈ N;

(i) neut(a) ∗ neut(a) = neut(a);
(ii) anti(a) ∗ neut(a) = neut(a) ∗ anti(a) = anti(a)

2.2. NETG

Definition 2 ([3]). Let (N, ∗) be a neutrosophic extended triplet set. Then (N, ∗) is called a NETG, if the
following classical axioms are satisfied.

(a) (N, ∗) is well defined, i.e., for any x, y ∈ N one has x ∗ y ∈ N.
(b) (N, ∗) is associative, i.e., for any x, y, z ∈ N one has x ∗ (y ∗ z) = (x ∗ y) ∗ z.

We consider, that the extended neutral elements replace the classical unitary element as well the extended
opposite elements replace the inverse element of classical group. Therefore, NETGs are not a group in classical
way. In the case when NETG enriches the structure of a classical group, since there may be elements with more
extended opposites.

2.3. Neutrosophic Extended Triplet Subgroup

Definition 3 ([26]). Given a NETG (N, ∗), a neutrosophic triplet subset H is called a neutrosophic extended
triplet subgroup of N if it itself forms a neutrosophic extended triplet group under ∗. Explicity this means

(1) The extended neutral element eneut(x) lies in H.
(2) For any x, y ∈ H, x ∗ y ∈ H.

(3) If x ∈ H then eanti(x) ∈ H.

In general, we can show H ≤ N as x ∈ H and then eanti(x) ∈ H, i.e x ∗ eanti(x) = eneut(x) ∈ H.

Definition 4. Suppose that N is NETG and H1, H2 ≤ N.H1 and H2 are called neutrosophic triplet conjugates
of N if n ∈ N thereby H1 = nH2(anti(n)).

2.4. Neutro-Homomorphism

Definition 5 ([26]). Let (N1, ∗) and (N2, ◦) be two NETGs. A mapping f : N1 → N2 is called a
neutro-homomorphism if

(a) For any x, y ∈ N, we have
f (x ∗ y) = f (x) ◦ f (y)

(b) If (x, neut(x), anti(x) is a neutrosophic extended triplet from N1, then

f (neut(x)) = neut( f (x))

and
f (anti(x)) = anti( f (x)).
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Definition 6 ([26]). Let f: N1→N2 be a neutro-homomorphism from a NETG (N1, ∗) to a NETG (N2, ◦).
The neutrosophic triplet image of f is

Im( f ) = { f (g) : g ∈ N1, ∗}.

Definition 7 ([26]). Let f: N1→N2 be a neutro-homomorphism from a NETG (N1, ∗) to a NETG (N2, ◦) and B
⊆ N2. Then

f−1(B) = {x ∈ N1 : f (x) ∈ B}

is the neutrosophic triplet inverse image of B under f.

Definition 8 ([26]). Let f : N1 → N2 be a neutro-homomorphism from a NETG (N1, ∗) to a NETG (N2, ◦).
The neutrosophic triplet kernel of f is a subset

Ker( f ) = {x ∈ N1 : f (x) = neut(x)} o f N1,

where neut(x) denotes the neutral element of N2.

Definition 9. The neutrosophic triplet kernel of φ is called the neutrosophic triplet center of NETG N and it is
denoted by Z(N). Explicitly,

Z(N) = {a ∈ N : ϕa = neutN}
= {a ∈ N : ab(anti(a)) = b, ∀b ∈ N}
= {a ∈ N : ab = ba, ∀b ∈ N}.

Hence Z(N) is the neutrosophic triplet set of elements in N that commute with all elements in N. Note that
obviously Z(N) is a neutrosophic triplet. We have Z(N) = N in the case that N is abelian.

Definition 10 ([26]). Let N be a NETG and H ⊆ N.∀x ∈ N, the set xh/h ∈ H is called neutrosophic triplet
coset denoted by xH. Analogously,

Hx = hx/h ∈ H

and
(xH)anti(x) = (xh)anti(x)/h ∈ H.

When h ≤ N, xH is called the left neutrosophic triplet coset of H in N containing x, and Hx is called the
right neutrosophic triplet coset of H in N containing x. | xH | and | Hx | are used to denote the number of
elements in xH and Hx, respectively.

2.5. Neutrosophic Triplet Normal Subgroup and Quotient Group

Definition 11 ([26]). A neutrosophic extended triplet subgroup H of a NETG of N is called a neutrosophic
triplet normal subgroup of N if aH(anti(a)) ⊆ H, ∀x ∈ N and we denote it as H E N and H C N i f H 6= N.

Example 1. Let N be NETG. {neut} � N and N � N.

Definition 12 ([26]). If N is a NETG and H � N is a neutrosophic triplet normal subgroup, then the
neutrosophic triplet quotient group N/H has elements xH : x ∈ N, the neutrosophic triplet cosets of H in N,
and operation (xH)(yH) = (xy)H.



Symmetry 2018, 10, 321 5 of 14

3. Neutro-Monomorphism, Neutro-Epimorphism, Neutro-Isomorphism, Neutro-Automorphism

In this section, we define neutro-monomorphism, neutro-epimorphism, neutro-isomorphism, and
neutro-automorphism. Then, we give and some important theorems related to them.

3.1. Neutro-Monomorphism

Definition 13. Assume that (N1, ∗) and (N2, ◦) be two NETG’s. If a mapping f : N1 → N2 of NETG is only
one to one (injective) f is called neutro-monomorphism.

Theorem 3. Let (N1, ∗) and (N2, ◦) be two NETG’s. ϕ : N1 → N2 is a neutro-monomorphism of NETG if
and only if kerϕ = {neutN1}.

Proof. Assume ϕ is injective. If a ∈ kerϕ, then

ϕ(a) = neutN2 = ϕ(neutN1), ∀a ∈ N1

and hence by injectivity a = neutN1. Conversely, assume kerϕ = ϕ(neutN1). Let a,b ∈ N1 such that ϕ(a) =
ϕ(b). We need to show that a = b.

neutH = ϕ(b)anti(ϕ(a))
= ϕ(b)ϕ(anti(a))
= ϕ(b(anti(a))).

Thus b(anti(a))) ∈ kerϕ, and hence, by assumption kerϕ = ϕ(neutN1). We conclude that
b(anti(a))) = neutN1, i.e., a = b.

Definition 14. Let (N1, ∗) and (N2, ◦) be two NETG’s. If a mapping f : N1 → N is only onto (surjective) f is
called neutro-epimorphism.

Theorem 4. Let N and H be two NETG’s. If ϕ : N → H is a neutro-homomorphism of NETG, then so is ϕ−1:
H→ N.

Proof. Let x = ϕ(a), y = ϕ(b), ∀a, b ∈ N and ∀x, y ∈ H. So a = anti(ϕ(x)), b = anti(ϕ(y)). Now

anti(xy) = ϕ(ϕ(a)ϕ(b))
= anti(ϕ(ab) = ab
= anti(ϕ(x))anti(ϕ(y)).

Theorem 5. Let N be NETG and a, b ∈ N. The map φ : N → AutN. Then, a→ ϕ a, is a
neutro-homomorphism.

Proof. For any fixed n ∈ N, we have

ϕab(N) = abn(anti(ab)) = abn(anti(a))anti(b)
= ϕa(bn(anti(b)) = ϕa ϕb(n),

So ϕab = ϕa ϕb, i.e., φ(ab) = φ(a)φ(b).
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It is in fact has anti-neutral element i.e., ϕ(anti(n)) = anti(ϕn). Since ϕnanti(ϕn(a)) =

n(anti(n)an)anti(n) = a, and so ϕn is injective.

Theorem 6. Let f : N → H be a neutro-homomorphism of NETG N and H. For h ∈ H and x ∈
f−1(h), f−1(h) = x ∈ ker f .

Proof. (1) Let’s show that f−1(h) ⊆ x ker f . If x ∈ f−1(h), then f (x) = h and b ∈ f−1(h), then
f (b) = h. If f (x) = f (y), then:

anti( f (x)) f (x) = anti( f (x)) f (b)(by theorem 1)

neutH = f (anti(x)) f (b) (by definition 1)

⇒ anti(x)b ∈ ker f .

For at least k ∈ ker f , anti(x)b = k. If b = xk, then,

b ∈ xker f ⇒ f−1(h) ⊆ xker f (1)

(2) Let’s show that xker f ⊆ f−1(h). Let b ∈ xker f . For at least k ∈ ker f , b = xk

⇒ f (b) = f (xk) = f (x) f (k) = h neutH = h

If f−1(h) = b and b ∈ f−1(h), then
xker f ⊆ f−1(h) (2)

by (1) and (2), we obtain xker f = f−1(h).

Theorem 7. Let ϕ : N1 → N2 be a neutro-homomorphism of NETG N1 and N2.

(1) I f H2 E N2, then ϕ−1(H2) E N1.
(2) I f H1 E N1 and ϕ is a neutro− epimorhism then ϕ(H1) E N2.

Proof. (1) If x ∈ ϕ−1(H2) and a ∈ N1, then ϕ(x) ∈ H2 and so
ϕ((ax)(anti(a)) = ϕ(a)ϕ(x)anti(ϕ(a)) ∈ H2 . Since H2 is neutrosophic triplet normal subgroup.
We conclude ax(anti(a)) ∈ ϕ−1(H2).

(2) Since H1 is neutrosophic triplet normal subgroup, we have ϕ(a)ϕ(H1)anti(ϕ(a)) ⊆ ϕ(H1).
Since we assume ϕ is surjective, every b ∈ N2 can be written as b = ϕ(a), a ∈ N1. Therefore,
bϕ(H1)anti(b) ∈ ϕ(H1).

Theorem 8 ([26]). Let f : N → H be a neutro-homomorphism from a NETG N to a NETG H. Ker f C N.

Theorem 9. Let N be NETG and H � N. The map ϕ : N → N/H, n→ nH, is a neutro-homomorphism
with neutrosophic triplet kernel ker ϕ = H.
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Proof. We have ϕ(ab) = (ab)H = (aH)(bH) = ϕ(a)ϕ(a), so φ is a neutro-homomorphism. As to
the neutrosophic triplet kernel, a ∈ kerϕ⇔ ϕ(a) = H (since H is neutral in N/H) ⇔ aH = H (by
definition of φ) ⇔ a ∈ H.

Theorem 10. Let N be NETG and H ⊆ N be a non-empty neutrosophic extended triplet subset. Then H E N,
if and only if there exists a neutro-homomorphism ϕ : N1 → N2 with H = kerϕ.

Proof. Its straight forward.

3.2. Neutro-Isomorphism

Definition 15. Let (N1, ∗) and (N2, ◦) be two NETGs. If a mapping f : N1 → N2 neutro-homomorphism is
one to one and onto f is called neutro-isomorphism. Here, N1 and N2 are called neutro-isomorphic and denoted
as N1

∼= N2.

Theorem 11. Let (N1, ∗) and (N2, ◦) be two NETG’s. If f : N1 → N2 is a neutro-isomorphism of NETG’s,
then so is f−1 : N2 → N1.

Proof. It is obvious to show that f is one to one and onto. Now let’s show that f is
neutro-homomorphism. Let x = ϕ(a), y = ϕ(b), ∀a, b ∈ N1, ∀x, y ∈ N2 and so, a = anti(ϕ(x)), b =

anti(ϕ(y)). Now anti(xy) = anti(ϕ(ϕ(a)ϕ(b))) = anti(ϕ(ϕ(ab))) = ab = anti(ϕ(x))anti(ϕ(y)).

3.3. Neutro-Automorphism.

Definition 16. Let (N1, ∗) and (N2, ◦) be two NETG’S. If a mapping f : N1 → N2 is one to one and onto f is
called neutro-automorphism.

Definition 17. Let N be NETG. ϕ ∈ AutN is called a neutro-inner automorphism if there is a n ∈ N such
that ϕ = ϕn.

Proposition 1. Let N be a NETG. For a ∈ N, fa : N → N such that x → ax(anti(a) is a
neutro-automorphism (AutN).

Proof. (1) ∀x, y ∈ N, we have to show that

f (x) = f (y)⇒ x = y.ax(anti(a)) = ay(anti(a))⇒ ax(anti(a))a = ay(anti(a))a⇒ ax(neut(a)) = ay(neut(a))⇒ ax = ay⇒ anti(a)ax = anti(a)ay⇒ neut(a)x = neut(a)y⇒ x = y.

Therefore, f is one to one.
(2) ∀x, y ∈ N, we have to show that

f (x) = ax(anti(a)) = y.ax(anti(a))a = ya⇒ ax(neut(a)) = ya⇒ ax = ya⇒ anti(a)ax = anti(a)ya⇒ neut(a)x = anti(a)ya⇒ x = anti(a)ya.

So, f is onto. Therefore, fa is a neutro-automorphism.
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Lemma 1. Let a be an element of NETG N such that a2 = a. Then a = neut(a).

Proof. We have
= (anti(a) ∗ a) ∗ a for anti(a) ∈ N (anti axiom)

= anti(a) ∗ a2 (associativity axiom)

= anti(a) ∗ a (by assumption)
= neut(a) (by definition of anti)

Theorem 12. Let N be NETG and H1, H2 ≤ N. Then the neutrosophic extended triplet set H1H2 =

{ab : a ∈ H1, b ∈ H2} is a neutrosophic extended triplet subgroup in the case that H1H2 = H2H1.

Proof. Suppose H1H2 is a neutrosophic extended triplet subgroup. Then, for all a ∈ H1, b ∈ H2, we
have anti(a)anti(b) ∈ H1H2, i.e., H2H1 ⊆ H1H2. But also for h ∈ H1H2 we find a ∈ H1, b ∈ H2 thereby
anti(h) = ab, and then h = anti(b)anti(a) ∈ H2H1. So H1H2 ⊆ H2H1, that’s, H1H2 = H2H1. On the
other hand, assume that H1H2 = H2H1. Then ∀a, a′ ∈ H1, b, b′ ∈ H2 we have aba′b′ ∈ aH2H1b′ =
aH1H2b′ = H1H2. Furthermore, ∀a ∈ H1, b ∈ H2 we have anti(ab) = anti(b)anti(a) ∈ H2H1 =

H1H2.

4. Fundamental Theorem of Neutro-Homomorphism

The fundamental theorem of neutro-homomorphism relates the structure of two objects between
which a neutrosophic kernel and image of the neutro-homomorphism is given. It is also significant
to prove neutro-isomorphism theorems. In this section, we give and prove the fundamental theorem
of neutro-homomorphism. Then, we discuss a few special cases. Finally, we give examples by
using NETG.

Theorem 13. Let N1, N2 be NETG’s and φ : N1 → N2 be a neutro-homomorphism. Then, N1/ker(φ) ∼=
im(φ). Furthermore if ϕ is neutro-epimorphism, then

N1/kerφ ∼= N2.
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(1) We must show that if aK = bK, then i(aK) = (bK). Suppose aK = bK. We have
aK = bK ⇒ anti(b)aK = K ⇒ anti(b)a ∈ K. Here, neut(n2) = φ(anti(b)a) = φ(anti(b)φ(a)
= anti(φ(b))φ(a)⇒ φ(a) = φ(b). Hence, i(aK) = φ(a) = φ(b) = i(bK). Therefore, it is
well defined.

(2) We must show that i(aK) = i(bK)⇒ aK = bK. Suppose that i(aK) = i(bK). Then
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Thus, i is injective. 
(3) We must show that for any element in the domain (N1/K) gets mapped to it by i. let’s pick any 

element ( ) ( ).a imφ φ∈  By definition, ( ) ( )   ,i aK aφ=  hence i is surjective.  

Thus, i is injective.
(3) We must show that for any element in the domain (N1/K) gets mapped to it by i. let’s pick any

element φ(a) ∈ im(φ). By definition, i(aK) = φ(a), hence i is surjective.
(4) We must show that i(aK bK) = i(aK)i(bK).i(aK bK) = i(abK)(aK bK = abK) = φ(ab) =

φ(a)φ(b) = i(aK bK) = i(aK)i(bK). Thus, i is a neutro-homomorphism.

In summary, since i : N1/K → im(φ) is a well-defined neutro-homomorphism that is injective
and surjective. Therefore, it is a neutro-isomorphism. i.e., N1/K ∼= im(φ), and the fundamental
theorem of neutro-homomorphism is proven.

Corollary 1 (A Few Special Cases of Fundamental Theorem of Neutro-homomorphism).

• Let N = (1, 1, 1) be a trivial neutrosophic extended triplet. If ϕ: N1→N2 is an embedding, then neutrosophic
ker(ϕ) = {neut(1) = 1N1}. The Theorem 12 says that im(ϕ) ∼= {N1/1N1} ∼= N1.

• If ϕ: N1→N2 is a map ϕ(n) = neut(1) = 1N2 for all n2 ∈ N1, then neutrosophic ker(ϕ) = N1, so Theorem
13 says that 1N2 = im(ϕ) ∼= N1/N1.

Example 2. The neutrosophic extended triplet alternating group An (the neutrosophic extended triplet subgroup
of even permutation in NETG Sn) has index 2 in Sn.

Solution. To prove that [Sn:An] = 2. We will construct a surjective neutro-homomorphism φ: Sn→Z2 with
neutrosophic triplet kerφ = An. Here the neutrosophic extended triplets of Z2 are (0, 0, 0) and (1, 1, 1). If this
is achieved, it would follow that Sn/An ∼= Z2, so |Sn/An| = |Z2| = 2, and therefore [Sn:An] = |Sn/An| = 2,

as desired. Define φ: Sn→Z2 by φ(f) =

{
[0] i f f is even
[1] i f f is odd

By construction φ is surjective. To prove that φ is a neutro-homomorphism we need to show that
φ(x) + φ(y) = φ(xy), ∀x, y ∈ Sn. Here if x and y are both even or both odd, then xy is even. If x is even
and y is odd, or if x is odd and y is even, then xy is odd. Let us see these four different cases as follows:

(1) x and y are both even. Then xy is also even. So, φ(x) = φ(y) = φ(xy) = [0]. Since [0] + [0] =
[0] holds.

(2) x is even, and y is odd. Then xy is odd. So, φ(x) + φ(y) = [0] + [1] = [1] = φ(xy).
(3) x is odd, and y is even. This case is analogous to case 2.
(4) x and y are both odd. Then xy is even, so φ(x) + φ(y) = [1] + [1] = [0] = φ(xy). Thus, we verified

that φ is a neutro-homomorphism. Finally, neutrosophic trplet kerφ = {x ∈ Sn: φ(x) = [0]2} is the
neutrosophic extended triplet set of all even permutations, so neutrosophic triet kerϕ = An.
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5. First Neutro-Isomorphism Theorem

The first neutro-isomorphism theorem relates two neutrosophic triplet quotient groups involving
products and intersections of neutrosophic extended triplet subgroups. In this section, we give and
prove the first neutro-isomorphism theorem. Finally, we give an example by using NETG.

Theorem 14. Let N be NETG and H, K be two neutrosophic extended triplet subgroup of N and H is a
neutrosophic triplet normal in K. Then

(a) HK is neutrosophic triplet subgroup of N.
(b) H

⋂
K is neutrosophic triplet normal subgroup in K.

(c) HK
H
∼= K

H
⋂

K

Proof. (a) Let xy ∈ HK. If x = h1k1 and y = h2k2, h1h2 ∈ H and k1, k2 ∈ K. Consider

x(anti(y)) = (h1k1) anti(h2k2)

= (h1k1)anti(k2)anti(h2)

= h1(k1(anti(k2)))anti(h2), (k3 = k1(anti(k2)) : k3 ∈ K
= h1k3(anti(h2))

= h1k3(anti(h2))anti(k3)k3

= h1k3(anti(h2))anti(k3)k3

= h1h2k3 because H C kso h3 = k3(anti(h2))anti(k3) ∈ H
⇒ x(anti(y) = h4k3 ∈ HK, (h4 = h1h2)

⇒ HK is NETG of N.

(b) We have to prove H ∩K is neutrosophic triplet normal subgroup in k or H ∩K C k. Let x ∈ H ∩K
and x ∈ K. If x ∈ H and x ∈ K, then kx(anti(k)) ∈ H because H C k and kx(anti(k)) ∈ K because
xk ∈ K. Thus, kx(anti(k)) ∈ H ∩ K. Since H ∩ K C k.

(c) HK
H
∼= K

H
⋂

K . Let H
⋂

K = D, so K
D = K

H
⋂

K . Now let’s define a mapping ϕ: HK→ K
D by φ(hk) = KD.

1. ϕ is well defined
h1k1 = h2k2, h1h2 ∈ H and k1k2 ∈ K

k1h′1 = k2h′2
⇒ anti(k2)k1h′1 = h′2
⇒ anti(k2)k1 = h′2(anti(h1)), h′2(anti(h1)) ∈ H
⇒ anti(k2)k1 ∈ H, but anti(k2)k1 ∈ K
⇒ anti(k2)k1 ∈ H ∩ K = D
⇒ anti(k2)k1 ∈ D
⇒ anti(k2)k1D = D
⇒ k1D = k2D
⇒ φ(h1k1) = φ(h2k2).

2. ϕ is neutro-homomorphism.

Φ(h1k1.h2k2) = φ(h1(k1h2)k2

= φ(h1h2′k1k2)

= K1k2D
= k1Dk2D
= φ(h1k1).φ(h2k2)

3. ϕ is onto.
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Since for every KD ∈ K/D,3 neut.k ∈ HK under ϕ such that φ(neut.k) = KD. Hence, ϕ is onto.
Now by Theorem 13,

HK/Kerφ ∼= K/D

Now it is enough to prove that kerφ = H. Let h ∈ H, h(neut) ∈ HK. Thus

φ(h) = φ(h.neut) = neut.D = D
⇒ φ(h) = D
⇒ h ∈ kerφ.i.eH ⊆ kerφ

Conversly, hk ∈ kerφ, where h ∈ H and k ∈ K. If φ(hk) = D, then

KD = D ⇒ k ∈ D = H ∩ K
⇒ h ∈ H and k ∈ K
⇒ hk ⊆ H
⇒ kerφ ⊆ H. Thus H = kerφ

by (1) HK
H
∼= K

H
⋂

K .

Example 3. Let N be NETG. Neutro-isomorphism theorems are for instance useful in the calculation of NETG
orders, since neutro-isomorphic groups have the same order. If H ≤ N and K � N so that HK is finite, then
Lagrange’s theorem [26] in neutrosophic triplet with theorem 13 yield

|HK|/|K| = |HK : K|
= |HK/K|
= |H/H

⋂
K|

= |H : H
⋂

K|
= |H|/|H

⋂
K|, that is

|HK| = |H||K|/|H
⋂

K|

6. Second Neutro-Isomorphism Theorem

The second neutro- isomorphism theorem is extremely useful in analyzing the neutrosophic
extended normal subgroups of a neutrosophic triplet quotient group. In this section, we give and
prove the second neutro-homomorphism theorem for NETG.

Theorem 15. Let N be a NETG. Let H and K be neutrosophic triplet normal subgroup of N with K ⊆ H. Then
H/K C N/K and N/KH/K ∼= N/H

Proof. Consider the natural map Ψ:N→N/H. The neutrosophic triplet kernel, H contains K. Thus, by
the universal property of N/K, it follows that there is a neutro-homomorphism N/K → N/H. This
map is clearly surjective. In fact, it sends the neutrosophic triplet left coset nK to the neutrosophic
triplet left coset nH. Now suppose that nK is in the neutrosophic triplet kernel. Then the neutrosophic
triplet left coset nH is the neutral neutrosophic triplet coset, that is, nH = H, so that n ∈ H. Thus the
neutrosophic triplet kernel consists of those neutrosophic triplet left cosets of the form nK, for n ∈ H,
that is, H/K.
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1. Ψ is well defined. Let ak = bk.

anti(b)ak = k
anti(b)a ∈ k
⇒ K C H

anti(b)a ∈ H
aH = bH(anti(b)aH = H)

Ψ(ak) = Ψ(bk)

2. Ψ is neutro-homomorphism

ak, bk ∈ N/K
Ψ(akbk) =Ψ(abk) = abH = aHbH =Ψ(ak)Ψ(bk).

3. Ψ is onto
For all y = aH ∈ N/H, x = ak ∈ N/K ⇒Ψ(x) = y.

4. kerΨ = H/K
The neutral element of N/H is H. Therefore

ker Ψ: {xk ∈ N/K : Ψ(xk) = H}
= {xk ∈ N/K : Ψ(xk) = xH = H}
= {xk ∈ N/K : x ∈ H}
= {xk ∈ H/K}
= H/K.

By Theorem 13 N/KH/K ∼= N/H.

7. Conclusions

This paper is mainly focused on fundamental homomorphism theorems for neutrosophic extended
triplet groups. We gave and proved the fundamental theorem of neutro-homomorphism, as well
as first and second neutro-isomorphism theorems explained for NETG. Furthermore, we define
neutro-monomorphism, neutro-epimorphism, neutro-automorphism, inner neutro-automorphism,
and center for neutrosophic extended triplets. Finally, by applying them to neutrosophic algebraic
structures, we have examined how closely different systems are related. By using the concept of a
fundamental theorem of neutro-homomorphism and neutro-isomorphism theorems, the relation
between neutrosophic algebraic structures (neutrosophic triplet ring, neutrosophic triplet field,
neutrosophic triplet vector space, neutrosophic triplet normed space, neutrosophic modules, etc.) can
be studied and the field of study in neutrosophic algebraic structures will be extended.
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